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I. INrRODUCIION 

Phase transformation in solids usually involve crystal lattice 

rearrangement with the islands of the new phase inside the parent phase 

matrix. Crystal lattice mismatch produced by phase transformation is 

accommodated by elastic displacements generating the elastic strain 

field within the body. The elastic energy contained in the strain field 

may contribute considerably to the thermodynamics of the phase transfor­

mation. but the main effect of the elastic strain is far beyond the 

trivial renormalization of elastic energy. Unlike the "chemical" free 

energy depending only on the volume of pha.ses. the elastic energy also 

depends on the morphology. shape. dispersion and mutual location of 

inclusions. In such a case the morphology of the alloy becomes an 

internal thermodynamic parameter that can be found from the free energy 

minimization. This. in fact, means that the conventional thermodynamics 

of phase transformations based on the free energy aditivity should be 

questioned and validity of certain classical results has to be re­

examined. To make more clear how far we can go in revising the theory 

of phase transformation when elastic energy is involved. it is note­

worthy to look at the other cases when the bulk free energy proves to be 

dependent on morphology. The other cases where this situation takes 

place are ferromagnets and ferroelectrics whose magnetostatic and elec­

trostatic energy also depend on shape. size and mutual location of 

domains. This dependence manifests it self. for example, in appearance 

of the so-called demagnetization factor. and it affects the ground state 

of ferromagnets. Indeed, the homogeneous single domain state that would 
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be expected without magnetostatic energy transforms into an array of 

domains whose size tends to zero if the Bloch energy (surface energy of 

domain walls) vanishes. It is also known that the repulsive interaction 

between the similar domains results in the formation of so-called bubble 

domain structure. 

The similar dramatic effects of the morphology on the thermo­

dynamics of a phase transformation could be expected in the case of a 

transformation with large crystal lattice rearrangement. The specific· 

examples of such effects are formation of platelet precipitates with the 

specific habit minimizing the strain energy as well as the formation of 

agglomerates of various orientional variants of the new phaseaccommoda­

ting crystal lattice mismat~h and eliminating elastic strain. The 

latter effect is observed during martensitic transformation. ordering 

and decomposiition and is a good example of the profound analogy with 

the magnetic and ferroelectric domain structure. 

The intensive studies of the elastic strain effect caused by the 

other phase coherent inclusions were initiated by the classical works by 

Eshelby [1] in the fifties who calculated the elastic energy of an 

ellipsoidal inclusion in an isotropic case. The next step was made in 

our work [2] and the work by Roitburd [3] where the idea that the 

elastic strain eneregy minimization can be used for the habit plane 

determination was first proposed. 

The general theory of elastic energy of an arbitrary distributed 

inclusion in elastically anisotropic medium in the homogeneous modulus 

case was formulated by Ihachaturyan and Shatalov [4] and developed by 

Wen. Ihachaturyan and Morris [5]. The theory was used for analyzing 

morphology of a single precipitat~ [6-13] and morphology transformations 
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of a group of precipitates [4,5,9,14-18]. The exact solution of the 

elastic problem for an ellipsoidal inclusion in the heterogeneous modu-

1us case and anisotropic crystals was obtained by Lee, Barnett and 

Aaronson [19]. 

The main topic of these lectures is the discussion of the applica-

tion of the elastic theory to practical problems which arise in struc-

tura1 studies of the morphology of two-phase alloys. The consideration 

will be based on the theory developed for the homogeneous modulus case 

[2.4] because this approach enables one to treat arbitrary dispersoids 

using very simple mathematics. The cases where this approximation turns 

out to be insufficient will be discussed separately. The applied as-

pects of the theory will be especially emphasized. There are three 

groups of problems that deserve to be discussed in detail: 

1. Morphology of a single coherent precipitate. its habit plane, 

equilibrium shape, orientationa1 relations and crystal lattice parame-

ters in the constraint state. 

2. Shape transformations and morphology instabilities upon coarsen-

ing. 

3. Strain-induced rearrangement of groups of precipitates upon 

coarsening. 

