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S TR AI N A D J U S T M E N T S  ASSOCIATED W I T H  E A R T H Q U A K E S  IN  

S O U T H E R N  CALIFORNIA 

BY STEWART W. SMITH AND WILLIAM VAN DE LINDT 

ABSTRACT 

A technique for the calculation of strain changes in a two-dimensional elastic body 

with arbitrary internal dislocations is presented. This technique is applied to the 

southern California region by assigning a specific fault and fault slip function for 

each major earthquake that has occurred since 1812. Although the model used has 

serious shortcomings when applied to the real Earth, certain important features 

concerning strain energy changes associated with earthquakes are brought out. 

The occurrence of earthquakes o v e r  the past 150 years has resulted in net in- 

creases in stored strain energy in a number of regions including the northern end 

of the Gulf of California, the Cajon Pass area, and the northern part of the Carizzo 

Plain. Large regions of strain energy decrease can also be seen, the most important 

of which is in the vicinity of Fort Tejon. 

INTRODUCTION 

The state of stress or strain in the Ear th  is the single most important  property of the 

Ear th  that  is pertinent to the occurrence of earthquakes. Despite the existence of 

faults on which activity has occurred in the past, no future earthquakes will be ex- 

pected in a region unless some elastic strain has accumulated there. Currently there are 

four different means of measuring or inferring the state of stress in the Ear th:  direct 

observation of in-situ stress by means of stress relief measurements in bore holes and 

mines, geodetic measurements of crustal deformation, secular strain measurements by 

means of sensitive extensometers, and earthquake energy release measurements. Of 

these, only the last technique mentioned allows one to infer the properties of strain or 

strain change over a large region instead of at a single point where the observation is 

made. If  the strain field of the Earth 's  crust is as complicated as one might guess from 

the complexity of near surface geologic structures in tectonically active areas, then 

single point measurements of stress will be difficult if not impossible to interpret.  The 

prospects for such measurements on networks dense enough to give an areal view of 

the strain field are not encouraging due to the difficulty and expense of individual 

measurements. 

If, as clearly seems to be the case, earthquakes are viewed as rapid episodes of stress 

release along existing faults, it is possible to calculate the resulting strain change for a 

number of events in a region and, by summing the result, see the overall pattern of 

stress release associated with seismic activity. Benioff (1951) proposed such a tech- 

nique in which earthquake magnitude is converted to strain energy release, and a 

volume is assumed for each source thus allowing the conversion of total energy release 

to equivalent strain release. This technique has been used extensively, and although 

shortcomings have been discussed by Tsuboi (1952), it is a useful means of displaying 

the past seismic history of a region. Its relation to actual elastic strain release is not  

clear. One shortcoming is that  it is necessary to assign a value of strain release, calcu- 
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lated from the magnitude, to a single point on the Earth 's  surface. No account can be 

taken of the different volume undergoing release during a large earthquake as compared 

with a small one, nor can any geometrical effects related to the direction of faulting be 

considered. In this paper we propose a different means of calculating the strain release 

associated with earthquakes; further, the technique we use makes clear that  each 

earthquake increases the strain energy density in some regions of the crust while de- 

creasing it in others. Thus the objective becomes the display of patterns of strain re- 

lease and accumulation due to the occurrence of earthquakes. 

MODEL 

The model we use to represent earthquake occurrences is the generation of a stress- 

free plane surface within a pre-stressed elastic plate. The general problem of represent- 

ing a seismic region such as California with a time varying stress, and with a sequence 

of stress-free cracks occurring at various times allowing slip, but  subsequently locking, 

seems beyond our computational capability at the moment. We have posed the problem 

in a much simpler manner. The simplifications made detract somewhat from the 

pertinence of our model to the real Earth,  so they will be discussed in some detail later. 

The problem is solved in two separate steps. First ,  during a specified interval of time all 

large earthquake occurrences are assigned to specific faults based on field evidence, 

macroseismic data, geologic inference, or guess work. Next, it  is assumed that  all such 

large earthquakes release a shear stress along their surface of approximately 50 bars. 

Under the assumption of plane strain, we can now calculate what the slip across the 

fault will be using a result of Starr (1928). This result is in rough accord with recent 

field evidence of slip variation along vertical strike-slip faults. Thus we have a set of 

discontinuities defined in our elastic plate, along which we have assigned specific slip 

functions. We now solve the static elastic problem of the deformation of this plate due 

to the presence of these discontinuities. In order to make the two problems consistent 

with one another, namely the problem of fault displacements and elastic deformation, 

we subject the elastic plate to a uniform shear stress of 50 bars, and we use the boundary 

condition that  this stress remains constant on the boundaries while deformation is 

taking place on the internal discontinuities. To illustrate what this procedure accom- 

plishes note that  if we insert a single fault, along a straight line at 45 ° to the principal 

axis of stress, and use the slip function calculated from Starr (1928), the result of our 

numerical solution would show that  the stress along this fault has dropped to zero. No 

direct interaction of faults can be considered with this technique, it is as if after 

each faul t  slips, it  is locked and the stress field becomes homogenized before the next 

earthquake is permitted to occur. Nonetheless certain types of interactions can be 

seen. In the simple case of two separate sections of a fault slipping during two earth- 

quakes, with an undisturbed section in between, this technique allows a quantitat ive 

measure of the strain accumulation on the middle section of the fault. As will be seen 

in later examples, regions of strain accumulation occur not only at the ends of 

the faults but  also in broader regions in directions normal to the fault surface. 

