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Sören Ehlers �, Petri Varsta

Helsinki University of Technology, Marine Technology, PL 5300, 02015 TKK, Finland

a r t i c l e i n f o

Article history:

Received 30 September 2008

Received in revised form

9 March 2009

Accepted 21 April 2009
Available online 20 May 2009

Keywords:

True strain and stress

Failure strain

Finite element simulations

Tensile experiments

Optical measurements

a b s t r a c t

This paper presents a procedure to determine an element-length dependent strain and stress relation

until fracture that is suitable for implementation in finite element models. This material relation is

obtained experimentally with an optical measuring system. The strain until fracture is calculated from

the measured surface displacements. The stress is derived from the measured force and the cross-

sectional area in the necking region. Furthermore, because of the digital nature of the optical

measurements, the strain reference length, being a function of the pixel size, is clearly defined. For the

numerical simulation the finite element length is equal to this strain reference length. The overall

procedure allows a precise numerical simulation of the tensile experiment until the point of fracture

without curve fitting or an iterative procedure to adjust the material relation for the chosen mesh size.

This precise material relation can improve non-linear numerical simulations.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Non-linear finite element simulations, such as crashworthiness

analysis, require the input of the true strain and stress relation

until failure. Failure is especially crucial in ship-related simula-

tions where the leakage is of interest. The true strain should be

obtained by using an infinitesimally small gauge length to capture

the strain localisation in the necking region. Additionally, the

finite element method requires a discrete model, i.e. a meshed

model, and therefore the finite element length has to correspond

to this small gauge length, i.e. the strain reference length. The true

stress should be obtained independently of the strain as a function

of the cross-sectional area at any given instant.

The stress and strain relation from standard tensile experi-

ments is used for finite element simulations by Joun et al. [1], Koc

and Stok [2], Mirone [3], Paik [4], and Springmann and Kuna [5].

However, it remains in question if the chosen finite element

length corresponds to the strain reference length. For one selected

finite element length, agreement between the numerical simula-

tion and the experiment may be achieved by an iterative

procedure. Here the true strain and stress relation used as input

for the simulation is changed until compliance with the

corresponding experiment is achieved (Huatao and Roehr [6],

Isselin et al. [7], Zhang [8], and Zhang et al. [9]). Bridgman’s [10]

empirical correction factors for the post-necking region were used

by Ling [11] to determine the true strain and stress for tensile

experiments on copper alloys in an iterative finite element-based

procedure. However, Ling does not define the strain reference

length.

To obtain the true strain and stress for a tensile specimen,

Hoffmann and Vogl [12] used optical measurements. Neither they

do not validate their measured material relation with the

corresponding tensile test results, and nor do they define the

strain reference length.

Of the papers mentioned, only Springmann and Kuna [5]

contribute to the prediction of failure, i.e. to the end point of the

true stress and strain curve, by means of a damage parameter

based on fracture mechanics. The true strain and stress until

failure are traced by Hoffmann and Vogl [12], Huatao and Roehr

[6], Joun et al. [1], Koc and Stok [2], Ling [11], Mirone [3], and Paik

[4], but no prediction of the failure strain is presented.

Therefore, the aim of this paper is to obtain experimentally a

true strain and stress relation until failure that is suitable for

implementation in finite element models and to define the strain

reference length. The strain and stress relation is obtained with an

optical measuring system, which measures the local displace-

ments at the surface of the specimen. From these displacement

values the local strain is calculated on the basis of a discrete

amount of pixel recordings, a so-called facet. The discrete pixel

dimension will clearly define the strain reference length. One

pixel records 29.3�29.3mm2 of the specimen’s surface area for

the experiments presented herein. To determine the true stress,

the cross-sectional area at any given instant is calculated on the

basis of the out-of-plane displacement measurements of the

specimen. The overall experimental figures are given in Ehlers and

Enquist [13].

This non-iterative determination of the true strain and stress

relation is used as input for the finite element simulations, where

the finite element length is equal to the strain reference length.
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The measured local failure strain serves as a criterion to delete

elements to simulate rupture or to terminate the simulation at the

point of rupture. A finite element simulation of the tensile

experiment validates the proposed procedure to obtain a strain and

stress relation. The numerical result is compared to the force and

elongation recorded independently of the optical measurements.

