Straight Skeletons of Three-Dimensional Polyhedra

Gill Barequet, David Eppsteif, Michael T. Goodrich, and Amir Vaxmat

1 Dept. of Computer Science
Technion—Israel Institute of Technology
{barequet,avaxman }(at)cs.technion.ac.il

2 Computer Science Department
University of California, Irvine
{eppstein,goodrich }Hat)ics.uci.edu

Abstract. This paper studies the straight skeleton of polyhedra ieetliimensions. We first address voxel-based
polyhedra (polycubes), formed as the union of a collectiozubical (axis-aligned) voxels. We analyze the ways in
which the skeleton may intersect each voxel of the polyhedsad show that the skeleton may be constructed by
a simple voxel-sweeping algorithm taking constant timevmxel. In addition, we describe a more complex algo-
rithm for straight skeletons of voxel-based polyhedra,chittekes time proportional to the area of the surfaces of
the straight skeleton rather than the volume of the polytredi/e also consider more general polyhedra with axis-
parallel edges and faces, and show thatramgrtex polyhedron of this type has a straight skeleton @itt?) fea-
tures. We provide algorithms for constructing the stragit&leton, with running tim@(min(nzlogmklogo(l) n)
wherek is the output complexity. Next, we discuss the straightetkel of a general nonconvex polyhedron. We
show that it has an ambiguity issue, and suggest a consistgthbd to resolve it. We prove that the straight skeleton
of a general polyhedron has a superquadratic complexityeimvorst case. Finally, we report on an implementation
of a simple algorithm for the general case.

1 Introduction

The straight skeleton is a geometric construction thatgesltwo-dimensional shapes—polygons—to one-dimensional
sets of line segments approximating the same shape. It isedeifi terms of an offset process in which edges move
inward, remaining straight and meeting at vertices. Wheargex meets an offset edge, the process continues within
the two pieces so formed. The straight line segments tragelolyovertices during this offset process define the straight
skeleton. Introduced in 1995 by Aichholzetral. [1, 2], the two-dimensional straight skeleton has sinceantbonany
applications, including surface folding [11], offset camsonstruction [15], interpolation of three-dimensionafaces
from cross-section contours [4], automated interpreadibgeographic data [17], polygon decomposition [24], and
graph drawing [3]. Compared to other well-known types oflskmn, the straight skeleton is more complex to com-
pute [7,15], but its simple geometric form, comprised egilely of line segments, offers advantages in applications
The best known alternative, the medial axis [6], consistsodii linear and quadratic curve segments. Thus, of the two,
only the straight skeleton characterizes the shape of @ypaolwhile preserving its linear nature.

It is natural, then, to try to extend algorithms for straightleton construction to three dimensions. In three
dimensions, a skeleton is a two-dimensional approximatifaa three-dimensional shape such as a polyhedron. The
most well-known type of three-dimensional skeleton, thalimeaxis, has found applications, for instance, in mesh
generation [20] and surface reconstruction [5]. Unlikévits-dimensional counterpart, the 3D medial axis can besquit
complex, both combinatorially and geometrically. Thus,werild like an alternative way to characterize the shape of
three-dimensional polyhedra using a simpler type of twoatisional skeleton.

1.1 Related Prior Work

Despite the large amount of work on 2D straight skeletoresdcitbove, we are not aware of any prior work on 3D

straight skeletons, other than Demagieal. [10], who mention the existence and basic properties of 3Biggit

skeletons, but do not study them in any detail with respetttéa algorithmic, combinatorial, or geometric propestie
Held [18] showed that in the worst case, the complexity oftieglial axis of a convex polyhedron of complexity

is Q(n?), which implies a similar bound for the 3D straight skeletBarhaps the most relevant prior work is on shape

characterization using the 3D medial axis. This structar@efined from a 3D polyhedron by considering each face,

edge, and vertex as being a distinct object and then cotisiguitbe 3D Voronoi diagram of this set of objects. Thus,

the medial axis is the loci of points ik® that are equidistant to at least two objects. The best kngpeubound for

its combinatorial complexity i©(n3+¢) [21], for any fixed constarg > 0, and even for the special case of lines in

space it is a well-known open problem in computational geoynehether the Voronoi diagram (a space subdivision
having the medial axis as its boundary) has subcubic cortdriahcomplexity [8, 19F Additionally, the medial axis
consists of intersecting pieces of planes and conic swsfgmesenting significant complications to algorithms that
attempt to construct 3D medial axes.

Because of these drawbacks, a number of researchers haledsalgorithms for computing approximate 3D
medial axes. Sherbroolet al. [23] take a numerical approach, giving an algorithm thatésaout the edges of the
3D skeleton. Culveet al. [9] also design a curve-tracing algorithm, but they use eadthmetic to compute an exact
representation of a 3D medial axis. In both cases, the rgrtivite depends on both the combinatorial and geometric
complexity of the medial axis. Foske&y al. [16] study an approximation based on relaxed distance lzions. In
particular, they construct an approximate medial axisgisinoxel-based approach that runs in ti®@V), wheren
is the number of features of the input polyhedron &hig the volume of the voxel mesh that contains it. Sheethy
al. [22] instead take the approach of using the 3D Delaunaydtiktion of a cloud of points on the surface of the
input polyhedron to compute and approximate 3D medial &xkewise, Dey and Zhao [12] study the 3D medial axis
as a subcomplex of the Voronoi diagram of a sampling of p@psoximating the input polyhedron.

1.2 Our Results
In this paper we provide the following results.

— We study the straight skeleton of orthogonal polyhedra &utras unions of cubical voxels. We analyze the ways
in which the skeleton may intersect each voxel of the polybedand show that the skeleton may be constructed
by a simple voxel sweeping algorithm taking constant timevoeel.