In regions where there are numerous parallel branches of active faults, this tech- 

nique allows the superposition of these regions of strain accumulation producing 

hitherto unsuspected regions of possible high stress. If a section of a fault is known 

to be undergoing slow creep, the creep displacement function can be entered along with 

the earthquake fault displacements to obtain the net elastic deformation of the region. 

No such data was used in this particular study however. 
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For the larger earthquakes in California, which dominate the stress release picture, 

we believe the plane strain model is a reasonable approximation for the description 

of the deformation that  occurs. I t  seems particularly appropriate if the San Andreas 

fault is viewed as a transform fault and the crust as an elastic plate moving over a 

plastic zone in the upper mantle. In this case one would expect stress to have been 

released through the entire thickness of the crust after the occurrence of an earthquake. 

ANALYSIS 

The two-dimensional case of plane strain (or stress) can be solved with the help of 

the Airy stress function (Fung, 1965). This function satisfies the biharmonic equation 

v4¢ = 0 (1) 

except in points where slippage has taken place. In  these points where the displace- 

ment is two-valued and the compatibility conditions are not satisfied, special con- 

ditions will be required. 

I t  is possible of course to formulate the entire problem in terms of dislocation theory, 

tha t  is by calculating the appropriate Green's function and using it  along with the 

specified slip along internal boundaries to generate the solution everywhere (Chinnery, 

1963). However, since the eventual solution to our problem must be numerical because 

of the irregular boundaries, we chose to formulate the problem as a differential equation 

the solution of which can be obtained by an iterative technique. The stresses are ob- 

tained from the function ¢ as follows : 

02¢ 
( Y x x  - -  Oy 2 

02¢ 

a y u  - -  c)X2 

02¢ (2) 

~xu = OxOy " 

On the outside boundary of a two-dimensional region the traction T is given in direction 

and magnitude. I t  can be expressed in terms of the function ¢ by 

02¢ 02¢ 
T~ = c o s 0 ~ - -  s in00x0y  

02¢ 02¢ (3) 
Tu = --cos 0 ~ y  + sin 00x ~ . 

In  these equations 0 is the angle between the outward directed normal on the boundary 

and the X-axis of the coordinate system. These equations can be obtained immediately 

from Figure 1 by considering the equilibrium of a small triangular region. 

From Figure 2 it can be seen that  sin 0 = - d x / d s  and cos 0 = dy/ds. Substituting 

this in equation (3) gives 

02¢dy 02¢ dx d{0¢ '~  
T~ 

- Oy 2 ds + OxOy ds  ds \ JOy 

02¢ dy 024) dx d ['0¢'~ 
- T u  = 0 ~ d s  + ~x2ds - +T/0x/.ask / (4) 
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The problem described in this paper is solved in a rectangular region. Furthermore it is 

assumed that  T,  is a constant and T~ = 0 on the sides parallel to the Y-axis. On the 

other two sides T~ = 0 while T~ is equal to a constant. The constants are equal and 

have opposite signs. The planes of maximum shear are the planes under 45 ° with the 

coordinate axes. Figure 3 shows the assumed forces and maximum shear planes. The 

arrows alongside those planes indicate the relative motion that  would take place if a 

cut in the rectangle were made, parallel to the planes of maximum shear stress. 

o'xy 

O-x~, - - -  

- lO-xy 

%y 

Fro. 1. Tractio~ on the outside boundary of a two dimensional region. 

Ly 

ds 5 

cosu = ~ ' ~ - ~ ,  

_:_ n_ dx ~.  oufside 

I v 

x 

Fio. 2. Boundary conditions on the outside of the region. 

In  the ease of a rectangle the conditions (4) can be simplified as follows. For instance, 

considering the side of the rectangle coinciding with the X-axis, integration of T~ in 

equation (4) gives 

; 5 (oo / T= ds = .~ ds = ~ , -  o 

if the value T= = 0 is used, as given in Figure 3. The value of the constant C is usually 

chosen to be equal to zero. This assures continuity of O¢)/(~n and therefore faster con- 

vergence of iterative methods of solution. 

Furthermore Ty can be integrated twice resulting in 

dx ~ ~ ds = ~ ( x )  --  ¢~(O) = x + c3x + c~. 
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The  constants  c2 and c3 are constants  of integrat ion and can be chosen so tha t  the func- 

t ion ¢ is continuous in the corners of the rectangle. 

Similar integrat ions can be performed on the other  three sides of the rectangle. I f  the 

values of ¢ and O¢/On are ma tched  in the corners, the resulting functions for ¢ and 

O¢/On on the boundary  are as given in Figure 4. I n  these expressions the constants  

ci, c2 and c3 can be chosen arbitrarily,  however  c4 and c6 depend on c~, c~ and c3. This 

dependency is given in the same figure. 