2. ELASTIC ENERGY AND ELASTIC DISPLACEllENIS INDUCED BY ARBITRARY 
ARRAY OF COBERENI IN<LUSIONS 

Following [4] let us consider n types of inclusions that are 

produced by different crystal lattice rearrangements, for example, the 

rearrangements generating the different orientational variants of the 

same phase. These inclusions may be characterized by stress-free 

f 
. . 0 0 0 

trans ormatlon stralns. Sij(l), ••• , Sij(P), ••• sij(n) describing the 
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macroscopic shape change of the parent phase caused by the respective 

crystal lattice rearrangements. These inclusions can be produced by 

means of the four steps of the Eshelby cycle: 

1. Cut inclusions from the matrix. 

2. Let each inclusion be transformed to a new phase under the 

o 0 
stress-free strains Sij(l), ",sij(n). 

3. Restore the initial shape applying the surface traction to 

create the opposite sign homogeneous elastic strains, 

change. The elastic energy required to induce this set of elastic 

strains is 

(1) 

if the elastic moduli of all phases are the same. where l ijkl is the 

elastic modulus tensor, i.j ,k.l are Cartesian indexes, v(p) the volume 

of all inclusions of the pth type. 

4. Reintroduce restored inolusions in their holes and weld them. 

s. Remove the surface traction and alloy the inclusions and matrix to 

relax. The relaxation energy. dE. by definition. should be a negative 

value reducing the energy (1). 

The total elastio energy is then 
n 

o 0 

E = (1/2) ~=lv(p)lijklSij(P)Skl(p) + dE (2) 

Calculation of the relaxation energy AE requires solution of the 

elasticity problemo The elastic energy (2) is a functional of strain 

field sij(r) at points r. In the approximation of linear elasticity 

this functional has the form 

n 

E = (1/2) E v(p)lijklS~J,(p)e;l(q) + (1/2)/f(eiJ,)d3 r (3) 
p=l 
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where 
(4) 

o 
where aij(r) and ~ijkl are the first- and second- order expansion 

coefficients of the local elastic energy f(8ij) which are material 

constants. The unusual term in (4), linear in 8 ij' appears because in 

the system with inclusions the stress-free states is not a non-deformed 

state. The minimization of eq.(3) with respect to elastic displacements 

(finding mechanical equilibrium) requires solution· of the equation of 

elast ie ity, aa ijl a Xj=O where a ij (r) is stress at the point r=(xl'x2,x3). 

Stress aij(r) is, by definition. the first variati~n of (3) with respect 

to 8ij. Together with (4). it gives 

&E 
o 

aij (r) = -- = -aij (r) + ~ijkl8kl (r) 
&sij (r) 

(5) 

o 
Lot us reveal the physical meaning of the material constants, aij(r). 

At the stress-free state, aij(r)=O, we have by definition of the stress­

free state 

o 
~ijklskl(P) if r is inside a particle of the type p. 

o otherwise 

The latter condition can be rewritten in the condensed form 

(6) 

where Q(p.r) is the shape function of the precipitates of type (p); it is 

equal to unity if vector r corresponds to a point within an inclusion of 

the type p and is 0 otherwise. Introduction of shape function §'(p,r) is 

very convenient because they describe spatial distribution of arbitrary 

inclusions. With definition (6) eq.(S) is 
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The elastic equilibrium equation aaij/axj=O can then be rewritten in the 

form 
a9(p ,k) 

( 8) 

where the strain definition, 8 ij = (1/2)(au/aXj + aUj/axi)' was used. 

Multiplying eq.(8) by the factor exp(-ikr) and i.ntegrating over r yields 

n 
o 

= -i ~=l a ij(P) k j 9(p,k) (9a) 

or in the operator form 

(9b) 

CD 

T(k) = III lI(r) exp (-ikr) d3 r -
CD 

9(p,k) == III §'(p.r) exp (-in) d3 r (10) 

-
In transition from (8) to (9), the boundary conditions on infinity, 

.(r) -> 0 and 8ij(r) -> 0 at r -> CD, were used. 

