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Abstract

In this paper, we show several connections between the L-conjecture, proposed by Biirgisser
[3], and the boundedness theorem for the torsion points of elliptic curves. Assuming the W L-
conjecture, which is a much weaker version of the L-conjecture, a sharper bound is obtained
for the number of torsion points over extensions of k on an elliptic curve over a number field
k, which improves Masser’s result [10]. It is also shown that the Torsion Theorem for ellip-
tic curves follows directly from the W L-conjecture. Since the current proof of the Torsion
Theorem for elliptic curves uses considerable machinery from arithmetic geometry, and the
W L-conjecture differs from the trivial lower bound only at a constant factor, this result pro-
vides an interesting example where increasing the constant factor in a trivial lower bound of
straight-line complexity is very difficult. Our result suggests that the Torsion Theorem may
be viewed as a lower bound result in algebraic complexity, and a lot can be learned from the
proof of the Uniformly Boundedness Theorem to construct the proofs the W L-conjecture and
even the L-conjecture..

1 Introduction

The intriguing relationship between the number of distinct rational roots of a polynomial and
the straight-line complexity of the polynomial has attracted a lot of attention recently. Lipton
[9] proved that polynomials with many distinct rational roots can not be evaluated by a short
straight-line program, unless that the integer factorization is easy. This observation was explicitly
formulated by Blum, Cucker, Shub and Smale [1] in the so called 7-conjecture. Let f be any
univariate integral polynomial in . The conjecture claims that

2(f) < (7 () + 1),

where z(f) is the number of distinct rational roots of f, 7(f) is the length of the shortest straight-
line program computing f from 1 and x, and ¢ is an absolute constant. They showed a rather

*The preliminary version of this paper appeared as Qi Cheng, Some Remarks on the L-conjecture, in the
Proceeding of 13th Annual International Symposium on Algorithms and Computation (ISAAC), Lecture Notes in
Computer Science 2518, Springer, 2002.

fSchool of Computer Science, the University of Oklahoma, Norman, OK 73019, USA. Email: gcheng@cs.ou.edu.
This research is partially supported by NSF Career Award CCR-0237845.



surprising fact that this conjecture implies that NP # P [1]. Proving the 7-conjecture (or
disproving it if it is false) is the fourth problem in the Smale’s list [19] of the most important
problems for the mathematicians in the 21st century. The original title in [19] was “integer zeros
of a polynomial of one variable”. It is believed that solving this problem is very hard, and even
partial solutions will have great impacts on researches of algebraic geometry and computational
complexity. We are not aware of any significant progress towards proving this conjecture.

In [3], Biirgisser raised a question whether a similar conjecture is true for polynomials over
any number field & when 7(f) is replaced by L(f), which is the length of the shortest straight-line
program computing f(z) from x and any constants. More precisely, it is conjectured that

Conjecture 1 (L-conjecture) Given a number field k, there exists a constant ¢ depending only
on k, such that for any f € k[x],

Nai(f) < (L(f) + )",
where Ng i (f) is the number of distinct irreducible factors of f over k with degree at most d.

It is easy to see that the special case of the L-Conjecture where d = 1 and k = Q implies the 7-
Conjecture. These two problems are sometimes categorized as belonging to algebraic complexity,
as opposed to classical complexity theory, because quantities like 7(f) and L(f) measure just the
number of arithmetic operations and do not take into account the size of the underlying operands.
However, algebraic complexity is intimately connected with classical complexity: The complexity
classes P and NP (not to mention many others) can be defined relative to an arbitrary field
[1], and this generalization allows one to use a larger arsenal to attack the problems of classical
complexity.

In particular, in the BCSS model of computation over an arbitrary ring [1], Turing complexity
becomes a special case of BCSS complexity by setting the underlying field to be Fy. When the
underlying field is C, we obtain the usual setting of algebraic complexity, and the complexity
classes P and NP are the corresponding analogues of the familiar classes P and NP. More
to the point, it is known that NP ¢ BPP implies that P # NP [8], and assuming the Gen-
eralized Riemann Hypothesis (GRH), it is known that NPy is in RPNP [6, 7]. The assumption
of GRH in the latter result can be replaced by more plausible hypotheses [16]. Although a lot
of wonderful results have been obtained recently (See [1] for a survey), proving lower bounds in
algebraic complexity seems to be not easier than in the classical setting.