— We describe a more complex algorithm for straight skeletdnv®xel-based polyhedra, which, rather than taking
time proportional to the volume of the polyhedron takes tpngportional to the area of the straight skeleton or,
equivalently, the number of voxels it intersects.

— We consider more general polyhedra with axis-parallel edgel faces, and show that amyertex polyhedron
of this type has a straight skeleton wili{n?) features. We provide two algorithms for constructing thraight
skeleton, resulting in a combined running timeQfinin(n?logn, klog®® n)), wherek is the output complexity.

— We discuss the difficulties of unambiguously defining stnaigkeletons for non-axis-aligned polyhedra and sug-
gest a consistent method for resolving these ambiguitiessihaw that a general polyhedron, the straight skeleton
can, in the worst case, have superquadratic complexitys,T$traight skeletons are strictly simpler for orthogo-
nal polyhedra than they are for more general polyhedra. 8 @éscribe a simple algorithm for computing the
straight skeleton in the general case.

2 \oxel Polyhedra

In this section we consider the case in which the polyhedrarpiolycube, that is, a rectilinear polyhedron all of whose
vertices have integer coordinates. The “cubes” making aptiyhedron are also called voxels.

As in the general case, the straight skeleton of a polycubebeamodeled by offsetting the boundary of the
polycube inward, and tracing the movement of the boundauyirig this sweep, the boundary forms a moving front
(or fronts) whose features are faces, edges, and verticesdge can be either convex or concave, while a vertex can
be convex, concave, or a saddle. In the course of this proeedares may disappear or appear.

The sweep starts at time 0O; at this time the front is the boymafahe polycube. In the first time unit we process all
the voxels adjacent to the boundary. In ttreround (fori > 1) we process all the voxels adjacent to voxels processed
in the (i — 1)st round, that have never been processed before. Processigl means the computation of the piece
of the skeleton lying within (or on the boundary) of the vox@lrring this process, the polycube is shrunk, and may
be broken to several components if it is not convex. The @®centinues for every piece separately until it vanishes,
that is, there are no more voxels to process.

2.1 A \Volume Proportional-Time Algorithm

Theorem 1. The combinatorial complexity of the straight skeleton of a polycube of volumeV is O(V). The skeleton
can be computedin O(V) time.

Proof. We prove the two parts of the theorem simultaneously by airadythe skeleton computation procedure, in
which the boundary of the polycube is swept inward and theenmnt of its features (vertices, edges, and faces) is

3 See alsdnttp://maven.smith.edu/~orourke/TOPP/P3.html

,,,,,,,,,,,

(a) Vertex (b) Edge (c) Two edges (d) Three edges (e) Face a¢h Bnd edge

/'

1

(g) Two faces (h) Three faces (i) Overlapping edges (j) Gymging faces (k) Overlapping edge and face

Fig. 1. Cases of straight skeleton within a subvoxel (a-h) or voixk).(

traced. There are two issues to deal with: The time neededdafi the voxels processed in each time unit and the
amount of time needed to process each voxel. The key obgersare that the entire sweep can be performed in time
linear in the number of voxels, the complexity of the skeatetathin every voxel is constant, and the portion of the
skeleton within every voxel can be computed in constant.time

The sweep starts at time 0 at the boundary of the polycubhelfirst round we process all the voxels adjacent to
the boundary. These can be foundi(V) time. In theith round (fori > 1) we process all the voxels adjacent to voxels
processed in th@ — 1)st round, that have never been processed before. Sincetéhatmber of face adjacencies of
voxels is®(V), the entire sweeping process tak&¥) steps, where each step is the processing of a single voxel.

When sweeping the boundary inward during one round of theqe®) each feature of the boundary (vertex, edge,
or face) moves inward oneJd_unit. For clarity of exposition, we will analyze the procegihin eighths of voxels
instead of full voxels. This will reduce the number of possitases, since we will have to consider all combinations
of vertices/edges/facets hit by the moving front(s) onlttmee facets instead of the six facets that a full voxel can be
hit simultaneously on. Consider an eighth of the voxel thatiout to be swept by the moving front(s). This “subvoxel”
can be hitin many combinations of its corner vertex, thedkgges adjacent to this corner, and the three faces adjacent
to this corner. Moreover, it may be hit by multiple portiorfatee moving front in a single feature of the subvoxel, in
two features, one containing the other, or multiple featwréh more complex containment relations. Nevertheless,
the number of different cases is finite, and a preprocess#dup table can be used to determine in constant time
the structure of the piece of the straight skeleton withichesubvoxel. The complexity of the skeletal piece (within
a voxel) is also constant. Figures 1(a—h) show the creafi@nsieletal piece in the interior of a subvoxel in simple
cases. The features through which the moving fronts en¢éesibvoxel are shown enlarged. Figures 1(i—k) show (in
full voxels) a few cases of overlapping entry features: Jnt(vo skeletal piecesa(andb) emanate diagonally upward,
meeting in one edge; the continuation of the skeleton is ibeege. This figure also models a different case, in which
the skeletal piecea andc meet at the thick edge. In this case the continuation of tleéesbn is the piecé. In (j),
two fronts move horizontally toward each other, and meetria face which become a skeletal piece. In (k), a face
moves upward vertically, meeting a concave edge which mdwes diagonally; the continuation of the skeleton is
as shown.

To recap, the algorithm processes all voxels in layers, iota bf ©(V) voxel operations, each of which takes
constant time and contributes a constant amount of skééstalres. The algorithm terminates when there are no more
voxels to process and the entire straight skeleton of thgcpbke has been computed.