: °  

=-o- 

= o  -_ tmy:o 

: °  
=-O" 

F~G. 3. Boundary stresses used for a rectangular region. 

~--~n = o - L + c i  fl 
4=~-°-L ~ + ClL + c 2 

6 2 H2+c3 H +c 2 

#) =÷-~ y +c,y+c~ t 
~ n  = - c  3 

H 

- ~  x 2 + x + c 3 c2 

= -Ci, 

Fie. 4. The values of 4) that result using constant stress on the boundary and matching the values 
of ~ in the corners. 

Conditions at a .fault. An ear thquake  is modeled here as a slip along an, in general, 

curved line. The  amoun t  of slippage as a funct ion of position along the faul t  is, as 

previously discussed, assumed to be known. This condit ion can be s ta ted as 

ul (s) = u~ (s) + L (s) 

P 1 (S) = V2 (S) -~ fy (S) (5) 

where s is the coordinate along the fault  curve, ul and u2 are the absolute displace- 

ments  along the fault  in X direction and t'l and v~ are those in Y direction, fx (s) and 

fy (s) are the given slip along the fault  in t h -  x and y directions. 
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There are two more conditions tha t  must  be met,  the normal stress and the tangential 

stress must  be continuous across the fault  boundary.  I f  curvilinear coordinates are 

used, as shown in Figure 5, these two conditions result in 

(02~ 10q~) = (02q~ 10¢) 

~',~OSOn,]I ~080n/lI = ( f f s n ) I I .  (db) 

Remaining now is the problem of expressing the conditions (5) by  means of the func- 

tion ¢ and its derivatives. This can be done by slightly extending a method described 

by Zienkiewicz and Gerstner (1959). First a rigid rotat ion is added to equations (5a 

and 5b) 

ul = u2 + ay -I- fl -t- f~ (s) (7a) 

v~ = v~ - a x  + ~ + f ~ ( s ) .  (7b) 

It l ine 

= radius of  
curvature 

FIG. 5. Curvilinear coordinates used on a fault. 

This does not alter the stresses or strains as can be verified by  calculating Ou/Ox, 

Ov/Oy and Ou/Oy ~ Ov/Ox. 

Differentiating with respect to s, the eurvilincar coordinate, and eliminating a from 

the resulting equations, gives 

00Ul Or1 OU2 Or2 Ofx Ofy 
cos ~ s  ~- sin 0 -~s = cos 0 ~ -  -t- sin 0 -0s -t- cos 0 ~-s -t- sin 0 - - .  

Os 
(s) 

The slip function f~ and f~ are now transformed into f~ and f . ,  the tangential and nor- 

mal displacement on the fault. This is accomplished M t h  the help of 

f~ = f. cos 0 - f~ sin 0 

f~ = f, sin 0 + f~ cos 0 

from which it follows tha t  

of~ oy~ _ of~ f~ (9) 
cos 0 ~ -  + sin 00s  Os p 
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Use is made of the relation 1/p  = O0/Os in which o is the radius of curvature of the 
fault line. 

Furthermore, 

Ou _ Ou Ou 
Os Ox cos 0 + ~y sin 0 (10a) 

Ov _ Ov Ov 
cos 0 + = - s i n  0. (10b) 

Os Ox o7] 

Substituting equations (9, 10a and 10b) into equation (6) gives 

OUl OYl • " (OUl OVl~ 
0--x- c°s2 0 + ~-y sin 0 + \ ~ -  + ~xx] sin 0 

0v2 
+ ~yy sin 2 0 + 

cos 0 = Ou~ cos" 0 
Ox 

( Ou2 Ov2~ Of 8 f~, 
t-~Y + ~xx/sin 0 cos O + Os p (11) 

The equations of elasticity can be written as 

ou 
e ~ - ~ - A  - - B  

\ O y  2 Ox 2] 

Ov (024, 02~ 
e~,~, - Oy - A \Ox2 - -  B O y " ]  

( ) 0"~b (12) Ou Ov - 2 A ( 1  + B )  OxOy e~.= ~ y + ~ x  = 

where, for the plane strain ease 1/ .4  = E / ( 1  - ~,2) and B = U(1 - v). E is the 

modulus of elasticity, v is Poisson's ratio. Equation (12) is substituted in equation (11) 

and the resulting equation is transformed from the coordinates X and Y to the eurvi- 

linear coordinates s and n. The following result is obtained : 

. s<+<,, (,,,<,, so.<,, (o.+ o.,.. ,.. 
' ) ,0~  - B '  t o s 2 p On / J = & ),~n 2 - B2 / j + 

(13) 

In  this equation A1 and B1 refer to the elastic constants of the material on the outside 

of the fault, A2 and B2 to those on the inside. Outside and inside are determined by the 

normal on the fault which points from material with index 2 to that  with index 1. The 

normal points from inside to outside. 