The solution of eq.(9) is 

n 

T(k) = -i! G(k) ao(p) k 9(p,k) 
p=l 

or in indices 

(11) 

where Gij(k)=(G(k»ij is the matrix reverse to the matrix 

(G(k)-l) ij=A.ikljkkkl' which. in fact is the Fourier transform of the Green 

funct ion of elast ic ity equat ion. Real displacement s. .Cr), can be 

found by the back Fourier transform, 

n d3k 

lI(r)i -i E 1-- G(k) .. 
0 

= ajkkk 9(p,k) exp ( ikr) (12) 

p=l (211')3 1J 
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Substituting (12) to (3) and integrating over r within infinite body 

results in to the Fourier representation of the elastic energy 

o 0 

E = (1/2) ~ v(p) Aijkl 8ij(P) 8kl(P) 

The ident it ies 

-(1/2) E 

p.q 
J 

d3k 

(2'11')3 

d3k 

--- = v(p) & 
(2'11')3 pq 

where &pq is the Kronecker symbol simplify (13): 

E = (1/2) Ep,q 

d3k 

J­
(2'11')3 

(13) 

(14) 

where B(n)pq = ., ijkl 8 ~j (p) 8;1 (0 - < .lero(p)G (n) ero (q) I n) and sa (.) = 

k-2G(k). Since the shape function ~(p,r) whose Fourier transform enters 

(14) can be a multiconnected function describing an array of inclusions 

of the type p, eq.(14) may be used for calculation of elastic energy of 

both, an isolated arbitrary shape particle and groups of particles of 

different types. Therefore eq.(14) is, in fact, close equation for 

elastic energy of an arbitrary multiparticle system in an anisotropic 

matrix in the hoaogeneous modulus case. This energy is the sum of 

elastic energies of each isolated particle (self-energy) plus strain-

induced pairwise interaction energies between particles. 

3. A SINGLE PRECIPITATE IN AN INFINITE BODY 

A. Bla.tic EnerST of a 8i .. le Precipitate. 

Closed equation for elastic energy of an isolated coherent particle 

in an infinite crystal body can be obtained from (14) as a particular 
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case. The limit transition to a single particle may be readily done if 

we assume that the phase transition involves only ne type of the crystal 

lattice rearrangement mode and if the shape function entering eq. (14) 

describes a simply-connected region enveloping the new phase particle. 

Then omitting summation over p in (14) we have a simple equation for the 

elastic energy. 
d3k 

E = 1/2 f-­
(211')3 

(15) 

where 
(16) 

o 0 0 

n=k/k. 8ij is stress-free transformation strain. O'ij=A.ijk18kl" 

Qj1(a)=k-
2 

Gjl(k) is the tensor inverse to njl(a) = A.jik1nink' B(a) ~ O. 

where integration is carried out over the particle volume V. Equation 

(17). in fact. yields the Laue interference function describing diffrac-

tion on the particle. It is noteworthy that the last term in integrand 

of (15), B(a). depends on the elastic constants and crystal lattice 

mismatch only. being a material characteristic. while the second term, 

IS(k)1 2• describes the geometry of inclusion only. 

For simple shapes we have the following functions for IS(k) 12: 

sin2 k xa/2 
-----

(k
x
/2)2 

~~n~~:: 
Cky /2) 2 

sinZt.zc/2 
-------

(k/2)2 
(18a) 

for a paraUe10piped with the edge lengths a.b.c.k=(kxkykz)' 

3 sinT (k) - f(k) cosT (k]2 
(18b) 

-1 
is the tensor inverse to Lij 

-1 
that determines the standard form of the ellipsoid surface. Lij Xi Xj=1. 

The eigenvalues of Lij are squares of the ellipsoid semiaxes. a
2

.b
2

.c
2

• 
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The ellipsoid model is especially interesting since. as was shown by 

Eshelby [1] for isotropic elasticity and by Valpole [20] and Willis 

[21]. for anisotropic elasticity. elastic strain inside an ellipsoidal 

inclusion (eigenstrain) is always homogeneous. 

Equation (15) contains the Eshelby solution for an ellipsoid in the 

homogeneous modulus case as a particular cas~ [22]. If the shape 

function (lSb) is used and the limit transition to isotropic elasticity 

is made. 

where ].I is the shear modulus. V is the Poisson's ratio. eq. (15) is 

reduced to the Eshelby solution [1]. 

B. Opt:laal Shap. alld Habit at tu Low I.t.rp ..... BurU' Liait. 

This problem can be solved minimizing elastic energy (14) at the 

fixed value of the precipitate volume V.U] Since B(.) and le(k) 12 are 

always positive 

E = 1/2 f B(.) le(k)12 ~ 1/2 (min B(.» 

