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Strain-balanced type-II 
superlattices for efficient multi-
junction solar cells
A. Gonzalo1, A. D. Utrilla1, D. F. Reyes2, V. Braza2, J. M. Llorens3, D. Fuertes Marrón4, B. Alén  3,  

T. Ben2, D. González  2, A. Guzman1, A. Hierro1 & J. M. Ulloa1

Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies 
have hold the record conversion efficiencies for many years and are currently approaching 50%. 
Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap 
energy combination, which requires a 1.0–1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, 
the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, 
since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial 
growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/
GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and 
N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new 
structures allow for additional control of the effective bandgap through the period thickness and 
provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of 
the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent 
thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)
material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the 
theoretical efficiency limit.

In the solar cell community, there is a quest for surpassing the 50% efficiency psychological barrier, which 
implies that half of the light energy coming from the Sun would be transformed into electric power. �e solar 
cell e�ciency tables1 show how close we are to reach that limit: 46.0% under concentration and 38.8% under 
AM1.5 G conditions. �eoretical e�ciency limits make use of optimum multi-junction designs with the ideal 
lattice constant-bandgap energy combination but, sometimes, lack of suitable, easy to control semiconductor 
materials hinders their implementation. For instance, in the standard (Al)InGaP/(In)GaAs/Ge solar cell struc-
ture, the addition of a lattice-matched sub-cell tuned to the 1.0–1.15 eV spectral range provides such an optimum 
multi-layer design2, 3. Under standard AM1.5 G conditions, detailed-balance calculations predict 44.4% e�ciency 
for a 3-junction AlInGaP(1.9 eV)/GaAs(1.4 eV)/1.0 eV solar cell and 47.7% for a 4-junction AlInGaP(1.9 eV)/
GaAs(1.4 eV)/1.0 eV/Ge(0.66 eV) solar cell. Both designs would easily leave behind the 50% limit when operated 
under concentration4. A�er the two consecutive world e�ciency records set by Solar Junction CA5, which were 
preceded by strong e�orts in optimizing single-junction cells6, GaInNAs in combination with Sb has gained a 
great interest as such 1.0–1.15 eV material. �e fabricated GaInP/GaAs/GaInAsNSb solar cells had an e�ciency 
of 44.0% under concentration, still well below the theoretical predictions, and was limited by epitaxial growth 
problems which are intrinsic to quaternary and quinary materials. �ese problems seriously a�ect carrier dynam-
ics and are likely the reason for the lack of success in achieving ultimate solar cell performance beyond the 50% 
barrier7. In this work, we show how the use of GaAsSb/GaAsN short period superlattices (SL) with type-II band 
alignment might solve these problems at once.

Monolithic multi-junction engineering confronts an issue of paramount importance: the di�erent sub-cells 
have to maintain a very low stress level during epitaxial growth, avoiding the introduction of mis�t dislocations, 
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which would degrade the device performance8, 9. �is is why strain-balancing was shown before long to be a 
critical issue in developing e�cient solar cells involving nanostructures such as quantum wells10, 11. �erefore, 
materials lattice-matched to GaAs/Ge and with a 1.0 eV or 1.15 eV bandgap are being extensively investigated. 
Among them, dilute nitride semiconductor alloys, such as GaInNAs or GaAsSbN, can ful�ll both requirements 
and be used for this purpose12. In these highly mismatched alloys, the addition of small amounts of N leads to a 
dramatic reduction of the bandgap, which is explained in the framework of the band anti-crossing (BAC) model 
as the result of a strong interaction between the localized N states and the conduction band of the matrix13. 
However, GaAsSbN alloys show important potential advantages over GaInNAs, because the surfactant e�ect of 
Sb atoms facilitates the two-dimensional growth of the material14. It also has the unique property of allowing an 
independent tuning of both conduction and valence band energies by controlling the N and Sb contents, respec-
tively15. Besides, GaAsSbN can remain lattice-matched to GaAs if the condition [Sb]≈2.8 × [N] is ful�lled16, since 
Sb compensates the tensile strain induced by N. �e GaAsSbN alloy has already been applied to solar cell tech-
nology, both as a thick layer17–20 and as a capping layer over InAs quantum dots21, 22. Nevertheless, the obtained 
solar cell performance is not satisfactory up to now. �is is due to the fact that GaAsSbN faces important epitaxial 
growth problems such as alloy disorder, phase separation (because of its large miscibility gap), clustering, di�cult 
composition control (3 group-V atoms competing for the same lattice position), or N-related point defects and 
localized electronic states (as in any other dilute nitride alloy)23–25. �erefore, even within the narrow optimum 
growth window, achieving a low background carrier density and a long carrier lifetime and di�usion length 
remains still challenging in this quaternary alloy6, 26.

