# Lawrence Berkeley National Laboratory Recent Work 

Title
STRAIN CONTROLLED MORPHOLOGIES IN THE TWO-PHASE STATE
Permalink
https://escholarship.org/uc/item/9bs7233d

## Author

Khachaturyan, A.G.
Publication Date
1987-06-01

Presented at the NATO Advanced Study Institute on Alloy Phase Stability, Crete, Greece, June 14-27, 1987

RECEIVED<br>

STRAIN CONTROLLED MORPHOLOGIES IN THE TWO-PHASE STATE

## REPORT

Center for Advanced Materials


LEAn and DOCUMENTS SECTION A.G. Khachaturyan

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks


## Materials and Chemical Sciences Division

Lawrence Berkeley Laboratory • University of California ONE CYCLOTRON ROAD, BERKELEY, CA 94720 • (415) 486-4755

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

# STRAIN CONTROLLED MORPEOLOGIES IN THE THO-PHASE STATE 

A.G. Khachaturyan<br>Center for Advanced Materials, Lawrence Berkeley Laboratory and Department of Materials Science and Mineral Engineering<br>Oniversity of California<br>Berkeley, California 94720<br>Lecture Notes<br>\section*{NaTO Advanced Study Institute on Alloy Phase Stability Crete, Greece}<br>June 14-27, 1987

## SIRAIN-CONIROLLE MORPHOLOGIBS OF THR T:O-PHASE STATE

## I. INTRODUCTION

Phase transformation in solids usually involve crystal lattice rearrangement with the islands of the new phase inside the parent phase matrix. Crystal lattice mismatch produced by phase transformation is accommodated by elastic displacements generating the elastic strain field within the body. The elastic energy contained in the strain field may contribate considerably to the thermodynamics of the phase transformation, but the main effect of the elastic strain is far beyond the trivial renormalization of elastic energy. Unlike the "chemical" free energy depending only on the volume of phases, the elastic energy also depends on the morphology, shape, dispersion and mutal location of inclusions. In such a case the morphology of the alloy becomes an internal thermodynamic parameter that can be found from the free energy minimization. This, in fact, means that the conventional thermodynamics of phase transformations based on the free energy aditivity should be questioned and validity of certain classical results has to be reexamined. To make more clear how far we can go in revising the theory of phase transformation when elastic energy is involved, it is noteworthy to look at the other cases when the bulk free energy proves to be dependent on morphology. The other cases where this situation takes place are ferromagnets and ferroelectrics whose magnetostatic and electrostatic energy also depend on shape, size and matral location of domains. This dependence manifests itself, for example, in appearance of the so-called demagnetization factor, and it affects the ground state of ferromagnets. Indeed, the homogeneous single domain state that would
be oxpected without magnetostaticenergy transforms into an array of domains whose size tends to zero if the Bloch energy (surface energy of domain walls) vanishes. It is also known that the repalsive interaction between the similar domains results in the formation of so-called bubble domain stracture.

The similar dramatic effects of the morphology on the thermodynamics of a phase transforination conld be expected in the case of a transformation with large crystal lattice rearrangement. The specific eramples of soch effects are formation of platelet precipitates ith the specific babit minimizing the strain energy as well as the formation of agglomerates of varions orientional variants of the new phase accommodating crystal lattice mismatch and eliminating elastic strain. The latter effect is observed during martensitic transformation ordering and decomposiition and is a goodexample of the profound analogy with the magnetic and ferroelectric domain structure.

The intensive studies of the elastic strain effect cansed by the other phase coherent inclusions were initiated by the classical works by Eshelby [1] in the fifties who calcalated the elastic energy of an ollipsoidal inclusion in an isotropic case. The next step was made in our work [2] and the work by Roitburd [3] where the idea that the elastic straineneregy minimizationcan be used for the habit plane determination was first proposed.

The general theory of elasticenergy of an arbitrary distributed inclasion in elastically anisotropic medinm in the homogeneous modulus case was formalated by Khachaturyan and Shatalov [4] and developed by Wen, Khachaturyan and Morris [5]. The theory was used for analyzing morphology of a single precipitate [6-13] and morphology transformations
of a group of precipitates [4,5,9,14-18]. The exact solution of the elastic problem for an ellipsoidal inclusion in the heterogeneous modalus case and anisotropic crystals was obtained by Lee, Barnett and Aaronson [19].

The main topic of these lectores is the discussion of the application of the elastic theory to practical problems which arise in structural studies of the morphology of two-phase alloys. The consideration Will be based on the theory developed for the homogeneous modulus case [2,4] becanse this approach enables one to treat arbitrary dispersoids using very simple mathematics. The cases where this approximation turns ont to be insufficient will be discussed separately. The applied aspects of the theory will be especially emphasized. There are three groaps of problems that deserve to be discussed in detail:

1. Morphology of a single coherent precipitate, its habit plane, equilibriam shape, orientational relations and crystal lattice parameters in the constraint state.
2. Shape transformations and morphology instabilities apon coarsening.
3. Strain-induced rearrangement of groups of precipitates upon coarsening.

## 2. ELASTIC ENERGY AND ELASTIC DISPLACEMENTS INDUCED BY ARBITRARY ARRAY OF COHERENT INCLOSIONS

Following [4] 1et as consider ntypes of inclusions that are produced by different crystal lattice rearrangements, for example, the rearrangements generating the different orientational variants of the same phase. These inclusions may be characterized by stress-free transformation strains, $\varepsilon_{i j}^{0}(1), \ldots, \varepsilon_{i j}^{0}(p), \ldots \varepsilon_{i j}^{0}(n) d e s c r i b i n g$ the
macroscopic shape change of the parent phase caused by the respective crystal lattice rearrangements. These inclusions can be produced by means of the four steps of the Eshelby cycle:

1. Cut inclusions from the matrix.
2. Let each inclusion be transformed to a new phase under the stress-free strains $\varepsilon_{i j}^{0}(1), \ldots \varepsilon_{i j}^{0}(n)$.
3. Restore the initial shape applying the surface traction to create the opposite sign homogeneous elastic strains, $\quad-\varepsilon_{i j}^{0}(1)$, change. The elastic energy required to induce this set of elastic strains is

$$
\begin{equation*}
E_{s \in 1 f}=(1 / 2) \sum_{p=1}^{n} v(p) \lambda_{i j k 1} \varepsilon_{i j}^{0}(p) s_{k 1}^{0}(p) \tag{1}
\end{equation*}
$$

 elastic modalus tensor, $i_{\rho} j, k, 1$ are Cartesian indexes, $\nabla(p)$ the volume of all inclusions of the pth type.
4. Reintroduce restored inclusions in their holes and weld them.
5. Remove the surface traction and allow the inclusions and matrix to relax. The relaxation energy, $\Delta E_{0}$ by definition, should be a negative value reducing the enorgy (1).

The total elastic onergy is then

$$
\begin{equation*}
E=(1 / 2) \sum_{p=1}^{n} \nabla(p) \lambda_{i j k 1^{8}} \varepsilon_{i j}^{0}(p) \varepsilon_{k 1}^{0}(p)+\Delta E \tag{2}
\end{equation*}
$$

Calculation of the relaration energy $\Delta E$ requires solution of the elasticity problem. The elastic energy (2) is a functional of strain field $s_{i j}(r)$ at points $r$. In the approximation of linear elasticity this fanctional has the form

$$
\begin{equation*}
E=(1 / 2) \sum_{p=1}^{n} \quad \nabla(p) \lambda_{i j k 1} \varepsilon_{i j}^{0}(p) \varepsilon_{k 1}^{0}(q)+(1 / 2) \int f\left(\varepsilon_{i j}\right) d^{3} r \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
f\left(\varepsilon_{i j}\right) \approx-\sigma_{i j}^{0}(r) \varepsilon_{i j}+\lambda_{i j k 1} \varepsilon_{i j} \varepsilon_{k 1} \tag{4}
\end{equation*}
$$

Where $\sigma_{i j}^{0}(r)$ and $\lambda_{i j k i}$ are the first- and second- order expansion coefficients of the local elasticenergy $f\left(\varepsilon_{i j}\right)$ which are material constants. The unusual termin (4), 1 inear in $\varepsilon_{i j}$, appears because in the system with inclusions the stress-free states is not a non-deformed state. The minimization of eq.(3) With respect to elastic displacements (finding mechanical equilibrium) requires solution of the equation of elasticity, $\partial \sigma_{i j} / \partial x_{j}=0$ Where $\sigma_{i j}(r)$ is stress at the point $r=\left(x_{1}, x_{2}, x_{3}\right)$. Stress $\sigma_{i j}(r)$ is, by definition, the first variation of (3) with respect to $\varepsilon_{i j}$. Together with (4), it gives

$$
\begin{equation*}
\sigma_{i j}(r)=\frac{\delta E}{\delta \varepsilon_{i j}(r)}=-\sigma_{i j}^{0}(r)+\lambda_{i j k 1^{8} k 1}(r) \tag{5}
\end{equation*}
$$

Let us reveal the physical meaning of the material constants, $\sigma_{i j}^{0}(r)$. At the stress-free state, $\sigma_{i j}(r)=0$, we have by definition of the stressfree state

$$
\sigma_{i j}^{0}(x)=\lambda_{i j k 1^{8}}^{0}(p) \text { if } x \text { is inside a particle of the type } p .
$$

0 otherwise
The latter condition can be rewritten in the condensed form

$$
\begin{equation*}
\sigma_{i j}^{0}(x)=\Sigma \lambda_{i j k 1^{\varepsilon}}{ }_{k 1}^{0}(p) \not \approx(p, p) \tag{6}
\end{equation*}
$$

Where $\theta(p, r)$ is the shape function of the precipitates of type (p); it is equal to unity if vector $I$ corresponds to a point within an inclusion of the type pand is 0 otherviso. Introduction of shape function $\boldsymbol{\theta}(\mathbf{p}, \mathrm{r})$ is very convenient becanse they describe spatial distribation of arbitrary inclusions. With definition (6) eq.(5) is

$$
\begin{equation*}
\sigma_{i j}(r)=-\sum_{p=1}^{n} \sigma_{i j}^{0}(p) \tilde{\theta}(p, r) \varepsilon_{i j}+\lambda_{i j k 1} \varepsilon_{k 1} \tag{7}
\end{equation*}
$$

The elastic equilibrium equation $\partial \sigma_{i j} / \partial x_{j}=0$ can then be rewritten in the form

$$
\begin{equation*}
\lambda_{i j k 1} \frac{M^{2} u_{1}}{\partial x_{j} \partial x_{k}}=\sum_{p=1}^{n} \sigma_{i j}^{0}(p) \frac{\partial \theta(p, k)}{\partial x_{j}} \tag{8}
\end{equation*}
$$

where the strain definition, $\varepsilon_{i j}=(1 / 2)\left(\partial u_{i} / \partial x_{j}+\partial u_{j} / \partial x_{i}\right)_{0}$ was used. Maltiplying eq.(8) by the factor exp(-ikr) and integrating over yields

$$
\begin{equation*}
\lambda_{i j k 1} \mathbf{k}_{j} k_{k} u_{1}(k)=-i \sum_{p=1}^{n} \sigma_{i j}^{0}(p) k_{j} \theta(p, k) \tag{9a}
\end{equation*}
$$

or in the operstor form

$$
\begin{equation*}
\hat{\mathbf{G}}^{-1}(\mathbf{k}) \quad \nabla(k)=-i \sum \hat{\sigma}_{0}(p) \quad \mathbf{k} \theta(p, k) \tag{9b}
\end{equation*}
$$

where $\left(G^{-1}(\mathbf{k})\right)_{i j}=\lambda_{i k 1 j} \mathbf{k}_{\mathbf{k}} \mathbf{k}_{1} \cdot\left(\hat{\sigma}_{0}(p)\right)_{i j}=\sigma_{i j}^{0}(p)$

$$
\nabla(k)=\iiint_{-\infty}^{\infty} \mathrm{v}(x) \exp (-\mathrm{ik} x) \mathrm{d}^{3} \mathrm{r}
$$

$$
\begin{equation*}
\theta(p, k)=\iiint \theta(p, r) \exp (-i k r) d^{3} r \tag{10}
\end{equation*}
$$

In transition from (8) to (9), the boundary conditions on infinity, $u(x) \rightarrow 0$ and $\varepsilon_{i j}(r) \rightarrow 0$ at $r \rightarrow \infty$, were used.