Equation (13) can be simplified if A1 = & and BI = B2. In that  case, because of 

equation (6a) 

On2~: = \OnVH + A \Os 
(14) 

This is the first interface condition which results from the discontinuity across the 

fault surface specified by equation (Sa) and (5b). One more condition can be obtained 
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as follows. Differentiating equations (7a and 7b) twice and eliminating a gives 

o °2 2 sin 0 °2 2 cos Os 2 - -  s i n 0 ~  = c o s 0 ~  -- ~ - t - c o s 0 0 ~ - - -  s in00s ~ - .  (15) 

First the dependent variables f~ and f~ are transformed into f8 and f~ as was done be- 
fore. This gives: 

o2L 0% 2 2oL o(~)  f. _o7.+_ +L - ~  (~6) 
cos 0 0-J -- sin 00s 2 Os 2 p ~ ~ 

Next the independent variable s is transformed into X and Y. Substituting equation 

(12) results in 

t ~  0 ( 02¢~ ;  = --A2 { ~  (~2¢)ii  - A1 (V:¢)~ + (1 + BI) ~ \OsOn/J~ 

+ (1 + B2) ~ \oso~/) H + ~ + ~ b~- + L ~ - ~ .  

Again if both constants A and B are the same on each side of the fault equation (17) 

simplifies to 

O~ I = ~ (V2¢)II -- ~ \aS2 "[- ; ~-~ "$- fs ~ -- JO ~ • (18) 

This follows immediately from using equation (6b). 

Before proceeding to the final form of these equations, it will be necessary to change 

equations (6a and 6b) to their final form. Integrating equation (6b) with respect to s 

gives 

10¢) (0¢) (19) 

since at both ends of the fault O ¢ / O n  is continuous. Using equation (19) and integrating 

equation (6a) twice gives 

(¢)I = ($)II (20) 

at every point along the fault, again using the conditions that off the ends of the fault 

in the undisturbed region ¢ is single valued and is continuous. 

For the numerical method used it is easier to use as a condition on the fault, the sum 

of equation (6a) and equation (14), rather than equation (14) itself. This gives: 

(V¢) ,  = (v~¢)H + X \os 

as 

02¢ 02¢ 1 0¢ (21) 
V24~ = ~ -t- Os 2 p On 
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Conditions (18) and (21) can be simplified further if it is assumed that  the radius of 

curvature of the fault is so large that  all terms involving p in equations (18) and (21) 

can be neglected. I t  will further be assumed that  the fault does not  open up so that  

f~ = 0. This will actually be  the case if the faulting occurs in a pure shear stress field 

and the displacements are small (Starr, 1928). Under those conditions equations (18) 

and (21) become: 

(v2¢)i = (v~¢)i~ + 1 of. (22) 
A Os 

Equations (19), (20), (22) and (23) are the conditions to be satisfied on a fault. 

Behavior o f f .  along a fault. The problem as stated above can be solved provided f. is 

known. As discussed earlier we use some of the analytic results of Starr (1928) who 

treated the case of a crack in a plate, assuming a uniform shear stress at infinity. From 

his paper it  can be seen that  

3 S~ v ~ l  _ (x/c)2 (24) 
f . =  2 ~  

in which S is the shear stress, c is the half length of the fault and ~ is Lame's constant. 
1 As tL -- E / 2  (1 ~ v) and using the approximation , = 

1 Of. 4S x/c 
A o~ - ~ i  - (z /c)  - - ~ "  (25)  

In  the numerical calculation 4S is chosen to be equal to one, giving 

1 of. x / c  (26) 
A Os v / 1  - (x/c) 2" 

In  order to relate the results of the calculation to the actual stresses in the crust, a 

scale factor must be used. Using an average value of f ..... obtained from the data of 
c 

King and Knopoff (1968) and substituting this in equation (24) gives an S = 13 bars. 

Other three dimensional approaches suggest a higher value. We have used a value of 

S = 50 bars in our calculations. If another value of S is desired the energy contour 

interval should be scaled by a factor (.~n) 2. The general shape of the contours is 

not affected by a change in the value of S. Fault  lengths used for specific earth- 

quakes are listed in Table 1 and were obtained from field evidence, macroseismic 

data, or from a magnitude fault length relation. The relation we used is L = 10'59M-:'24 

km which fits California earthquakes in the magnitude range 6.0-8.2. If equation (26) 

is used it is assumed that  the stress S is constant along the fault and that  complete 

stress release on the fault is obtained. Neither condition is completely fulfilled in 

practice, however it  was considered a reasonable first approximation. Friction on the 

fault, for instance, causes the stress to be released only partially and the stress S 

will vary  along the fault. 
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NUMERICAL METHOD 

The problem as stated above was solved numerically on a digital computer. As is 

usual in the case of solving partial differential equations, the domain of integration 

is covered with two sets of vertical and horizontal, parallel lines, neither of which need 

be equidistant. The faults are approximated by line segments passing through the grid 

points, the points of intersection of the two sets of lines. An example is given in Figure 6. 