�e only way to overcome these problems in the growth of the quaternary alloy is to resort to new growth 
approaches. In this work, we show that an e�ective way to obtain a (pseudo)material of extremely high crystal 
quality and fully stoichiometric is by splitting the quaternary into two ternaries and proceed by growing a SL 
structure; the spatial separation of N and Sb atoms dramatically reduces miscibility problems. �e SL structures 
can be fabricated with type-I or type-II band alignment (electrons con�ned in GaAsN and holes in GaAsSb) 
o�ering additional advantages over the bulk counterparts, such as long carrier lifetimes (and, therefore, enhanced 
collection e�ciency)27, 28 and e�ective bandgap tunability through period thickness. Moreover, independent con-
duction and valence band edge manipulation makes it possible to reproduce nominal bandgap energies of the 
quaternary alloy using only half the amount of Sb and N. An overall reduction of the N content should result in an 
overall reduction of N-related defects in the structure and, therefore, an improved crystal quality. Other SL struc-
tures based on dilute nitrides, such as GaAsN/InAsN, GaAsN/GaAsBi and GaAsBiN/GaAs have been already 
proposed as suitable for photovoltaic applications and studied theoretically29–31, while GaAsN/InGaAs SLs have 
already been realized32. However, the use of SLs might also bring a major drawback, which is carrier trapping 
and ultimately recombination in the SL. �is would result in a lower e�ective mobility33, which degrades carrier 
transport and results in a severe reduction of the quantum e�ciency.

Our results show that this is not the case in the type-II GaAsN/GaAsSb system when the thickness of the SL 
period is reduced to 6 nm. For such thin stacks, strong quantum tunneling comes into play producing devices 
with the same quantum e�ciency at zero and reverse biasing, i.e. achieving a complete carrier collection under 
photovoltaic conditions.

Results
Crystallinity and Interface Sharpness. In the �rst series of samples, di�erent SL structures containing 18 
periods with a constant period thickness of 12 nm (6 nm + 6 nm) as active layer are compared. �e total thickness 
of the SL is 200 nm and they consist of: GaAsSb/GaAs (Sample SL-Sb), GaAs/GaAsN (sample SL-N), GaAsSbN/
GaAs (sample SL-I with expected type-I con�nement) and GaAsSb/GaAsN (sample SL-II with expected type-II 
con�nement). A ��h sample with a 200 nm-thick GaAsSbN bulk layer (sample bulk) was grown as a reference 
to complete the series. A scheme of the epitaxial structure and the expected band structure of samples SL-I and 
SL-II are shown in Fig. 1a,b respectively (see Supplementary Fig. S1a,b,c for the sketch of rest of the samples). All 
the samples were grown under the same Sb and N nominal �uxes; therefore, only half the amount of N and Sb 
was nominally used to fabricate the SL structures as compared to the bulk, and the amount of low bandgap active 
material was half in these structures.

