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Abstract—Straggler effect is the main bottleneck in realizing
federated learning (FL) in wireless networks. This work proposes
a novel user (UE) selection approach to mitigate this effect with
UE sampling in cell-free massive multiple-input multiple-output
networks. Our proposed approach selects only a small subset
of UEs for participating in one FL process. Importantly, since
the UEs are selected before any FL process is executed, the
performance of FL during the executing time is not affected by our
method. Here, we select UEs by solving an FL transmission time
minimization problem that jointly optimizes UE selection, power
control, and data rate. The problem is formulated to capture the
complex interactions among the FL training time, UE selection,
and straggler effect. This mixed-integer mixed-timescale stochastic
nonconvex problem is constrained by the minimum number of
UEs to guarantee the quality of learning. By employing online
successive convex approximation, we propose a novel algorithm
to solve the formulated problem with guaranteed convergence
to the neighbourhood of their stationary points. Our approach
can significantly reduce the FL transmission time over baseline
approaches, especially in the networks that experience serious
straggler effect due to the moderately low density of access points.

Index Terms—Cell-free massive MIMO, federated learning, user
selection.

I. INTRODUCTION

Recently, federated learning (FL) has been considered to
be a communication-efficient and privacy-reserved solution to
train artificial intelligent models at mobile devices in wireless
networks [1]. By definition, an FL process is an iterative
process in which users (UEs) use their local data to compute
training updates, and send the updates to a central server. The
central server then aggregates these updates to compute a global
training update, and finally send the global training update
back to all the UEs. However, the central server needs to wait
until receiving the training updates from all the UEs before
processing any next step. As such, some straggler UEs who
have unfavorable links may dramatically slow down the whole
FL process. This is called “straggler effect”, which is the main
bottleneck in realizing FL in wireless networks.

For mitigating the straggler effect, several solutions have
been proposed in [2]–[5] but not yet sufficiently effective.
Specifically, [2], [3] propose heuristic UE sampling schemes
to select a subset of UEs for uploading the local updates to the
central server. These techniques mitigate the straggler effect by
reducing the probability of straggler UEs participating in an FL
process. However, they are not always effective because there is
a chance that sampled UEs are straggler UEs. On the other hand,
the optimal/suboptimal UE selection approaches to mitigate the
straggler effect are developed in [4], [5]. In spite of that, the
time-division multiple access and frequency-division multiple
access networks in [4], [5] might not be suitable to support

FL. The FL training time in these networks could be drastically
prolonged when the number of UEs is large.

Paper Contribution:1 This paper consider cell-free massive
multiple-input multiple-output (CFmMIMO) networks, which
have recently been known as a promising candidate to sup-
port FL [7]. Because of their macro-diversity gain, favorable
and channel hardening property, the stable operation of an
FL process is guaranteed by using a communication scheme
proposed in [7]. Here, we propose an UE selection approach to
mitigate the straggler effect for a general FL framework with UE
sampling [2], [3]. In our approach, UEs are selected by solving
an FL transmission time minimization problem that captures
the complex interaction among the training time, straggler
effect, and UE selection. This mixed-integer mixed-timescale
stochastic nonconvex problem jointly optimizes UE selection,
power control, and data rate. It is also subjected to the practical
constraints on the minimum number of UEs to guarantee the
quality of learning. Upon using the online successive convex
approximation techniques, we develop a novel algorithm that
converges to the neighbourhoods of the stationary points of the
formulated problem. Numerical results show that our proposed
UE selection approach reduces the FL transmission time more
than half, compared to the baseline schemes, especially in the
networks that have a moderately low density of access points.

II. CELL-FREE MASSIVE MIMO SYSTEM MODEL TO
SUPPORT WIRELESS FEDERATED LEARNING

A. UE Selection Model
Let N be the total number of UEs. Denote by ak an indicator

variable that shows whether a UE k ∈ N , {1,. . ., N} is
selected to take part in an FL process or not, i.e.,

ak ,

{
1, if UE k is selected,
0, otherwise.

(1)

Let Ñ be the set of selected UEs to participate in an FL process,
i.e.,

Ñ = {k|ak = 1,∀k ∈ N}, (2)
and Ñ ,

∑
k∈N ak is the size of Ñ . Given the binary values

of {ak}k∈N , (2) can be rewritten as:
Ñ is the index set of rnd(Ñ) largest elements of aaa, (3)

where aaa , [a1, . . . , aN ]T , and rnd(Ñ) is the nearest integer of
Ñ . Note that when the elements of aaa are binary, (3) is equivalent
to (2). When they are not binary, they can be considered as
priority weights for UEs. In the latter case, (3) includes the
UEs that have highest priority weights, and hence, is equivalent

1The extended version of this work was submitted for publication to the IEEE
Transactions on Wireless Communications [6].



to (2) in this sense. Here, (3) is used to assist our UE selection
approach, which is discussed later in Section IV-3.