(19) 

where min B(.) is the minimum value of B(.). 'lith the identity 

inequality (19) is 

d3k 
E = 1/2 f -- B(k/k) le(k) 12 ~ 1/2 (min B(.» V (20) 

(2'11')3 

where the right side of (20) is the lowest possible limit for the 

elastic energy at a given volume. 
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Let us introduce the unit vector no providing the minimum of B(n): 

B(no) = min B(n) (21) 

For an infinitely thin and infinitely extended platelike inclusion with 

the hab it pI ane minimal to no, the funct ion I &(:k) 12 differs from zero 

only within infinitely thin and infinitely long rod in k-space along no 

(this is a well known result from the diffraction theory; diffraction 

from plate yield rod in reciprocal space minimal to the habit plane). 

In this case the inequality (20) becomes equality. Therefore the mini­

mum elastic energy is attained if an inclusion is "rolled out" into the 

infinitely thin plate with the habit normal to the vector no minimizing 

BCn). The elastic energy then is 

E = ~ulk = (1/2) min B(.) V = (1/2) B(-.)V (22) 

This strain energy (22) is proportional to the inclusion volume. V. 

C. B.lk Bn.rlY of •• Incl •• ion wit. In~.ria.t Pl ••• Strai. Cryst.l 

L.ttic. ....rr.ns ••• nt. 

The case of an invariant plane transformation strain plays an 

espec ially important role in the theory of phase transformations. For 

example. the idea of invariant plane strain is basic for the entire 

crystallographic theory of martensitic transformation which resulted in 

remarkable achievements in understanding the crystallography of this 

transformat ion. The theore tical re suI ts obta ined above enable us to 

realize what is the reason behind this. 

According to the crystallographic theory. the habit plane of a 

martensitic crystal is an invariant plane strain. It will be shown 

below that this directly follows from eq. (22) as a result of the mini­

mization of the elastic energy (15). 

10 
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The invariant plane strain ha~ always a form of a diadic product 

o 0 

u ij = eo 1 in j (23 ) 

o 
where 1 is a unit vector along the displacement direction, n is a unit 

vector normal to the invariant plane. 

'. 
Substituting (23) for ei j to eq. (16) for B(a) yields 

2 [ 0 
BCn) = eo lijkllilknjnl 

(24) 

One may see that at n=.o B(ao)=O since by definition of 0-1(a) 

o 0 _ -1. 0 
ltmqr nr nm - Q (a) iq. Therefore the bulk energy (21) vanishes. 

We have the following simplification in (24) 

( 
0 0 ( -1 ( 

Qjt ao) ltmqrnrn. = Qjt ao) Q ao)tq = Ojq 

Using the latter in (23) we get B(ao) = O. We have proved the result 

that in the case of an invariant plane transformation strain, the mini-

mum of the bulk elastic energy equal to zero is attained when the 

inclusion is a plate whose habit plane coincides with the invariant 

plane. This except ional situation when the choice of the optimal hab it 

plane may eli.minate the most substantial volume dependent positive 

elastic energy makes the case of the invariant plane strain so impor-

tanto For example. one substantial conclusion can be immediately made: 

if any group ~ ~ phase coherent precipitates may rearrange itself ~ 

that .!. plate-like aggregate of various orientational variants of the 

precipitate phase gives the macroscopic shape change described II an 

invariant plane strain. 11 will do this to eliminate the volume depend-

~ elastic strain. This conclusion gives us the direction of strain-

induced coarsening of such precipitate systems. The typical examples of 

such systems are tetragonal precipitates in a cubic phase matrix that 

ult ima tely form the martensite-type structure with the surface reI ief 
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and habit plane determined by the conventional crystallographic theory 

of martensitic transformation. 

D. Habit Plane of Tetralonal .ad Bexalonal Precipitates. 

Equation (21) for the habit plane was solved for the thin plate 

tetragonal plate-like inclusion in a cubic matrix in [12] and for a 

hexagonal inclusion in [11]. 

The solution for a tetragonal inclusion gives two types cf the 

habit. (hOI) for the negative elastic anisotropy cl1-c12-2c44 < O. and 

(hhl) for the positive anisotropy cl1-c12-2c44 > O. 

(i) If cl1-c12-2c44 < O. the normal to the habit plane. Do. is 

Do = (sin 9. O. cos e) where 

0 if -a < t < -[(c11/c12)+1] and 1 < t < CD 

cos2e = 1 + 
cll + 2c12 
-----

t 
if - [(cl1/c12)+1] < t < 0 

cll +c12 I-t 
1 ifO~t<1 (25a) 

o 0 0 0 

where t= 811/833' III and 133 are non-zero components of the stress-

o 
free transformation strain lij (all other components are zero). 