�e samples were structurally analyzed by transmission electron microscopy (TEM). Dark �eld 002 repre-
sentative images of samples SL-I and SL-II are shown in Fig. 1c,d (see Supplementary Fig. S1d,e,f for the rest of 
the samples). In this chemically sensitive TEM imaging mode, Sb-rich regions appear brighter whereas N-rich 
regions appear darker than GaAs regions. It can be observed that both samples exhibit �at growth fronts and there 
is no evidence of dislocations or any other sort of extended defects. A detailed analysis demonstrates that SL-I 
and SL-II are completely pseudomorphic, and that all layers have similar compositions along the structure. �e 
periodicity is regular throughout the whole structure with estimated period thicknesses of 12.7 nm for SL-I and 
12.9 nm for SL-II, slightly larger than the nominal value of 12 nm due to a minor increase in the growth rate. Also, 
the interface contrast appears more abrupt in SL-II, indicative of reduced Sb segregation34.

All samples from this set were investigated by high-resolution x-ray di�raction (HR-XRD). Figure 2 shows the 
corresponding omega-2 theta scans around the (004) GaAs re�ection. �e HR-XRD spectra of the ternary SLs 
SL-Sb and SL-N allow estimating the Sb and N composition to be 3.25% and 1.20% in the respective layers, con-
sidering a completely pseudomorphic epitaxy as observed by TEM. �ese two values ful�ll the lattice matching 
condition for GaAsSbN on GaAs, as it is evidenced by the symmetrical position of the main SL peaks with respect 
to the substrate peak. We also observe that the secondary peaks are considerably less intense in SL-Sb than in 
SL-N, meaning that the SL-Sb sample has worse periodicity, likely due to Sb segregation in this type of structures. 
Assuming that there is no Sb-N interaction during growth that could modify the composition, lattice matching 
is expected from the nominal growth parameters also in the rest of the samples. However, in the SL-I and bulk 
HR-XRD spectra, the main peak appears shi�ed towards the tensile region of the spectrum. �is indicates that 
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the composition is altered from that of the ternaries due to the concomitant presence of N and Sb in the growth 
front. �is e�ect is particularly strong in the bulk sample.

�e main motivation in this work is to explore the alternate introduction of Sb and N atoms in the growth 
surface to avoid the interaction between both species. We expect that the composition in the pseudo-quaternary 
structure can consequently be accurately controlled. Figure 2 demonstrates that this is the case for sample SL-II 
where we �nd a perfectly lattice-matched spectrum implying that the expected contents were incorporated and 
the overall strain precisely compensated. Moreover, the narrower main peak in the SLs as compared to the bulk 
structure indicates a better strain and composition homogeneity, which means that clustering e�ects are signif-
icantly reduced in the SL structures. Remarkably, the secondary peaks are also narrower and more intense in 
SL-II as compared to SL-I re�ecting the higher interface quality when Sb and N are incorporated separately, in 
agreement with what was observed by TEM.

Energy and Radiative Lifetime Tuning. The higher control over composition achievable with the 
type-II SL as compared to the type-I SL or the bulk is an important feature for energy tuning of the bandgap in 
multi-junction solar cell applications. Figure 3a shows photoluminescence (PL) spectra measured in the samples 
described above at 15 K. �e shi� of the SL-II emission peak energy with respect to the bandgap of GaAs (dashed 
vertical line) is 280 meV. �is �ts almost perfectly with the combined energy shi�s observed for the ternary 
samples SL-Sb (27 meV) and SL-N (250 meV). �is is a quite unique property of this system by which tuning 
of the valence and conduction bands, and thus the bandgap energy value, can be done setting independently 
the Sb and N concentrations. Such independent control is hard to reproduce in the bulk quaternary alloy. All 
samples were fabricated using the same nominal ternary concentrations and, yet, the sample bulk signi�cantly 