B. The General FL Framework with UE Sampling [2], [3]
After UEs are selected, an FL process starts with selected

UEs. Here, we consider the process that has a general FL
framework with UE sampling [2], [3]. This process includes
the four steps:
(S1) The central server sends the global downlink (DL) training

update to all Ñ selected UEs, and choose randomly a
subset S(n) of K ≤ Ñ UEs with replacement according
to the sampling probabilities {p1, . . . , pÑ}.

(S2) The UEs in S(n) update and solve their local machine
learning (ML) problems on their local data set and then
compute the local uplink (UL) training update

(S3) The UEs in S(n) send their computed local UL training
updates to the central server

(S4) The central server computes the global DL training update
by aggregating the received UL training updates.

The process continues and terminates when a global accuracy
is obtained.

C. CFmMIMO System Model
To support the FL framework discussed above, we consider

a CFmMIMO network where the given set N of UEs (i.e., the
clients) and CPU (i.e, the central server) are connected via a set
of APs M= {1, ...,M} [8]. The UEs connect to the APs via
wireless links, while the APs connect to the CPU via backhaul
links with sufficient capacities.

1) UL channel estimation: UL pilot sequences are sent by all
the UEs to all the APs simultaneously. Denote by τc the number
of samples of each coherence block, and by τt (samples) the
length of one pilot sequence. Let

√
τtϕϕϕk ∈ Cτt×1 be the pilot

sequence transmitted from UE k ∈ N , where ‖ϕϕϕk ‖2=1,∀k ∈
N . Denote by gmk = (βmk)1/2g̃mk the channel from UE k to
AP m, where βmk and g̃mk ∼ CN (0, 1) are the large-scale
fading and small-scale fading channel coefficients, respectively.
At AP m, gmk is estimated by using the received pilots and the
minimum mean-square error (MMSE) estimation. The MMSE
estimate ĝmk of gmk is distributed according to CN (0, σ2

mk),
where σ2

mk = τtρt(βmk)2∑
`∈N τtρtβm`|ϕϕϕH

k ϕϕϕ` |2+1
[8].

2) Step (S1): The CPU encodes the global DL training
update intended for UE k into a symbol sd,k ∼ CN (0, 1), and
sends all the symbols sd,k,∀k ∈ N , to all the APs. Denote
by Sd (bits) and Rd,k (bps) the data size of the global DL
training update and the data rate of sending the global DL
training update to UE k, respectively. The transmission time
from the CPU to all the APs is given by

td,B(aaa,RRRd) =

∑
k∈N akSd∑
k∈N akRd,k

, (4)

where RRRd , [Rd,1, . . . , Rd,N ]T .
To transmit the symbols received from the CPU, the APs

first use conjugate beamforming to precode these symbols.
Then, the precoded versions will be broadcasted to all the
UEs. Specifically, the transmitted signal at AP m is given as
xd,m=

√
ρd
∑
k∈N
√
ηmk(ĝmk)∗sd,k, where ρd is the maximum

normalized transmit power at each AP and ηmk,∀m ∈M, k ∈
N , is a power control coefficient. The transmitted power at AP
m is required to meet the average normalized power constraint,

i.e., E{|xd,m|2} ≤ ρd, which can be expressed as the following
per-AP power constraint:∑

k∈N

σ2
mkηmk ≤ 1,∀m. (5)

Since no power should be allocated to the unselected UEs, we
have

∀k ∈ N : if ak = 0, then ∀m ∈M, ηmk = 0. (6)
At UE k, the achievable DL rate (bps) is [8]

Rd,k≤hd,k(ηηη), (7)
where ηηη , {ηmk}m∈M,k∈N and hd,k(ηηη) is given in (8) shown
at the top of the next page [8], and B is the bandwidth. The
transmission time from the APs to UE k is given by

td,k(ak, Rd,k) =
akSd
Rd,k

. (9)

3) Step (S3): For given aaa, let S(n)⊂Ñ be the set of K UEs
randomly sampled from the set Ñ , using the UE sampling tech-
niques [2], [3]. Here, this set is chosen by randomly sampling
UE with replacement according to the sampling probabilities
{p1,. . ., pÑ}. Denote by bk an indicator showing whether UE
k is sampled or not, i.e.,

bk ,

{
1, if k ∈ S(n)

