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Abstract 

Numerous experiments have shown that strain broadening caused by dislocations can be 

well described by a special logarithmic series expansion of the Fourier coefficients of Bragg 

reflection peak profiles. In the present work it will be shown that this formalism can be 

incorporated into the classical methods of Williamson-Hall and Warren-Averbach. The new 

procedures are suggested to be called modified Williamson-Hall and modified Warren- 

Averbach methods, respectively. Based on the examples of a submicron grain size copper 

specimen and a ball-milled iron powder sample it is going to be shown that the modzjied 

methods can yield physically well justified data for particle size, dislocation densities and 

twinning and faulting. 

1. Introduction 

X-ray diffraction peaks are broadened by small grain-size and by lattice distortions caused 

by lattice defects. Some typical lattice defects are: i) dislocations, ii) unrelaxed misfits 

between coherent phases, iii) severely distorted grain boundaries in nanocrystalline 

materials, iv) strains between coherent sheets, especially in strained layer structures, v) 

point defects, vi) second phase particles or inclusions, vii) concentration gradients in 

nonequilibrium multiphase materials or viii) stacking faults, etc. Krivoglaz has classified 

lattice defects according to the character of their strain fields: first or second class defects 

(the notation: ‘I’ or ‘II’ class is also used) have strain fields of long- or short-range 

character, respectively [ 11. As a thumb rule their strain fields decay as the reciprocal or the 

square of the reciprocal of the distance from the defect. The defects i) to iv) are of first 

class, and v) to vii) are of second class. Stacking faults are a peculiar kind of lattice defect. 

The planar parts of them act as boundaries in certain crystallographic directions, thus 

creating smaller ‘particle size’ in these directions. This part of these defects, if separable at 

all, causes ‘size broadening’ without ‘strain broadening’. The bounding partial dislocations, 

especially if they are in the interior of the crystallite, however, correspond to the I class 

defects causing ‘strain broadening’. 

An important conclusion of Krivoglaz’s classification is that, if the crystal is large enough 

(i.e. there is no ‘size broadening’) true diffraction peak broadening (in this case only ‘strain 

broadening’) is caused only by the I class defects. In the case of II class defects the sharp 

Bragg reflections are surrounded by ditfrtse scattering steming from the defects. The latter, 

however, can be well distinguished from the fundamental Bragg reflection, since the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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intensity of the difI$se scattering peak is one or two orders of magnitude smaller than that 

of the Bragg reflection cf. [2-51. Krivoglaz’s classification and the above conclusions can 

be made plausible by taking into account that peak profiles and strain fields of lattice 

defects scale in reciprocal space and crystal space, respectively. Qualitatively this implies 

that short-range strain fields effect only the outer parts of a fundamental Bragg reflection, 

while the Bragg peak may remain uneffected, cf. [4,5]. Long-range strain fields, on the 

other hand, effect both, the central and the outer parts of a fundamental Bragg peak. 

Former is often called ‘Huang’ scattering [5], while the latter, especially in the case of 

polycrystalline materials, is denoted as ‘line broadening’ [6-91. In the present paper peak 

broadening corresponding only to I class defects will be considered. The notation: ‘peak 

broadening’ will be used, irrespectively whether the specimen is poly- or monocrystalline. 

Peak broadening of I class defects can be described, in general, in terms of broadening 

caused by dislocations. In the case of single crystals or coarse grained polycrystalline 

materials, strain broadening caused by dislocations can be well described by a special 

logarithmic series expansion of the Fourier coefficients [ 1,l O-141. In the case when grain 

size plays a role in peak broadening the two effects: size and strain broadening overlap each 

other. In such cases the grain size or the properties of the dislocation structure can only be 

determined by separating the two effects. It has been realised in the early days of diffraction 

that size and strain broadening are diffraction order independent and diffraction order 

dependent, respectively [6-9,151. Two different procedures are now well established for the 

separation of size and strain contribution: 1) the Williamson-Hall plot [8] and 2) the 