Figure 1. Epitaxial and band structure of 12 nm period SL structures. (a,b) Sketch of the epitaxial layout and 
expected band structure (not to scale) of samples (a) SL-I (GaAsSbN/GaAs SL) and (b) SL-II (GaAsSb/GaAsN 
SL). A type-I band alignment is expected in sample SL-I, with the maximum of the distribution probability of 
electron and hole wavefunctions (in blue and red, respectively) localized in the GaAsSbN layer. A type-II band 
alignment is expected in sample SL-II, with the maximum of the distribution probability of the electron and 
hole wavefunctions localized in the GaAsN and GaAsSb layers, respectively. (c,d) Dark �eld 002 TEM images 
of the same two samples showing the SL structure embedded in GaAs. (c) SL-I: the darker layers correspond to 
GaAsSbN, while the GaAs layers in the SL show the same contrast than in the bu�er and capping layers. (d) SL-
II: the darker layers corresponds to GaAsN whereas the brighter ones are GaAsSb.
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redshi�s from the nominal bandgap value. Finite di�erences calculations shown below suggest that quantum 
con�nement size e�ect in the 12 nm period SLs is only ~39 meV, what would only partially explain the PL peak 
di�erence of 55 meV as compared to the bulk. �e redshi� of the PL peak energy and the tensile position of the 
HR-XRD central peak shown in Fig. 2 rather points to an unwanted incorporation of N in this sample (and, to a 
lesser extent, also in the SL-I sample), which was suppressed in the SL-II sample using alternate deposition of the 
ternary compounds.

Time resolved-photoluminescence (TR-PL) decay curves measured at the PL peak energy provide further 
details about the carrier con�nement within each sample. As shown in Fig. 3b, SL-I and bulk samples have similar 
decay dynamics, clearly di�erent from those of sample SL-II. A multi-exponential �tting analysis is necessary 
to describe the decay dynamics across the full-time range and can be found as Supplementary Table S1. Yet, 
the larger di�erences occur for long times a�er the excitation where the decay of the luminescence of sample 

Figure 2. High resolution X-ray di�raction of the di�erent structures. Omega-2 theta scans around the (004) 
GaAs Bragg re�ection performed on the ternary samples SL-Sb and SL-N (below) and on the samples SL-I, 
SL-II, and bulk (above). �e most intense peak at 33.0239° corresponds to GaAs. �e main peak of the two 
ternary SLs are perfectly symmetric with respect to that of GaAs, indicating an equivalent compressive (SL-Sb) 
and tensile (SL-N) accumulated strain. Only the GaAsSb/GaAsN structure (SL-II) satis�es perfectly the lattice 
matching condition (main peak coincident with that of GaAs) expected from the combination of both ternaries.

Figure 3. Photoluminescence and time-resolved photoluminescence of the di�erent structures. (a) Time-
integrated PL spectra of all the samples taken at low temperature (15 K) with a �xed laser power of 3 mW. �e 
indicated energies in meV represent the energy shi� of the PL peak energy of each sample with respect to the 
GaAs bandgap (1.46 eV). (b) Time-resolved PL decay curves of the samples bulk, SL-I and SL-II, each one 
measured at the energy corresponding to the PL peak taken from the spectra in (a). Solid lines represent the 
result of a multi-exponential �t to the experimental data. �e (longer) radiative times obtained from this �tting 
are indicated in the �gure. �e complete deconvoluted decay time parameters are presented in Supplementary 
Table S1.

http://S1
http://S1


www.nature.com/scientificreports/

5Scientific RepoRts | 7: 4012  | DOI:10.1038/s41598-017-04321-4

SL-II becomes three times slower (decay constant changes from ~15 to ~49 ns). �e existence of this signi�cantly 
longer radiative lifetimes at the PL peak energy for sample SL-II strongly supports the predominance of type-II 
band alignment and recombination. �is is additionally supported by the calculated SL-I/SL-II ratio between 
the electron-hole wave function’s overlap (inversely proportional to the radiative lifetime), which is ~3. Slower 
carrier recombination shall lead to an enhanced carrier extraction and, therefore, an improved photocurrent. 
Remarkably, in this sample, not only the PL band is narrower but the integrated PL emission is the most intense 
despite the longer carrier lifetime (see Fig. 3a)35. �is is a clear indication of the improved crystal and interface 
quality produced by our method, also underlined by the fact that the PL of bulk GaAsSbN layer, despite having 
twice as much active material, is much weaker.