0, otherwise,
,∀k ∈ N . (10)

After computing a local UL training update, UE k ∈ S(n)

encodes this update into a symbol su,k∼CN (0, 1), and allocates
a transmit amplitude value

√
ρuζk to this symbol. A baseband

signal i.e., xu,k =
√
ρuζksu,k, is then sent to all the APs,

and subjected to the average transmit power constraint, i.e.,
E
{
|xu,k|2

}
≤ ρu. This constraint can be expressed in a per-UE

constraint as
0 ≤ ζk ≤ 1,∀k ∈ N . (11)

Since {bk}k∈S(n) are only chosen for a given aaa, and no power
should be allocated to the unsampled UEs, we have

∀k ∈ N : if akbk = 0, then ζk = 0. (12)
Let Su (bits) and Ru,k (bps) be the data size of the local UL
training updates and the data rate of transmitting the local UL
training update from UE k to the CPU, respectively. Here, we
assume that Su is the same for all the UEs. The transmission
time from UE k ∈ S(n) to the APs is given by

tu,k(ak, Ru,k) =
akbkSu
Ru,k

. (13)

Using the signals received from all the UEs, the APs compute
and send match-filtered signals to the CPU to detect the UEs’
message symbols. The transmission time from the APs to the
CPU is thus expressed as

tu,B(aaa,RRRu) =

∑
k∈N akbkSu∑
k∈N akbkRu,k

(14)

where RRRu , [Ru,1, . . . , Ru,N ]T . At the CPU, the achievable
UL rate for UE k is given by

Ru,k ≤ hu,k(ζζζ), (15)
where ζζζ , {ζk}k∈N and hu,k(ζζζ) is defined in (16) shown at
the top of the next page [8].

III. PROBLEM FORMULATIONS

The transmission time of Step (S1) involves the transmission
time of sending the global DL training update from the CPU to
the APs, and that from the APs to all the UEs, i.e.,

Td(aaa,RRRd) =

∑
k∈N akSd∑
k∈N akRd,k

+ max
k∈N

akSd
Rd,k︸ ︷︷ ︸

Straggler effect in Step (S1)

. (17)



hd,k(ηηη)=
τc−τt
τc

B log2

(
1+

ρd
(∑

m∈M η
1/2
mkσ

2
mk

)2
ρd
∑
`∈N \k

(∑
m∈M η

1/2
m` σ

2
m`

βmk

βm`

)2|ϕϕϕH` ϕϕϕk |2+ρd
∑
`∈N

∑
m∈M ηm`σ2

m`βmk+1

)
(8)

hu,k(ζζζ)=
τc−τt
τc

B log2

(
1+

ρuζk
(∑

m∈M σ2
mk

)2
ρu
∑
`∈N \k ζ

(̀∑
m∈M σ2

mk
βm`

βmk

)2|ϕϕϕHk ϕϕϕ` |2+ρu
∑
`∈N ζ`

∑
m∈M σ2

mkβm`+
∑
m∈M σ2

mk

)
(16)

The transmission time of Step (S3) consists of the transmission
time of transmitting the global UL training update from the UEs
to the APs, and that from the APs to the CPU, i.e.,

Tu(aaa,RRRu)= max
k∈N

akbkSu
Ru,k︸ ︷︷ ︸

Straggler effect in Step (S3)

+

∑
k∈N akbkSu∑
k∈N akbkRu,k

. (18)

Therefore, the transmission time of one iteration of the FL
process is

To(aaa,RRRd,RRRu) = Td(aaa,RRRd) + Tu(aaa,RRRu). (19)
In (17) and (18), the terms of straggler effect can be much
larger than the remaining terms, when there are UEs that have
highly unfavorable links in a network having a large number
of UEs. Therefore, the straggler effect could significantly affect
the transmission time of each iteration of the FL process in (19).

On the other hand, as seen from (19), To(aaa,RRRd,RRRu) depends
on both aaa (UE selection) and (RRRd,RRRu) (rate allocation). How-
ever, the UEs are selected before any FL process is executed,
while the rates are optimized before each iteration of the FL
process happens. Therefore, to measure how efficiently the
transmission time is optimized, we introduce a new metric
termed “ergodic or effective transmission time of one iteration
of an FL process”, i.e., Te , E{To(aaa,RRRd,RRRu)}. Since each
iteration of the FL process happens in one large-scale coher-
ence time [7], E{To(aaa,RRRd,RRRu)} is, therefore, the average of
To(aaa,RRRd,RRRu) over the large-scale fading and user sampling
realizations.