(ii) If c11-c12-2c44 > O. the normal to tho habit plane is 

Do = «1/12) sine. (11/2) sine. cose» 

where 
o if -CD < t < tl 

(~+2)(c11+2c12)t 

cos
2

e = 1 -2 ---------------------- if tl < 
~(c11+2c12)(2t-l) + 4(cll+c12)(t-l) 

t < 0 

1 

~(c11+2c12)(1+2t) 

(cll+2c12) 
= -(cll/c12)-1 - ~ --------

4c12 
cll+2c12 

12 

if 0 ~ 

(25b) 

: 
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It follows from eq.(2Sa) and (2Sb) that for a cubic precipitate in a 

cubic matrix (when t=l), the habit plane is (001) if cll-c12-2c44 < 0 

and is (111) if cll-c12-2c44 > o. 

Similar calculations were made by Mayo and Tsakalakos for 

pl."ecipitates of orthorhombic and hexagonal phase [11]. They derived 

explicit analytical expression for B(.) in terms of crystal lattice 

misfit and elastic constants of the hexagonal phase. Minimizing this 

equation with respect to • they were able to predict the habit of 

precipitates. This approach was applied to AI-Mg-Zn alloy with Zn/Mg 

ratio between 2.S and 7, and the total Zn content less than 20 wt pct. 

The predicted {l11} fcc habit plane of the 'I' phase in the fcc AI-based 

matrix is in agreement with electron microscopic observations [23,24]. 

E. Blastic Bnerl7 of Fiaite TJaia Plate IDc1.sio.s. 

Finite thickness of a precipitate with the optimal habit normal to 

.0 should result in a positive correction to eq. (21), AEedge• Mathema­

tically it is associated with the fact that the rod in k-space where 

Ie (k)1 2 does not vanish for a finite thickness platelet has finite 

thickness and finite length. They are of the order of magnitude 2'11'/L 

and 2'11'/D, respectively where Land D are typical length and thickness of 

the plate-like precipitate. In this case, the energy correction to (21) 

is positive because integration over k in (lS) is carried out over k 

space region where B(k/k) does not assume its minimum value B(.o). 

Therefore the correction. AE edge • is of the order of AEedge/Eplate 

-(D/L)2, i.e •• 

AE edge- Eplate (D/L)2 = A.s:(DL 2)(D/L)2- A.(soD)2 Ir A.(soD)2 P 

where P is the platelet perimeter. The physical meaning of the correc-

tion is quite clear. It is caused by the crystal lattice mismatch on 
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the edges of the inclusion along its perimeter. The energy correction. 

ABedge • can be interpreted as "string" energy with the line tensions 

-i..(80D)2. In fact this energy can be attributed to a dislocation loop 

with the Burgers vector b=-80D enveloping the precipitate in its habit 

plane. Accurate ~alculations of the energy AE edge for a tetragonal 

precipitate in the cubic matrix gives 

where 

ABedge = P(D2/4'11') In(L/D) P 

( 
0 0 2 

2c12811 +cll833)' 

p= -----------------
cll 

cl1(1+ai)-2c1Zal - 2(a1+1)] 

--------------------------
c44 

o 0 
833 and Nll are crystal lattice mismatch along the tetragonality axis 

and in the normal to the plane COOl). respectively. ~=(cll-c12-2c44)/c44 

is the anisotropy parameter [20]. In the case of a cubic precipitate in 

a cubic matrix (8ll=833=80). 

(cll+2Cl2)2 8; ~(c1l-C12) 
p= -

It was shown that in a general case of arbitrary symmetry phase the edge 

energy of a plate-like precipitate is 

where integration is taken over the contour y=y{x) enveloping the 

prec ipitate in the habit plane. dl is the contour length e1ement.P1 and 

P2 are second order expans ion coe ff ic ient s with re spect to .-.0. The 

minimization of the ABedge energy with respect to the shape in the habit 

plane described under the additional condition of conservaation of its 

area in the habit plane. S=! y(x) dx. gives the Lagrange equation for 

y=y(x). The solution of this equation results in the forms presented in 

Fig. 1. 
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F. Crystal Lattice Para.eters a.d Crystal Lattice Rotatio. i. 

Constraint Plate-Like Inclusion. 