The solution of eq.(9) is

$$
\nabla(k)=-i \sum_{p=1}^{n} G(k) \sigma_{0}(p) k \theta(p, k)
$$

or in indices

$$
\begin{equation*}
\nabla_{i}(k)=-i \sum_{p=1}^{\infty} G_{i j}(k) \sigma_{j k}^{0}(p) k_{k} \tilde{\theta}(p, k) \tag{11}
\end{equation*}
$$

Where $G_{i j}(\underline{K})=\left(G_{(k)}\right)_{i j}$ is the matrix reverse to the matrix $\left(G(k)^{-1}\right)_{i j}=\lambda_{i k 1 j^{\prime}} k_{1} k_{1}$, Wich, in fact is the Fourier transform of the Green function of elasticity equation. Real displacements, u(r), can be
found by the back Fourier transform,

$$
\begin{equation*}
u(x)_{i}=-i \sum_{p=1}^{n} \int \frac{d^{3} k}{(2 \pi)^{3}} G(k)_{i j} \sigma_{j k}^{0} k_{k} \theta(p, k) \text { exp (ikr) } \tag{12}
\end{equation*}
$$

Substitating (12) to (3) and integrating over $r$ within infinite body results in to the Fourier representation of the elastic energy

$$
\begin{aligned}
E= & (1 / 2) \sum_{p} v(p) \lambda_{i j k 1} \varepsilon_{i j}^{0}(p) \varepsilon_{k 1}^{0}(p) \\
& \left.-(1 / 2) \sum_{p, q} \int-\frac{d^{3} k}{(2 \pi)^{3}}<k\left|\sigma_{0}(p) G(k) \sigma_{0}(q)\right| k\right\rangle \theta(p, k\rangle \theta(q, k) *
\end{aligned}
$$

where $\langle k| \sigma_{0}(p) G(k) \sigma_{0}(q)|k\rangle=k_{i} \sigma_{i j}^{0}(p) G_{j k}(k) \sigma_{k 1}^{0}(q) k_{1}$
The identities

$$
\int \theta(p, k) \theta(q, k) \cdot \frac{d^{3} k}{(2 \pi)^{3}}=\nabla(p) \delta_{p q}
$$

There $\delta_{p q}$ is the Kronecker symbol simplify (13):

$$
\begin{equation*}
E=(1 / 2) \Sigma_{p, q} \int \frac{d^{3} k}{(2 \pi)^{3}} \quad B(k / k)_{p q} \theta(p, k) \quad \theta(q, k) \tag{14}
\end{equation*}
$$

Where $B(n) p_{p q}=\gamma_{i j k 1} \varepsilon_{i j}^{0}(p) \varepsilon_{k i}^{0}\left(0-\langle n| \sigma_{0}(p) \Omega(n) \sigma_{0}(q)|n\rangle\right.$ and $\Omega(n)=$ $\mathbf{k}^{-2} \boldsymbol{G}(\underline{k})$. Since the shape fanction $\boldsymbol{\theta}(p, r)$ whose Fourier transform enters (14) can be a multiconnected function describing an array of inclusions of the type $p$, eq.(14) may be used for calculation of elastic energy of both, an isolatedarbitrary shape particle and groups of particles of different types. Therefore eq.(14) is, in fact, close equation for elastic onergy of an arbitrary maltiparticle system in an anisotropic matrix in the homogeneous modulns case. This energy is the sum of elastic energies of each isolated particle (self-energy) plus straininduced pairwise interaction energies between particles.
3. A SINGLE PRECIPITATE IN AN INFINITE BODY

## A. Blastic Energy of a Single Precipitate.

Closed equation for elastic energy of an isolated coherent particle in an infinite crystal body can be obtained from (14) as a particalar
case. The limit transition to a single particle may be readily done if we assume that the phase transition involves only ne type of the crystal lattice rearrangement mode and if the shape function entering eq. (14) describes a simply-connected region enveloping the new phase particie. Then omitting sumation over $p$ in (14) we have a simple equation for the elastic energy.

$$
\begin{equation*}
E=1 / 2 \int \frac{d^{3} k}{(2 \pi)^{3}} B(k / k)|\theta(k)|^{2} \tag{15}
\end{equation*}
$$

Where

$$
\begin{equation*}
B(n)=\lambda_{i j k 1} \varepsilon_{i j}^{0} \varepsilon_{k 1}^{0}-n_{i} \sigma_{i j}^{0} \boldsymbol{\Omega}_{j k}(n) \sigma_{k 1}^{0} n_{1} \tag{16}
\end{equation*}
$$




$$
\begin{equation*}
|\theta(k)|^{2}=\left|\int \theta(r) \exp (-i k x) d^{3} x\right|^{2}=\left|\int \exp (-i k x) d^{3} x\right|^{2} \tag{17}
\end{equation*}
$$

Where integration is carried out over the particle volnme V. Equation (17), in fact, Fields the Lane interference function describing diffraction on the particle. It is noteworthy that the last term in integrand of (15), $B(\underline{n})$, depends on the elastic constants and crystal lattice mismatch only, being a material characteristic, while the second term, $|\theta(k)|^{2}$, describes the geometry of inclusion only.

For simple shapes we have the following functions for $|\theta(k)|^{2}$ :

$$
\begin{equation*}
|\theta(k)|^{2}=\frac{\sin ^{2} k_{x} a / 2}{\left(k_{x} / 2\right)^{2}} \frac{\sin ^{2} z_{y} b / 2}{\left(k_{y} / 2\right)^{2}} \frac{\sin ^{2} k_{z} c / 2}{\left(k_{z} / 2\right)^{2}} \tag{18a}
\end{equation*}
$$

for a parallelopiped with the edge lengths $a, b, c, k=\left(k_{z} k_{y} k_{z}\right)$,

$$
\begin{equation*}
|\theta(k)|^{2}=V^{2} \frac{3 \sin P(k)-P(k) \cos f(k]^{2}}{(P(k))^{3}} \tag{18b}
\end{equation*}
$$

for an ellipsoid where $P(k)^{2}=L_{i j} k_{i} k_{j}, L_{i j}$ is the tensor inverse to $L_{i j}^{-1}$ that determines the standard form of the ellipsoid surface, $\mathcal{L}_{\mathbf{i} j}^{-1} x_{i} x_{j}=1$. The eigenvalues of $L_{i j}$ are squares of the ellipsoid semiames, $a^{2}, b^{2}, c^{2}$.

The ellipsoid model is especially interesting since, as was show by Eshelby [1] for isotropic elasticity and by Valpole [20] and Willis [21], for anisotropic elasticity, elastic strain inside an ellipsoidal inclusion (eigenstrain) is always homogeneous.

Equation (15) contains the Eshelby solution for an ellipsoid in the homogeneous modulus case as articalar case [22]. If the shape function (18b) is used and the limit transition to isotropic elasticity is made,

$$
\lambda_{i j k 1} \rightarrow \delta_{i j} \delta_{k 1} 2 \mu(v / 1-2 v)+\mu\left(\delta_{i k} \delta_{j 1}+\delta_{i 1} \delta_{j k}\right)
$$

Where $\mu$ is the shear modulus, $v$ is the Poisson's ratio, eq. (15) is reduced to the Eshelby solntion [1].
B. Optimal Shape and Habit at the Low Interphase Enersy Limit.

This problem can be solvedminimizingelasticenergy (14) at the fired value of the precipitate volume $\nabla_{0}[2]$ Since $B(m)$ and $|\theta(k)|^{2}$ are always positive

$$
\begin{align*}
E= & 1 / 2 \int \frac{d^{3} k}{(2 \pi)^{3}} B(n)|\theta(k)|^{2} \geqslant 1 / 2(\min B(n)) \\
& \times \int|\theta(k)|^{2} \frac{d^{3} k}{(2 \pi)^{3}} \tag{19}
\end{align*}
$$

where min $B(\underline{n})$ is the minimum $\nabla$ alue of $B(\mathbb{H})$. With the identity

$$
\int|\theta(k)|^{2} \cdot \frac{d^{3} k}{(2 \pi)^{3}}=V
$$

inequality (19) is

$$
\begin{equation*}
E=1 / 2 \int \frac{d^{3} k}{(2 \pi)^{3}} B(k / k)|\theta(k)|^{2} \geqslant 1 / 2(\min B(m)) V \tag{20}
\end{equation*}
$$

Where the right side of (20) is the lowest possible limit for the elastic energy at a given volume.

Let is introdnce the unit vector $n_{0}$ providing the minimum of $B(n):$

$$
\begin{equation*}
B\left(n_{0}\right)=\min B(n) \tag{21}
\end{equation*}
$$

For an infinitely thin and infinitely extended platelike inclusion with the habit planeminimal to $n_{0}$, the function $\|\left(\left.\underline{k}\right|^{2}\right.$ differs from zero only within infinitely thin and infinitely long rod in k-space along $\mathrm{m}_{\mathrm{o}}$ (this is a well known result from the diffraction theory; diffraction from plate yield rod in reciprocal spaceminimal to the habit plane). In this case the inequality (20) becomes equality. Therefore the minimum elastic energy is attained if an inclusion is "rolled out" into the infinitely thin plate with the habit normal to the vector momimizing $B(n)$. The elastic energy then is

$$
\begin{equation*}
E=E_{b a 1 k}=(1 / 2) \min B(m) V=(1 / 2) B\left(m_{0}\right) V \tag{22}
\end{equation*}
$$

This strain energy (22) is proportional to the inclusion volume, V.

## C. Balk Encrgy of an Inclusion ith Invariant Plame Strain Crystal

## Lattice Roarrangement.

The case of an invariant plane transformation strain plays an especially important role in the theory of phase transformations. For example, the idea of invariant plane strain is basic for the entire crystallographic theory of martensitic transformation which resulted in romarkable achievements in understanding the crystallography of this transformation. The theoretical results obtained above enable as to realize whet is the reason behind this.

According to the crystallographic theory, the habit plane of a martensitic crystal is an invariant plane strain. It will be shown below that this directly follows from eq. (22) as a result of the minimization of the elastic energy (15).