One way to see why the skeletal pieces constructed withghbeiring eighths of a voxel (belonging to the same
original voxel) are always “glued” together consistentlgheut leaving any improperly connected dangling skeletal
pieces is by imagining that we handle whole voxels at a tima;gssing all eight subvoxels simultaneously by using a
much larger look-up table. An alternative argumentis tliféient subvoxels of the same voxel are notindependent—
they are hit by the same moving front, either at the same tinvéth a delay of one half of a time unit. O

A unified way to look at all cases above partitions a voxel, lagve, to eight subvoxels, and then partitions
each subvoxel into six tetrahedra each of which is the cohudxof one of the six three-edge paths connecting the
subvoxel’s integer vertex with its half-integer vertexgiie 2). Thus, every voxel is partitioned into 48 tetrahedtia

Fig. 2. Partitioning a subvoxel into tetrahedra. ~ Fig. 3. A polycube of volumé/ whose skeleton has complexi®(V).

skeletal cells are unions of these tetrahedra, and theceunfahe skeleton is composed of their boundary trianglgs. B
maintaining “visited” marks on the tetrahedra and on theget and half-integer vertices, one can sweep the wavefront
and compute the revealed pieces of the skeleton.

Many simple examples show that the sweeping algorithm istacase optimal, since in the worst case the com-
plexity of a polycube made &f voxels is®(V). One such example, shown in Figure 3(a), is made of a flat lafyer
cubes (not shown), with a grid of supporting “legs,” eachragkd cube. Thus, the number of legs is about one fifth
of the total number of voxels. The skeleton of this object feasures within every leg, as shown in Figure 3(b) (the
bottom of a leg corresponds to the right side of the figure).

2.2 Output-Sensitive Voxel Sweep

The straight skeleton of a polycube, as constructed by tbeéiquis algorithm, contains features within some voxels,
but other voxels may not participate in the skeleton; nénadess, the algorithm must consider all voxels and pay in its
running time for them. In this section we outline a more edfitialgorithm that computes the straight skeleton in time
proportional only to the number of voxels containing skateteatures, or equivalently, in time proportional to the
surface area of the straight skeleton rather than its volume. Necessaré assume that the input polycube is provided
as a space-efficient boundary representation rather thasetsof voxels, for otherwise scanning the input would take
more time than we wish to spend.

Our algorithm consists of an outer loop, in which we advaheenoving front of the polycube boundary one time
step at a time, and an inner loop, in which we capture all featof the straight skeleton formed in that time step.
During the algorithm, we maintain at each step a representaf the moving front, as a collection of polygons having
orthogonal and diagonal edges. As long as each operatiorped in the inner and outer loops of the algorithm can
be charged against straight skeleton output featuresopthktime will be proportional to the output size.

In order to avoid the randomization needed for hashing,ra¢seeps of our algorithm will use as a data structure
a direct-addressed lookup table, which we summarize indb@aing lemma:

Lemma 1. In time proportional to the boundary of an input polycube, we may initialize a data structure that can
repeatedly take as input a collection of objects, indexed by integers within the range of coordinate values of the
polycube vertices, and produce as output a graph, the vertices of which are sets of objects that have equal indices and
the edges of which are pairs of sets with index values that differ by one. The time per operation is proportional to the
number of objects given asinput.

Proof. We use an array, indexed by the given integer values, cantpalist of objects in each array cell. Initially,
we set all lists to empty. To handle a given collection of atgewe place each object in the list given by the object’s
index, and create a ligt of nonempty index values as we do so; each time we add an dbjaotempty list, we add
that list's index toL. We then create a graph having as its vertices the lists @uleyL; for each vertex we search the
array for the two adjacent indices and create the apprepgiaph edges. Finally, we ukdo replace each nonempty
list of the array with a new empty list. O

In more detail, in each step of the outer loop of the algorjttve perform the following steps:

1. Advance each face of the wavefront one unit inward. Inddigancement process, we may detect events in which
a wavefront edge shrinks to a point, forming a straight skeleertex. However, events involving pairs of features
that are near in space but far apart on the wavefront may reamaletected. Thus, after this step, the wavefront
may include overlapping pairs of coplanar oppositely-mgvaces.

2. For each plane containing faces of the new wavefront bayndetect pairs of faces that overlap within that plane,
and find the features in which two overlapping face edgessate or in which a vertex of one face lies in the
interior of another face. This step can be performed as aesegof smaller steps:

— Group coplanar faces of the wavefront using the data strectiLemma 1.

— Within each pland®, form a setS of the wavefront edges intersected with each voxel. We asghat the
plane is parallel to thgy plane; thexzandyz cases are handled symmetrically.

— For each plan®, use Lemma 1 to form a graj®p; vertices inGp represent sets of edges3p with the same
left x-coordinate, and edges @p connect sets with consecutixeoordinates. The connected components of
this graph are paths representing subsets of wavefrontrésathat might possibly interact with each other,
sorted by theix-coordinates.

— Within each connected component of each gr@phuse the sorted order to perform a plane sweep algorithm
that finds segment intersections and locates the face oamgagach vertex. Report as straight skeleton events
each intersection between edges of different boundargfacd each vertex that belongs to a boundary face
other than the one on which it is a boundary vertex.

3. Inthe inner loop of the algorithm, propagate straightetiom features within each face of the wavefront from the
points detected in the previous step to the rest of the faeat i§, if two faces overlap within a single plane, the
previous step will have found some of the points at which thesrlap and form straight skeleton vertices, but
the entire overlap region will form a face of the straightlsken. Thus, we propagate outward from the detected
intersection points, using a simple depth-first-searckeMoy voxel, to determine the whole set of straight skeleton
features contained within the overlap region.