TABLE 1 

LXRG~ EARTHQUAKES IN SOUTHERN CALIFORNIA REGION 1812--1966 

Event No. Date Magnitude Locality Equivalent Fault Length in km 

1 1812 7.8+ (outstanding) Santa Barbara Channel 80 
2 1857 7.8+ (outstanding) Fort Tejon 250 
3 1892 7+ (great) Agua Blanca 100 
4 1899 7+ (great) San Jacinto 100 
5 1903 7+ (great) Colorado Delta 100 
6 1915 6.2 Calexico 29 
7 1915 7.1 Colorado Delta 87 
8 1916 6.0 Tejon Pass 20 

9 1918 6.8 San Jacinto 58 

10 1923 6.2 l~iverside 29 
11 1925 6.3 Santa Barbara 30 
12 1933 6.3 Long Beach 30* 
13 1934 6.5 Colorado Delta 40 
14 1934 7.1 Colorado Delta 87 
15 1935 6.0 Colorado Delta 20 
16 1937 6.0 Terwilliger Valley 20 
17 1940 7.1 Imperial Valley 87 
18 1941 6.0 Colorado Delta 20 
19 1941 6.0 Santa Barbara 20 

20 1942 6.5 Borrego Valley 40 

21 1946 6.3 Walker Pass 30 

22 1947 6.4 Manix 34 
23 1948 6.5 Desert Hot Springs 18" 
24 1952 7.7 Tehachapi 70* 
25 1952 6.1 Tehachapi 23 
26 1952 6.1 Tehachapi 23 
27 1954 6.2 Santa Rosa Mtn 28 
28 1954 6.3 Agua Blanca 30 
29 1956 6.8 San Miguel 58 
30 1956 6.4 San Miguel 34 
31 1966 6.3 Gulf of California 40* 

* Length of aftershock region. 

Next  the location of the faul t  l ine mus t  be given. This  can be done in  several ways, 

however  because of the method  of solut ion of the  differential equa t ion  (point  i t e ra t ion)  

the following method was adopted.  A set of code words is given as i n p u t  wi th  format  

a b 

This  is to be read as: apply finite difference operator  "a" in  the next  "b" points.  After 

this  "b" values of (1/A) (Of,/Os) are given. The  finite difference operator  can be one of 

several, for instance,  i t  can be the finite difference approximat ion  of the operator  V 4 or 
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it could be a special operator used at the internal dislocations. All points inside the 

rectangular domain are described this way, horizontal line after horizontal line. For 

instance, the fifth line in Figure 6 is described as: 

21 3 

15 1 

i of~ 

21 2 

Points on the boundaries are deleted. The above code words read: Do three points with 

operator 21 (which is the finite difference approximation of V 4) then do one point with 

operator 15 (which is one of twenty interface operators used on the fault lines). The 

value of (1/A)(OfffOs) must be given next. The last code word for this line reads: 

\ 

\ 
\ 
\ 

FIG. 6. A section of the grid used illustrating the representation of an arbitrary fault. 

Do two points with operator 21. As an example, a derivation of one particular oper- 

ator for use on an irregular boundary is given in the Appendix. 

Point relaxation was used to solve the equations resulting from discretizing the 

partial differential equation (1), together with the boundary and interface conditions. 

In  order to simplify the finite difference expressions, especially those for points on the 

interfaces and points adjacent to the fault lines, the differential operator is split into: 

which can be written as: 

where 

v4¢ = v " ( v " ¢ )  = 0 

v~g = o (28) 

V2¢ = g. (29) 

These equations were solved as follows. A first guess of ¢ was made in all interior points 
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of the grid, the boundary values of ¢ being given. With the help of these values, g was 

calculated at each point of the grid using 

g = L ( ¢ )  

where L is the finite difference approximation to the differential operator Y ~. For points 

/ 

$ 
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I 

I 
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j s  

TEST CASE I 
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FIG. 7. Test case of a straight crack.along plane of maximum shear. Calculated shear stress 
as zero  a long  crack.  

on the external boundaries use was made of the known value of O¢/On. For points on 

the fault lines special expressions were used, taking into account the discontinuity in g 

as given by equation (22). After this, all interior values of g are corrected by an iter- 

ation procedure with the help of equation (28). Then q~ in the interior points is cor- 

rected by a similar iteration process, using equation (29). This whole process is re- 

peated until the corrections in ¢ become small and a sufficiently accurate solution is 

obtained. 

Yield Function. After the values of ~ in the grid points are found, the stresses in each 

point can be calculated with the help of equation (2) and by numeric differentiation of 

the function ~. These stresses could be plotted as a function of position in the form of 
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contour maps, however most of the information needed is contained in the von Mises 

yield function. This function is simply tha t  par t  of the elastic energy tha t  depends on 

the asymmetrical  par t  of the stress. I t  is given by Jeffreys (1962) 

F = ½{ ( ~  -- ¢yu)2 + (ayy _ ~=)2 -t- ( ~  -- ~ ) 2  + 6z~u + 6Z~z + 6a2u~}. 

35'+ 
fl5 . 

,% + 

+ + 

1812-1915 
Strain decrease (- - )  

. . . . .  Zero contour  

r ~  St ra in  increase ("{'-) 

Contour in te rva l :  1.6x[O 3 e r g s / c m  3 

+ + ~,, ',, ~ "" - ,  

FIG. 8. Strain energy changes due to earthquakes in the interval 1812-1915. Triangles are 
instrumentally determined epicenters. Solid lines are inferred faults. Numbers are keyed to 
table of earthquakes. 