2. Tensile specimens

The dog-bone specimens, with different length-per-breadth

ratios (L/B), consist of 4-mm-thick NVA and 6-mm-thick RAEX

S275 LASER steels; see Table 1 and Fig. 1. The specimens are water-

cut with their longitudinal direction parallel to the rolling

direction of the plates. Details of the production of the

specimens are given in Ehlers and Enquist [13] and the chemical

composition of the material is given in Remes [14].

3. Tensile experiments

3.1. Test set-up

The three tensile specimen types were tested with three

specimens each. The displacement-controlled experiments are

carried out with a tensile test machine at Växjö University,

consisting of a MTS 322 Test Frame with Load Unit. The MTS Test

Frame records the force and the resulting elongation of the

specimens, in other words the force-elongation curve, which will

be used to validate the proposed procedure.

3.2. Optical measurements

The optical measuring system is positioned on a tripod

independent of the MTS Test Frame. ARAMIS 4M, produced by

Gesellschaft für Optische Messtechnik, is used for the experiments

presented here. A stochastic pattern needs to be placed onto the

specimen’s surface in order for the optical measuring system to be
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Table 1

Tensile specimen dimensions in mm.

�L/B L B B2 Lc Lr Lm Thickness

8 194.1 24.22 33 48.54 13.8 56.5 4.04

8.5 206.8 24.34 33 50.06 13.8 69.2 5.87

11.6 250 21.54 29 48.58 12 116 5.90

Fig. 1. Principal dimensions of dog-bone type tensile specimen.

Fig. 2. Stochastic pattern of the surface of the specimen with a facet of 15�15

pixels.

Fig. 3. Location of the sections on the surface of the specimen.
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used. The pattern is obtained by applying a matt white-base spray

paint layer followed by a sprinkling of matt black spray paint; see

Fig. 2.

Two 4-megapixel cameras record synchronised stereo images

of the specimen with a delay time between consecutive images of

6 s. Therefore, the measuring point density is 0.2mm of the

applied displacement speed of 2mm/min. The recorded images of

the stochastic pattern consist of grouped pixels, so-called facets.

Fig. 2 shows a 15�15 pixels facet as an example. Each facet

contains individual greyscale information and can, therefore, be

traced throughout the experiment. To assess the sensitivity of the

facet size on the results, a selection of seven facet sizes is made

ranging from 10�10 to 50�50 pixels. The 10�10 pixels facet is

the smallest traceable facet, whereas the 50�50 pixels facet is

still sufficiently small to capture local effects for the specimens

tested.

From the full 3D measurement point recordings, in other

words the facet recordings, the selection of sections can be made.

Fig. 3 shows the recorded area and the selected section locations

on the specimen’s surface for the initial stage and for the final

stage of deformation prior to surface fracture. Section 1 is located

at the minimum cross-section of the neck and Section 2 intersects

Section 1 at the point of maximum strain prior to failure. For each

section the 3D coordinates, displacements, and strains, i.e. the

strain localisation, are determined on the surface of the specimen

in each loading stage; see Fig. 4. A coordinate transformation of

the recorded loading stages compensates for rigid body

movements; see Appendix A. This transformation relates the 3D

coordinates of the deformed stages to a reference plane fit

through the undeformed specimen surface.

3.3. Strain determination

The strains are determined on the basis of facets on the surface

of the specimen, in other words, local strains, which are tangential

to the surface. The strain is calculated from the measured and

linearly interpolated elongation of a line element, i.e. strain

reference length, connecting 3-measured 3D points, i.e. facets.

With the selected facet sizes in pixels and with a facet overlap of

10–13 percent, the distance between each measured 3D point,

respectively the strain reference length, is given in Table 2. These

facet sizes are used for all three types of specimen. Hence, the true

strain eT can be defined in 1D by

�T ¼ ln
lþ dl

l

� �

, (1)

where l is strain reference length and dl is the change in the length

of l for consecutive stages. The extension of this 1D case to 3D can

be found in the Appendix A of this paper.