Before any FL process is executed, UEs are selected to
mitigate the straggler effect by solving an optimization problem
that minimizes the effective transmission time of one iteration
of an FL process as

min
aaa,ηηη,ζζζ,RRRd,RRRu

Te(aaa,RRRd,RRRu) = E{To(aaa,RRRd,RRRu)} (20a)

s.t. (1), (5), (6), (7), (11), (12), (15)
0 ≤ ηmk,∀m, k (20b)
0 ≤ ζk,∀k (20c)
0 ≤ Rd,k,∀k (20d)
0 ≤ Ru,k,∀k (20e)∑
k∈N

ak ≥ NQoL, (20f)

where NQoL ≥ K is a threshold to ensure the quality of
learning. The quality of a statistical learning scheme such
as FL is defined as the test accuracy obtained after running
that scheme. It can be shown in [9] that the test accuracy of
FL becomes worse if a number of UEs that are selected to
participate in an FL process decreases. In (20f), the quality
of FL is thus guaranteed by keeping the number of UEs
participating in an FL process to be larger than a certain value
NQoL. In practice, NQoL is experimentally chosen according to
specific ML models. Problem (20) is challenging because of
its nonconvex stochastic nature, mixed-integer mixed-timescale
structure, binary constraints and tight coupling among the
variables.

IV. PROPOSED ALGORITHM

First, we observe that x ∈ {0, 1} ⇔ x ∈ [0, 1] &x− x2 ≤ 0
[10]. Therefore, problem (20) is equivalent to

min
aaa,ηηη,ζζζ,RRRd,RRRu

E{To(aaa,RRRd,RRRu)} (21a)

s.t. (5), (6), (7), (11), (12), (15), (20b)− (20f)∑
k∈N

(ak − a2
k) ≤ 0 (21b)

0 ≤ ak ≤ 1,∀k. (21c)
We then rewrite (21) in an epigraph form as

min
xxx

E{T̃o(aaa,RRRd,RRRu, td, tu)} (22a)

s.t. (5), (6), (7), (11), (12), (15), (20b)− (20f), (21b), (21c)
akSd
Rd,k

≤ td,∀k (22b)

akbkSu
Ru,k

≤ tu,∀k, (22c)

where T̃o =
∑

k∈N akSd∑
k∈N akRd,k

+ td + tu +
∑

k∈N akbkSu∑
k∈N akbkRu,k

, xxx ,
{aaa,ηηη,ζζζ,RRRd,RRRu, td, tu}; td and tu are additional variables. (22)
can be decomposed into a family of short-term subproblems
and a long-term master problem as follows.

For a given aaa, in each large-scale coherence time, the short-
term subproblem is expressed as:

min
x̃xx

T̃o(RRRd,RRRu, td, tu) (23)

s.t. (5), (6), (7), (11), (12), (15), (20b)− (20e), (22b), (22c),
where x̃xx , xxx \aaa. For given optimal solutions x̃xx to problems
(23), the long-term master problem is expressed as:

min
aaa

ĝ(aaa) , E{T̃o(aaa)} (24)

s.t. (20f), (21b), (21c),
where T̃o(aaa) is rewritten as T̃o(aaa) = aaaT SSSd

aaaT RRRd
+ td+ tu+ aaaT S̃SSu

aaaT R̃RRu
,

SSSd ∈ RN is a vector whose elements are Sd, S̃SSu ∈ RN is a
vector whose k-th element is bkSu, and R̃RRu ∈ RN is a vector
whose k-th element is bkRu,k.

1) Solving the Short-term Subproblem (23): Problem (23)
can be rewritten as

min
x̂xx

T̃o(RRRd,RRRu, td, tu) (25a)

s.t. (7), (15), (20b)− (20e), (22b), (22c),
σ2
mkηmk ≤ ṽmk,∀m, k (25b)
ṽmk ≤ ak,∀m, k (25c)∑
k∈N

ṽmk ≤ 1,∀m (25d)

ζk ≤ akbk,∀k, (25e)
where x̂xx , {x̃xx, ṽvv} and ṽvv , {ṽmk}m∈M,k∈N are additional
variables. Here, (25b)-(25d) follow from (5) and (6); (25e)
follows from (11) and (12). If we let vvv , {vmk}m∈M,k∈N and
uuu , {uk}k∈N with vmk , η