Warren-Averbach method [7,9]. None of the two procedures recognises, however, that 

strain broadening, if caused by dislocations, has to be treated, on the one hand, by the 

special logarithmic series expansion of the Fourier coefficients, and on the other hand, that 

dislocations give different contrasts depending on the relative positions of the Burgers and 

line vectors of the dislocations and the diffraction vector, respectively. In the present paper 

a modzjied Williamson-Hall plot and a modified Warren-Averbach method is being 

suggested by taking into account i) the contrast effect of dislocations on diffraction-peak 

broadening and ii) the special logarithmic series expansion of the Fourier coefficients. The 

two procedures will be demonstrated by the examples of determining particle size and 

dislocation densities: a) in a submicron grain size bulk copper specimen [ 16,171 and b) in 

ball-milled nanocrystalline iron powders [18]. Recent results obtained in a nanocrystalline 

copper sample have further substantiated the modified procedures, details of this latter will 

be published elsewhere [ 191. 

2. The Fourier coefficients corresponding to strain broadening 

In the case of large crystals containing dislocations the real part of the Fourier coefficients 

of a peak profile can be written as [ 13,141: 

In 1 A(n) 1 = - p*$ln(R/n) + Q* n41n(R2/n) ln(RJn) f. 0(n”) , 

where p* is the ‘formal’ dislocation density, directly available from line broadening without 

taking into account the contrast caused by different types of dislocations, Q* is related to 

the two-particle correlations in the dislocation ensemble, which, in the simplest case, can be 

given as the fluctuation of the dislocation density: Q*=<P*~>-<P*> [ 1 l-14,20]. Q* is a 

‘formal’ value in the same sense as p*. R, is the outer cutoff radius of dislocations, RZ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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R3 are auxiliary constants not interpreted physically [ 131. n is the Fourier parameter. Since 

n” and higher order terms are small compared to the first two they are neglected [ 13,141. 

The formal and the true values of dislocation densities, p*, p and the correlation factors, Q*, 

Q are related to each other as [ 1 l-14,21]: 

p* = p (ngZb2CT)/2 ) Q*=Q(~g%~z)~/4 , (2) 

where ? is the average contrast factor of dislocations in the case of a particular reflection, 

g, and b is the Burgers vector of dislocations. 

3. Characteristically asymmetric peak profiles 

High resolution X-ray diffraction experiments have shown that peak profiles corresponding 

to plane surfaces either perpendicular or parallel to the tensile or compressive axis of 

plastically deformed metals or alloys reveal characteristically asymmetric shapes. In the 

case of tensile deformation the intensity of the diffraction peaks decreases at a slower or 

faster rate on the smaller or larger diffraction angle side of profiles corresponding to 

surfaces perpendicular (axial case) or parallel (side case) to the tensile direction, 

respectively, cf. [22-251. Characteristically asymmetric peak broadening, in the same sense, 

was obtained in torsionally deformed rods [26], cyclically deformed copper specimen [27], 

cold rolled sheets [28,29], wire drawn samples [30] or in creep deformed Ni-base 

superalloys [3 l-341. Two alternative interpretations have been suggested which, however, 

are consistent with each other: i) a phenomenological description based on the composite 

concept of heterogeneous dislocation distributions, cf. [23,35,36], ii) a theoretical 

description based on the observation that a dislocation manifold can have a net dipole 

polarisation [ 13,14,37]. In [ 141 it was shown that the two approaches are equivalent 

regarding several aspects. The asymmetry of the peak profiles can be expressed in terms of 

the imaginary Fourier coefficients as follows: 

Arg [A(n)] E - P o* n” ln(Ri/n) - Pi* n5 In&/n) ln(RS/n) , (3) 

where PO* is the dipole moment of the polarisation of the dislocation arrangement and Pr* is 

the fluctuation of PO*. These two quantities are formal values in the same sense as p* and Q* 

in eq. (1). PO* is directly related to the residual long-range internal stresses produced by 

plastic deformation in a heterogeneous dislocation structure as it has been shown in detail 

in previous works, cf. [14,38,39]. 