Fig. 4 shows the longitudinal strain distribution of Section 2 as

an example for a facet size of 15�15 pixels. The strain

localisation, in other words the necking phenomena, is depicted

by the sharp strain peak. The strain reference length determines

the maximum strain-peak value to be captured. Fig. 5 presents the

strain localisation for each specimen. The true strain in the neck is

plotted versus the engineering strain until the onset of surface

fracture, i.e. until failure strain. It can be seen that the curves

become steeper with growing L/B ratios and at the same time

varying the specimen thickness. The global strain calculated from

the elongation measurements with reference to the effective

length Lm of the specimen (see Fig. 1) is represented by the solid

line according to eT ¼ ln(1+eE). Hence a significant difference in

numerical values exists between the locally and globally

measured strains. This difference justifies the localised

measurements with respect to finite element simulations, where

the required strain data need to be element length dependent.

This element-length dependency is now obtained, as the finite

element length has to be equal to the strain reference length, see

Table 2. This allows the simulation of the onset of fracture at the

correct strain. The measured failure strain values are given in

Table 3 and plotted versus the facet size in Fig. 6. The constant
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Fig. 4. Measured true strain in Y-direction versus Y-coordinate for each captured

stage for Section 2 (facet size 15�15 pixels, L/B ¼ 8).

Table 2

Facet size in pixels and strain reference length in mm.

Facet size Strain reference length

10�10 0.88

15�15 1.32

20�20 1.76

25�25 2.2

30�30 2.64

40�40 3.52

50�50 4.4
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Fig. 5. Measured true strain in the neck versus engineering strain (facet size

15�15 pixels).
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strain failure criteria is chosen as close ranges of strain triaxiality,

Lode angle and parameter are attained at the failure initiation

points, see Table 3 and Fig. 6. The histories of the strain triaxiality,

Lode angle and parameter versus the true strain in Y-direction are

given in Appendix B. Except for some slight deviations in Lode

angle and parameter of the L/B ¼ 8 specimens, all histories are in

very close range.

3.4. Stress determination

Unlike the local strain determination, the stress cannot be

measured at the strain reference length. Therefore the local stress

is determined on the basis of the minimum cross-sectional area of

the specimen measured as a function of the facet size. In other

words the cross-sectional area becomes larger with increasing

facet sizes, as the localization is averaged over the extent of the

facet size, see Fig. 7. The normal stress distribution at the cross-

section of the specimen becomes constant as soon as the cross-

section is subjected entirely to plastic flow, since no shear stresses

occur. Hence, the force elongating the specimen and the cross-

section at any given instant of the specimen define the average

local stress on a cross-section of the specimen by

sT ¼ F

A
. (2)

The cross-section at any given instant is calculated on the basis

of the out-of-plane displacement of Section 1; see Fig. 8 as an
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Table 3

Measured strain, strain triaxiality, Lode angle and parameter at the point of failure

(average values for each L/B ratio).

�L/B Facet

size

Failure

strain

Strain

triaxiality

Lode angle

(deg.)

Lode

parameter

8 10�10 1.018 0.016 37.714 �0.257

15�15 0.965 0.085 31.116 �0.037

20�20 0.954 0.038 35.488 �0.183

25�25 0.891 0.042 34.720 �0.157

30�30 0.871 0.046 34.231 �0.141

40�40 0.772 0.055 32.193 �0.073

50�50 0.692 0.034 33.133 �0.104

8.5 10�10 1.081 0.062 34.274 �0.142

15�15 1.020 0.082 31.073 �0.036

20�20 0.989 0.074 32.053 �0.068

25�25 0.946 0.071 32.242 �0.075

30�30 0.883 0.071 31.863 �0.062

40�40 0.820 0.067 31.095 �0.037

50�50 0.742 0.055 31.437 �0.048

11.6 10�10 1.044 0.080 31.555 �0.052

15�15 0.992 0.074 31.340 �0.045

20�20 0.944 0.067 31.208 �0.040

25�25 0.911 0.065 31.310 �0.044

30�30 0.869 0.058 31.958 �0.065

40�40 0.804 0.054 32.147 �0.072

50�50 0.702 0.047 31.647 �0.055
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Fig. 6. Failure strain, strain triaxiality and Lode parameter as a function of the