In this paper, we examine the implications of the L-conjecture in algebraic geometry and
number theory. In particular, we derive new, significantly sharper estimates in the the theory of
elliptic curves, conditional on the truth of a weakening of the L-conjecture. This also implies the
possibility of using elliptic curves to give new examples of polynomials of low complexity with
many roots in low degree number fields.



1.1 Summary of results

We study how hard it is to prove the L-conjecture. To this end, we consider a much weaker
statement. We call it W L-conjecture, standing for weaker L-conjecture.

Conjecture 2 (WL-conjecture) Let k be a number field. For any univariate polynomial f € k[z],
there exists three constants c; >0, 0 < ¢y < 1/72 and c3 > 0 such that

Nax(f) < 01202L(f)dcs7

where Ng(f) is the number of distinct irreducible factors of f over k with degree at most d. In
particular,
a(f) < 220,

where z(f) is the number of distinct roots over k of f.

Note that the W L-conjecture is much weaker than the L-conjecture, as in the W L-conjecture
the number of zeros is bounded from above by an exponential function of L(f), while in the
L-conjecture the number of zeros is bounded from above by a polynomial function of L(f). The
relationship between the 7-conjecture and the W L-conjecture, however, is not clear to us. We
believe that the 7-conjecture is much stronger than the W L-conjecture.

The other way to view the W L-conjecture is that it states a lower bound of the straight-line
complexity:

L(f) > cslog zx(f) + ca

where ¢35 > 72 and ¢4 are two constants depending only on k. Note that L(f) > logzi(f) is
obviously true over any field k because the degree of f is at most 2-(f). Unlike the L-conjecture,
the W L-conjecture differs from the trivial lower bound only at a constant factor. Nonetheless,
we show that if the W L-conjecture is true, then Masser’s results on the number of torsion points
on an elliptic curve [10] can be improved. His results are summarized as follows.

Proposition 1 Let k be a number field and E : Y? = 4x3 — gox — g3 be an elliptic curve over k.
There is a positive effective constant ¢, depending only on the degree of k, such that the torsion
subgroup of E(K) with [K : k| = D has cardinality at most c/wD(w + log D), where w is the
absolute logarithmic height of (1: g2 : g3) in Pi.

We can prove:

Theorem 1 Use the notations in the above proposition. The cardinality of the torsion subgroup
of E(K) is at most c4 D where c4 and c5 are constants depending only on k, if the W L-conjecture
1s true in the number field k.



Note that in Theorem 1, the constants are only dependent on the number field k£, and are
independent of the curve. The bound in Theorem 1 is lower than Masser’s bound when £ is fixed
and w is large. For example, if w > 2P, Masser’s bound is exponential in D but ours is polynomial
in D.

We then show the following famous Torsion Theorem is a direct consequence of the W L-
conjecture.

Theorem 2 (Torsion Theorem for Elliptic Curves) Let E be an elliptic curve defined over a
number field k. Then the number of torsion points in E(k) is bounded from above by a constant
depending only on k.

This theorem is a part of the following result, also known as the Uniformly Boundedness
Theorem (UBT).

Theorem 3 (Strong Torsion Theorem for Elliptic Curves) Let E be an elliptic curve defined over
a number field k, then the number of torsion points in E(k) is bounded from above by a constant
depending only on m = [k : Q].

We will prove the theorem in Section 5. From the proof, it is easy to see that if ¢; in the
W L-conjecture depends only on [k : Q], the UBT follows from the W L-conjecture. All the results
in this paper are obtained by studying the division polynomial P,(xz). We show that if there
is one point on an elliptic curve E(k) with order n, then the division polynomial P, (x) must
have at least (n — 1)/2 distinct solutions in k. On the other hand, P,(z) can be computed by a
straight-line program of length at most 72logn 4+ 60. The W L-conjecture is violated if n is bigger
than a certain constant.