For plane strain 

~z = ~ (~x~ + ~ )  

(TB z = (TXZ ~ 0 

which gives: 

This is the computed function which is displayed as contour plots in Figures 7-10. I t  

is chosen as a convenient scalar field most  closely related to the possible shear failure 

of the material  and thus in our opinion closely related to the occurrence of earthquakes. 
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DISCUSSION 

In viewing the three strain maps, Figures 8, 9, 10, and comparing them with the 

strain release maps published by Allen et al. (1965) the most striking feature is the 

elongation of anomalies along existing faults as compared with the more diffuse pat- 

terns that resulted from earlier studies. This is to be expected of course, because the 

fault orientations and lengths are part of the input data in our analysis. It  should also 

be recognized that considerable smoothing must be done to a conventional strain re- 
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FIG.  9. Strain energy changes due to earthquakes in the interval  1915-1967. Triangles are 
instrumental ly  determined epicenters.  Sol id l ines are inferred faults .  Numbers  are keyed to 
table of earthquakes.  

lease display such as used by Benioff (1951) before it can be contoured. Since the basic 

data for the two representations is almost identical, one could view the approach we 

have used as the development of smoothing operators that are based on static elasticity 

theory, with additional data in the form of fault orientation and length, whereas in 

Benioff's case the operators simply smooth out the strain release uniformly in all 

directions. In addition, with our approach we now need to consider the significance of 

those re~ons whose strain energy density appears to have increased as a result of slip 

of nearby faults. There are of course a number of unanswered questions regarding this 

phenomenon. In a homogeneous elastic plate, once started, a crack on which the stress 

is concentrated near the end, as it is ia Starr's case, would continue to propagate. One 

would have to apply other stresses, or assume some type of inhomogeneity in order to 
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explain why  the crack actually stops propagating at some specific length. In actual 

earthquake occurrences there is some evidence that stress is concentrated near the ends 

of the active fault break as can sometimes be seen in the distribution of aftershocks. The  

crust is not  homogeneous,  the stress is not  uniform, and the fault when it occurs is not~ 

a stress free surface but one on which slip is controlled by friction. With all of these in- 

adequacies, we nevertheless proceed to make  the calculation of strain changes due t e  

earthquakes, with the belief that the result is closer to representing what  actually 

occurs in the Earth than has previously been obtained. 
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Fro. 10. Strain energy changes due to earthquakes in the interval 1812-1967. Triangles are 
instrumentally determined epicenters. Solid lines are inferred faults. Numbers are keyed to 
table of earthquakes. 

A second point concerns total energy for the plate. Using the model as described one 

can see that the integrated energy over the plate due to the insertion of a stress free 

crack will tend to increase, whereas in the crust of the Earth, certainly the net result of 

an earthquake is to convert elastic strain energy into mechanical work and heat. Our 

result is entirely due to the constant stress boundary condition we have imposed; in 

fact the total energy change is almost completely arbitrary depending on the behavior 

at the boundaries far removed from the faults with which we are concerned. Saint 

Venant's  principle however tells us that the patterns of strain release and accumulation 

we calculate for the interior of the plate cannot be seriously affected by stress variations 

on the boundary if it is far removed. Therefore we calculate and plot strain energy 
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density variations as a result of earthquake occurrences, but  we do not calculate the 

integrated energy change for the entire plate. 

As can be seen in the test case presented in Figure 7, there are four regions of stress 

concentration and five of stress release associated with each strike-slip fault. If the as- 

sumptions made in this approach are valid, then it would seem that  the probabilities 

for earthquake occurrences are enhanced in those regions showing a stress concentra- 

tion, as a direct result of the occurrence of a nearby earthquake. In order to test this 

hypothesis, the seismic history of southern California and Baja California was sub- 

divided into two intervals, 1812-1915, and 1915-1966. All historic shocks after 1812 

classified as "outstanding" by Wood and Heck (1951) are included as well as all 

shocks classified as "great"  with the exception of the 1769 earthquake near Los 

Angeles. Great  difficulty was experienced in relating some of these early events to specific 

faults, and it is recognized that  this is a serious limitation of the strain maps presented 

here. In  the interval following 1912, all earthquakes with magnitudes greater than 6 

were included. The earthquakes used, and the appropriate fault lengths are given in 

Table 1 along with index numbers tha t  key them to the strain maps. The basic data on 

earthquake occurrences and faulting was obtained from Richter (1958), and Allen 

et al. (1965). Along the San Andreas system there is little difficulty with the direction 

of faulting, and the inferred lengths cannot be far wrong as we can see by comparison 

with more recent events. In  the Santa Barbara Channel, the direction of faulting is 

inferred to be parallel to the maj or transverse features exposed on land here. The length 

of the 1812 fault rupture in this area is assumed to be less than one would expect from 

an "outstanding" earthquake because of the likelihood that  it had a significant compo- 

nent of dip slip motion. There is also a question, Richter and Nordquist (1958), con- 

cerning the direction of faulting and the aftershock distribution of the Manix earth- 

quake. With these limitations in mind we must point out that  the maps presented 

here cannot be used in detail to specify regions of high stress. In addition to the un- 

certainty of the faulting associated with historic earthquakes, and the inadequacies of 

the model discussed above, other mechanisms of stress release are undoubtedly acting 

which are not accounted for here and which could release the stress which apparently 

results from the fault slippage we have postulated. With that  disclaimer, we now may 

examine the maps to see what geologic interpretations can be made. 