chosen facet sizes.
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example for a facet size of 15�15 pixels. The breath reduction of

the specimen is obtained from the X-coordinate values. Therefore,

the cross-sectional area of the specimen at any given instant can

be calculated on the basis of these out-of-plane displacement

data, measured on one specimen surface and assuming

symmetrical cross-sectional change for each stage until failure

according to

AðyÞ ¼
Z

½t þ 2uzðx; yÞ�dx, (3)

where y indicates the position of Section 1 given in Fig. 3, t the

initial thickness of the specimen given in Table 1, and uz the

measured out-of-plane displacement given for each stage as an

example in Fig. 8. A macro sample study of the cross-sections of

the broken specimen justifies the assumption of symmetrical

cross-sectional change; see Fig. 9. Additionally, the uppermost

line, the initial stage, in Fig. 8 depicts the level of the surface

flatness of the specimen and shows the slightly rounded specimen

edges; see also Fig. 9. Both the surface flatness and the rounded

edges are a result of the production of the specimen.

The resulting relative cross-sectional area versus the measured

true strain in the neck in the Y-direction until the onset of fracture

for all experiments is given in Fig. 10. The deviation from the

constant volume assumption, where e ¼ ln(A0/A), at larger strains

necessitates the out-of-plane displacement measurements to

determine the cross-sectional area A at any given instant.

3.5. Strain and stress relation

The average true strain and stress relation obtained from

the optical measurements is plotted until the onset of fracture in

Figs. 11–13. The average relation of the three specimens tested for

each L/B ratio is chosen to clearly present the differences in true

stress versus strain for the selected facet sizes. The decreasing

stress and failure strain is in very good correspondence with the

increase in facet size. This averaged and facet-size dependent

strain and stress relation is used as input for the finite element

simulation.

The measured engineering stress versus strain data from the

MTS Test Frame and the corresponding averaged logarithmic

stress versus strain, where eT ¼ ln(1+eE) and sT ¼ sE(1+eE), is

plotted therein for comparison. Some scatter in engineering stress

versus strain curves that exists due to differences in actual

specimen geometry and probable material defects within the

specimen. The total error arising from the experimental set-up is

estimated to be less than 2% and, therefore, only influences the

presented procedure nominally; details are given in Ehlers and

Enquist [13].

4. Finite element implementation

This chapter utilises the material data determined by the

optical measurements presented in Figs. 11–13 with the averaged

failure strain from Table 3 to simulate the experiment with the

finite element method.

The tensile experiments are simulated using the explicit time

integration solver LS-DYNA version 971. The choice of the explicit

solver arises from the fact that the proposed strain and stress

relation should be applicable for crash analysis of thin-walled

structures, see Liu [15] and Zarei and Kröger [16], and ship

collision analysis, see Ehlers et al. [17]. For crash analysis involving

contact and large shell deformations, the explicit solver proved to

be a robust choice, whereas the implicit solver may not converge

with increasing non-linearities, see Harewood and McHugh [18].

The structures are modelled using four nodded quadrilateral

Belytschko–Lin–Tsay shell elements. This one point quadrature

shell element uses discrete Mindlin shell theory to describe

displacements and rotations.

The finite element length is equal to the strain reference

length. Due to different specimen geometries a deviation in actual

element length of up to 2% may exist for some of the meshed

models. The specimen is modelled between the clamping wedges

only, and therefore the total length of the model is LFEM ¼ L�2Lc.

The translational degrees of freedom are prohibited at one edge,

whereas the other edge is subjected to a constant displacement of

100� the experimental speed as no dynamic effects occur.

Additionally, the simulation time remains desirably short. The

averaged experimentally determined strain and stress relations

are implemented via Material 124 of LS-DYNA. Standard LS-DYNA

hourglass and time step control is used. For details of the

modelling and simulation processes see Ehlers et al. [17,19],

Hallquist [20], and Tabri et al. [21]. The initiation and propagation

of fracture in the specimens is modelled in LS-DYNA by deleting

the failing elements from the model. The element fails once the

failure strain is reached.