In the case of a single inclusion eq.(12) for elastic displacements 

yields 

3 3 A "0 
u(r) = i I(d k/(2w) ) G(k) a k 9(k) exp(-ikr) (26) 

The coordinate derivative aUi/aXj give~ the di~tortion tensor, 

Uij (r) • 

Uij (r) = aUi/aXj = I(G(k);ok) ikj 9(u)exp(-ikr) d3k/ (2w)3 

Since by definition of the Green function G(k), 

1 

G(k) = 
k-2 a (n) 

where n = k/k, 

uij(r) = Inj(Q (a.) ~O.)i 9(k) exp(-ikr) d3k/(2w)3 (27) 

In the case of a plate-like inclusion eq. (27) is substantually simpli-

fied because the Fourier transform of its shape functions, 9(k), does 

not vanish only" i thin the thin and extended rod in k-space eme rg ing 

from the origin, k=O, along the direction no normal to the habi~. Then 

01\ 1\ 3 3 
Uij(r> ::: nj ( g ( .. ) crO")i le(k) exp(-ir) d k/(2w) (28) 

"ith accuracy of the ratio D/L«l. The integral in the right hand part 

of (28) is the back Fourier transform of e(k) and therefore, by 

definition, is equal to 9(r). Taking the latter into account "e have 

if r is inside the inclusion 

otherwise (29a) 

"here 
o a "0 

S(. ) = (ae lao. (29b) 

For the cubic -) cubic phase transformation aiJ = (c11 + 2c12) aOoir 

It has been sho"n in sect ion 3D. that if c11-c12-2c12 < 0, the hab it is 

(001), .0 = (001) and thus cro.o = (c11 + 2c12)s0.0. On the other hand Q 

(no).O = 1/c11 no if no = (001). Using these relations gives 
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S(no) = a (no) Go.o = 80.0(c11+2c12)/c11. Then the eignstrain U;j in 

eq.(29) can be rewritten as 

(30) 

Therefore a constraint coherent (001) platelet precipitate of a cubic 

phase has always a stTain-induced tetragonality described by (30). the 

axial ratio being (c/a)=1+8o(c11+2c12)/cl1" If cl1-c12-2c44 > o •• 0= 

1/13 (111) and the similar calculation yields 

=- 80 
(

111) 111 
111 

1 

3 

Therefore a constraint coherent (111) platelet of a cubic phase has 

always strain-induced rhombohedricity. 

Equat ion (29) leads us to the following important conclusions: 

1. The distortion within a platelike inclusion. U;j' is homoge­

neous. Distortion outside the inclusion in the matrix asymptotically 

vanishes when D/L -> O. 

2. Since almost all elastic strain is concentrated within the 

platelet. the total elastic energy is not sensitive to the elastic 

moduli of the matrbo Therefore eq.(22) for elastic energy of a plate-

let derived in the homogeneous modulus case is nevertheless asymptoti-

cally correct also in the heterogeneous modulus case if the elastic 

moduli. ~ijkl in (22) are substituted by the elastic moduli of the 

prec ip ita te. 

3. The total distortion within a constraint platelet transforms the 

matrix lattice to the constrain preceipitate lattice is always an invar-

iant plane strain. the invariant plane normal to n. coinciding with the 
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habit plane. Therefore any crystal lattice translation in the habit 

plano of a constraint precipitate exactly coincides with the correspond-

ing translation in the matrix plane parallel to the habit. 

4. The crystal lattice rotation caused by fitting two different 

lattices along the habit plane is described by the asymmetric part of 

• the distortion tensor Uij: 

f~j = (1/2) [uij-Uji) : 

or by the rotation vector 

The direction of , is the rotation axis direction. the absolute value of , 

is the rotation angle. 

G. Nee41e-Like Preoipitates. 

As was shown above that the elastic energy assumes its minimum for 

a platelike precipitate whose habit is normal to the vector nO minimi-

zing B(n). Mayo and Tsakalakos [11] have shown that this is not always 

the case. Needle-like precipitates may be more stable if the minimum of 

the function B(n) is degenerated with respect to n lying in the plane. 