4. The contrast factor of dislocations 

For the definition of the contrast factor C we consider a straight dislocation in a Carthesian 

coordinate system. The dislocation is put parallel to the z axis passing through the origin, 

as shown in Fig. 1. The strain field of a straight dislocation changes only in the plane 

perpendicular to the dislocation line, thus it can be described by the polar coordinates in the 

xi, x2 plane: (cp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr). The contrast factor can be evaluated numerically on the basis of 

equations (37) to (40) in references [ 13,141: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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c = g dqK2((p) ) 
0 

where K(q) is a trigonometric polynomial defined as: 

(4) 

(5) 

where yi and yj are the direction cosines of the diffraction vector and Pij is the distortion 

tensor of the dislocation: 

py= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
&i 2m 

b hkj ’ i= 1, 2, 3 and j= 1, 2, (6) 

where ui is the displacement field of the dislocation. In an elastically isotropic medium ui 

Fig. 1. Schematic arrangement of a straight dislocation with Burgers and line vectors b and 

I, respectively. g and r are the diffraction vector and its projection in the xi, x2 plane. w and 

cp are the angles of g and r with the x3 and xi axis, respectively. 

can be evaluated relatively easily and the C factors can be given in a closed form in terms of 

trigonometric functions, cf. [ 11,121. In the case, when the elastic anisotropy is strong, for 

example in the case of copper, ui has to be evaluated by taking into account the anisotropic 

elastic constants, cf. [40,41]. The C factors for copper, taking into account the anisotropic 

elastic constants can be found in [21,42]. In the present work only the relevant average 

values of the C factors will be quoted, a detailed list of the individual C factors, will be 

presented elsewhere [42]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Copyright 0 JCPDS-International Centre for Diffraction Data 1997 

Copyright (C) JCPDS-International Centre for Diffraction Data 1997



5. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodified Williamson-Hall plot 

In the following, the derivation described first in [ 161 will be presented. On the basis that 

size or strain broadening are diffraction order independent or dependent, respectively, 

Williamson and Hall suggested that the FWHM of diffraction peak profiles can be written 

as the sum of the two broadening effects [S]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AK = 0.9/D + AKD , (7) 

where AKD is the strain contribution to peak broadening and D is the average grain size or 

particle size. Here K=2sine/h, AK=2cos@(Af3)/h, 8, A8 and h are the diffraction angle, half 

of the FWHM of the diffraction peak and the wavelength of X-rays, respectively and g=K 

at the exact Bragg position. Williamson and Hall have also given eq. (7) with the squares of 

the three terms in it [S]. The squared form of the equation has been tested on the examples 

to be given below and, since the fundamental conclusions of the present considerations are 

not effected by such a form, this case will not be discussed further here. In the 

‘conventional Williamson-Hall plot’ it is assumed that AKD is either a linear or a quadratic 

function of K [8]. The linear term is assumed to be proportional to <E~>~‘~, the square root 

of the quadratic mean strain. The evaluation of this quantity is one of the basic problems in 

the interpratation of peak profile broadening. In a dislocated crystal the solution is given by 

eqs. (1) and (3). On the basis of that we write AKD in the following form, cf. [ 1 l- 14,171: 

AKD =A(P*)~” + A ‘(Q’)‘” , (8) 

where A and A’ are parameters determined by the effective outer cutoff radius of 

dislocations, R, and the auxiliary parameters Ri and RZ , respectively. Using eqs. (2) and 

(8) eq. (7) will be: 

AK = 0.9/D + (tib2/2)“2 p”2 (K?“2) + @4’b2/2) Q”” (K’c) . (9) 

Equation (9) shows that if dislocations are the source of strain in a crystal the proper 

scaling factor of the beadths (or FWHM) of peak profiles is (K??“2) instead of merely K. In 

the following, in agreement with the notations used in [ 161, eq. (9) will be called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

modified Williamson-Hall plot. 

6. The modified Warren-Averbach analysis 

In the following, the derivation described first in [ 161 will be presented further. If size and 

strain effects are present in the crystal at the same time, one of the fundamental equations 

of the Fourier coefficients in the Warren-Averbach analysis is [7,9]: 

ZnA(n) = InA’ + InAD , (10) 

where the superscripts, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs and D refer to size and distortion, respectively. Inserting eqs. (1) 

and (2) into (10) the following is obtained for the real part of the Fourier coefficients: 
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ZnA(n) z InA’ - pBn21n(RJn) (K2?) 

+ QB2n41n(R2/n) ln(RJn) (K2?)2 , (11) 

where B=nb2/2. In the classical Warren-Averbach analysis the scaling parameter for 

separating size and strain coefficients is: K2 (or g”). Equation (11) shows that in the case of 

dislocated crystals the proper scaling parameter is: K2c instead of merely K”. In the 

following eq. (11) will be called the modified Warren-Averbach analysis, in agreement with 

the notations used in [ 161. 