In summary, we have:

Theorem 2. One can compute the straight skeleton of a polycube in time proportional to its surface area.

3 Orthogonal Polyhedra

We consider here a more general class of inputs than voomttegonal polyhedra in which all faces are parallel to
two of the coordinate axes.

3.1 Definition

As in the two-dimensional case, we define the straight stelet an orthogonal polyhedrdhby a continuous shrink-
ing process in which a sequence of nested “offset surfacesfamed, starting from the boundary of the given
polyhedron, with each face moving inward at a constant speed

At timet in this shrinking process, the offset surfd&dor P consists of the set of points bf, distance exactly
from the boundary oP. For almost all values df B will itself be a polyhedron, but at some time stdpsnay have
a non-manifold topology, possibly including flat sheets wfface that do not bound any interior region. When this
happens, the evolution of the surface undergoes suddesndiisaous changes, as these surfaces vanish at time steps
aftert in a discontinuous way. To make this notion of discontinuiigre precise, we definedgegenerate point of B to
be a pointp that is on the boundary &%, such that, for somg, and alle > 0, R, does not contain any point within
distanced of p. Equivalently, a degenerate point is a poinPpthat does not belong to the closure of the interioRof

At each step in the shrinking process, we imagine the sudPeasdecorated with seams left over when sheets
of degenerate points occur. To be more specific, supposétbantains two disjoint faces, both parallel to the
plane at the sameheight; then, as we shrirk the corresponding faces Bf may grow toward each other, eventually
meeting. When they do meet, they leave a seam between th@msS==n also occur when two parts of the same
nonconvex face grow toward and meet each other. After a seansf it remains on the face Bf on which it formed,
orthogonal to the position at which it originally formed.

We may also describe these seams in a more intrinsic, stagiclh@tl be any axis-aligned plane containing a face
or faces ofP, and letSy be the two-dimensional straight skeletor rof the exterior of these faces, not including the
straight skeleton edges that touch the verticeR.dfhen the decoration on any faéef P, corresponding to a face of
P belonging to planél, is formed by translatin§q orthogonally into the plane df and intersecting it with .

We define thestraight skeleton of P to be the union of three sets:

1. The points that, for some time stgfpelong to an edge or vertex Bf.
2. The degenerate points fBrfor some time step.
3. The points that, for some time stgfelong to a seam d%.

The straight skeleton may be viewed as a cell comple®iinconsisting offaces (maximal subsets of points that
have a 2D neighborhood in the straight skeletedyjes (maximal line segments of points that either do not lie in a
face, lie on the boundary of a face, or lie in the intersectibtwo or more faces), aneertices (endpoints of edges).

3.2 Complexity Bounds

As each face has at least one boundary edge, and each edddd@as ane vertex, we may bound the complexity of
the straight skeleton by bounding the number of its vertiE@sh vertex corresponds to avent, that is, a poinp in
space (the location of the vertex), the titmfer which p belongs to the boundary &, and the set of features Bf ¢
nearp for small values ot that contribute to the event.

We may classify events into six types.

Concave-vertex eventsdescribe the situation in which one of the feature®of involved in the event is aoncave
vertex: that is, a vertex oP,_¢ such that seven of the eight quadrants surrounding thawéet within B_¢. In
such an event, this vertex must collide against some omgpsitoving feature of,.

Reflex-reflex eventsdescribe events that are not concave-vertex events, butizhwhe event involves the collision
between two components of boundaryRf that prior to the event are far from each other as measured in
geodesic distance around the boundary, both of which iecludeflex edge. These components may either be
themselves a reflex edge, or a vertex that has a reflex edge wétineighborhood.

Reflex-seam eventglescribe events that are not either of the above two typesntwhich the event involves the
collision between two different components of boundarfRof, one of which includes a reflex edge. The other
boundary component must necessarily be a seam edge or Megtmause it is not possible for a reflex edge to
collide with a convex edge d%_ unless both edges are part of a single boundary component.

Seam-seam event$n which vertices or edges on two seams, on oppositely aieparallel faces oR_¢, collide
with each other.

Seam-face eventsn which a seam vertex on one faceRf collides with a point on an oppositely oriented face that
does not belong to a seam.

Single-component eventsn which the boundary points nearin B_, form a single connected subset.

Theorem 3. The straight skeleton of an n-vertex orthogonal polyhedron has complexity O(n?).

Proof. We count the events of each different type. Each concavexevent is the final event involving its concave
vertex, and no event creates any new concave vertex; therefeere aré@O(n) such events. Each reflex edgeRf
corresponds to a reflex edge®fso each reflex-reflex event Bf can be charged against a pair of reflex edges; of
each such pair yields at most one reflex-reflex event, so thkrtomber of such events of this typed$n?). Similarly,

we may charge reflex-seam events to a pair consisting of x dige ofP and an edge of sont®, and each seam-
seam event to a pair of two edges®f and S/, again bounding them b@(n?). Each seam-face event is the final
event involving a vertex 0§, so there ar®©(n) such events. Finally, each single-component event mushie\at
least one edge ¢4, that is bounded by two oppositely-oriented face planessanidks down to nothing iR ; these
events cannot create new edges, so they reduce the totaenwihédges i by at least one, and can be charged
against the events of other types that created those edges. O

3.3 Algorithms

The view of straight skeletons as generated by a movingseitfeat changes combinatorially at a sequence of discrete
events may also be used as the basis of an algorithm for cetisty the skeleton of a given orthogonal polyhedron. It
is straightforward to determine in constant time the changg resulting from an event at tinteand to construct the
corresponding straight skeleton features, so the probdeimaes to determining efficiently the sequence of events tha
happen at different times in the evolution of this movingface, and distinguishing actual events from combinations
of features that could generate events but don't.