The resulting force-elongation curves of the finite element

simulations are shown in Figs. 14–16. The finite element

simulation using the strain reference length dependent and

averaged strain and stress relation presented in Figs. 11–13

complies with very good agreement to the independently

measured average MTS recordings. The point of failure, in other

words the end of the curves, is captured accurately by the

numerical simulation, especially for element lengths up to

2.2mm.

For reference and comparison the same finite element models

are used with an average power material law fit (K ¼ 760,

n ¼ 0.23, ef ¼ 0.86 for L/B ¼ 8, K ¼ 745, n ¼ 0.22, ef ¼ 0.92 for L/

B ¼ 8.5 and K ¼ 755, n ¼ 0.23, ef ¼ 0.93 for L/B ¼ 11.6) according
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Fig. 9. Macro sample of the cross-section of the specimen.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

600

700

800

900

Strain [−]

S
tr

e
s
s
 [
M

P
a
]

engineering strain and stress (MTS)

average logarithmic strain and stress (MTS)

average strain and stress relation

(optical measurements)
Facet 10x10

Facet 15x15
Facet 20x20

Facet 25x25
Facet 30x30

Facet 40x40
Facet 50x50

Fig. 12. Measured strain and stress relation (L/B ¼ 8.5, MTS measures are plotted for comparison).

S. Ehlers, P. Varsta / Thin-Walled Structures 47 (2009) 1203–12171208



ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

600

700

800

900

Strain [−]

S
tr

e
s
s
 [
M

P
a
]

engineering strain and stress (MTS)

average logarithmic strain and stress (MTS)

average strain and stress relation

(optical measurements)
Facet 10x10

Facet 50x50
Facet 40x40

Facet 30x30
Facet 25x25

Facet 20x20
Facet 15x15

Fig. 13. Measured strain and stress relation (L/B ¼ 11.6, MTS measures are plotted for comparison).

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

Elongation [mm]

F
o
rc

e
 [
k
N

]

4.4mm (reference FEM−ASM)

3.52mm (reference FEM−ASM)

2.64mm (reference FEM−ASM)

2.2mm (reference FEM−ASM)

1.76mm  (reference FEM−ASM)

1.32mm (reference FEM−ASM)

0.88mm (reference FEM−ASM)

4.4mm FEM

3.52mm FEM

2.64mm FEM

2.2mm FEM

1.76mm FEM

1.32mm FEM

0.88mm FEM

Experiment (average)

Fig. 14. Finite element analysis results (L/B ¼ 8).

S. Ehlers, P. Varsta / Thin-Walled Structures 47 (2009) 1203–1217 1209



ARTICLE IN PRESS

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

Elongation [mm]

F
o
rc

e
 [
k
N

]

4.4mm (reference FEM−ASM)

3.52mm (reference FEM−ASM)

2.64mm (reference FEM−ASM)

2.2mm (reference FEM−ASM)

1.76mm  (reference FEM−ASM)

1.32mm (reference FEM−ASM)

0.88mm (reference FEM−ASM)

4.4mm FEM

3.52mm FEM

2.64mm FEM

2.2mm FEM

1.76mm FEM

1.32mm FEM

0.88mm FEM

Experiment (average)

Fig. 15. Finite element analysis results (L/B ¼ 8.5).

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

Elongation [mm]

F
o
rc

e
 [
k
N

]

4.4mm (reference FEM−ASM)

3.52mm (reference FEM−ASM)

2.64mm (reference FEM−ASM)

2.2mm (reference FEM−ASM)

1.76mm  (reference FEM−ASM)

1.32mm (reference FEM−ASM)

0.88mm (reference FEM−ASM)

4.4mm FEM

3.52mm FEM

2.64mm FEM

2.2mm FEM

1.76mm FEM

1.32mm FEM

0.88mm FEM

Experiment (average)

Fig. 16. Finite element analysis results (L/B ¼ 11.6).
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to the procedure presented in the ASM Handbook [22]. Their

calculated force-elongation curve does not comply with the

experiments as accurately as the proposed procedure. Furthermore,

the point of failure is not predicted correctly, as the failure strain

and the stress determination according to ASM is not finite element

length dependent. This missing element length dependency of the

power law fit results in a non-converging behaviour of the resulting

force-elongation curves, whereas the proposed procedure results in

a better convergence of results with varying element length.