The invariant plane strain has always a form of a diadic product

$$
\begin{equation*}
\mathbf{u}_{i j}^{0}=\varepsilon_{0} \mathbf{1}_{i} \mathbf{n}_{j}^{0} \tag{23}
\end{equation*}
$$

where 1 is a unit vector along the displacement direction, $n^{\circ}$ is a unit vector normal to the invariant plane.

Substituting (23) for $\varepsilon_{i j}^{0}$ to eq. (16) for $B(m)$ yields

$$
\begin{align*}
B(n)= & \varepsilon_{0}^{2}\left[\lambda_{i j k 1^{1}} i_{k} n_{j} n_{1}^{0}\right. \\
& \left.-\lambda_{i j s p^{n_{i}} n_{p}^{0} 1_{s}} \Omega_{j t}(n) \lambda_{t m q r} n_{r}^{0} n_{m}^{0} 1_{q}\right] \tag{24}
\end{align*}
$$

One may see that at $n=n_{0} B\left(n_{0}\right)=0$ since by definition of $n^{-2}(n)$ $\lambda_{t m q r} n_{r}^{0} n_{m}^{0}=\Omega^{-1}\left(n^{0}\right)$ iq. Therefore the bulk energy (21) vanishes. We have the following simplification in (24)

$$
\Omega_{j t}\left(\Omega_{0}\right) \lambda_{t m q r^{n_{r}}} n_{m}^{0}=\Omega_{j t}^{0}\left(n_{0}\right) Q^{-1}\left(n_{0}\right){ }_{t q}=\delta_{j q}
$$

Using the latter in (23) we get $B\left(n_{0}\right)=0$. We have proved the resilt that in the case of an invariant plane transformation strain, the minimum of the bulk elastic energy equal to zero is attained when the inclasion is a plate whose habit plane coincides with the invariant plane. This exceptional situation when the choice of the optimal habit plane may eliminate the most substantial volme dependent positive elastic energy makes the case of the invariant plane strain so important. For example, one substantial conclusion can be immediately made: if any gropp of new phase coherent precipitates may rearrange itself so that a plate-1iko aggregato of qarions orientational qariants of the precipitate phaso gives the macroscopic shapo change described by an invariant plane strain, it will do this to eliminate the volume dependent elastic strain. This conclusion gives us the direction of straininduced coarsening of such precipitate systems. The typical examples of such systems are tetragonal precipitates in a cubic phase matrix that ultimately form the martensite-type stracture with the surface relief
and habit plane determined by the conventional crystallographic theory of martensitic transformation.

## D. Habit Plane of Tetragonal and Hexagonal Precipitates.

Equation (21) for the habit plane was solved for the thia plate tetragonal plate-1ike inclusion in a cobic matrix in [12] and for a hexagonal inclusion in [11].

The solution for a tetragonal incinsion gives two types of the habit, (h01) for the negative elastic anisotropy $c_{11} \mathbf{c}_{12}{ }^{-2} c_{44}<0$, and (hh1) for the positive anisotropy $c_{11}{ }^{-c_{12}}{ }^{-2 c_{44}}>0$.
(i) If $c_{11}-c_{12}-2 c_{44}<0$, the normal to the habit plane, $n_{0}$, is $n_{0}=(\sin \theta, 0, \cos \theta)$ where

$$
\cos ^{2} \theta= \begin{cases}0 & \text { if }-\infty<t<-\left[\left(c_{11} / c_{12}\right)+1\right] \text { and } 1<t<\infty \\ 1+\frac{c_{11}+2 c_{12}}{c_{11}+c_{12}} & -1-t \\ 1 & \text { if }-\left[\left(c_{11} / c_{12}\right)+1\right]<t<0\end{cases}
$$

 free transformation strain $\varepsilon_{i j}^{0}$ (all other components are zero).
(ii) If $c_{11}{ }^{-c} 12^{-2} c_{44}>0$, the normal to the habit plane is
$\left.x_{0}=((1 / / 2) \sin \theta,(1 / / 2) \sin \theta, \cos \theta)\right)$

$$
\begin{align*}
& \text { where } \\
& \left(\begin{array}{ll}
0 & \text { if }-\infty<t<t_{1}
\end{array}\right. \\
& \cos ^{2} \theta= \begin{cases}(\xi+2)\left(c_{11}+2 c_{12}\right) t \\
1-2- & \xi\left(c_{11}+2 c_{12}\right)(2 t-1)+4\left(c_{11}+c_{12}\right)(t-1) \\
1 & \text { if } 0 \leqslant t \leqslant t<t\end{cases}  \tag{25b}\\
& \left(\frac{\left(c_{11}+2 c_{12}\right)+4 c_{11}(1-t)}{\xi\left(c_{11}+2 c_{12}\right)(1+2 t)} \quad \text { if } t_{2}<t<t_{3}\right. \\
& \text { where } t_{1}=-\left(c_{11} / c_{12}\right)-1-\xi \frac{\left(c_{11}+2 c_{12}\right)}{4 c_{12}}, \quad t_{2}=\frac{2 c_{11}}{2 c_{11}+\xi\left(c_{11}+2 c_{12}\right)} \\
& t_{3}=1+\xi \frac{c_{11}+2 c_{12}}{4 c_{44}}, \quad t_{1}<t_{2}<t_{3}
\end{align*}
$$

It follows from eq. (25a) and (25b) that for a cubic precipitate in a
 and is (111) if $c_{11^{-c}} 1_{2-2} c_{44}>0$.

Similar calcalations were made by Mayo and Tsakalakos for precipitates of orthorhombic and hexagonal phase [11]. They derived explicit analytical expression for $B(n)$ in terms of crystal lattice misfit and elastic constants of the hexagonal phase. Minimizing this equation wher resect to they were able to predict the habit of precipitates. This approach was applied to Al-Mg-Zn alloy with $\mathrm{Zn} / \mathrm{Mg}$ ratio between 2.5 and 7 , and the total Zn content 1 ess than 20 wit. The predicted $\{111\}_{f c c}$ habit plame of the $\eta^{\prime}$ phase in the fcc Al-based matrix is in agreement whelectron microscopic observations [23,24].

## E. Elastie Bnergy of Finite Thin Plate Inclusions.

Finite thickness of a precipitate with the optimal habit normal to no shomld result in a positive correction to eq. (21), $\Delta E_{\text {edge }}$ Mathematically it is associated with the fact that the rod ink-space where $|\theta(k)|^{2}$ does not $\forall a n i s h$ for a finite thickness platelet has finite thickness and finite length. They are of the order of magnitude $2 \pi / L$ and $2 \pi / D$, respectively where $L$ and $D$ are typical length and thickness of the plate-1ike precipitate. In this case, the energy corfection to (21) is positive becanse intogration over $k$ in (15) is carried out over k space region where $B(k / k)$ does not assume its minimum value $B\left(n_{0}\right)$. Therefore the correction, $\Delta E_{e d g e}$ is of the order of $\Delta E_{e d g e} / E_{p l a t e}$ $\sim(D / L)^{2}, \quad$ i.e..

$$
\Delta E_{e d g e} \sim E_{p l a t e}(D / L)^{2}=\lambda \varepsilon_{0}^{2}\left(D L^{2}\right)(D / L)^{2} \sim \lambda\left(\varepsilon_{0} D\right)^{2} L \sim \lambda\left(\varepsilon_{0} D\right)^{2} P
$$

where $P$ is the platelet perimeter. The physical meaning of the correction is quite clear. It is cansed by the crystal latticemismatchon
the edges of the inclusion along its perimeter. The energy correction, $\Delta E_{\text {edge }}$ can be interpreted as "string" energy with the line tensions $\sim \lambda\left(\varepsilon_{0} D\right)^{2}$. In fact this energy can be attributed to a dislocation loop With the Burgers vector $b=\sim \varepsilon_{0} D$ enveloping the precipitate in its habit plane. Accurate calculations of the energy $\Delta E_{\text {edge }}$ for a tetragonal precipitate in the cubic matrix gives

$$
\Delta E_{\text {edge }}=\beta\left(D^{2} / 4 \pi\right) \ln (L / D) P
$$

where

$$
\beta=-\frac{\left(2 c_{12} \varepsilon_{11}^{0}+c_{11} \varepsilon_{33}^{0}\right)^{2}}{c_{11}}\left[\frac{\xi c_{11}+c_{12}}{c_{11}} \quad c_{11}\left(1+a_{1}^{2}\right)-2 c_{12} \alpha_{1}-2\left(\alpha_{1}+1\right)\right]
$$

$\varepsilon_{33}^{0}$ and $N_{11}^{0}$ are crystal lattice mismatch along the tetragonality axis and in the normal to the plane (001), respectively, $\xi=\left(c_{11}{ }^{-c_{12}}{ }^{-2} c_{44}\right) / c_{44}$ is the anisotropy parameter [20]. In the case of a cabic precipitate in a cubic matrix $\left(\varepsilon_{11}=\varepsilon_{33}=8_{0}\right)$,

$$
\beta=-\frac{\left(c_{11}+2 c_{12}\right)^{2} e_{0}^{2} \xi\left(c_{11}-c_{12}\right)}{c_{11}^{2}}
$$

It was shown that in a general case of arbitrary symmetry phase the edge energy of a plate-1ike precipitate is

$$
\Delta E_{e d g e}=\left(D^{2} / 4 \pi\right) \ln L / D \quad \int\left[\beta_{1} \frac{(d y / d x)^{2}}{1+(d y / d x)^{2}}+\beta_{2} \frac{1}{1+(d y / d x)^{2}}\right] d 1
$$

where integration is taken over the contonr $y=y(x)$ enveloping the precipitate in the habit plane, $d 1$ is the contonr length element, $\beta_{1}$ and $\beta_{2}$ are second order expansion coefficients withrespect to m-mo. The minimization of the $\Delta \mathrm{E}_{\text {edge }}$ energy with respect to the shape in the habit plane described under the additional condition of conservaation of its area in the habit plane, $S=\int(x) d x$ gives the Lagrange equation for $y=y(x)$. The solution of this equation results in the forms presented in Fig. 1.
F. Crystal Lattice Parameters and Crystal Lattice Rotation in Constraint Plato-Like Inclusion.