7. X-ray diffraction experiments 

The experiments to be presented here were carried out by a special high-resolution double- 

crystal diffractometer having negligible instrumental peak broadening, cf. [26,43]. In the 

case of copper samples the 0.3x3 mm2 line focus of a Nonius FR 591 copper rotating 

anode operated at 4kW, whereas, in the case of the iron samples, a sealed Co anode 

operated at 40kV 25 mA has been used. The primary X-ray beam was monochromatised by 

a symmetrically cut plane Ge monochromator using the (444) reflection. In the case of the 

Co anode a symmetrically cut plane Ge monochromator using the (440) reflection was 

applied. The monochromator was tuned for the CuKai (CoKai) line so that the CuKa2 

(CoKa2) component was completely suppressed. The beam reflected from the 

monochromator passed through a thin slit of about 0.2xSmm. The purpose of this slit was 

to stop the parasitic scattering coming from the monochromator. A second cross-slit of 

about 4mm width was positioned in front of the sample in order to limit the vertical 

divergence of the beam in the direction perpendicular to the plane of incidence. The 

appropriately collimated and monochromatic X-ray beam hit the flat sample under a 

divergence angle of about 10 seconds of arc. The scattered radiation was registered by a 

linear position-sensitive X-ray detector of OED-50 type (Braun, Munich). The sample-to- 

detector distance was selected to be about 600mm which is close to the requirements for 

wavelength compensation [43]. 

8. Grain size and the dislocation density in submicron grain-size copper 

Submicron grain size copper specimens were kindly provided by Professor Valiev, for 

which the author is grateful. The specimen was prepared from 99.98% copper of 300u.m 

initial grain size and deformation was carried out by the method of equal-channel angular 

pressing, producing submicron average grain size between 50 and 500nm [44]. The peak 

profiles of the first five reflections of the specimen are shown in Fig. 2. It can be seen that 

broadening does not increase monotonously with the order of reflections. This is most 

obvious for the (3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 } and (222) reflections. Note also that the profiles of (220) and 

(222)are perfectly identical with each other, as indicated in the figure. Further, it can be 

seen that the FWHM of the {200}, { 220) and (222) reflections are identical within 

experimental error (note that the intensity is given in a logarithmic scale, so that the 

FWHM has to be read on the top region of the profiles). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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It has been shown in [16] that in the conventional Williamson-Hall plot (see eq. (7)) the 

FWHM follow an apparently unsystematic behaviour as a function of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.1 

0.01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.001 

-0.10 -0.05 0.00 0.05 0.10 

AK [nm-‘1 

Fig. 2. Line profiles of the first five reflections of the submicron grain size copper 

specimen, kindly provided by Professor R. Valiev [44]. The intensities are normalised to, 

and centered around the maxima of the profiles and are shown in a semi-logarithmic scale. 

0.05 I 

0 1 2 3 4 5 6 7 

KC In [llnm ] 

Fig. 3. The FWHM according to the modified Williamson- 

Hall plot, or eq. (9) cf. [ 161. 

diffraction vector K (or g). Plotting the same data of the FWHh4 according to the modified 

Williamson-Hall plot a smooth curve is obtained as expected from equation (9) and is 

shown in Fig. 3. The C factors were averaged by assuming that all slip systems permitted in 
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an fee crystal are equally populated, and that edge and screw dislocations are present with 

equal probability. The average C factors used in the present evaluation are listed in Table 1. 

The intersection at K=O of the curve in Fig 3, fitted by a standard least square method, 

provides a particle size: D 2 385 nm. 