In order to investigate the formation of minibands and the e�ective bandgap tunability through the SL period 
thickness, four additional samples were grown: 200 nm-thick type-II SLs with the same N and Sb contents as 
the previous set of samples, but di�erent period thickness: 3 nm, 6 nm, 12 nm and 20 nm. HR-XRD measure-
ments indicate that all the samples are lattice-matched to GaAs and that the period thicknesses agree with the 
nominal values: 3.1 nm, 6.4 nm, 12.6 nm and 19.1 nm, respectively. Tuning in relevant spectral regions shall be 
demonstrated at room temperature. �us, the e�ective bandgap energies from these SLs have been obtained from 
photore�ectance (PR) measurements at room temperature, shown in Fig. 4a. �e PR spectra have been analyzed 
through the third derivative functional form (TDFF) method36. �e lowest energy critical point obtained thereof 
is associated with the optical transition between electron and hole ground states. As shown in Fig. 4b, the e�ective 
bandgap energy increases rapidly as the SL period decreases, indicative of a quantum con�nement size e�ect. 
�e bandgap energy tuning capability saturates for periods larger than 20 nm. Noticeably, a bandgap tunability 
of more than 100 meV is achieved within the investigated range. �ese experimental values have been compared 
with electronic band structure calculations, performed taking into account the whole SL structure; the calculated 
ground state energies shown in Fig. 4b follow the same trend of the PR results, with a rigid shi� to lower energies 
likely due to the simpli�ed approximations assumed in the model. �ese �ndings con�rm the expected quantum 
con�nement in the structures and the ability to tune the e�ective bandgap at room temperature by varying the 
period thickness.

Single-Junction Solar Cell Performance. E�cient carrier transport through the epitaxial structure is 
mandatory to assess the performance of these SL structures as solar sub-cells. We have investigated the external 
quantum e�ciency (EQE) at room temperature of �ve p-i-n diodes with di�erent 750 nm-thick active regions: 
one GaAsSbN/GaAs type-I SL structure with 12 nm period (SL-I12), two GaAsSb/GaAsN type-II SL structures 
with 12 nm (SL-II12) and 6 nm (SL-II6) period, a bulk GaAsSbN layer (bulk) and a GaAs reference sample (GaAs) 
for comparison. �e Sb and N-containing samples were all grown under the same nominal �uxes. Comparing 
the EQE of devices based on low-dimensional structures and bulk layers with the same e�ective bandgap is not 
straightforward. On one hand, the total intrinsic region thickness should be the same to do the comparison under 
the same transport conditions for a given bias. On the other hand, the volume (thickness) of the absorbing mate-
rial (low bandgap material) should also be the same or else the absorptance or the total light absorption would 

Figure 4. Photore�ectance and e�ective bandgap calculation as a function of period thickness. (a) PR spectra 
taken at room temperature (black dots) and TDFF �ttings (red lines) for the SL structures with di�erent 
periods. �e minimum of the curve at lower energy corresponds to the �rst PR critical point, associated with 
the e�ective band gap of the sample. �e e�ective bandgap energies obtained from PR measurements are 
represented by the black dots in (b), where also the e�ective bandgap energy obtained from simulations based 
on �nite di�erences method are presented (blue dots). �e inset in (b) shows dark �eld 002 TEM images of the 
samples with the thinnest and thickest period, showing an accurate control of the SL periodicity even for very 
thin periods of 3 nm (5 MLs GaAsSb/5 MLs GaAsN).
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not be directly comparable from one device to the other. Moreover, the di�erent dimensionality of the structures 
will give rise to a di�erent density of states and absorption coe�cient α. �us, to establish a fair comparison 
between the performance of devices of di�erent quantity of absorbing material, we introduce an e�ective thick-
ness. As the bulk sample contains twice as much Sb and N than the SLs, we can de�ne the bulk materials as having 
double e�ective thickness with respect to the SLs, i.e. L′ = 2 L. �e EQE curves for the bulk sample have been 
normalized as if it had the same e�ective thickness than the SL: L′/2. Such value of the EQE is calculated from the 
absorptance, expressed as (1 − e−αL), at half-thickness. �e details of the normalization method can be found in 
the supplementary material. �e EQE curves obtained at 0 V and −3 V are shown in Fig. 5 (see Supplementary 
Fig. S2 for the measured curves). I-V measurements taken under illumination indicate that the current at −3 V is 
already saturated in all the analyzed devices as can be seen in Supplementary Fig. S3, ensuring complete carrier 
collection conditions37. �erefore, we can de�ne the carrier collection e�ciency at 0 V as the ratio EQE(0 V)/
EQE(−3 V)37. It can be observed that the bulk sample and the two SLs with 12 nm period provide signi�cant 
conversion e�ciencies in the technologically relevant 1.15 eV spectral region.