In the case of a single inclusion eq.(12) for elastic displacements yields

$$
\begin{equation*}
\underline{v}(x)=i \int\left(d^{3} k /(2 \pi)^{3}\right) \hat{G}(k) \hat{\sigma}^{0} k \theta(k) \exp (-i k x) \tag{26}
\end{equation*}
$$

The coordinate derivative $\partial u_{i} / \partial x_{j}$ gives the distortion tensor, $\mathbf{u}_{\mathbf{i} \mathbf{j}}(\mathbf{r})$,

$$
u_{i j}(x)=\partial u_{i} / \partial x_{j}=\int\left(\hat{G}(k) \hat{\sigma}_{0} k\right)_{i} k_{j} \theta(\underline{n}) \exp (-i k x) d^{3} k /(2 \pi)^{3}
$$

Since by definition of the Green function $\mathbf{G ( k )}$,

$$
\begin{gather*}
G(k)=\frac{1}{k^{-2} \hat{\boldsymbol{a}}(n)} \quad \text { Where } n=k / k, \\
\mathbf{a}_{i j}(r)=\int_{n_{j}}\left(\hat{a}(\sigma n) \hat{\sigma}_{0} m\right)_{i} \theta(k) \exp (-i k r) d^{3} k /(2 \pi)^{3} \tag{27}
\end{gather*}
$$

In the case of a plate-like inclusion eq. (27) is substantually simplified becanse the Fourier transform of its shape functions, $\theta(k)$, does not vanish only within the thin and extended rodink-space emerging from the origin, $k=0$, along the direction $n$, normal to the habit. Then

$$
\begin{equation*}
u_{i j}(r) \approx n_{j}^{0}\left(\hat{\boldsymbol{a}}\left(n_{0}\right) \hat{\sigma}_{0} n_{0}\right)_{i} \int \theta(k) \exp (-i r) d^{3} k /(2 \pi)^{3} \tag{28}
\end{equation*}
$$

With accuracy of the ratio $D / L \lll 1$. The integral in the right hand part of (28) is the back Fourier transform of $\theta(k)$ and therefore, by definition, is equal to $\theta(r)$. Taking the latter into acconnt we have $u_{i j}(x)=S_{i}\left(n^{0}\right)_{i} n_{j}^{0} \theta(x)= \begin{cases}n_{i j}=S\left(n^{0}\right) \\ i_{i} n_{j}^{0} & \text { if } r \text { is inside the inclusion } \\ 0 & \text { otherwise }\end{cases}$
where

$$
\begin{equation*}
S\left(\mathbf{m}^{0}\right)=\hat{\boldsymbol{a}}\left(z_{0}\right) \hat{\sigma}_{0} \mathbf{m}^{0} \tag{29b}
\end{equation*}
$$

For the cabic $\rightarrow$ cubic phase transformation $\sigma_{i j}^{\circ}=\left(c_{11}+2 c_{12}\right) \varepsilon_{0} \delta_{i j}$.

 $\left(n_{0}\right) n_{0}=1 / c_{11} n_{0}$ if $n_{0}=(001)$. Using these relations gives
$S\left(n_{0}\right)=\Omega\left(n_{0}\right) \sigma_{0} n_{0}=\varepsilon_{0} n_{0}\left(c_{11}+2 c_{12}\right) / c_{11}$. Then the eignstrain $u_{i j}$ in eq.(29) can be rewritten as

$$
\begin{align*}
\mathbf{u}_{i j}=S\left(n_{0}\right)_{i} n_{j}^{0}= & \varepsilon_{0} n_{i} n_{j}\left(c_{11}+2 c_{12}\right) / c_{11} \\
& =\varepsilon_{0}\left(\left(c_{11}+2 c_{12}\right) / c_{11}\right)\left(\begin{array}{l}
000 \\
000 \\
001
\end{array}\right) \tag{30}
\end{align*}
$$

Therefore a constraint coherent (001) platelet precipitate of a cabic phase has always a strain-induced tetragonality described by (30), the axial ratio being $(c / a)=1+\varepsilon_{0}\left(c_{11}+2 c_{12}\right) / c_{11}$. If $c_{11}-c_{12}-2 c_{44}>0$, $\mathbf{m o}_{0}=$ $1 / \sqrt{3}$ (111) and the similar calculation yields

$$
u_{i j}^{*}=\frac{1}{3}-\frac{c_{11}+2 c_{12}}{c_{11}+2 c_{12}+4 c_{44}} \quad \varepsilon_{0}\left(\begin{array}{l}
111 \\
111 \\
111
\end{array}\right)
$$

Therefore a constraint coherent (111) platelet of a cubic phase has always strain-induced rhombohedricity.

Equation (29) leads us to the following important conclusions:

1. The distortion withinaplatelike inclusion, $\mathbb{u}_{\mathrm{i} j}$, is homogeneous. Distortion outside the inclusion in the matrix asymptotically vanishes when $D / L \rightarrow 0$.
2. Since almost all elastic strain is concentrated within the platelet, the total elastic energy is not sensitive to the elastic moduli of the matrix. Therefore eq.(22) for elastic energy of a platelet derived in the honogeneons modulns case is nevertheless asymptotically correct also in the heterogeneous modulus case if the elastic moduli, $\lambda_{i j k 1}$ in (22) are substituted by the elastic moduli of the precipitate.
3. The total distortion within a constraint platelet transforms the matrix lattice to the constrain preceipitate lattice is always an inyariant plane straing the invariant plane normal to $n_{0}$ coinciding with the
habit plane. Therefore any crystal lattice translation in the habit planc of a constraint precipitate exactly coincides with the corresponding translation in the matrix plane parallel to the habit.
4. The crystal lattice rotation cansed by fitting two different lattices along the habit plane is described by the asymmetric part of the distortion tensor $\mathbf{u}_{\mathbf{i j}}^{\mathbf{\#}}$ :

$$
\varphi_{i j}^{*}=(1 / 2)\left[n_{i j}-u_{j i}\right)=(1 / 2)\left[S\left(n_{0}\right)_{i} n_{j}^{0}-n_{i}^{0} S\left(n_{0}\right)_{j}\right]
$$

or by the rotation vector

$$
f=1 / 2\left(S\left(x_{0}\right) \times n^{0}\right)
$$

The direction of $P$ is the rotation axis direction, the absolute value of $P$ is the rotation angle.
G. Needle-Like Precipitates.

As was shown above that the elastic onergy assumes its minimam for a platelike precipitate whose habit is normal to the vector $n^{0}$ minimizing $B(n)$. Mayo and Tsakalakos [11] have shown that this is not always the case. Needle-like precipitates may be more stable if the minimum of the function $B(n)$ is degenerated withrespect ton 1 ying in the plane. Such a situation may be epected if $B\left(\begin{array}{l}\text { a }\end{array}\right.$ has the cylindrical symmetry with respect to n.

If $B(n)$ has a cylindrical symmetry with respect to an axis directed along the directione, the function $B(n) d e p e n d s$ on the scalar product ne: $\quad B(\underline{n})=B(n e)$. In the case of interest when $B(n)$ assumes its absolute minimum at normal to the symmetry axis (at (ne)=0), one may expand $B(n)$ in a power series of

$$
\begin{equation*}
\text { (nc): } B(n)=\operatorname{minB}(n)+\beta(n \theta)^{2}+. . \tag{31}
\end{equation*}
$$

substitnting (31) to (27) and using the identity

$$
\int|\theta(k)|^{2} d^{3} k /(2 \pi)^{3}=V
$$

$$
\begin{equation*}
E \cong(1 / 2) \operatorname{minB}(n) V+(1 / 2) \beta \int(n c)^{2}|\theta(k)|^{2} d^{3} k /(2 \pi)^{3} \tag{32}
\end{equation*}
$$

The energy (32) is minimized for a needle along the direction e because the function $|\theta(n)|^{2}$ for a needle does not $\nabla a n i s h$ within thin extended plate in $\quad$ space normal to the needlearis orereme $=0$. Estimation of the integral in (33) for a needle along the axis describing strain concentration near the needle tip gields [22]

$$
\Delta E_{e d g e}=(1 / 2) \beta \int(n e)^{2}|\theta(k)|^{2} d^{3} k /(2 \pi)^{3} \approx(1 / 2) \beta R_{0}^{3} 4 / 3 \pi
$$

where $\beta \sim \lambda \varepsilon_{0}^{2}, R_{0}$ is a needle radins.
For thin and long needle the correction to the bulk energy $\Delta E$ edge is much smaller than the corresponding correciton $\Delta E_{\text {edge }} \sim \lambda \varepsilon_{0}^{2} D L$ for a thin plate. The bulkenergyterm (22) for aplateis the same as for a needle but the energy corrections $\Delta E_{\text {edge }}$ for a needle is much smaller than that for a plate (the first is proportional to $R_{0}^{3}$ while the second to $D^{2}$ ). The calculations similar to that for a plate-like precipitate [22] give for a needle the following result:

1. Strain inside a coherent needle-like precipitate parallel to the direction is homogeneous and has the form

$$
{ }_{e_{i j}}=(1 / 2) a\left(\delta_{i j}-e_{i} e_{j}\right)
$$

For a particular case of tetragonal elastically isotropic precipitate $a=\left(\varepsilon_{11}^{0}+v \varepsilon_{3}^{\bullet}\right) /(1+v)$. Where $v$ is the Poissonratio, $\varepsilon_{33}^{\circ}$ and $\varepsilon_{11}^{0}$ are the tetragonal stress-free strains along and perpendicular to the tetragonal axis.
2. Crystal lattice translations of constraint needle-like precipitate exactly coincide with the corresponding translations of the matrix phase. The latter can be seen from the equation

$$
\mathbf{r}_{i}^{\prime}=\left[\delta_{i j}+\alpha\left(\delta_{i j}-e_{i} e_{j}\right)\right] r_{0} e_{j}=r_{0} e_{i}
$$

which shows that the length $r_{0}$ e along the direction does not change.

Now a few words concerning cylindrical degeneration of $B(n)$. Analysis of equation (16) for the function $B(n)$ shows that the function $B(n)$ may be cylindrically degenerated with respect to in the cases of the cubic-tetragonal phase transitions in an alloy based on almost isotropic cobic solvent (Al, Nb, Mo, Wand so on) as well as for a cubic-hexagonal, cabic--trigonal and hexagonal-hexagonal phase transitions in anisotropic alloys. The cylindrical degeneration is not sufficient however, for a needle to be formed. It occurs when the minimum of $B$ ( $n$ ) is degenerated with respect to any $n$ belonging to the phase normal to the cylinder axis. This pats a certain constraint on the transformaiton strain and elastic anisotropy.

Concluding this section two important points should be emphasized:

1. Formation of needles can be expected not only in the case of the cylindrical degeneration of the fonction $B(n)$. Needles can also be stabilized by the interphase energy. Balance between elastic and interphase energy may produce the preferential needle-1ike shapes as an intermediate form during cooling a precipitate from a sheroid to platelet.
 energy of two precipitates in the long-distant limit. In the case of the cylindrical degeneration when $B(n)=m i n B(n)+\beta(k e)^{\mathbf{2} / k^{2}, t h e ~}$ back Fourier transform gives this interaction $V(x)$ in the form of the dipole-dipole interaction

$$
V(r)=e_{i}{ }_{i j} \beta\left(\delta_{i j} / r^{3}-3\left(r_{i} r_{j} / r^{s}\right)=\beta\left(1 / r^{3}-3(r e)^{2} / r^{5}\right)\right.
$$

where the coefficient $\beta$ plays the role of the dipole moment magnitude. This fact will be discussed later in connection with the analogy between
elastic shain and magnetostatic energy of magnets and electrostatic energy of ferroelectrics.
4. SHAPE TRANSFORMATIONS OF A CUBIC PHASE PRECIPITATE IN A CUBIC MATRIX UPON COARSENING

As was mentioned above the equilibrium shape of a precipitate is a result of competition between the elastic and interphase energies. Equation (15) enables one to evalnate the elastic energy of an arbitrary shape precipitate while the interphase energy may be assumed to be equal to the product of surface tension coefficient, $\gamma$, and interphase area, S, if the interphase tension is isotropic, i.e.

$$
\begin{equation*}
E=E_{\text {elast }}+E_{s} \tag{33}
\end{equation*}
$$

where

$$
E_{s}=\gamma S
$$

is the interphase energy, and the elasticenergy, Eelast, is given by eq.(15). Let us consider the cubic-to-cabic phase transformation in the case of the negative elastic anisotropy $c_{11} \mathbf{c}_{22}-\mathbf{2} c_{44}<0$.