TABLE 1. The values of the average contrast factors, ?, for the different diffraction 

vectors, g, used in the present evaluation. The contrast factors were calculated for the 

{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 } , a/2< 11 O> slip systems using the following elastic constants for copper: 

crr=166. lGPa, cr2=1 19.9GPa and cJ4=75.6Gpa, respectively [45]. 

g Wl~, w% (200 ‘> (4001 (2201 (3111 

c 0.0993 0.3040 0.1505 0.2076 

The Fourier coeffkients of the profiles in Fig 2 are analysed next. The real part of the 

Fourier coeffkients are plotted according to the conventional Warren-Averbach procedure 

(see in ref. [9]) in Fig. 4. The data show an apparent unsystematic behaviour as a function 

of the square of the diffraction vector, g2, in a similar manner as it was observed for the 

FWHM in the conventional Williamson-Hall plot, cf. [ 161. The same Fourier coeffkients 

are plotted according to eq. (11) in Fig. 5, where L=nas, a3=h/2(si&-sin&) and (&-01) is 

the angular range in which the profiles were measured, cf. [9]. 

-I oA 1 A A 
A 

2 -2 A L=3Onm 

-3 0 0 
0 

:I/ , , ,O, , o,Ly50F 

25 50 75 100 125 150 

82 [m-2] 

Fig. 4. The real part of the Fourier Fig. 5. The real part of the Fourier 

coeffkients plotted versus g2 for different L coefficients plotted versus g’c for different 

values according to the conventional Warren- L values according to the modified Warren- 

Averbach analysis, cf. [9]. Averbach analysis, as given in eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(11) 

(from [ 161). 

Copyright 0 JCPDS-International Centre for Diffraction Data 1997 

Copyright (C) JCPDS-International Centre for Diffraction Data 1997



The quadratic curves were fitted to the datapoints according to eq. (11) by a standard least 

square method. We denote the intersections of the curves at K=O by InAS or InAS( 

Plotting As(n) or As(L) in the usual manner [9], a particle size of about 75nm is obtained. 

Further numerical anlysis according to eq. (11) gives the dislocation density, p, and the 

interaction parameter of dislocations, M=%p’“: p=1.7 10’5m‘2 and M=4.3. The value 

obtained for M indicates a weak correlation in the dislocation system [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 l- 151. 

Valiev and coworkers have carried out a detailed TEM analysis of the particle size in the 

specimen investigated here also [44]. The evaluation of TEM micrographs have shown a 

broad size distribution similar to a log-normal function ranging from about 50 to 

approximately 500nm. The modified Williamson-Hall plot has also been carried out on the 

integral breadths of the peak profiles measured here. These datapoints show the same 

perfect quadratic behaviour according to eq. (9) as has been seen in Fig. 3 for the FWHM, 

and the intercept of the quadratic curve at K=O yields a particle size of 250nm. In summary, 

the Fourier method, the integral breadths and the FWHM provide 75, 250 and 385nm for 

the particle size, respectively. The three procedures are weighting three different ranges of 

a diffraction profile: the outermost tails, the integral average and the central part, 

respectively. On the other hand, these different ranges of the diffraction profiles sample 

different lengths in the crystal. In this sense the three procedures sample different parts of a 

size distribution, on the basis of which it is concluded that, the agreement between the 

TEM results of Valiev and coworkers and the present analysis is very good. 

9. Particle size and dislocations in ball-milled nanocrystalline iron 

Nanocrystalline iron powder was investigated by the modified Williamson-Hall plot and the 

modified Warren-Averbach method. The successful application of the new procedures have 

shown that even in nanocrystalline particles dislocations are present, cf. [18]. A brief 

summary of the main points of this study is presented in the following. High purity iron 

powder of initial particle size of approximately 45 pm was ball milled in a planetary ball- 

mill with a hardened steel ball. Ball milling was carried out for different durations: 24h, 

50h, lweek and lmonth. The peak breadths of the { 1 lo}, {200}, { 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 } and { 220) 

reflections, scaled in terms of co&(AC3), where & and A0 are the Bragg angle and half of 

the FWHM, respectively, are shown in Fig 6, according to the ‘conventional’ Williamson- 

Hall plot, (see in eq. (7)). F rom Fig 6 it can be seen that the FWHM of the ball milled iron 

powder does not follow any smooth function, as it would be expected from the Williamson- 

Hall plot. Applying, however, the modified Williamson-Hall plot, as given in eq. (9) and 

using the average contrast factors listed in Table 2, Fig 7 is obtained. The figure shows that 

the FWHM of the peak profiles follow the mod@ed Williamson-Hall plot in a perfect 

manner. 