Figure 5a shows that there is no di�erence between the 0 V and −3 V curves for the GaAs device, indicating 
100% carrier collection e�ciency at 0 V, as expected. Nevertheless, there is a small enhancement of the EQE from 
0 to −3 V in the GaAsSbN device, which shows a peak carrier collection e�ciency around 95%. �e reduced 
carrier collection e�ciency in the GaAsSbN structure is likely an indication of non-radiative recombination at 
point defects or carrier localization in potential minima induced by strain and composition modulation in the 
quaternary alloy38, 39. Moreover, for energies slightly above the bandgap, the EQE is larger in the GaAsSbN bulk 
layer than in the GaAs reference (both with the same thickness). �is enhancement shall be attributed to the 
increase of the joint density of states, reported for dilute nitrides, arising from a larger electron e�ective mass and 
thus a better matching to the hole band dispersion40–42.

Regarding the 12 nm period SLs, both the normalized and raw EQE are larger in the SL-II12 sample than in 
SL-I12 as shown in Fig. 5b,c (and Supplementary Fig. S2b,c), in analogy to the PL emission intensity. �is exem-
pli�es the bene�ts of type-II SLs which, thanks to an improved crystal and interface quality and, in this case, 
also longer carrier lifetimes, show enhanced optical and transport properties. Yet, the EQE of the SL-II12 and 
SL-I12 devices also exempli�es the potential drawback of a non-optimized SL structure su�ering from slow car-
rier extraction dynamics. In both samples, EQE increases with the reverse bias limiting severely its application in 
solar cells. In this case, the carrier extraction at 0 V is not e�cient enough because the weak electronic coupling 
for a 12 nm period prevents carrier tunneling through the SL barriers in the presence of the built-in electric �eld. 
However, it can be easily restored by reducing the period from 12 to 6 nm as shown in Fig. 5d. �e fully optimized 
SL structure (SL-II6) shows a normalized EQE which not only is the largest of all samples, but is virtually the same 
at 0 V as at −3 V. �is means improved carrier collection at 0 V and a large overlap of the SL minibands across 
the structure. A quantum treatment of the transport along the SL43 is out of the scope of this work but, as a �rst 
approximation, we have calculated the transmission coe�cient based on analytic expressions using the transfer 
matrix approach44. In such framework, the electronic transmission through a �nite array of barriers represents the 
ability of a con�ned electron to be transmitted through the periodic structure. Figure 6 shows the transmission 
coe�cient for electrons below the GaAs bandgap energy as a function of the period thickness (corresponding 
transmission coe�cient for holes are shown in Supplementary Fig. S4). �e results clearly show that electronic 
coupling and tunneling is strongly enhanced reducing the period from 12 to 6 nm. As a �gure of merit, the trans-
mission window halfwidth around the ground state energy increases from 0.3 meV to 21 meV in halving the SL 
period. We conclude that the reduction of the period thickness from 12 to 6 nm leads to a strong wavefunction 
overlap and electronic coupling that solve the minority carrier extraction problem without impairing the already 
mentioned bene�ts of type-II GaAsSb/GaAsN SL. Although we do not solve the quantum transport equations, 
our experimental results and calculations for the optimized SL-II6 sample strongly suggest that vertical transport 

Figure 5. External quantum e�ciency of the solar cell devices. EQE spectra measured at room temperature 
at 0 V (empty dots) and with a reverse bias voltage of −3 V (�lled dots) from samples (a) bulk together with 
sample GaAs as a reference (b) SL-I12 (c) SL-II12 and (d) SL-II6. �e spectra of samples bulk and GaAs have been 
normalized to account for the fact that they have double amount of active material (low bandgap material).
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is more e�cient than radiative and non-radiative recombination under photovoltaic conditions, though the sit-
uation at the operating voltage of the solar cell (positive voltage) could be di�erent and still has to be analyzed.