INTERPRETATION 

In  addition to the obvious strain accumulation-release pat tern along the San 

Andreas fault, the 1915-1967 map (Figure 9) shows several features conjugate to this 

t rend.  The most striking of these is tha t  formed by earthquakes in the Santa Barbara, 

Tehachapi, and Walker Pass regions. Ryall et al. (1966) using more conventional repre- 

sentations of seismic activity commented on this same trend and referred to it as the 

Ventura-Winnamucca zone. Benioff (1955) concluded that  the 1952 earthquakes on 

the White Wolf fault were a mechanism for relief of localized stress on the curved sec- 

t ion  of the San Andreas fault near Fort  Tejon. In  the present paper we agree with this 

view and can see that  although the aftershock distribution of the 1952 earthquakes did 

not extend to the San Andreas fault, the zone of strain release most certainly did. In  

addition we note tha t  other earthquakes in the aforementioned band of conjugate 

activity may also have contributed to stress release here. Fur ther  to the southeast 

toward San Bernardino we see that  earthquakes during the same time interval have 

resulted in a net increase in strain energy. When the next large earthquake occurs on this 
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section of the San Andreas fault, between San Bernardino and Fort  Tejon, the fact 

tha t  the strain field has been partially released near Fort  Tejon will undoubtedly have 

an effect in determining the total length over which the fault will rupture, and will thus 

affect the maximum magnitude earthquake that  can be expected here. Whether  enough 

strain has been released to actually prevent a rupture from propagating past the bend 

at Fort  Tejon cannot be determined from the data presented here. 

The strain pat tern on the San Andreas from San Bernardino to the Mexican border  

appears very narrow wth many shocks in excess of magnitude 6 distributed more or less 

uniformly along the zone. The recent earthquake near Borrego Mountain (April 9, 

1968 Magnitude 6.4) is not included in the map; however it would not appreciably 

affect the existing pat tern as described above. In Mexico, the pat tern changes signifi- 

cantly with a broad area of stress release extending from the Colorado Delta to the 

Pacific Ocean. Also notable in this region is a significant area of strain energy increase 

east of the Colorado River. The increase here is the result of superposition of the effects 

of numerous parallel breaks at the head of the Gulf of Calfornia. The inference here, 

remembering all previous disclaimers, is tha t  additional parallel breaks can be expected 

to further broaden this zone of stress release as this region of stress concentration under- 

goes relaxation in the future. The area investigated extends only about 100 km south 

of the border, so we cannot make any observations related to the presence of the East  

Pacific Rise and the possible offsets of the San Andreas system in the Gulf of Cali- 

fornia. I t  is clear however, tha t  a major change in the strain fie.d occurs near the 

southern boundary of our region near 32 ° North  Latitude, and it  is due not only to the 

presence of the San Miguel and Agua Blanca faults, but  also due to a change in the 

seismicity of the northern part  of the Gulf of California. 

One of the initial objectives of this s tudy was to examine the history of strain changes 

due to earthquakes to see if accumulation in a region during one time interval was fol- 

lowed by  release during a subsequent interval. The principal difficulty here is that  one 

does not know the starting conditions. We thus cannot speak of actual strain energy 

present in a particular locality, but  only of changes since some previous time. Only a 

crude effort can be made in this direction due to the inadequacies of both the model used 

and the historical data available. By viewing Figures 8 and 9 one can see only a very gen- 

eral relation between areas of net strain energy accumulation during the interval 1812- 

1915 with areas of net strain release during the subsequent half century. For example 

we note tha t  the bend in the San Andreas near Fort  Tejon causes stress concentration 

along conjugate planes, one of which extends in the general vicinity of the subsequent 

Tehaehapi earthquakes. The region from Gorman to Cajon Pass shows stress release, and 

the subsequent history of this region has been remarkably quiet. On the other hand, the 

stress concentration at the south end of the 1857 break, near Cajon Pass has not yet  

had any significant effect on seismic activity. To complete the picture, we can also note 

some regions such as those near the head of the Gulf of California that  show a net strain 

release during both intervals. Tha t  this occurs here and in several other localities, is 

evidence that  our model is not entirely adequate, and tha t  other nonseismic types of 

stress relaxation must be occurring in adjacent regions. Note that  the Agua Blanca 

earthquake of 1892 (No. 3) was inadvertently included in the 1915-1967 interval in- 

stead of in the earlier one. 

The apparent asymmetry of many of the strain patterns is sometimes the result of a 

fault being inserted at an angle other than 45 ° to the assumed principal stress axis, as 

in the case of the large earthquakes near Santa Barbara and also near San Miguel, 
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For some of the smaller faults the asymmetry is caused by the superposition of stress 

field changes from many nearby faults. The discrete approximation used in the numeri- 

cal integration also causes distortion of the field, particularly for small faults where the 

mesh points do not fall along the fault in a symmetric fashion. Near the boundaries of 

the region some distortion can occur; the small band of apparent strain release near the 

northwest corner of Figure 9 is such an artifact of the computation. 