2 DMotivations and related works

It is observed that current mathematical techniques have very limited capability to prove lower
bounds. This motivates a line of research on this phenomenon. Relativizing proof techniques were
shown to be too weak to separate several major complexity classes such as P and NP. Razborov
and Rudich [14] showed that the natural proofs, arguably including all the proof techniques in
current circuit complexity research, will not produce a separation either. In this paper, under the
context of algebraic complexity theory, we examine the power of the elementary proofs. The proofs
of mathematical statements are usually categorized into two kinds: elementary and analytical.
An elementary one uses direct reasoning and relys on the combinatorial arguments. An analytical
proof, on the other hand, uses the tools from complex analysis. The modular forms are sometimes
involved in analytical proofs. The famous examples of analytical proofs include the proofs of the
Fermat Last Theorem and the UBT. These theorems are believed not to have elementary proofs.
To the contrary, the results in theoretical computer science are usually obtained by elementary
methods.



Proving the Strong Torsion Theorem for elliptic curves is one of the major achievements in
number theory and algebraic geometry recently. In this paper, we find surprising connections
between the torsion theorem and the W L-conjecture. We show that the number of torsion points
over number fields is severely limited if the W L-conjecture is true, hence the Torsion Theorem
follows directly from the W L-conjecture. Our argument is simple and elementary. It is quite
astonishing, considering how weak the W L-conjecture is and how much effort people have put
into proving the Torsion Theorem.

Although the UBT has been proved, this result is still interesting. The (W) L-conjecture claims
that there is no short straight-line program to compute a polynomial which has many distinct
roots in a fixed number field. This is a typical lower bound result in computational complexity. It
is a common belief that we lack techniques to obtain lower bounds in computational complexity.
Our results add one more example to this phenomenon and shed light on its reason. They indicate
that proving a better constant factor in the trivial straight-line complexity lower bound is very
hard, hence illustrate the difficulties of proving a superpolynomial lower bound and proving the
hardness of factoring.

Our result clearly indicates that in order to prove the W L-conjecture, we may need to look
at very deep techniques in algebraic geometry, which are not apparently related to the theory
of computational complexity. Since it is unlikely that the Torsion Theorem for elliptic curves
has an elementary proof, our result implies that even improving the constant factor in a trivial
straight-line complexity lower bound requires the advanced analytical tools.

2.1 Related work

Boneh [2] observed the connections between the straight-line complexity of polynomials and the
bound of the number of torsion points over a number field on an abelian variety. In his report,
however, no bound better than what is currently known was obtained for the number of torsion
points on elliptic curves. And he assumed the hardness of integer factorization, which essentially
means that for some number field & and any constant c,

7(f) = (log 2,(f))",

if 7(f) is sufficiently large. The condition that the integer factorization is hard seems stronger
than the W L-conjecture. In our paper, we obtain a better bound for the number of torsion points
over extension fields on an elliptic curve and improve Masser’s results, which is the best estimation
currently known. We also assume the W L-conjecture to study the property of the torsion points.

Other than 7(f) and L(f), there is another important algebraic complexity measurement,
additive complexity, denoted by o(f), which counts only the number of additions in the straight
line program computing the polynomial f. The study of the relationship between the number of
real (or rational ) roots and the additive complexity of a polynomial has a longer history. Grigorev
[4] and Risler [15] proved that the number of distinct real roots of f is less than C°()* for an
absolute constant C. This result has been dramatically improved recently by Rojas [17], who



obtained an upper bound of O(e?(/)108(/)) for the number of distinct rational roots of f. When
o(f) is much less than L(f), this bound is better than the trivial bounds of 27(/) or 2(5).

The rank of the Mordell-Weil group of an abelian variety and its torsion subgroup are two
central topics in the study of arithmetic of algebraic curves. Although the research on the rank
shows only slow progress, remarkable achievements have been made in the research on torsion
subgroup, culminating in the recent proof of the Uniform Boundedness Theorem(UBT).