Overall, Fig. 5 shows that the peak EQE is 30% higher in the thin period SL structure than in the GaAsSbN 
bulk sample. In this SL sample, the di�erence in the measured EQE between −3 and 0 V is also smaller than in 
the bulk. �e estimated carrier collection e�ciencies at 0 V are 100% vs. 93% (peak values), respectively. Carrier 
transport is therefore improved as compared to the bulk and complete carrier collection at 0 V is achieved. �is is 
likely due to the suppression of non-radiative recombination and/or carrier localization e�ects due to composi-
tion and strain inhomogeneities, in agreement with the outcomes of the PL and XRD analysis. �is improvement 
in carrier transport is, however, not enough to explain the 30% enhancement in the peak EQE. A larger absorp-
tion coe�cient in the SL structure is therefore inferred, strongly contributing to the observed EQE improve-
ment. �is is a very promising result, since it could in principle guarantee current matching in GaAs/1.0 eV/Ge 
solar cells. Indeed, these results suggest that using strain-balanced GaAsSb/GaAsN type-II SLs with thin periods 
should be a better alternative to thick GaAsSbN layers in this type of solar cells.

Discussion
Strain-balanced GaAsSb/GaAsN SLs grown on GaAs are shown to overcome the unavoidable growth problems 
related to the quaternary GaAsSbN alloy that a�ect both thick layers and GaAsSbN/GaAs SLs. �e spatial sep-
aration of N and Sb atoms gives rise to a superior composition and e�ective bandgap control, as well as to an 
improved crystal quality and interface abruptness. Moreover, the new structures allow additional tuning of the 
e�ective bandgap through the period thickness due to quantum con�nement. �e type-II band alignment results 
in long radiative lifetimes that are bene�cial for carrier extraction. Remarkably, despite the long carrier lifetimes, 
the new structures show a strongly enhanced luminescence compared to thicker quaternary bulk layers having 
twice as much active material. A signi�cant EQE at 1.15 eV is demonstrated, as well as e�cient carrier transport 
by tunneling though the SL minibands for period thicknesses of ∼6 nm. For these thin periods, a strong net 
enhancement of EQE over equivalent bulk counterparts is demonstrated under photovoltaic conditions. In this 
SL with the optimum design, however, the absorption edge is 50–100 meV over the target value due to the e�ect 
of quantum con�nement, so the N and Sb contents should be slightly increased to compensate for that. All these 
characteristics make short period GaAsSb/GaAsN SLs the ideal (pseudo)material candidate to be monolithically 
series-connected in ultimately e�cient GaAs/Ge-based multi-junction solar cells.

Methods
Growth details. �e analyzed samples were all grown by solid source molecular beam epitaxy in a Riber 32 
system using GaAs (001) n+ substrates under As4 overpressure conditions. Each sample consists of a 250 nm-thick 
n-doped GaAs bu�er layer, a 200 nm or 750 nm-thick undoped active layer grown at 470 °C at a growth rate of 
1 ML/s, and a 50 nm-thick p-doped GaAs layer deposited on top. �e device con�guration is therefore a p-i-n 
junction. �e nominal n and p-type doping concentration was 2·1018 cm−3. �e Sb �ux was supplied from a 
Knudsen e�usion cell whereas the atomic N �ux came from a radio-frequency plasma source using a 0.1 sccm 

Figure 6. Transmission coe�cient for electrons below the GaAs bandgap energy as a function of the period 
thickness. Contour plot of the electron transmission coe�cient for a 12 barrier/quantum well array as a 
function of period thickness between 2 and 12 nm. �e height of the barrier is 250 meV and the e�ective mass 
0.146 m0, which are the parameters used to model the SL-II sample in Fig. 4b. �e color bar is in log scale. �e 
formation of electronically coupled minibands for small periods becomes evident by the broadening of the high 
transmission coe�cient region.
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�ow of pure N2. �e growth was in-situ monitored by re�ective high energy electron di�raction (RHEED) which 
allowed the veri�cation of a two-dimensional growth mode throughout the whole structure.