We provide two algorithms for solving this event generatnoblem, and, therefore, for constructing straight
skeletons, of incomparable complexities.

Theorem 4. There is a constant ¢ such that the straight skeleton of an orthogonal polyhedron with n vertices and k
straight skeleton features may be constructed in time O(klog®n).

Proof. We observe that each event in our classification (excepthfosingle-component events, which are straight-
forward to handle with a simple event queue) is generatetiéynteraction of two features of the moving surféte
pairs of edges or seams in most of the events, pairs of a vantda face in some of them.

To generate these events, ordered by the time at which treey,age use a data structure of Eppstein [13, 14] for
handling general problems of maintaining a set of items amdirfg the pair of items minimizing some binary function
f(x,y); in our applicationf (x,y) is the time at which an event is generated by the interactidemsx andy, or 4o
in the case that the two items do not interact. The data streicéduces this problem (with polylogarithmic overhead)
to a simpler dynamic data structural problem: maintain aaglyic setX of items, and answer queries asking for the
first interaction between an itemin X and a query iteny. Thus, we need separate first-interaction data structures
of this type for edge-edge, vertex-face, and face-vertetactions. (Note that, although vertex-face and facéexer
problems are equivalent in terms of the problem of findingdfitst interacting pair, they are different in terms of the
problem of finding the first interaction for a query itgfrand the reduction involves both versions of the problem.)

To handle the edge-edge interactions, we first partitioretiges into finitely-many equivalence classes by their
orientations and by the velocities at which their endpomtse asP; evolves, and treat each equivalence class sep-
arately. Within an equivalence class, each edge can beibleddry four coordinates, so the first-interaction problem
can be handled as an appropriate four-dimensional orttedgange searching problem.

To handle the vertex-face and face-vertex interactionsneexd to reduce the faces (which may be complicated
planar objects with holes) to regions with bounded desoriptomplexity, so that we may again employ orthogonal
range searching techniques. To do so, we first partition pctar straight skeletd®; into regions, where each region
is either a face of the input that lies within plaieor the straight skeleton region belonging to one of the irgigtes.
Next, we further partitiors into trapezoids using a vertical visibility decompositidys t changes ané; evolves,
each of these trapezoids will move perpendicular to planand in addition, its edges may move linearly outward
or inward depending on the face structurePohear that face. Additionally, some of these trapezoids neopine
partially or completely blocked from participating in theundary ofR, due to other faces that interact with them;
however, in our vertex-face and face-vertex interactiota déructures, we ignore this blocking effect, as whenever
some trapezoid is blocked it is due to some other boundatyrieheing closer to any objects that might interact with
the trapezoid. With this decomposition, and a partitiorhef input objects into finitely many subclasses according to
their shape and velocity, we have a set of objects that capéd@fed with finitely many dimensions (three for each
vertex, five for each trapezoid) to which we may apply an appate orthogonal range searching data structurél

Although within a polylogarithmic factor of optimal, thisgemrithm may be complex and difficult to implement. If
we wish to achieve worst-case optimality rather than oufauisitive optimality, a much simpler algorithm is possibl

Theorem 5. The straight skeleton of an orthogonal polyhedron with n vertices and k straight skeleton features may
be constructed in time O(n?logn).

Proof. For each pair of objects that may interact (features of thatipolyhedrorP or of the two-dimensional straight
skeletonsSy in each face planél), we compute the time at which that interaction would happ®a sort the set

of pairs of objects by this time parameter, and process paosder; whenever we process a pgiry), we consult

an additional data structure to determine whether the paises an event or whether the event that they might have
caused has been blocked by some other features of the sskajbton.

To test whether an edge-edge pair causes an event, we maittimary search tree for each edge, representing the
family of segments into which the line containing that edganslated according to the motion of the surfRgehas
been subdivided in the current state of the surfacén edge-edge pair causes an event if the point at which thetev
would occur currently belongs to line segments from theslioeboth edges, which may be tested in logarithmic time.

To test whether a vertex-face pair causes an event, we fieskalihether the vertex still exists at the time of the
event, and then perform a point location query to locate thiatpn S at which it would collide with a face of the
input belonging to planBl. The collision occurs if the orthogonal distance withinm@al from this point to the nearest
input face is smaller than the time parameter at which thiksemt would occur. We do not need to check whether
some other features of the straight skeleton might havekbtbteatures of from belonging to the boundary &,
for if they did they would also have led to some earlier veifie event causing the vertex to be removed fRom

Thus, each object pair may be tested using either a dynamarybsearch tree or a static point location data
structure, in logarithmic time per pair. O

4 General Polyhedra
4.1 Ambiguity

Defining the 3D straight skeleton of a general 3D polyhedsanére complicated than the convex case. In particular,
there seems to be an inherent ambiguity that arises in thés wdnich does not arise in the definition of the 3D skeleton

of convex or orthogonal polyhedra. This issue was alludea égpaper by Demainet al. [10], in fact, in a reference to
a private communication by Jeff Erickson. The ambiguityrstérom the fact that, unlike a convex polyhedron, which
is defined uniquely by the planes supporting its faces, aomorex polyhedron is defined tppth the supporting planes
and a given topology, which is not necessarily unique. THusng the offsetting process, a polyhedron can propagate
from a given intermediate (or initial) state into one or mtgological configurations, all of which are valid.