Then integration in (15) yields the elastic energy in the form

$$
\begin{equation*}
E_{\text {elast }} \cong E_{0} V+E_{1 \eta V} \tag{34}
\end{equation*}
$$

where $E_{0}=8_{0}^{2}\left(c_{11}+2 c_{12}\right)\left(c_{11}-c_{12}\right) / c_{11}$, $E_{0} V$ is the elastic energy of an infinite thin plate of the volume $V$ wh the optimal (001) habit, and

$$
E_{1}=\frac{\left(c_{11}+2 c_{12}\right)^{2}}{2} \frac{\left(2 c_{44}+c_{12}-c_{11}\right)}{c_{11}\left(c_{11}+c_{12}+2 c_{44}\right)} \varepsilon_{0}^{2}
$$

The dimensionless coefficient $\eta$ depends on the shape of the precipitate rather than its volnme。

The values of the coefficient $\eta$ in eq. (34) for different shapes are given in Table 1.

TABLE 1

Shape

| Sphere | 0.7087 |
| :--- | :---: |
| Cube | 0.5580 |
| Needle | $0.469 ?$ |
| Thin Plate | 0 |

The total energy (33), elastic and interphase, is thus.

$$
E=E_{0}+E_{1} V_{\eta}+\gamma S
$$

or in the reduced form

$$
\begin{equation*}
\left[\left(E-E_{0} V\right) / E_{1} V\right]=\eta+\frac{y S}{V}=\eta+\frac{r_{0}}{a} \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{0}=y / E_{1} \tag{36}
\end{equation*}
$$

is the material constant with dimension of length, volume-to-surface ratio, $a=V / S$, in a typical particle size, characterizing its degree of coarsening.

Comparing the reduced energy (35) for the varions shapes versus the ration rofa characterizing the degree of coarsening, the critical transition size from one shape to another can be fond. The size a is related to the particle volume $V$ by the following relations:
for a sphere

$$
a=(V / S)=(4 / 3)(3 / 4 \pi)^{1 / 3} \nabla^{1 / 3} \approx 0.83 V^{1 / 3}
$$

for a cribe

$$
a=(1 / 6) v^{1 / 3} \approx 0.1666 v^{1 / 3}
$$

for an octahedron $\quad a=\left(4^{1 / 3} \sqrt{3} / 4\right) v^{1 / 3} \approx 0.69 \mathrm{~V}^{1 / 3}$
for a tetrahedron $a=\left(4^{1 / 3} \sqrt{3} / 2\right) v^{1 / 3} \approx 0.35 V^{1 / 3}$
Therefore comparing the reduced energies (35) for a spheroid, $\left(E-E_{0} V\right) / E_{1} V=0.708+1.20 r_{0} / \sqrt[3]{ }$.
and for a cuboid

$$
\left(E-E_{0} V\right) / E_{1} V=0.07+6 \eta_{0} / \sqrt[3]{V}
$$

one can see that a spheroidal inclusion is more stable at $\sqrt[3]{V} \leqslant 7.6 r_{0}$ and a cuboid precipitate becomes more stable upon coarsening when $\vec{N} \geqslant 7.6 \mathrm{r}_{\mathrm{o}}$

In the case of positive anisotropy, $c_{11}{ }^{-c_{12}}-\mathbf{~ c ~}_{44}>0, B(n)$ assumes minimum value at $n=n_{0}=(1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3})$ and thas the lowest elastic energy is attained for a platelet with the (111) habit. Te can also assume that an optimal polihedron which is formed from a spheroid during its coarsening should be faceted by the optimal (111) planes only. Such a polihedron is either octahedron or tetrahedron.

Elastic energy of an octahedron given by integrating eq. (34) was calculated by Tsakalakos.

## 3. APFLICATIONS

## A. GP Zones in A1-Based Alloys.

X-ray and electronmicroscopic studies have shown that aging of some supersaturated alloys results in the formation of so-called GP zones, small segregations of atoms that later develop intometastable or stable precipitate phase. A GP zone may be either equiaxial (Cu-Co, AlZn, Al-Ag otc.) or platolike (A1-Cu, Cu-Be) shapes.

Formation of GP zones can be well understood if they are regarded as new phaso precipitates which are formed as aresultof isomorphic decomposition occurring according to metastable diagrams with miscibility gap. If the initial solid solntion has the cubic lattice, sacha decomposition results in atomic redistribution over crystal latice sites of this lattice and formation of cubic phase precipitates enriched by solate atoms within the cubic phase matrim. Then theoretical. resalts
formalated above may be applied to predict morphology and the structare of GP zones.

Since both phases have the same crystal lattice but different composition, the stress-free transformation shain is a pure dilatation:

$$
\begin{equation*}
\varepsilon_{i j}^{0}=\varepsilon_{0} \delta_{i j}=(d a / a d c)\left(c_{p}-c_{m}\right) \delta_{i j} \tag{37}
\end{equation*}
$$

Where da/adc is the concentration coeffeicient of the crystal lattice expansion, $c_{p}$ and $c_{m}$ are atomic fractions of solnte atoms in the precipitate and matrix, respectively.

## a. GP Zones in $\mathrm{Al}-\mathrm{Cu}$ Allors

In Al-Cu alloys crystal lattice mismatch is very big. The concentration coeffeicient of the crystal lattice expansion is about $10 \%$ :

$$
\mathrm{da} / \mathrm{adc} \mathrm{Cu}_{\mathrm{u}}=-0.091
$$

For such a large mismatch the plate-1ike morphology should be expected. Since $c_{11}-c_{12}-2 c_{44}<0$ for $A 1\left(c_{11}=1.068 \times 10^{12}, c_{12}=0.607 \times\right.$ $10^{12}, c_{44}=0.282 \times 10^{12} \mathrm{dn} / \mathrm{cm}^{2}$, theminimum of $\mathrm{B}(\mathrm{n}) \mathrm{falls}$ on the vector $\mathrm{n}_{\mathrm{o}}=$ (001). This means that coherent precipitates should have \{100\} habit.

According to Gerold [25] a GP zone in $A 1-C u$ alloy is a sole plane (001) of Ca atoms (Fig. 2). This habit is in accordance with the above theoretical predictions. Recent electron microscopic observations seems to confirm this.

Let us estimate the distance between the Cu filled (001) plane and the nearest so planes. According to (30) for a plate-1ike precipitate of a cubic phase in the cubic matrix with the (001) habit

$$
\begin{aligned}
& \sigma_{0} n_{0}=\left(c_{11}+2 c_{12}\right) \varepsilon_{0} n_{0}=\left(c_{11}+2 c_{12}\right)(d a / a d c)\left(c_{p}-c_{m}\right) n_{0} \\
& \Omega\left(n_{0}\right)=\left(1 / c_{11}\right) n_{0}
\end{aligned}
$$

Therefore

$$
S\left(n_{0}\right)=g\left(n_{0}\right) \sigma_{0} n_{0}=\frac{c_{11}+2 c_{12}}{c_{11}}\left(\begin{array}{l}
d a \\
--- \\
\mathrm{adc}
\end{array}\right)\left(c_{p}-c_{m}\right) n_{0}
$$

and the transformation strain (30) within the constrain (001) plate-1ike precipitate is

$$
\begin{align*}
u_{i j}^{*}= & S\left(n^{0}\right)_{i} n_{j}^{0}=\frac{c_{11}+2 c_{12}}{c_{11}}\binom{\mathrm{da}}{-\frac{a d c}{}}\left(c_{p}-c_{m}\right) n_{i}^{0} n_{j}^{0}= \\
& =\frac{c_{11}+2 c_{12}}{c_{11}} \frac{d a}{a d c}\left(c_{p}-c_{m}\right)\left(\begin{array}{c}
000 \\
000 \\
001
\end{array}\right) \tag{38}
\end{align*}
$$

It follows from (38) that the total strain within a constraint platelet precipitate with the (001) habit transforms its cubic lattice into a tetragonal one. This is the stress-induced tetragonality. The displacement of Al (001) plane nearest to the Ca (001) plane toward the $C u$ (001) plane produced by eigenstrain $u_{i j}$ given by (37) is

$$
\begin{equation*}
\mathrm{u}=\mathrm{u}_{33} a_{A 1} / 2=c_{11}+2 c_{12} / c_{11}\left(\mathrm{da} / \mathrm{adc}_{C_{u}}\right)\left(c_{p}-c_{m}\right) a_{A 1} / 2 \tag{39}
\end{equation*}
$$

where $a_{A l}$ is the Al crystal lattice parameter and adi/2 is the interplanar distance for a (001) plane.

The GP zone may be segarded as a plate-1ike precipitate whose thickness is equal to 2 interplanar distances ( $=a$ ). Half crystal lattice sites of such a precipitate are filled by $C$ atoms and the other half by Al atoms. Therefore, we may assume that $c_{p}=1 / 2$. Since matrix does not have $C u$ atoms, $c_{m}=0$. Using the 1 atter ineq. (38) together with (da/adc) $\approx-0.091$ and $A 1$ lattice elastic constants we have


The best fit between calculated and observed r-ray diffuse scattering has been obtained wen displacement of the Al (001) plane toward the nearest (001) $C u$ plane is $n \approx-0.2 A^{\circ}$ [26]. The theoretically predicted valuen $\approx-0.196 A^{\circ}$ is inthe excellentagreement withthat. It should also be mentioned that the calculation based on the crystal lattice
static theory [22] gives the same equation for displacement if the phonon spectrum dispersion is neglected.

The matrix $u_{i j}^{*}$ given by (37) also predicts that the crystal lattice parameters of GP zone in (001) plane are exactly the same as in Al matrix.

## b. $\theta^{n \prime}$ Phase

Aging above $100^{\circ} \mathrm{C}$ results in dissolution of GP zones and appearance of platelets of $\theta^{\prime \prime}$ metastable phase that is formed by alternation of Cu and AL (001) planes in the fce lattice Cu Al Al Al Cu Al Al A1... Therefore atomic fraction of $C u$ in $\boldsymbol{\theta}^{\boldsymbol{\prime}}$ phase is $\mathbf{C p}=1 / 4$. The $\boldsymbol{\theta}^{\boldsymbol{n}}$ phase formed due to such a sequence is a tetragonal phase with $c \approx 2 a_{s c}$ and $a \approx a_{u}$ $\theta^{n}$ phase being an ordered fac-based superstructure enriched by Ca atoms has misfit described by eq.(37) and therefore should also be formed as platelike precipitates with \{100\} habit.