Materials characterization. TEM was used to obtain dark �eld 002 images, which were acquired in a 
JEOL 2100 microscope operating at 200 keV. HR-XRD rocking-curve scans using the Cu-Kα1 line (1.54056 Å) 
were performed with an X’Pert Pro Pan’alytical commercial system. Low temperature (15 K) PL measure-
ments were carried out using a He-Ne laser with a power of 3 mW. �e emitted light was dispersed through a 
1 m-spectrometer and detected using a liquid-nitrogen cooled Ge-detector and standard lock-in techniques. 
TR-PL experiments were performed at low temperature exciting the sample with 405 nm pulsed laser light. Decay 
curves were recorded by a time correlated single photon counting system based on a fast-infrared photomultiplier 
attached to a 0.3 m-focal length spectrometer. �e average excitation power density was 0.6 W/cm2 at 10 MHz. 
Multi-exponential deconvolution analysis was done taking into account the system response measured with a 
980 nm ps laser. Time resolution a�er system response deconvolution is ~200 ps. �e optical analysis was com-
pleted with PR measurements. PR was performed at room temperature using the 325 nm line of a 15 mW He-Cd 
laser as pump beam (chopped at 777 Hz), the monochromatic (1/8 m-spectrometer) probe beam from a 150 W 
QTH lamp, and a cooled InGaAs-photodetector.

Electronic band structure calculation. �e calculation is based on �nite di�erences methods. Single 
band e�ective mass approximation was used with input parameters for the Sb and N contents obtained from 
the HR-XRD spectra of the ternary samples, and the period thickness estimated from the TEM measurements 
of each sample. �e bandgap energy and band o�sets of GaAsN were obtained considering the BAC predictions 
in �rst order perturbation theory13, with the speci�c values for the electron e�ective mass and BAC parameters 
described elsewhere45. Regarding the GaAsSb layers, their bandgap energy and band o�sets were estimated using 
experimental results for GaAsSb pseudomorphically grown on GaAs46. �e hole e�ective mass was obtained from 
a linear interpolation between the binaries.

Device fabrication. The thickest samples (750 nm active layer) were processed in 200 µm-diameter 
mesa-etched devices using standard fabrication techniques. �e mesa structures were de�ned by wet etching 
using a H3PO4-H2O2-H2O (1:1:8) solution. �e p-type contact, deposited on top of the mesa, was Au/Au-Zn/
Au (100/800/2000 Å). A common n-type contact consisting on Au-Ge/Au (800/2000 Å) was evaporated on the 
substrate side. �e contacts were exposed to an annealing process at 400 °C during 1 minute.

Device characterization. Photocurrent measurements were carried out using light from a QTH lamp 
which was dispersed through a 0.34 m monochromator and directed through the optical path to the sample. 
A K230 Keithley sourcemeter as well as a K617 Keithley electrometer were employed. To obtain the EQE, the 
photocurrent data was �rst converted into responsivity dividing by the power per unit area of the QTH lamp 
(measured using a calibrated Si photodiode and a pyroelectric photodetector) multiplied by the diode top 
metal-free area. Finally, responsivity was converted to EQE multiplying by the photon energy divided by the 
electron charge.

Transmission coefficients calculation. �e parameters used in the calculation for the bandgap energies, 
e�ective masses and band o�sets are those used in the electronic band structure calculations. Calculations were 
done separately for electrons and holes transmitted through 12 consecutive barriers at �at band condition.

Data availability. All data generated or analyzed during this study are included in this published article (and 
its Supplementary Information �les).
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