5. Summary and conclusions

A procedure to obtain strain and stress until fracture suitable for

finite element simulations using optical measurements is presented.

The local strain is identified on the basis of the strain reference

length. The stress is determined independently of the strain on the

basis of the cross-sectional area of the specimen at any given instant

as a function of the facet size. The decrease in cross-sectional area

reduction with increasing facet size accounts for the averaging of the

specimen’s cross-section over the extent of the facet size and

captures the overall physical behaviour. The finite element simula-

tions are carried out with the finite element length equal to the strain

reference lengths. These comparative finite element simulations

show very good agreement with the independently recorded force-

elongation curve from the MTS Test Frame. The proposed procedure

predicts the point of failure sufficiently, whereas the presented ASM

approach does not predict the point of failure precisely and does not

show a converging behaviour for different element lengths. With

increasing element lengths the proposed procedure predicts the

point of failure slightly too early when compared to the experiments.

The close ranges of triaxiality, Lode angle and parameter justify the

choice of constant strain failure criteria. The triaxiality and Lode

parameter are close to zero at the point of failure, see Fig. 6, as the

specimens fail due to shear, see Bai and Wierzbicki [23]. The

specimens encounter a compressive stress in breath and thickness

direction in the necking region besides the longitudinal stress. This

imposes that the assumption to obtain the true stress as a function of

the specimen’s cross-sectional area is not entirely correct after

localization occurs. As a result the effective stress deviates in the

necking region from the longitudinal stress, which is however used in

the finite element simulations presented in this paper. Additionally,

the shell element formulation does not consider stresses in thickness

direction. Thereby only the stress over the specimen’s breath is

considered along with the stress in longitudinal specimen direction.

However, the proposed procedure to obtain an element-length

dependent strain and stress relation results in a significantly better

force-elongation prediction until the point of failure for different

mesh sizes than the conventional power law fit.

The future work will provide a correction of the strain and

stress relation for shell elements within the localization region

and the application and verification of the strain and stress

relation for 3D structures.
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Appendices A. Strain definition and extension of the 1D case

The 1D case needs to be extended to the 2D and 3D cases to

quantitatively display the deformation of a surface element.

Therefore, the deformation gradient tensor F is introduced. F

transforms a line element dX connecting the 3 facets in stage n

into a line element dx in stage n+1, where in both cases the line

element connects the same material coordinates

dx ¼ F dX. (A.1)

Decomposition of Eq. (A.1) into a purely rotation matrix and

pure stretch tensor gives

F ¼ R U, (A.2)

where R describes the rotation of the points and the direction

only. The coordinate-system dependent values for ex, ey, and exy
can be obtained directly from the symmetric stretch tensor Uwith

the following form:

U ¼
1þ �x �xy
�xy 1þ �y

 !

. (A.3)

To geometrically interpret the value of exy GOM [24] defines a

shear angle as follows:

gxy ¼ gx þ gy with

gx ¼ arctan
�xy

1þ �x

� �

,

gy ¼ arctan
�xy

1þ �y

� �

. (A.4)

Furthermore, the deformation gradient tensor F creates a

functional connection of the coordinates of the deformed points

Pv,i with the coordinates of the undeformed points Pu,I

Pv;I ¼ ui þ FPu;I , (A.5)

where ui are the rigid body translations. The four unknown

variables of Eq. (A.5) are the parameters of F. Hence, F can be

calculated from a given 2D displacement field of points, where the

undeformed and deformed states are known. A set of 3�3

neighbouring points is used to calculate F. Furthermore, the plane

model of ARAMIS is used, assuming that a tangential plane (x00, y00)

can approximate the local neighbourhood of a point; see Fig. A1.

To eliminate the coordinate dependency of the strain values,

the calculation of the major and minor strain values is performed.