CONCLUSIONS 

A technique for calculating strain energy changes due to the occurrence of earthquakes 

has been presented and applied to the southern California, Baja California region. New 

features of the strain field not discernible in previous strain release maps are brought 

out. The most important of these is the presence of significant areas of stress concen- 

tration resulting from slip on major faults. Limitations of the model used and the his- 

toric data available on fault motion prevent a detailed interpretation of the resulting 

strain maps, however the following tentative conclusions can be drawn: 

(1) The 1857 earthquake that ruptured along the bend in the San Andreas near 

Fort  Tejon significantly altered the stress field in this region causing a stress concen- 

tration along conjugate planes, one of which lies in the general vicinity of the Teha- 

chapi earthquakes. 

(2) Earthquakes in the Santa Barbara area and the Tehachapi area during the past 

half century have significantly reduced the stored strain energy along the San Andreas 

in the Fort Tejon vicinity. Thus the probability that a great earthquake can occur 

here, involving a rupture of the San Andreas through the bend in the fault at Fort 

Tejon, has been at least temporarily reduced. 

(3) A major change in the strain field occurs near 32 ° north latitude in Baja Cali- 

fornia. The pattern of strain release confined to a narrow zone along the San Andreas 

changes here to a broad region transverse to the San Andreas trend. 
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APPENDIX 

While most of the numerical technique used is conventional and c~n be found in any 

of a number  of text  books on the subject, the numerical operators used in an interface 

point may  need some explanation. 

First  the expression in equation (29) is integrated over the ~rea PI P2 Pa P4. In  the 

case of the boundary going through point P0 as shown in Figure 11 this gives 

l+s~ l+s~ ~ $ dl = g dS = el S1 + g2 S~ 

Using the interface condition (22) 

gl = g2 + - -  

it follows tha t  

A Os 

gl -- ~1 + $2 ~ ¢ dl + ($1 + & ) A  Os 

g2 - SI + & On ~ dl 
$1 Ors 

(S1 + S2)A Os 

These expressions make it  possible to calculate gl ~nd g2 when ~ and (1/A)(Ofi /Os) 

are given. As ¢ is continuous [see equation (20)] finite difference approximations can be 

obtained. The result for gl is, for instance 

g(1) = 1 ~ i , j + l _ - -  ~bi,j (la Jr- /4) ~- ~i+l,j - -  O i , j  (/1 "~- /2) 
i,j (/1 + /2)(/3 + ~4) [.. 2/1 - - 2 1 a  

~_ ~i,j--1 - -  ~i,j (la + 14) + ¢~--1,j -- ¢~.j (II + 12){l~ la} 10f~  7 
212 2/4 A ~ s ]  

A similar expression for g~,2) can be found. 
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The ¢ used in these expressions are not correct yet  and consequently the g's calcu- 

lated do not satisfy equation (28) but  rather 

, V2g = r 

The quanti ty r is used in the iteration to correct g. A finite difference approximation 

has to be made of this equation. For the regular grid points this is conventional, however 

for points lying on an interface the expression will be derived here for the interface 

going through the point as shown in Figure 11. 

Again integrating equation (28) over P1 P: P.~ Pa gives 

f cg ds = f 0 ~ g dl = f r dS 

In  writing down the finite difference form of the line integral on the right hand side it 

should be kept in mind that  g is two-valued on the interface. 

(2) (2), l~ , (1) (1)~ ll , (2) (2) 12 
g~,~-i - g~,~) ~ + ~g~+~,, - g~,~, ~ + ~g~+l,; - g~,~. ) ~ = R~,; 

P~ Pz 

P4 ¢ 4 t'3 P3 

i - I  

- - j+ l  

212 

I --j-I 

i+l 

FIG. 11. I l l u s t r a t i o n  of i n t e r f ace  o p e r a t o r  for  use  in t h e  d i sc re t e  r e p r e s e n t a t i o n  of a c u r v e d  f a u l t .  

When using point interation, c1> • (2> g~,j and gi.~ are to be corrected to a value that  makes this 

expression equal to zero. First g(2~ is replaced by  

after which it is possible to calculate the necessary change in g~,l~. If  the h ~h iterate is 

known, the (k -F 1 )th iterate can be found from 
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(k+D..(~) (k)_(1) ..{_ (k) 
gij = g~,J e~,J (30) 

where 

e(•) 
/ ( la+14 la+I4 l l+ l~  l l + l ~ )  

i,j = Ri,j \ 211 + - - - -  + -  + - -  212 2la 214 

If  over or under relaxation is used equation (30) is changed to 

(k+l) _(1) (k)c(1) (k) 
~li,] = y i , i  ~" oaei,j 

where ~0 is the relaxation factor. 
(k+l) .(2) 

The new yl,j is obtained from: 

Similar expressions hold for points in which the interlace has another shape. 

For regular points the same expressions are valid, however the 

(1/A) (Ofi/Os) is equal to zero in those points, making gO) = g(2). 
quanti ty 