1/2
mk ,∀m, k, and uk , ζ

1/2
k ,∀k,

then (25) can be rewritten as:
min
x̄xx

T̃o(RRRd,RRRu, td, tu) (26a)

s.t. (22b), (22c), (25c), (25d)



Algorithm 1 Solving the short-term subproblem (23)

1: Initialize: Set κ=1 and choose a random point x̃xx(0)∈F .
2: repeat
3: Update κ = κ+ 1
4: Solving (31) to get its optimal solution x̃xx∗

5: Update x̃xx(κ)
= x̃xx

∗

6: until convergence
Output: (ηηη∗, ζζζ∗, fff∗,RRR∗d,RRR

∗
u)

σ2
mkv

2
mk ≤ ṽmk,∀m, k (26b)

0 ≤ vmk,∀m, k (26c)
u2
k ≤ akbk,∀m, k (26d)

0 ≤ uk ≤ 1,∀k (26e)
0 ≤ Rd,k ≤ hd,k(vvv),∀k (26f)
0 ≤ Ru,k ≤ hu,k(uuu),∀k. (26g)

where x̄xx , {x̂xx,vvv,uuu} \ {ηηη,ζζζ}.
Regarding the nonconvex constraints (26f) and (26g), the

concave lower bound h̃d,k(vvv) of hd,k(vvv) is given by [7]

h̃d,k(vvv) , log2

(
1 +

(Υ
(κ)
k )2

Π
(κ)
k

)
−

(Υ
(κ)
k )2

Π
(κ)
k

+ 2
Υ

(κ)
k Υk

Π
(κ)
k

−
(Υ

(κ)
k )2(Υ2

k + Πk)

Π
(κ)
k ((Υ

(κ)
k )2 + Π

(κ)
k )
≤ hd,k(vvv), (27)

where Πk(vvv) = ρd
∑
`∈N \k

(∑
m∈M vm`σ

2
m`

βmk

βm`

)2|ϕϕϕH` ϕϕϕk |2
+ ρd

∑
`∈N

∑
m∈M v2

m`σ
2
m`βmk + 1, and Υk({vmk}m∈M) =√

ρd
∑
m∈M vmkσ

2
mk. Similarly, the concave lower bound

h̃u,k(uuu) of hu,k(uuu) is

h̃u,k(uuu) , log2

(
1 +

(Ψ
(κ)
k )2

Ξ
(κ)
k

)
−

(Ψ
(κ)
k )2

Ξ
(κ)
k

+ 2
Ψ

(κ)
k Ψk

Ξ
(κ)
k

−
(Ψ

(κ)
k )2(Ψ2

k + Ξk)

Ξ
(κ)
k ((Ψ

(κ)
k )2 + Ξ

(κ)
k )
≤ hu,k(uuu), (28)

where Ξk(uuu)=ρu
∑
`∈N \k u

2
`

(∑
m∈M σ2

mk
βm`

βmk

)2|ϕϕϕHk ϕϕϕ` |2 +

ρu
∑
`∈N u

2
`

∑
m∈M σ2

mkβm` +
∑
m∈M σ2

mk, and Ψk(uk)=

ρ
1/2
u uk(

∑
m∈M σ2

mk). As such, (26f) and (26g) can be respec-
tively approximated by

Rd,k ≤ h̃d,k(vvv),∀k ∈ N (29)

Ru,k ≤ h̃u,k(uuu),∀k ∈ N . (30)
At the iteration κ+1, for a given point x̄xx(κ), problem (26) (hence
(23)) can finally be approximated by the following convex
problem:

min
x̄xx∈F̃

T̃o(RRRd,RRRu, td, tu), (31)

where F̃,{(22b), (22c), (25c), (25d), (26b)−(26e), (29), (30)} is
a convex feasible set.

In Algorithm 1, we outline the main steps to solve problem
(23). Let F , {(22b), (22c), (25c), (25d), (26b)−(26g)} be the
feasible set of (26). Starting from a random point x̄xx ∈ F , we
solve (31) to obtain its optimal solution x̄xx∗. This solution is then
used as an initial point in the next iteration. The algorithm ter-
minates when an accuracy level of ε is reached. The converged
solution of Algorithm 1 will fulfill the KKT conditions of the
main problem (23). The proof of this convergence property
follows [11], and hence, omitted.