From the main diagonal form of U the two eigenvalues l1 and l2
can be calculated from

l1;2 ¼ 1þ �x þ �y
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�x þ �y
2

� �2

� ð�x �y � �2xyÞ

s

. (A.6)

Substituting Eq. (A.6) into eT ¼ ln(l) returns the results in the

appropriate strain measure, where the major strain follows the

larger eigenvalue. Hence, the strain values are independent of the

coordinate system.

ARTICLE IN PRESS

Fig. A1. A 3�3 neighbourhood for 2D strain calculation (ARAMIS [24]).
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Fig. B1. Strain triaxiality versus true strain (L/B ¼ 8).
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Fig. B2. Strain triaxiality versus true strain (L/B ¼ 8.5).

S. Ehlers, P. Varsta / Thin-Walled Structures 47 (2009) 1203–12171212



ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1 1.2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

True strain in Y−direction [−]

S
tr

a
in

 T
ri
a
x
ia

lit
y
 [
−

]
50x50 Facet (Specimen 1)

40x40 Facet (Specimen 1)

30x30 Facet (Specimen 1)

25x25 Facet (Specimen 1)

20x20 Facet  (Specimen 1)

15x15 Facet (Specimen 1)

10x10 Facet (Specimen 1)

50x50 Facet (Specimen 2)

40x40 Facet (Specimen 2)

30x30 Facet (Specimen 2)

25x25 Facet (Specimen 2)

20x20 Facet  (Specimen 2)

15x15 Facet (Specimen 2)

10x10 Facet (Specimen 2)

50x50 Facet (Specimen 3)

40x40 Facet (Specimen 3)

30x30 Facet (Specimen 3)

25x25 Facet (Specimen 3)

20x20 Facet (Specimen 3)

15x15 Facet (Specimen 3)

10x10 Facet (Specimen 3)

Fig. B3. Strain triaxiality versus true strain (L/B ¼ 11.6).

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

True strain in Y−direction [−]

L
o
d
e
 a

n
g
le

 [
°
]

50x50 Facet (Specimen 1)

40x40 Facet (Specimen 1)

30x30 Facet (Specimen 1)

25x25 Facet (Specimen 1)

20x20 Facet  (Specimen 1)

15x15 Facet (Specimen 1)

10x10 Facet (Specimen 1)

50x50 Facet (Specimen 2)

40x40 Facet (Specimen 2)

30x30 Facet (Specimen 2)

25x25 Facet (Specimen 2)

20x20 Facet  (Specimen 2)

15x15 Facet (Specimen 2)

10x10 Facet (Specimen 2)

50x50 Facet (Specimen 3)

40x40 Facet (Specimen 3)

30x30 Facet (Specimen 3)

25x25 Facet (Specimen 3)

20x20 Facet (Specimen 3)

15x15 Facet (Specimen 3)

10x10 Facet (Specimen 3)

Fig. B4. Lode angle versus true strain (L/B ¼ 8).
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Fig. B5. Lode angle versus true strain (L/B ¼ 8.5).
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Fig. B6. Lode angle versus true strain (L/B ¼ 11.6).
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Fig. B7. Lode parameter versus true strain (L/B ¼ 8).
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Fig. B8. Lode parameter versus true strain (L/B ¼ 8.5).
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Appendix B

Appendix B shows the strain triaxiality, Lode angel and

parameter histories for all specimens and applied facet sizes, see

Figs. B1–B9. The triaxiality is calculated based on the actual

displacement measurements, respectively strain, according to

T ¼
�hyd
�m

¼ 1=3 ð�x þ �y þ �zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=3 ð�2x þ �2y þ �2z Þ
q , (B.1)

where ehyd is the hydrostatic strain and em is the effective strain.

The strain in thickness direction is calculated according to Eq. (1),

where l is the initial thickness of the specimen, see Table 1, and dl

is the thickness reduction, respectively out-of-plane displacement

data, at the intersection of Sections 1 and 2. The Lode angle is

calculated according to

y ¼ arctan
2�z � �y � �x
ffiffiffi

3
p

ð�x � �yÞ
, (B.2)

and the normalized Lode angle, see Bai and Wierzbicki [23],

herein called Lode parameter, is calculated according to

ȳ ¼ 1� 6y

p
; �1pȳp1. (B.3)
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