Let ns calcolate the $\boldsymbol{\theta}^{\prime \prime}$ phase crystal lattice parameters using eq. (37). It predicts
prodicts
$c=\left(1+\mathrm{a}_{33}^{*}\right){ }^{2 a_{A 1}}=1+\binom{c_{11}+2 c_{12}}{-c_{11}}\left(\begin{array}{l}\text { da } \\ -- \\ \mathrm{adc}\end{array}\right) \cdot(1 / 4) \cdot 2 \cdot 4.04$
$=\left[1+\frac{1.068+2 \cdot 0.607 \cdot(-0.091) 1 / 4}{1.068}\right] \cdot 2 \cdot 4.041=7.69 \mathrm{~A}^{0}$
-
Since the parameters of the constraint $\theta^{n}$ phase in the (001) habit plane should be oxactly the same as in the matrix, we predict

$$
a=a_{A 1}=4.041 \mathrm{~A}^{\circ}
$$

Tho calculated values $c=7.69 A^{\circ}$ and $a=4.041 A^{\circ}$ are perfectiymatched to the obsorved crystal lattice parameters $c=7.7 A^{\circ}$ and $a=4.04 A^{\circ}$. Therefore both the habit plane orientationand crystal lattice parameters of $\theta^{\prime \prime}$ fit very well the theoretical predictions.
c. $\theta^{\prime}$ Phase

The intermediate tetragonal $\theta^{\prime}$ phase that succeeds the $\theta^{\prime \prime}$ phase in the course of aging has the fcc-faced lattice $A 1_{2} C 口 \square$, where designates vacancy. The presence of built-in vacancies in the fec lattice of the $\theta$, phase introduce the additional contraction to the stress-free transformation strain. The theory predicts that $\boldsymbol{\theta}^{\prime}$ phase precipitates should also be platelets with the $\{001\}$ habit. This conclusion is in agreement with electron microscopic observation.

Since cIystal lattice mismatch for $\theta^{\prime}$ phase in the Al matrix cangot be determined at the moment (we onlyknow that its dilatational part
is much larger than for the $\theta^{\prime \prime}$ phase). we cannot calculate parameter cusing the same equation as with the $\theta^{n}$ phase. However, the theory predicts that the crystal lattice parameter, a, which is situated in the mabit plane most coincide exactly with the crystal lattice parameter of pure Al, i.e., a ${ }_{\mathrm{Al}}=4.041 \mathrm{~A}^{\circ}$. This prediction is also inexcellent agreement with the observed resilts:

$$
\begin{aligned}
& \mathrm{a}_{\theta^{\prime}}=4.04 \mathrm{~A}^{0} \\
& \mathrm{c}_{\theta^{\prime}} \geqslant 5.8 \mathrm{~A}^{\circ}
\end{aligned}
$$

## d. GP Zones with Small Crystal Lattice Mismatch

GP zones were also observed in Ca-Co, Al-Zn, Al-Ag alloys. The difference between atomic diameters os solute and solvent atoms for them is less than about 3\%. Since the GP zone volume is small, the theory predicts spherical shape of precipitates (see section 4). This is in agrement ith r-ray and electron microscopic observations. It is of interest to note that estimations of the elastic moduli of the precipi-
 tion the theory developed above predicts spherical shape in the early
stage of aging which should be transformed into octahedron (or tetrahedron) and later into \{111\} piatelets.

## e. GP Zones When Precipitate Phase Is Hexagonal

Calculations by Mayo and Tsakalakos for GP zones and metastable $\eta^{\prime}$ heragonal phase give the \{111\} A1 habit [11] which is in agreement with electron microscopic observation. Prccipitates of the $\eta^{\prime}$ metastabie hexagonal phase in Al-Zn-Mg alloys give one more confirmation that a coherent plate-1ike precipitate and matrix have exactly the same crystal lattice parameters in the habit plane. Crystal lattice parameters of constraint hexagonal $\eta^{\prime}$ phase are

$$
a_{\eta},=4.96 \mathrm{~A}^{\circ}, c_{\eta},=8.68 \mathrm{~A}^{\circ}
$$

The A1-based matrix has the parameter $a_{0}=4.054 A^{\circ}$ 。The $[\overline{1} / 2 \overline{1} / 21]_{0}$ and $[\overline{1} / 2 \quad 1 \overline{1} / 2] \rho t r a n s l a t i o n s$ of the fccmatrix lying in the (111) plane Which are transformed into the parameter an of the $\eta^{\prime}$ phase are equal to
$T([\overline{1} / 2 \overline{1} / 21])=T([\overline{1} / 21 \overline{1} / 2])=a_{0} \sqrt{3} / 2=4.054 \cdot \sqrt{3} / 2=4.965 \mathrm{~A}^{\circ}$. This value with accuracy of x-ray measurements coincides with the value $a=4.96 A^{\circ}$ observed.

## B. Precipitation of Nitrides in Re-N Alloys

Elastic strain thoory formalated above can be applied to determine morphology and crystal lattice correspondence of nitride precipitates in Fe-N martensite [9,22].
a. Precipitates of $a^{n}$ Phase $\left(\mathrm{Fe}_{16} \mathrm{~N}_{2}\right)$ in $\mathrm{Fe}-\mathrm{N}$ Martensite

The decomposition reaction that occurs in tempered bct Fe-N martensite leads to the formation of ordered bcc-based tetragonal nitride, $\mathrm{Fe}_{16} \mathrm{~N}_{2}\left(a^{\mathrm{n}}\right)$ in the bcc aFe matrix which later transforms into
fcc-based $y^{\prime}$ phase ( $\mathrm{Fe}_{4} \mathrm{~N}$ ) 。 According to Jack [28], a phase is a tetragonal phase with

$$
\begin{aligned}
& a\left(a^{\prime \prime}\right)=2 a_{\mathrm{Fe}}=2.2 .86=5.72 \mathrm{~A}^{0} \\
& c\left(a^{\prime \prime}\right)=6.292 A^{0} \sim 2 a_{0}
\end{aligned}
$$

The spacing a( $\left.\alpha^{\prime \prime}\right)$ is exactly equal to twice the crystal lattice parameters of the aFe. This coincidence cannot be accidental. It may be explained if $a^{\prime \prime}$ phase precipitates are coherent platelets with the (001) habit. Then the theory predicts that parameter a( $\alpha^{\prime \prime}$ ) situated in the habit plane (001) should be exactly equal to the corresponding parameter ${ }^{2 a}$ Fe of the (001) matriz plane. In other words. the crystal lattice parameters observed by Jack are parameters of constraint precipitate. This conclusion which directly follows from the theory was proved by the crystal lattice parameter measurements of the single phase ordered $a^{n}$ phase solid solntion which is, by definition, the stress-free Fe-8.56 at\%N single phase alloy for the measured crystal lattice parameters are

$$
\begin{aligned}
& a\left(a^{n}\right)=5.692 A^{0} \\
& c\left(a^{n}\right)=6.180 A^{0} \quad[29]
\end{aligned}
$$

For this alloy $a\left(\alpha^{\prime \prime}\right) \neq 2 a_{\text {Fe }}$ which proves that coincidence of $a\left(a^{\prime \prime}\right)$ ith 2aFe observed by Jack is a result of constraint. For the stoichiometric alloy the stress-free strain is $\varepsilon_{11}^{0}=-0.006537, \varepsilon_{3}^{0}=0.107397$. These values enables one to calculate the crystal lattice parameters of the constraint (001) precipitate osing eq.(29). The calcalation gives

$$
\begin{aligned}
& a\left(a^{n}\right)=2 a_{\mathrm{Fe}}=2 \cdot 2.80=5.720 \mathrm{~A}^{0} \\
& c\left(a^{n}\right)=6.289 \mathrm{~A}^{0}
\end{aligned}
$$

which is in excellent agreement with the Jack observations.

$$
t=\frac{-0.004895}{0.080413}=-0.0608
$$

In the case of the (001) habit the constraint strain (29) has the form

$$
\mathrm{u}_{\mathrm{ij}}^{*}=\varepsilon_{33}^{0}+\frac{2 c_{12}}{c_{11}} \varepsilon_{11}^{0}\left(\begin{array}{c}
000 \\
000 \\
001
\end{array}\right)
$$

ordered phase $\mathrm{Fe}_{4}$ [28]. The crystal lattice parameter of the $\gamma^{\prime}$ phase near its stability limit is

$$
a_{\gamma},=3.791 \mathrm{~A}^{0}
$$

Whereas, that of the bcc $\alpha$ Fe matrix is

$$
a_{0}=2.860 \mathrm{~A}^{0}
$$

Since the stress-free transformation strain for bcc fec crystal lattice rearrangement is the tetragonal Bain strain, its components are

$$
\begin{aligned}
& \left.\varepsilon_{11}^{0}=\varepsilon_{22}^{0}=a_{\gamma}, / a_{0} \sqrt{2}\right)-1=(3.791 / 2.86 \sqrt{2})-1=-0.0627 \\
& \left.\varepsilon_{33}^{0}=a_{\gamma}, / a_{0}\right)-1=(3.791 / 2.86)-1=0.3255 \\
& \left.t=\varepsilon_{11}^{0} / \varepsilon_{3}^{0}\right)=-0.1926
\end{aligned}
$$

With this numerical value $t=-0.1926$ using the elastic constants of pure iron in eq. (25a) we have

$$
x_{0}=(0.484,0,0.875)_{b c c}
$$

This unit vector is normal to the predicted habit plane which deviates only by $2.4^{\circ}$ from the (102) bce habit observed [31]. Making use of the elastic constants of aFe and value $t=-0.0608$ ineq. (25a) yields the vector $n_{0}$ minimizing $B(n)$ in the form

$$
\mathbf{n}^{\circ}=(\sin \theta, 0, \cos \theta) \text { where } \theta=18.6^{\circ} \text { or } \mathbf{m}^{\circ}=(0.279,0,0.960)
$$

Which is a deviate less than $1^{\circ}$ from the normal to the (207) bcc plane. Therefore a large coherent precipitate of the $\boldsymbol{a}^{\boldsymbol{M}}$ phase whose shape is predominantly dictated by the elastic energy relaration should be
produced in the form of a thin plate with habit close to（207）bcc［22］． When this result was first obtained there was the impression that it contradicts the electron microscopic observations of the $\alpha^{\prime \prime}$ phase in the form of a thin plate with（001）habit．However，using the same theory Hong，et al．have demonstrated that for a small a＇phase precipitate whose equilibrinm aspect ratio is less than 11，the habit plane is （001）bcc［9］．Only later with particle coarsening should it be trans－ formed to the（207）habit．The electron microscopic observations seem to confirm this prediction．The（001）habit plane was observed tobe transformed into packered（001）plane composed of segments of planes close to the［207］planes［30］．

## C．Habit P1anc of $\beta$－Phase in $\mathbf{V}-\mathbf{H}$ Alloys．

$\beta$ phase in vanadiam hydride is an interstitial bcebased solid solution with $⿴ 囗 十 一$ atom occupying the sole $0 z$ octahedral sublattice of bcc V host lattice．Such an occupancy produces pseudotetragonal distortion． $\beta$ phase crystal lattice parameters are

$$
\mathrm{a}=3.002 \mathrm{~A}^{0} \quad \mathrm{C}=3.311 \mathrm{~A}^{\circ}
$$

The $V$ matrix lattice has the parameter

$$
a_{0}=3.032 \mathrm{~A}^{0}
$$

Therefore，the stress－free transformation strain is

$$
{ }_{\varepsilon_{11}^{P}}^{P}==-0.0099 \cdot \varepsilon_{33}^{0}=0.0890 \text { and } t=-0.111
$$

With the $V$ elastic constants eq．（25b）yields

$$
n_{0}=(0.277,0.277,0.920)
$$

Which is close to the normal to the（227）bce habit．The normal to the observed habit plane of the $\beta$ phase is

$$
n_{\text {obs }}=(0.293,0.236,0.926)[37,38]
$$

Deviation of calculated habit from the observed one is about $0.9^{\circ}$ ．This
agreement can be regarded as very good because the theory does not have any filtering parameters.