We make the nature of this ambiguity more precise in Figuag. 4the ambiguity problemis illustrated with respect

==
B B ->

Top view Side view Initial topology Our method Another sadut
(a) A Simple example (b) A more complex example

Fig. 4. 3D skeleton ambiguity.

to two pieces of skeleton—a weddg¥,and a tabletoB—-that are growing relative to each other. Because of thesang|
of the two front planes of the wedge, the growing wedge is ajadtory to eventually grow past the tabletop. The
issue that arises at this point is to determine how the wamésrshould continue growing. There are several choices
(in fact, an infinite number of choices). For example, the finsee coauthors on this paper (in no particular order)
respectively advocated the three following resolutions:
— The front end of the wedgk is blunted by clipping it with the plane defined by the sidelaf tabletop.
— The wedge continues growing forward, but is blocked fromwgng downward by clipping it with the plane
defined by the top of the tabletop.
— The wedge suddenly projects into the empty space in frortefable and continues growing out from there.
There are other possibilities, as well. In fact, all threggastions listed above cause contradictions or a noncon-
tinuous propagation of the wavefront in certain cases. @oe ghoice, however, which is not listed above, is to allow
the wedgeA to grow through to the other side Bfin the case thah reaches the edge 8and moves past the edge.
With this 3D skeleton definition it is possible to construelf<ontradictory examples with three wedgAs, A, and
As, such thatA; andAg are on opposite sides of the tabletop and oriented in a wayfta breaks througlB, then
it blocks Az, which in turn does not blochz, which in turn breaks througB and prevent#y from breaking through
B. Likewise, if A; doesn’t break througB, then it doesn’t blockd,, which blocksAs, which, in turn doesn’t block
A1, which breaks througB. Thus, we can at least conclude that this rule is an inapfa@pchoice for resolving
ambiguities in the definition of general 3D straight skeatsto
A more general example of the inherent ambiguity of the pgagian of the straight skeleton is shown in Fig-
ure 4(b). The figure shows a vertex of degree 5, and two pessiplologies during the propagation. This is the
so-called weighted-rooftop problem: Given a base polyguhsiopes of walls, all sharing one vertex, determine the
topology of the rooftop of the polygon, which does not alwhgge a unique solution. In our definition of the skeleton,
we define a consistent method for the initial topology andeftablishing topological changes while processing the
algorithm’s events, based on the two-dimensional weightetight skeleton. This method is described in Section 4.3.

4.2 A Combinatorial Lower Bound

We now show that the 3D straight skeleton oframertex general simple polyhedron can have asymptotic awaidy
rial complexity strictly greater than the complexity of tBB straight skeleton of an orthogonal polyhedron.

Theorem 6. The combinatorial complexity of a 3D skeleton for a simple polyhedronis Q(na?(n)) in the worst case,
where a(n) isthe inverse of the Ackermann function.

Proof. (Sketch) We begin by showing that the cross-section of afsgtowving wavefronts can have the same com-
plexity as the upper envelope of a set of line segments inldreepThe construction is illustrated in Figure 5.

T =
<]

Fig. 5. lllustrating 3D skeleton complexity.

The main idea to produce such a cross-section is to set upugseg| of triangular prisms sticking up out of a
side of the polyhedron. Construct the set so that the slopten top faces matches those of a set of specified line
segments and their sides are defined by vertical edges pondisig to the segment endpoints. Define the wedges in
sequence with ever sharper points, so that as their wavsfgoow to define the straight skeleton the slower-growing
wavefronts in the front are overtaken by the faster onesdib#tk, until eventually the complexity of the cross-settio
of the set of growing wavefronts matches that of an upperlepeeof line segments. In this case, we can orient the
tip of each wedge so that it will be in the visible part of thgpapenvelope, which guarantees that the cross-section of
the latter portion of the set of growing wavefronts will hakie same complexity as the upper envelope of a set of line
segments (no matter how the wavefronts are growing in trdiiggportion of this set of growing wavefronts).

Wiernik and Sharir [25] show that the upper envelope of aB@i®@segments can ha¥®na(n)) complexity in the
worst case. Thus, the complexity of the cross-section o$é¢thef growing wavefronts in our constructiorf}gna(n))
in the worst case. Our lower bound for the 3D skeleton follaiven, by having such a set of growing wavefronts
attached to the “floor” of a simple polyhedron interact withathogonal set of similar growing wavefronts attached
to the “ceiling” of a simple polyhedron. This is done by makitme direction of growing wavefronts much longer
than their cross-sectional length, which implies that &stito sets of wavefronts grow into each other, they produce
a number of pieces of straight skeleton that is quadraticércomplexities of the two sets of wavefronts. O

4.3 The Algorithm

@ (b) (© (d)

Fig. 6. Changing the initial topology of a vertex of degree greatant3 (the skeleton is shown in dashed lines. (a) The original
polyhedron. Vertex has degree 5; (b) The cross-section and its weighted strsligieton. Vertex becomes three new vertices:
V1, Vo, andvs; (¢) The straight skeleton of the polyhedron. Vertespawned three skeletal edges; (d) The propagated polyhedro
Verticesvy, Vo, v3 trace their skeletal edges.

Our algorithm is an event-based simulation of the propagatf the boundary of the polyhedron. Events occur
whenever four planes, supporting faces of the polyhedr@gtrat the same point. At these points the propagating
boundary undergoes topological events. The algorithmhfeigeneral case consists of the following steps:

1. Collect all possible initial events.
2. While the event queue is not empty:
(a) Retrieve the next event and check its validity. If thergv® not valid, go to Step 2.
(b) Create a vertex at the location of the event and connetttie vertices participating in the event.
(c) Change the topology of the propagating polyhedron atingito the actions taken in Step 2(c). Set the location
of the event to the newly-created vertices.
(d) Create new events for newly-created vertices, edgefaaed and their neighbors, if needed.