TABLE 2. The values of the average contrast factors, c, for the different diffraction 

vectors, g, used in the present evaluation for iron. 

g { 11% w?l POOP WI 

c 0.061 0.285 0.118 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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sin@ 

Fig 6. Half of the FWHM scaled in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco&,(ACI) as a fimction of the diffraction 

vector scaled in sin0 (from ref. [ 181). 
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Fig 7. Half of the FWHM scaled in terms of GOSOB according to the modified 

Williamson-Hall plot scaled in terms of ?! ‘“sine (from ref. [ 181). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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The perfect applicability of the modified Williamson-Hall plot indicates that in the 

nanocrystalline iron particles, obtained by ball milling, strain is caused by the presence of 

dislocations. This has to be considered as a clear answer to the question raised in the debate 

about the possibility to have dislocations in nanoscale crystallites, cf. [46-501. 

10. The effect of twin-boudaries and stacking-faults 

Warren has shown that if twin-boundaries and/or stacking faults are present in the crystal 

the apparent particle size becomes smaller than the true particle size [9]. Numerical values 

were worked out in the same paper which take into account the order dependence of the 

effect. Denoting the density of twin boundaries and stacking faults by a and l3, respectively, 

the reciprocal of the true particle size, l/D, is increased by the following magnitude: 

((1.5a + @/[ah,(u+b)]}&, IL,\ , (12) 

where a, ho, u, b and LO have the same meaning as in reference [9]. The following notations 

are introduced: 

(1.5a + P)/a = p‘ , XI, 1 L, I/ h,(u+b) = W(g) , (13) 

where g indicates the reflection order, hkl. With these notations the effect of twinning and 

faulting on the size part of the FWHM can be written as: 

AKS=0.9/D+p‘W(g) . (14) 

The values of W(g), as determined by Warren are listed in Table 3. The values in the table 

show that the effect of twinning and faulting introduces an order dependence into size 

broadening. The ‘size’ Fourier coefficients will have the following form (see also the 

unnumbered equation in [9] on page 177 between eqs. (46) and (47)): 

As(L) = 1 - (L/D) - L p‘ W(g) , WI 

where L has the same meaning as in paragraph 8. Again it can be seen that the size Fourier 

coefficients become order dependent by twinning and faulting. 

TABLE 3. The values of W(g) for fee crystals, as determined by Warren [9]. 

g Wl~, ww QOO), (4001 (220) (3111 

W(g) 0.43 1 0.71 0.45 

Inserting eq. (14) into eq. (9) the modified Williamson-Hall plot including twinning 

faulting will have the following form: 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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AK - p‘ W(g) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.9/D + (lrb2/2#‘2 p”2 (K?1’2) 

+ (nb2/2A’) Q’” (K’c) . (16) 

TEM investigations carried out on nanocrystalline copper specimens, produced by the 

vapour clustering method have shown that twin boundaries are a frequent feature in these 

crystals [5 11. Recent, high resolution X-ray peak profile experiments on the same specimen 

have also indicated the simultaneous presence of twinning and strain broadening, latter 

caused by dislocations, where the analysis was based on eq. (16). Further details of particle 

size, dislocations, twinning and faulting, together with the elaboration of the modified 

Warren-Averbach method for twinning and faulting, will be published elsewhere [ 191. 

11. Conclusions 

1. Based on the examples of submicron grain size copper specimen, ball milled iron 

powder samples and a prospective nanocrystalline copper material it has been shown that 

the classical methods of Williamson-Hall and Warren-Averbach can yield physically well 

justified data for particle size, dislocations and twinning and faulting, provided the scaling 

factors, K and K2 (or g and g”) in the classical equations are replaced by KC’ and K2C (or 

g?? and g’?), respectively, where C is the appropriate average of the contrast factors 

pertinent to the dislocations present in the crystal. 

2. The procedures in which K and K2 (or g and g”) are replaced by KC” and K2C (or g?” 

and g’c) are suggested to be denoted as modified Williamson-Hall and modified Warren- 

Averbach methods, respectively. 

3. The modified procedures are enabled, in principle, to determine the type of dislocations 

present in a crystal. 

4. Though the examples presented here are results obtained on small gram materials, the 

modified procedures can be applied unlimited to i) nanoscale crystals, ii) polycrystalline 

materials, iii) coarse grain materials and iv) monocrystals. 
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