## 6. Magnetostatic Energy and Analogy with Elastic Strain Energy.

As was mentioned in the Introdaction there is the profound analogy between elastic strainenergy of a two-phase coherent dispersoid and magnetostatic energy of ferromagnets and electrostatic energy of ferroelectrics. The consequences of this analogy are so important that they deserve a special discussion. Below the equation formagnetostatic energy of the system of ferromagnetic domains will be described, and it will be shown that mathematically the equation for magnetostatic energy is analogous to one for the elastic strain energy. It will be demonstrated that the $k$-space technique developed above for the elastic energy can be with the same efficiency applied for magnetostatic energy of ferromagnets in the cases when the Bloch wall thickness is well below the typical size of domains [22].

As is known, the magnetostatic energy may always be represented as the sum of interacting magnetic dipoles

$$
\begin{equation*}
E_{\text {mag }}=1 / 2 \iint d^{3} r d^{3} r^{\prime} m(r)_{i}\left[\frac{\delta_{i j}}{\frac{\left(r-r^{\prime}\right)_{i}\left(r-r^{\prime}\right) j}{\left|r-x^{\prime}\right|^{3}}-3-\left.1 r r^{\prime}\right|^{3}}\right] m\left(r^{\prime}\right)_{j} \tag{40}
\end{equation*}
$$

Where $\quad(r)$ is the magnetization density at the point $r$, the integration in (40) is taken over the infinite crystal body. Using the Fourier representations:

$$
\begin{aligned}
& m(r)=\int \frac{d^{3} k}{(2 \pi)^{3}} M(k) \exp (i k r) \\
& r^{-3} \delta_{i j}-r^{-5} 3 r_{i} r_{j}=4 \pi \int\left(k_{i} k_{j} / k^{2}\right) \exp (i k r) d^{3} k /(2 \pi)^{3}
\end{aligned}
$$

in (37) one has

$$
\begin{equation*}
E_{\text {mag }}=(1 / 2) \iint_{-\infty}^{\infty} 4 \pi \frac{|M(k) k|^{2}}{k^{2}} d^{3} k /(2 \pi)^{3} \tag{41}
\end{equation*}
$$

where for simplicity the magnetic susceptibility is assumed to be equal to unity.

Let us consider an arbitrary system of ferromagnetic particles with varions possible directions of magnetization designated by the index p. Then the spatial distribution of the magnetization produced by the system of magnetic particies or magnetic domains is

$$
\begin{equation*}
m(r)=M_{0} \quad \sum e(p) \tilde{\theta}(p, r) \tag{42}
\end{equation*}
$$

(compare with eq. (6), where $\boldsymbol{\theta}(\mathrm{p}, \mathrm{x})$ is again the shape function of domains of the $p^{\text {th }}$ type, $e(p)$ is the unit vector along the magnetization direction of $p^{\text {th }}$ domains. The Fourier transform of (42) is

$$
\boldsymbol{M}(\mathbf{k})=M_{0} \quad \sum e(p) \quad \theta(\mathbf{p}, \mathbf{k})
$$

substituting this equation to (41) yields

$$
\begin{equation*}
E_{\text {mag }}=2 \pi M_{0}^{2} \sum_{p, q} \int B(k / k) \underset{p q}{\operatorname{mag}} \theta(p, k) \theta(q, k)^{d^{3} k /(2 \pi)^{3}} \tag{43}
\end{equation*}
$$

where

$$
B(n) \underset{p q}{m a g}=(e(p) n)(e(q) n)
$$

is the angular function of the $k$ vector direction, $=k / k$. One may readily see that eq.(43) for the magnetostatic energy has absolutely the same form as eq.(14) for the elastic energy.

Forasingle domain particle eq.(43) gives the analog ofeq.(15) for the elastic energy of a single coherent inclusion:

$$
\begin{equation*}
E_{\text {mag }}=2 \pi M_{0}^{2} \int B(k / k)_{\operatorname{mag}}|\theta(k)|^{2} d^{3} k /(2 \pi)^{3} \tag{44}
\end{equation*}
$$

where $B(n)=(o n)^{2}$. Equation (44) can also be rewritten as

$$
\mathrm{E}_{\text {mag }}=2 \pi \mathrm{M}_{0}^{2} \alpha \mathrm{~V}
$$

where

$$
\alpha=v^{-1} \int\left[(0 k)^{2} / k^{2}\right]|\theta(k)|^{2} d^{3} k /(2 \pi)^{3}
$$

is the $k$-space representation for the so-called demagnetization factor, the dimensionless coefficient depending only on the shape of the particle.

It should be emphasized that eq.(43) gives the close solntion for an arbitrary set of ferromagnetic domains whose size is well above the Bloch wall thickness. This equation can be efficiently used for calcalation of the reverse magnetization and for analysis of morphologies of domain structures. To the authors knowledge, this kspace formulation of the magnetostatic energy is new and can be very useful in various applications because of its mathematical simplicity.

The formal analogy between the elasticenergy (14) and (15), and the magnetostaticenergy (43) and (44) consists in the fact that both have the same mathematical form. The kernel function $B(k / k) p q i n t h e$ elastic energy (14) as well as the corresponding kernel function B(k/k) $\underset{p q}{\text { mag }}$ depend on the direction of the wave vector $k$ rather than on its absolute value. The kernel functions $B(k / k) p_{p}$ are, infact, the Fourier transform of the pairwise interaction between elements of volume of the domains (or coherent particles) of the type pand $q$. These energies can be found by the back Fourier transform wich gives the singolar function

$$
\nabla_{p q}\left(r-r^{\prime}\right)=1 /\left|r-r^{\prime}\right|^{3} \Psi\left(\left(r-r^{\prime}\right) /\left|r-r^{\prime}\right|\right)
$$

where $\Psi(m)$ is the function of the direction, (r-r')/Ir-r'|. This is the typical form of the dipole-dipole like interaction. The elastic interaction between elements of coherent precipitate volume has exactly the same the form of the dipole-dipole interaction when $B(n)$ has the cylindrical symmetry about a certain axis e, i.e. When

$$
B(n)=B(n e) \cong \max B(n)+\beta(n e)^{2}+\ldots .
$$

Then the back Fourier transform yields

$$
V\left(r-r^{\prime}\right)=\beta\left|r-r^{\prime}\right|^{-3}\left[1-3\left(\left(r-r^{\prime}\right) e\right)^{2} /\left|r-r^{\prime}\right|^{2}\right]
$$

which corresponds to interaction between two dipoles, $\sqrt{\beta} e^{\text {e }}$ separated by the distance $x$ -

The major physical consequence of the fact that $B(k / k) \underset{p q}{m a g}$ depends only ondirection of vector is the well knowneffect, dependence of the magnetostatic energy on morphology of ferromagnetic particles. It results in instability of a homogeneous state of the ferromagnetic phase With respect to decomposition into the system of domains. In the case of a uniaxial ferromagnet film a large domain with the opposite magnetization direction than the matrix also proves to be unstable with respect to splitting into the array of bubbledomains. The reason for this is the same, repulsion between volme elements of the domain which repel each other as parallel identical dipoles.

Summing up the foregoing one can see that instability of a homogeneors state of feriomagnet (and ferroelectric) is cansed by the fact that the magnetostatic energy of a ferromagnetic phase unlike the exchange enexgy depends not only on the volume of the phase, but also on its morphology, shape and spatial distribution. It will be shown below that the same is true for the elastic eneergy of a coherent dispersoid. 7. Strain-Induced Instability of Coherent Particles in Two-Phase Cubic A110ys.

The elasticenergy, unlike the "chemical" free energy of a twophase alloy depends not only on the precipitate phase volume, but also on its shape and spatial distribution. The situation here is the same as with magnetostatic energy. Therefore, one couldexpect that dependence of elastic energy on morphology would produce the same effect, viz. instability of large coherent particles. This instability, splitting large coherent precipitates, analogous to the splitting
instability resulting in formation of bubble domains would seriously affect the traditional concepts of coarsening in two-phase cubic alloys. The main result of the conventional theory of coarsening, that a twophase alloy-becomes more stable upon coarsening should be questioned.

First of all, all studies concerning evolution of alloy upon coarsening implicitly assume that precipitates remain intact and, if they coarsen, just monotonically increase their size. The theory [2,4] enables us to test this assumption. Following [32] we shall demonstrate that when a cuboidal particle of a cubic phase precipitate reaches a certain critical size, maltiple of the typical lengthro introduced above by eq. (36), the caboid becomes unstable and decomposes into a donblet and later into an octet of subparticles. This phenomenon reflects repalsive interaction betweenelements of volume of a cuboid which, infact, opposes the coarsening. Similarly we can predict that large plate should also be unstable with respect to spliting into several subplates and so on.

Splitting is not the only way to prevent formation of too large overgrown precipitates. Elastic interaction between them may produce the same effect. This interaction wond just oppose coarsening, the phenomenor which was really observed.

To analyze the elastic energy change apon transition of a monlytic precipitate into a group of subparticles we should compare the elastic energies of both states. To do this, let us represent the shape function, $\theta(x)$ of a group of identical subparticles as the sum of their shape functions, $\boldsymbol{\theta}_{\mathbf{0}}\left(\boldsymbol{r}-\mathbf{R}_{\mathbf{j}}\right)$

$$
\tilde{\theta}(r)=\Sigma_{j} \theta_{0}\left(r-R_{j}\right)
$$

where the inder $j$ labels all subparticles $\mathbf{R}_{\mathbf{j}}$ describes the position of
the center of gravity of the $j^{\text {th }}$ subparticle. The Fourier transform of this function is

$$
\begin{equation*}
\theta(k)=\theta_{0}(k) \Sigma_{j} \exp \left(-i k R_{j}\right) \tag{45}
\end{equation*}
$$

where the matual location of precipitates is taken into account by the "structural factor, " $\sum_{j}$ exp $\left(-i k R_{j}\right), \theta_{0}(k)$ is the Fourier transforn of the shape function of a subparticle.