We next describe the different events and how each type Iswli#a. The procedure always terminates since the
number of all possible events is bounded from above by thébeuwf combinations of four propagating faces.
Initial Topology Vertices of a polyhedron can have a degree greater than 8efbine, upon initiating the propagation,
we need to split each such vertex into several vertices ofe#e8 (see Figure 6). This weighted-rooftop problem
can have several valid solutions. Our approach is basedatiniseg the faces surrounding the initial vertex with
one plane or more (any choice of a cutting plane which inttssall faces and parallel to none would suffice), and
establishing the weighted straight skeleton of the intdise of these faces with the section plane, with the weights
determined by the dihedral angles of these faces with thengutlane, after an infinitessimally-small propagation.
This approach always yields a unique valid solution. Wetsistathis method for all types of vertices: Convex vertices
spikes (concave vertices), and saddles. We provide thddtaiils in the full version of the paper.
Collecting Eventsin the full version of the paper we describe how events arectad, classified as valid or invalid,
and handled by the algorithm. In a nutshell, each processst gives rise to possible future events, all of which are
intersections of four planes. However, an event may be faovalid already when it is created (since its time stamp
is less than that of the current event, or because its gemnh@tation is outside its “region of influence”), or only
when it is fetched for processing (since another alreadyggssed event has annulled it). Each valid event results in
the creation of features of the skeleton, and in a topoldgltange in the structure of the propagating polyhedron.
Handling Events Propagating vertices are defined as the intersection obgiaiing planes. Such a vertex is uniquely
defined by exactly three planes, which also define the thigeagating edges adjacent to the vertex. (We handles case
of vertices of degree greater than 3 as in the initial topplegee above.) The topology of the polyhedron remains
unchanged during the propagation between events. Herésting lof all possible events (see Figure 7):

(a) Edge (b) Hole (c) (d) Edge-Split (e) Vertex
Split

Fig. 7. The five types of events. The solid lines are the original edged the dashed lines are their locations after the préipaga
The dotted arrows show the progression of these edges, bp torte of the event.

1. Edge Event.An edge vanishes as its two endpoints meet. This is the nggediimt of the four planes around the
edge.
2. Hole Event. A reflex vertex (adjacent to three reflex edges, also callpikés) runs into a face. The three planes
adjacent to this vertex meet the supporting plane of the face
3. Split Event. A ridge vertex (adjacent to one or two reflex edges) runs intogposite edge. The faces adjacent to
the ridge meet the face adjacent to the twin of the split edge.
. Edge-Split event.Two reflex edges cross each other. Every edge is adjacenbtplames.

5. Vertex event.Two ridges sharing a common reflex edge meet. This is a speasalof the edge event, as it is the
meeting of the endpoints of the reflex edge, but it has diffeeéfects, and so it is considered a different event.
Vertex events occur when a reflex edge runs twice into a faktre two endpoints of this edge meet.

A convex polyhedron induces only edge events during prap@agaeand reduces to a single tetrahedron before
vanishing at the simultaneous edge events of the last faggsed\ general (nonconvex) polyhedron may split into
several connected components, which will be reduced iti@atedra and similarly vanish. All these events are meeting
points of four planes, and other types of events are not axdteddor, as they do not occur in general position (e.g.,
two reflex vertices running into each other), which are nmggpioints of more than four planes at a location. Note that
the propagation of the boundary is “memoryless” in the sémsehandling an event does not depend on the history of
propagation. Therefore, degenerate events are treatetlyetkee same as initial vertices of degree greater than 3.

I

1N

Data Structures We use an event queue which holds all possible events soytéichb, and a set of propagating
polyhedra, initialized to the input polyhedron (or polyh&) after the initialization of topology. The used struetis

a generalization of the SLAV structure in two dimensions.M&vide the details in the full version of the paper.
Running Time Denote byn the total complexity of the polyhedron, and kyhe number of events processed by the
algorithm. Denote by the number of reflex vertices (or edges) of the polyhedromréter to collect all the initial
events, we have to iterate over all vertices, faces, andsaafgbe input polyhedron. Edge events require only to look
at each edge’s close neighborhood, which can be do@m) time. However, computing all hole events requires
considering all pairs of a reflex vertex and a face. This té&kg®s) time. Computing a split event is bounded within
the edges of the common face, but this can still taken) time, and computing Edge-Split events tak¥g?) time.

In the course of the algorithm, we need to compute futuretsvamd to process them. For a convex polyhedron,
only edge events are created, and so they are easily compuotdly in O(1) time per event. However, for a general
polyhedron, every edge might be split by any ridge and stéiblyeany spike. In addition, new spikes and ridges can
be created when events are processed, and they have todukdgsinst all other vertices, edges, and faces of their
propagating connected component. Si@¢é) vertices and edges are created in every event, every evetaleO(n)
time to handle. (The time needed to perform queue operagens single event)(logn), is negligible.) The total
time needed for processing the events is, t{&n). This is also the total running time of the algorithm.

Object Skeleton Time
ObjectVertices Edges Facefgertices Edges Faces Ce(Sec.
General Objects
(@) 12 20 10 8 24 25 10|0.312
(b) 20 30 12 25 60 46 12/0.719
(c) 28 42 16 45 104 74 16|0.5671
(d) 20 30 12 16 42 37 12/0.188
(e) 20 30 15(+3) 41 92 68 15/0.436
® 12 18 10 21 48 37 10/0.484
Polycubes

9) 16 24 11 6 21 25 11|0.177
(h) 16 24 11 12 36 33 11/0.146
@ 16 24 10 12 32 29 10(0.172

(j) Statistics and running times

Fig. 8. Sample objects.