2) Solving the Long-Term Master Problem (24): Given so-
lution x̃xx to short-term subproblems (23), we have td = ak∗Sd

Rd,k∗
,

where k∗ , argmax
k∈N

akSd

Rd,k
. Therefore, we can have td = aaaT t̃ttd,

where t̃ttd is the vector whose elements are 0 except for the k∗-
th element, and the value of this element is Sd

Rd,k∗
. Similarly,

tu =
aj∗bj∗Su

Ru,j∗
with j∗, argmax

k∈N

akbkSu

Ru,k
and bj∗ = 1. It can be

rewritten as tu=aaaT t̃ttu, where t̃ttu is the vector whose elements
are 0 except for the j∗-th element, and the value of this element
is Su

Ru,j∗
. Now, the long-term problem (24) is equivalent to

min
aaa

g(aaa) , E{a
aaT SSSd
aaaT RRRd

+ aaaT t̃ttd + aaaT t̃ttu +
aaaT S̃SSu

aaaT R̃RRu
} (32)

s.t. (20f), (21b), (21c).
Let V (aaa) ,

∑
k∈N (ak−a2

k) = aaaT (111−aaa), then (21b) becomes
V (aaa) ≤ 0. We now consider the problem

min
aaa
L(aaa, λ) , g(aaa) + λV (aaa) (33)

s.t. (20f), (21c),
where L(aaa, λ) is the Lagrangian of (32), λ is the Lagrangian
multiplier corresponding to (21b), and 111 ∈ RN is an all-one
vector. Let H,{(20f), (21c)} be the feasible set of (24).
Proposition 1. The following statement holds:

(i) The value of Vλ at the solution of (24) corresponding to
λ is decreasing to 0 as λ→ +∞.

(ii) Problem (33) has the following property
min
aaa∈H

g(aaa) = sup
λ≥0

min
aaa∈Ĥ

L(aaa, λ), (34)

and is therefore equivalent to (32) at the optimal solution
λ∗ ≥ 0 of the sup-min problem in (34).

The proof of Proposition 1 is rather standard, and follows
from [10, Proposition 1]. Theoretically, it is required to have
Vλ = 0 in order to obtain an optimal λ∗. According to
Proposition 1, Vλ decreases to 0 as λ → +∞. Since there is
always a numerical tolerance in computation, it is sufficient to
accept Vλ < ε for some small ε with a sufficiently large value
of λ chosen. In our numerical experiment, for ε = 0.001, we
see that λ = 1 is enough to ensure Vλ ≤ ε. Note that this way
of choosing λ has been widely used in the literature, e.g., [10],
[12].

At the large-scale coherence time or iteration n+ 1, problem
(24) is approximated by the following convex problem:

min
aaa∈H

L̄(aaa), (35)
where L̄(aaa) is a surrogate function of L(aaa), and defined as
L̄(aaa),L(n+1) +((∇L)(n+1))T (aaa−aaa(n+1)) + τ ||aaa−aaa(n+1) ||2,
L(n+1) = ḡ(n+1) + λV (n+1), ḡ(n+1) = (1 − φ(n+1))ḡ(n) +
φ(n+1)T (n+1), (∇L)(n+1) = (∇ḡ)(n+1) + λ(∇V )(n+1), and
(∇ḡ)(n+1) = (1 − φ(n+1))(∇ḡ)(n) + φ(n+1)(∇T )(n+1). Here,
ḡ(0) = 0, (∇ḡ)(0) = 000, φ(n+1) is a weighting parameter,

(∇T )(n+1) =SSSd((aaa(n+1))T RRRd)−RRRd((aaa(n+1))T SSSd)
((aaa(n+1))T RRRd)2

+ S̃SSu((aaa(n+1))T R̃RRu)−R̃RRd((aaa(n+1))T S̃SSu)

((aaa(n+1))T R̃RRu)2
+ t̃ttd + t̃ttu,

and (∇V )(n+1) = 111− 2aaa(n+1).
3) Solving the Overall Problem (20): Algorithm 2 outlines

the main steps to solve the overall problem (20). In the large-
scale coherence time n, for a given random value of aaa(n+1) ∈
H, the set Ñ

(n+1)
of the selected UEs is constructed by (3). The

index set S(n+1) of sampled UEs in Ñ
(n+1)

is chosen by (10).
The short-term subproblem (23) is solved by Algorithm 1 after
I

(n)
S iterations to obtain a KKT solution. This solution is then

used to construct the approximate long-term master problem
(33). After solving (33) to obtain an optimal solution (aaa∗)(n+1),



Algorithm 2 UE selection to mitigate the straggler effect for
FL in CFmMIMO networks