Substituting (45) to (15) gives the close equation for the elastic energy of this group of precipitates:

$$
\begin{equation*}
E=1 / 2 \int B(k / k)\left|\theta_{0}(k)\right|^{2}\left|\Sigma_{j} \exp \left(-i k R_{j}\right)\right|^{2} d^{3} k /(2 \pi)^{3} \tag{46}
\end{equation*}
$$

Using the expansion of the function $B(n)$ in the series of cubicharmonics and terminating the corresponding series by two forms, we have

$$
E=E_{0} V+E_{1} V 4\left[I_{1}+27 \mu I_{2} / 2\right]
$$

Where $E_{0}$ and $E_{1}$ are given in comments to eq.(34),

$$
\mu=\left(c_{11}-c_{12}-2 c_{44}\right) /\left(c_{11}+2 c_{12}+4 c_{44}\right)
$$

The dimensionless coeff icients $I_{1}$ and $I_{2}$ have the form

$$
\begin{align*}
& I_{1}=v^{-1} \int \gamma_{1}(k / k)\left|\theta_{0}(k)\right|^{2}\left|\Sigma_{j} \exp \left(-i k R_{j}\right)\right|^{2} d^{3} k /(2 \pi)^{3} \\
& I_{2}=v^{-1} \int \gamma_{2}(k / k)\left|\theta_{0}(k)\right|^{2}\left|\Sigma_{j} \exp \left(-i k R_{j}\right)\right|^{2} d^{3} k /(2 \pi)^{3} \tag{47}
\end{align*}
$$

where $\quad \gamma_{1}(n)=n_{x}^{2} n_{y}^{2}+n_{x}^{2} n_{z}^{2}+n_{y}^{2} n_{z}$ $\gamma_{z}(n)=n_{x}^{2} n_{y}^{2} n_{z}^{2}$,
$\left(n_{x}, n_{y}, n_{z}\right)$ are Cartesian components of the unit vector $n_{\text {. }}$ The constants I and $I_{2}$ are geometrical factors which depend on shape and mutual location of subparticles. Numerical calculations of the integrals at $c_{11^{-c}} 1_{12}{ }^{-2} c_{44}<0$ show that a cuboidal particle bas greaterelastic energy than an octet of cuboidal subparticles, the energy of the octet being the lowest when cuboidal subparticles are separated by the distance $a=0.4 a$ where $2 a=\sqrt[3]{V}$ is the edge length of the initial cuboid (Fig. 2). The cuboid subparticle has also the greater elastic energy than
the doublet of the identical parallelopiped subparticles formed due to splitting the cuboid. The lowest energy of the doublet is attained when separation distance between subparticles is 0.8 (Fig. 3). The elastic energy of the octet is less than that of the doublet of the same volnme (Fig 4). As for the interphase energy, its increase is caused by the formation of new interphase becanse splitting is less for the donblet than for the octet. Therefore, for a smaller precipitate when the interphase energy contribution dominates, a doublet should be expected. For the layer precipitate when the elastic energy prevails, the octet is favored. The namerical calucolation and comparison of the elastic and surface energies of both morphologies show that the caboid $\rightarrow$ doublet transformation may occur when $\sqrt{3} / \mathbf{V} \geqslant r_{0}$ where $V$ is the cuboid volume, $r_{0}$ is given by eq.(36). Doublet $\rightarrow$ octet transformation may occur when $\sqrt[3]{7} \leqslant 82 r_{0}$. At greater volumes the octet ceases to be stable with respect to transformation to a platelet. These results naturally fit the results in section 4 concerning the shape transformaiton of monolitic particle from 3 a spheroic to a caboid which occars when $\sqrt{V} \leqslant 7.6 r_{0}$. Together these resalts confirm our qualitative conclusions formulated above that the morphology transformation is determined by the ratio between the efficient particle size $\sqrt[3]{\mathbb{V}}$ and characteristic length $r_{0}$ depending on interphase energy, crystal lattice misfitand elastic moduli. The $\sqrt[3]{V 7} r_{0}$ ratio, infact, is the measure of contribution of elasticenergy with respect to interphase energy to the coarsening process. The more is this ratio, the more contribution of elastic energy.

The stability limits found above characterize the conditions when one morphology becomes energetically more favorable than another. However, it should be emphasized that the "overgrown microstructure is
not antomatically transformed into another．It may still be stable with respect infinitesinal variations of the shape．In this situation the overgrown microstracture is metastable．It can be transformed into the stable one only by the finite shape transformation playing the same role as the critical nucleus fluctuation in the conventional phase transfor－ mation thermodynamics．Since the critical shape fluctuation required for the shape transformation is macroscopically large，all metastable morphologies should be very stable and transform into the stable mor－ phology only near the metastability limit where metastable particie also becomes unstable with respect to infinitesimal shape variations．

Simple qualitative interpretation of the microstructure transforma－ tion，spheroid－＞cuboid－＞doublet－＞octet－＞platelet，upon coarsening is the following．In the relevant case when $c_{11}{ }^{-c} \mathbf{1 2}^{-2} \mathbf{c}_{44}$＜ 0 elements of the precipitate phase volume repeleach other along the＜111〉directions． This repalsion transforms a spheroidintocnboid due to stretching of the spheroid volume along the 〈111〉 directions．The same effect results in splitting the cuboid along the same 〈111〉 direction transforming the cuboid into an octet．The only reason why new phase precipitates can exist as monolitic homogeneous particles is the interphase energy ef－ rect．The interphase energy opposes the splitting since it produces new interphase．The situation here is the same as in the case of ferronag－ nets，becanse both elastic energy and magnetostatic energies destroy the homogeneous state of a particle in the zero interphase energy limit，or in the limit of large particle volume when interphase energy plays the minor role．The example of sucl ：lehaviour gives a strip ferromagntic domain which becomes unstable with respect to splitting into the set of bubble domains becanse of repulsion between the elements of the strip
domain volqme repelling each other as parallel magnetic diploes.
The above resalts show that the mathemetically simple theory based on the homogeneous modulns case approximaiton can be efficiently applied to the important techincal alloys. For example, it has been shown above in section $3 F$ that the homogeneous modulus approximation gives nevertheless asymptotically exact value of the elastic energy of platelike precipitates if the elastic moduliof the precipitate phase are ased. The reason for that is the concentration of elastic strain within the platelike particle (the ratio of elastic energy concentrated out side and inside the particle tends to zero as the squared aspect ratio ( $D / L)^{2}$ $\rightarrow 0$, where $D$ is the thickness, $L$ is the length of the particle). On the other hand, equations for the edge energy of the plate in section 3E are also a syptocially correct if elastic moduli of the matrix are used. The reason for that is the same. The edge energy is the one that is concentrated in the matrix with the same asymptotic accuracy $(d / L)^{2} \rightarrow$ $\rightarrow 0$. Therefore, all results concerning the habit plane, eigenstrain and orientational relations obtained in section 3 in the homogeneous modnlus approximation proves to be $v a l i d$ if the moduli are different. In fact, reduction of elasticenergy uponstrain-induced stage of coarasening occurs mainly dae to redistribution of elastic strain from the matrix to the precipitate phase so that ultimately all elastic strain proves to be contained in thin plate particles. In limit case of the martensite-1ike optimal structure at which bulk elastic energy completely vanishes, the value of elastic moduli does not matter at all. This is the reason why pure crystallographic theory of martensitic transformation proved to be so efficient.

## ACKNOWLEDGMENTS

This work is supported by the Director, Office of Energy Research, Office of Basic Energy Science, Materials Sciences Division of the U.S. Department of Energy under contract UDe-Ac0376Sf00098.

## REFERENCES

1. J.D. Eshelby, Proc. Roy. Soc. A241, 376 (1957); A252, 56 (1959); Prog. Solid Mech., 2, 89 (1961)
2. A.G. Khachatmryan. Soviet Physics - Solid State, $\boldsymbol{8}^{\text {, } 2710 \text { (1966) }}$
3. A.L. Roytbard, Kristallography, 12, 567 (1967)
4. A.G. Khachaturyan and GoA. Shatalov, Soriet Physics - Solid State, 11. 118 (1969)
5. S. Weng A.G. Khachaturyan, Jow. Moriv, Jro, Proc. Int. Symp. Modulated Struct. AIP, N. $\mathrm{I}_{\mathrm{C}}$ (1979) p. 168; Proc. Int. Conf. Martensitic Transormation, Cambridge, Mass, (1979) p. 94; Metallurgical Transactions 12A, 581 (1981)
6. J.W. Wert, Acta Metallurgica, 2465 (1976)
7. M. Hong, M.S. Thesis, University of California, Berkeley, CA, (1978)
8. J.K. Lee and W.C. Johnson, Phys. Stat. Solidi 46(a), 375 (1976)
9. M. Hong, D.E. Medge and J. W. Morris, Jro, Acta Metallargica, 32, 279(1984)
10. A.L. Roitburd and N.S. Kosenko, Phys. Stat. Solidi, 35(a), 735 (1976)
11. W.E. Mayo and T. Tsakalakos, Metallurical Transactions, 11A, 1631 (1980)
12. S.H. Wen, E. Kostian, M. Hong, A.G. Khachaturyan, J. W. Morris, Jr., Acta Metallurgica, 29, 124 (1981)
13. V. Lanteri, T.E. Mitchell and A.H. Heuer, Journal of American Ceramics Society, 69, 564 (1986)
14. A.G. Khachaturyan and G.A. Shatalov, Soviet Physics - JETP, 29, 557 (1969)
15. A.G. Khachaturyan, "The Theory of Phase Transformations and Structure of solid Solutions", Moscov, Nanka (1974); Soviet Physics JETP, 31, 98 (1970); Phys. Stat. So1idi, 35, 119 (1969)
16. A.G. Khachaturyan, V.N. Aizapetyau, Phys. Stat. Solidi, (a) 26, 61 (1974)
17. E. Seitz and D. de Fontaine, Acta Metallargica, 26, 1671 (1978)
18. H. Yamunchi and D. de Fontaine, Acta Metallurgica, 27, 763 (1979)
19. J.K. Lee, D.M. Barnett, and H.I. Aaronson, Metallurgical Transactions, 8A, 1447 (1977)
20. L.J. Valpole, Proc. Roy. Soc. (A) 300, 270 (1967)
21. J.R. Willis, "Asymmetric Problems of Elasticity", Adam Prize Essay, University of Cambridge, (1970)
22. A.G. Khachaturyan, "The Theory of Structural Transformations in Solids", Wiley $\beta$ Sons, N.Y., (1983)
23. J. Gjonnes, Chr. J. Simensen, Acta Metallargica, 18, 881 (1970)
24. G. Thomas and J. Natting, Journal of Inst. Metals, 88, 81 (1959-60)
25. V. Gerold, Acta Cryst. 11, 236 (1958)
26. K. Doi, Acta Cryst. 13, 45 (1960)
27. V. Gerold, in Proc. of 116 TMS Meeting, Denver, Colorado, Febraary 23-26, 1987
28. K.H. Jack, Proc. Roy. Soc. (A) 208, 216 (1951)
29. A.V. Suyazov, M.P. Usikov and R.M. Mogutnov, Fit. Met. Metalloved, 42, 755 (1976)
30. P. Ferguson, V. Dahmen and K.H. Westmacott, Scripta Metallurica, 18, 57 (1984)
31. M.P. Usikov and A.G. Khachaturyan, Phys. Met. Metallography, 30, G14 (1970)
32. A.G. Khachaturyan, S.V. Semenorshaya, and J.W. Morris, Jros (submitted to Acta Metallurica)

## $a$



Fig. 1 Calculated optimal shape of the platelet particle in the habit plane.
(a) slightly anisotropic case (oval shape)
(b) strongly anisotropic case (lense shape)


Fig. 2 Schematic drawing of octet that results from the decomposition of a cuboidal particle.


Fig. 3 Schematic drawing of doublet of plates that results from the decomposition of a cuboidal particle.


Fig. 4 Configurational elastic energy, in dimensionless form, as a function of dimensionless particle spacing ( $u / a$ ) for an octet of clibes (dark line) and a doublet of piates (light line).

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