11

5

Experimental Results

We have implemented the algorithm for computing the stitagikeleton of a general polyhedron in Visual C++
.NET2005, and experimented with the software on a 3GHz Atl@é processor PC with 1GB of RAM. We used
the CGAL library to perform basic geometric operations. $barce code consists of about 6,500 lines of code. Fig-
ure 8shows the straight skeletons of a few simple object tl@ performance of our implementation. (Note that
object (e) contains three hole polygons in addition to théatsts.)

References

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
. D.J. Sheehy, C. G. Armstrong, and D. J. Robinson. Shamziggon by medial surface constructidfeEE Trans. Visualizat.

23.
24,

25.

O. Aichholzer and F. Aurenhammer. Straight skeletonggéareral polygonal figures in the plane. Pnoc. 2nd Ann. Int.
Conf. Computing and Combinatorics (COCOON '96), volume 1090 ofLecture Notes in Computer Science, pages 117-126.
Springer-Verlag, 1996.

. O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gartn& novel type of skeleton for polygonslournal of Universal

Computer Science, 1(12):752—-761, 1995.

. A. Bagheri and M. Razzazi. Drawing free trees inside singallygons using polygon skeleto@omputing and Informatics,

23(3):239-254, 2004.

. G. Barequet, M. T. Goodrich, A. Levi-Steiner, and D. S¢eirContour interpolation by straight skeleto@r.aphical Models,

66(4):245-260, 2004.

. E. Bittar, N. Tsingos, and M.-P. Gascuel. Automatic retarction of unstructured 3D data: combining a medial arid a

implicit surfaces.Computer Graphics Forum, 14(3):457—468, 1995.

. H. Blum. A transformation for extracting new descriptofshape. In W. Wathen-Dunn, editdAodels for the Perception of

Soeech and Visual Form, pages 362—-380. MIT Press, 1967.

. S.-W. Cheng and A. Vigneron. Motorcycle graphs and ditasggeletons. IrProc. 13th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 156—-165, 2002.

. L. P. Chew, K. Kedem, M. Sharir, B. Tagansky, and E. Weldrovioi diagrams of lines in 3-space under polyhedral convex

distance functionsJournal of Algorithms, 29(2):238-255, 1998.

. T. Culver, J. Keyser, and D. Manocha. Accurate computaifdhe medial axis of a polyhedron. Rroc. 5th ACM symp. on

Solid modeling and applications, pages 179-190, New York, NY, USA, 1999. ACM.

E. D. Demaine, M. L. Demaine, J. F. Lindy, and D. L. Sougaihlinged dissection of polypolyhedra. Rnoceedings of the
9th Workshop on Algorithms and Data Structures (WADS 2005), volume 3608 ofecture Notes in Computer Science, pages
205-217, Waterloo, Ontario, Canada, August 15—-17 2005.

E. D. Demaine, M. L. Demaine, and A. Lubiw. Folding andtiogt paper. InRevised Papers from the Japan Conference
on Discrete and Computational Geometry (JCDCG' 98), volume 1763 ot ecture Notes in Computer Science, pages 104-117.
Springer-Verlag, 1998.

T. K. Dey and W. Zhao. Approximate medial axis as a Vorauticomplex Computer-Aided Design, 36:195-202, 2004.

D. Eppstein. Dynamic Euclidean minimum spanning treelsextrema of binary function®iscrete Comput. Geom., 13:111—
122, 1995.

D. Eppstein. Fast hierarchical clustering and otheliegdons of dynamic closest pairé&CM J. Experimental Algorithmics,
5(1):1-23, 2000.

D. Eppstein and J. Erickson. Raising roofs, crashindesy@nd playing pool: applications of a data structure fodifig
pairwise interactionsDiscrete & Computational Geometry, 22(4):569-592, 1999.

M. Foskey, M. C. Lin, and D. Manocha. Efficient computatiof a simplified medial axis.Journal of Computing and
Information Science in Engineering, 3(4):274-284, 2003.

J.-H. Haunert and M. Sester. Using the straight skelfetogeneralisation in a multiple representation environmen ICA
Worksh. Generalisation and Multiple Representation, 2004.

M. Held. On computing voronoi diagrams of convex polylaeloly means of wavefront propagation. Rroc. 6th Canadian
Conf. on Computational Geometry, pages 128-133, 1994.

V. Koltun and M. Sharir. 3-dimensional Euclidean Vorogiagrams of lines with a fixed number of orientatio85AM Journal
on Computing, 32(3):616-642, 2003.

M. A. Price, C. G. Armstrong, and M. A. Sabin. Hexahedrakimgeneration by medial surface subdivision: Part |. Selith
convex edgeslnternational Journal for Numerical Methods in Engineering, 38(19):3335-3359, 1995.

M. Sharir. Almost tight upper bounds for lower envelopekigher dimensionsDiscrete Comput. Geom., 12:327-345, 1994.

Comput. Graph., 2(1):62-72, Mar. 1996.

E. C. Sherbrooke, N. M. Patrikalakis, and E. Brisson. i§o@thm for the medial axis transform of 3d polyhedral delilEEE
Trans. Visualizat. Comput. Graph., 2(1):45-61, Mar. 1996.

M. Tanase and R. C. Veltkamp. Polygon decompositiordam the straight line skeleton. PRroc. 19th Annual ACM
Symposium on Computational Geometry, pages 58-67, 2003.

A. Wiernik and M. Sharir. Planar realizations of noniindavenport-Schinzel sequences by segmebiscrete Comput.
Geom., 3:15-47, 1988.

19