First we briefly review the history. The Torsion Theorem in some special cases was conjectured
by Beppo Levi as early as the beginning of the 20th century. Mazur proved the case of £k = Q in
his landmark paper [11] in 1977. He also gave the bound (which is 16) explicitly. Mazur’s result
requires a deep research on modular forms. Little progress was made on the torsion theorem until
in 1992 Kamienny announced his ground-breaking result [5]. He settled the cases when k is any
quadratic number field, and suggested the techniques to attack the whole conjecture. His method
led to the proofs of the Strong Torsion Theorem for d < 14. It was Merel [12] who finally managed
to prove the Strong Torsion Theorem for all the positive integers d in 1996. The following effective
version of the UBT was proved by Parent [13].

Proposition 2 Let £ be an elliptic curve over a number field K. Denote the order of the torsion
subgroup of E(K) by N. Let d = [K : Q). Suppose that p is a prime divisor of N, and p™ is the
largest power of p dividing N. We have

p < (143722
P < 65(39—1)(2d)S.

3 Straight-line programs of polynomials

A straight-line program of a polynomial over a field k is a sequence of ring operations, which
outputs the polynomial in the last operation. Formally,

Definition 1 A straight-line program of a polynomial f(x) is a sequence of instructions. The
i-th instruction is
Vi <= Uy O Uy OT U < G

where o € {+,—,%}, i > m, i > n, ¢ is © or any constant in k, and the last variable v, equals
to f(x). The length of the program is the number of the instructions. The length of the shortest
straight-line program of f(x) is called the straight-line complexity of f(x) and is denoted by L(f).
The minimum number of additions and substractions in any straight line program to compute f
is called the additive complexity of f and is denoted by o(f).

The polynomial 2™ has a straight-line complexity at most 2logn. In some cases, a straight-line
program is a very compact description of a polynomial. It can represent a polynomial with a huge
number of terms in a small length. For example, the polynomial (z + 1) can be computed using



the repeated squaring technique and hence has a straight-line complexity at most 2logn, while it
has n + 1 terms.

The number of distinct roots over a number field k£ of a polynomial with small straight-line
complexity seems limited. For example, the equation (x + 1)” = 0 has only one distinct root.
The equation " — 1 = 0 has n distinct roots, but if we fix a number field k£ and let n grow, the
number of distinct roots in k& will not increase. The relationship between the number of distinct
roots of a polynomial f over a number field and L(f) is not well understood.

4 Division polynomials

An elliptic curve E over a field k is a smooth cubic curve. If the characteristic of k is neither 2
nor 3, we may assume that the elliptic curve is given by an equation of the form

y? =23 +azx +b, a,bek.

Let K be an extension field of k. The solution set of the equation in K, plus the infinity point,
forms an abelian group. We use E(K) to denote the group.

We call a point torsion if it has a finite order in the group. The z-coordinates of the torsion
points of order n > 3 are the solutions of P, (z), the n-th division polynomial of E. The polynomial
P, (x) can be computed recursively. The recursion formula can be found in many papers, e.g. [18].
For completeness we list them below.

P =1

P =1

Py = 32* + 6az? + 12bx — o’

Py = 2(z® 4 5az® + 2002 — 5a%2® — dabx — 8b* — a3)
Pii1 = 16(a® +ax + b)PopiaPs, — P2n71P23n+1
Piny2 = Pons1(PonisPs, — Pon-1P5,15)
Pinya = Ponso(PoniaPs iy — PonPs, 1 3)

Note that our division polynomials are a little different from the division polynomial ¥, (z,y)
in some literatures, for example Silverman’s book [18]. When n is even, P,, = 1¢,,. When n is odd,
P, = (2y)"%,,. We use P, because it is a univariate polynomial and the computation of P, does
not involve division.

Lemma 1 L(P,) < 72logn + 60.