1: Initialize: Set n = 0, select a random aaa(n+1) ∈ H
2: repeat
3: Update Ñ

(n+1)
by (3), choose S(n+1) from Ñ by (10)

4: Solve the short-term subproblem (23) to obtain its
optimal solution (ηηη∗, ζζζ∗,RRR∗d,RRR

∗
u) by using Algo-

rithm 1, and update (ηηη(n+1), ζζζ(n+1),RRR
(n+1)
d ,RRR(n+1)

u ) =
(ηηη∗, ζζζ∗,RRR∗d,RRR

∗
u)

5: Solve the approximate long-term master problem (35) to
obtain its optimal solution (aaa∗)(n+1)

6: Update aaa(n+2) by (36)
7: Update n = n+ 1
8: until convergence

Output: aaa∗ = aaa(n+1)

we update aaa(n+2) as
a

(n+2)
k = (1− π(n+1))a

(n+1)
k + π(n+1)(a∗k)(n+1),∀k, (36)

where π(n+1) is a weighting parameter; {φ(n), π(n)} is chosen
to satisfy the following conditions [13, Assumption 5].

(A1) φ(n)→0, 1
φ(n) ≤ O(nς), ς∈(0, 1), and

∑
n(φ(n))2<∞;

(A2) π(n) → 0,
∑
n π

(n) = ∞,
∑
n(π(n))2 < ∞, and

limn→∞
π(n)

φ(n) =0.
Once Algorithm 2 converges, the FL process is then executed
using the solution aaa obtained by Algorithm 2.
Definition 1. A solution (aaa∗,xxx∗) is called a stationary solution
of problem (21) (or (20)) if xxx∗ is a KKT solution of the short-
term subproblem (23) for aaa=aaa∗, and aaa∗ is a KKT solution of
the long-term master problem (24) for xxx=xxx∗.

As discussed in Section IV-1, the solution xxx∗ obtained from
Algorithm 2 is a KKT solution of the short-term subproblem
(23). By a similar argument as in [13], the solution aaa(n+1)

obtained from Algorithm 2 is proved to be a KKT solution of
the long-term master problem (24). As such, the convergence
of Algorithm 2 to a stationary point of problem (20) in the
sense of Definition 1 is guaranteed if the numbers of iterations
of Algorithms 1 and 2 are infinity, i.e., I(n)

S →∞, IL→∞. In
practice, it is acceptable to choose finite {I(n)

S }n∈{1,...,IL} and
IL for an approximate convergence. Therefore, Algorithm 2 is
guaranteed to converge to the neighbourhood of the stationary
solutions of problem (20).

V. NUMERICAL EXAMPLES

A. Network Setup and Parameter Setting
Consider a CFmMIMO network where the APs and UEs are

randomly located in a square of D × D km2. The locations
of APs and UEs are generated with the following practical
properties:
(P1) The UEs are more likely to stay close to some local points.
(P2) Some local areas attract more UEs than other local areas.
(P3) The APs are more likely to locate close to some local

points.
(P4) Some local areas have more APs than other local areas.

We adopt the method in [14] to model the property (P1). First,
let Φ be a homogeneous Poisson Point Process (PPP) in Q with
a density µ, and φ be the number of the Poisson Points (PPs) in
Φ. Denote by V , {V1, . . . ,Vφ} the set of all Voronoi cells that
are generated from these PPs. Φ is then thinned by retaining
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Fig. 1. The convergence of Algorithm 2 (M=10, N=6, NQoL =3,K=3).

points in Φ independently with probability p and removing the
rest. The thinned version Φp of Φ models the local points that
attract UEs and the Voronoi cells corresponding to the PPs
of Φp models their local areas. Let I be the set of indices
of the PPs retained in Φ. Here, the UEs are then uniformly
distributed in the Voronoi cells of these PPs, i.e., {Vi}i∈I . Since
the Voronoi cells of Φp is larger than those of the retained
points of Φ, the UEs are thus pushed towards the interior of the
local areas, which captures the property (P1). Here, the larger
thinning probability p implies the higher probability of a UE in
a Voronoi cell close to its local point.

To capture the property (P2), we set a probability pi for the
local area i ∈ I that is chosen to come by each UE. We assume
that {pi}i∈I are the same for all the UEs. In each realization,
we randomly choose a set {pi}i∈I such that

∑
i∈I pi = 1 and

maxi∈I pi−mini∈I pi = ∆, where ∆ controls the difference
in the attraction of the local areas. Each UE k ∈ N is then
selected to the local area i with probabilities {pi}i∈I . Finally,
the selected UEs in each local area i∈I is uniformly distributed
in the corresponding Voronoi cells Vi. To capture the properties
(P3) and (P4), the APs are non-uniformly distributed using the
same method that captures the properties (P1) and (P2).

In each network realization, the locations of APs are fixed and
those of the UEs change over the iterations of the FL process.
Since each iteration of the FL process happens in one large-
scale fading coherence time (in the order of seconds), the total
running time of an FL process is expected to be around several
minutes. Therefore, we assume that the UEs only move around
their current local areas during the FL process. Here, in each
iteration of the FL process of each network setup realization,
the locations of UEs are uniformly distributed in the Voronoi
cells that those UEs belong to.

We set τc=200 samples. The large-scale fading coefficients,
e.g., βmk, are modeled in the same manner as [15, (37), (38)].
To estimate channels, a random pilot assignment is used as in
[7]. We choose a thinning probability p = 0.3, ∆ = 1/4 for
UEs and ∆ = 1/10 for APs, τt = 10, Sd = Su = 0.5 MB, and
noise power σ2

0 = −92 dBm. Let ρ̃d = 1 W, ρ̃u = 0.2 W and
ρ̃t = 0.2 W be the maximum transmit power of the APs, UEs
and UL pilot sequences, respectively. The maximum transmit
powers ρd, ρu and ρt are normalized by the noise power. We
set π(n) = 100

100+n and φ(n) = 1
n9/10 which satisfy conditions (A1)

and (A2) in Section IV-3.
B. Results and Discussions

First, we evaluate the convergence behavior of the proposed
Algorithm 2. As seen from Fig. 1 with an arbitrary network
realization, Algorithm 2 converges in around 30 iterations.

To further evaluate the effectiveness of Algorithm 2, we
consider the following baseline schemes:
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Fig. 2. Comparison among the proposed approach and baselines (N = 6,
NQoL =3 and K=3).

• Baseline 1 (BL1): UE selection is not optimized. The
transmitted powers and rates of Steps (S1) and (S3) for all
N original UEs are optimized by using a slightly modified
version of Algorithm 1.

• Baseline 2 (BL2): This baseline is similar to BL1 except
that the UEs are selected by randomly choosing N̂ UEs
from the original N UEs, where N̂ ∈ [NQoL, N−1] is a
random number.

In each network realization, the effective transmission times Te
obtained by baselines (BL1) and (BL2) are the average times
over the large-scale fading and user sampling realizations. For
ease of presentation, our “optimal” UE selection approach is
denoted by “OPT”.

Fig. 2 shows the comparison among the considered schemes
in terms of the effective transmission time Te of each iteration
of an FL process. As seen, OPT gives the best performance.
In particular, while BL1 and BL2 achieve nearly the same
performance, OPT provides substantial time reductions over
these schemes, e.g., 63% with M=10 and D=2 km.

The figure also shows the importance of UE selection in
reducing the FL training time, especially in the networks that
have a moderately low density of APs, i.e., having a large
value of D and a small/moderate number of APs. This is
because the straggler effect becomes serious in such these cases.
Specifically, compared to the transmission time Te obtained by
BL1, the amount of time reduction by OPT with M=10 and
D=2 km is approximately twice that with D=1 km. The amount
of time reduction by OPT also increases when the number of
APs decreases. This is because the APs are located close to
some local points which may be far from the UE locations.
When D is large, there are more UEs that have unfavorable links
for a larger area. Moreover, due to the smaller array gain, the
data rates of UEs decrease when the number of APs decreases.

VI. CONCLUSION

This work has proposed an UE selection approach to mitigate
the straggler effect for FL in CFmMIMO. Targeting the trans-

mission time minimization for the general FL framework with
UE sampling [2], [3], we have jointly designed UE selection,
power control, and data rate under practical requirements on the
maximum transmit powers of APs and UEs, and the minimum
number of UEs to guarantee the quality of learning. A mixed-
integer mixed-timescale stochastic nonconvex problems were
formulated with the objectives of minimizing the transmission
time of each iteration of an FL process. Utilizing online suc-
cessive convex approximation techniques, we have successfully
developed a novel algorithm to solve the formulated problem.
The proposed algorithm has been proved to converge to the
neighbourhood of stationary points. Numerical results have
showed that our UE selection approach significantly reduces
the FL transmission time over the baselines under comparison,
especially in networks with moderately low AP density.
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