Proof: We deploy the dynamical programming technique to construct the straight-line pro-
gram. Before evaluating P,(x), we need to evaluate up to 5 division polynomials with indices



around n/2, according to the recursion. For the same reason, in order to compute these 5
or less division polynomials, we need to compute up to 8 division polynomials with indices
about n/4. However, this does not mean that the number of division polynomials we need to
evaluate in each recursion level grows unlimitedly as the level increases. In fact, in order to
evaluate the list of division polynomials P;(x), Piy1(x),--- , Piyj(x), we only need to evaluate
P|'z'/2'|727 P[i/Q]fla s 7PL(i+j)/2J+17 PL(Z-JFJ-)/QJJFQ. If j > 7, the latter list is shorter than the former
one. On the other hand, if j < 7, then the latter list contains at most 8 polynomials. Hence
if we want to evaluate P,(x), we only go through logn recursion levels and evaluate at most
8logn many P;(x). Evaluating any P;(x) requires at most 9 ring operations from the division
polynomials in the previous level. The overhead of computing P, Py, P3, Py and 16(z3 + ax + b)
is less than 60 steps. The total number of arithmetic operations is thus less than 72logn + 60. O

Corollary 1 o(P,) < 8logn + 12.

Lemma 2 If P,(z) has one solution in K which is an x-coordinate of a point P in E(K) of order
n, then it must have at least (n — 1)/2 distinct solutions in K.

Proof: 1f there exists a point P in E(K) with order n, then the points P,2P,3P, ---, (n—1)P
are distinct, none of them is 0 ( the point at infinity of E(K) ) and all of them have orders
dividing n. The z-coordinates of these points are in K and they are the roots of P,(z). Any
pair of points have different z-coordinates, unless the sum of these two points are 0. If n is odd,
we have exactly (n—1)/2 distinct z-coordinates. If n is even, we have n/2 distinct z-coordinates. O

5 Outlines of proofs

We first prove Theorem 1.

Proof: Suppose there is a point P € E(K) of order n. Denote the z-coordinates of P, 2P, 3P, - - -,
(n —1)P by x1,x9, -+ ,x,_1 respectively. According to Lemma 2 there are at least (n — 1)/2
different numbers in x1,x92, - ,2,_1. All of them are the roots of the n-th division polynomial
P, (z) of the curve E. We also know that the minimal polynomial over k of x; € K, 1 <i<n-—1,
has degree at most [K : k] = D. Hence there are at least (n — 1)/(2D) factors of P,(x) which
have degrees less than or equal to D. According to the L-conjecture, we have

(n o 1)/(2D) < ND,k(Pn) < 61202L(Pn)D03 < 01202(72logn+60)D03.

This gives us n < ¢4 D for a constant ¢4 and c¢5 independent of the curve F. O



It is interesting to note that if we let the bound in W L-conjecture grow exponentially not just
with L(f) but also with D, then we cannot obtain a better bound than Masser did. This suggests
an interesting parametrized phenomenon in algebraic complexity.

Now we prove the Torsion Theorem from the W L-conjecture. Suppose that an elliptic curve
E/K has a point with order n in K. The division polynomial P, (x) has at least (n—1)/2 distinct
solutions over K, i.e. zx(P,) > (n—1)/2. But P,(z) can be computed by a straight-line program
of length at most 72logn + 60, i.e. L(f) < 72logn + 60. If the W L-conjecture is true, we have

(n— 1)/2 < ZK(Pn) < clzch(Pn) < 01202(7210gn+60)’

which is possible only if
N 1
n < (30126002)1—7262.

The ¢; and co depend only on k. This argument shows that the Torsion Theorem is the direct
consequence of the W L-conjecture. Similar arguments show that if in the W L-conjecture ¢y
depends only on [k : Q], then the Strong Torsion Theorem follows from the W L-conjecture as
well.

It is easy to see that in Theorem 1, the assumption of WL-conjecture can be replaced by a
bound in additive complexity, namely, Ng = 0(206"(f )dc7) for cg < 1/8. This bound also implies
the Torsion Theorem.

6 Conclusion

In this paper, we improved Masser’s upper bound of the number of torsion points over extension
number fields on an elliptic curve assuming the W L-conjecture. We showed that the Torsion
Theorem is a direct consequence of the W L-conjecture.
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