Such a situation may be epected if B(.) has the cylindrical symmetry 

with respect to no 

If B(.) has a cylindrical symmetry with respect to an axis directed 

along the direction e. the function B(n) depends on the scalar product 

ne: B(.) = B(.e). In the case of interest when B(.) assumes its 

absolute minimum at n normal to the symmetry axis (at (ne)=O). one may 

expand B(.) in a power series of 

(ne): B(n) = minB(n) + IHne)2 + ••• (31) 

substituting (31) to (27) and using the identity 

yields 
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The energy (32) is minimized for a needle along the direction e because 

the function le(n)12 for a needle does not vanish within thin extended 

plate in u space normal to the needle axis e where ne = O. Estimation 

of the integral in (33) for a needle along the axis e describing strain 

concentration near the needle tip yields [22] 

3 
where ~-A8o' Ro is a needle radius. 

For a thin and long needle the correction to the bulk energy AEedge 

3 
is much smaller than the corresponding correciton AEedge - A80DL for a 

thin plate. The bulk energy term (22) for a plate is the same as for a 

needle but the energy correct ions AEedge for a needle is much smaller 

than that for a plate (the first is proportional to R~ while the second 

to D~). The calculations similar to that for a plate-like precipitate 

[22] give for a needle the following result: 

I. Strain inside a coherent needle-like precipitate parallel to the 

direction e is homogeneous and has the form 

For a particular case of a tetragonal elastically isotropic precipitate 

..·00 
a = (811 + V833)/(1+V), where v is the Poisson ratio, 833 and 811 are 

the tetragonal stress-free strains along and perpendicular to the tetra-

gonal axis. 

2. Crystal lattice translations of constraint needle-like precipi-

tate exactly coincide with the corresponding translations of the matrix 

phase. The latter can be seen from the equation 

which shows that the length roe along the direction e does not change. 
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Now a few words concerning cylindrical degeneration of B(n). Analysis 

of equation (16) for the function BC.) shows that the function B(.) may 

be cylindrically degenerated with respect to n in the cases of the 

cubic-tetragonal phase transitions in an alloy based on almost isotro­

pic cubic solvent (A!. Nb, Mo, '(f and so on) as well as for a cub ic-­

hexagonal, cubic-trigonal and hexagonal-hexagonal phase transitions in 

anisotropic alloys. The cylindrical degeneration is not sufficient how­

ever. for a needle to be formed. It occurs when the minimum of B(.) is 

degenerated with respect ·to any. belonging to the phase normal to the 

cylinder axis. This puts a certain constraint on the transformaiton 

strain and elastic anisotropy. 

Concluding this section two important points should be emphasized: 

1. Formation of needles can be expected not only in the case of the 

cylindrical degeneration of the function BC.). Needles can also be 

stabilized by the interphase energy. Balance between elastic and inter­

phase energy may produce the preferential needle-like shapes as an 

intermediate form during cooling a precipitate from a spheroid to 

platelet. 

2. The function BC.) is the Fourier transform of interaction 

energy of two precipitates in the long-distant limit. In the case of 

the cylindrical degeneration when B(.) = min B(.) + ~(ke)2/k2, the 

back Fourier transform gives this interaction VCr) in the form of the 

dipole-dipole interaction 

VCr) = eieij~C&ij/r3 - 3Crirj/r') = ~ (1/r3 - 3Cre)2/rS) 

where the coefficient ~ plays the role of the dipole moment magnitude. 

This fact will be discussed later in connection with the analogy between 
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elastic shain and magnetostatic energy of magnets and electrostatic 

energy of ferroelectrics. 

4. SHAPE TRANSFORMATIONS OF A CUBIC PHASE PRECIPITATE 

INA CUBIC MATRIX UPON COARSENING 

As was ment ioned above the equil ibr ium shape of a prec ip ita te is a 

result of competition between the elastic and interphase energies. 

Equation (15) enables one to evaluate the elastic energy of an arbitrary 

shape precipitate while the interphase energy may be assumed to be equal 

to the product of surface tension coefficient. 1. and interphase area. 

S. if the interphase tension is isotropic. i.e. 

(33) 
where 

is the interphase energy. and the elastic energy. Eelast. is given by 

eq.(15). Let us consider the cubic-to-cubic phase transformation in the 

case of the negative elastic anisotropy. c11-c22-2c44 < o. 

Then integration in (15) yields the elastic energy in the form 

where Eo 

Eelast ; Eo V + E1~V 

s 
= 80 (Cll + 2c12)(c11-c12)/cll' 

(34) 

EoV is the elastic energy of an 

infinite thin plate of the volume V with the optimal (001) habit. and 

2 

The dimensionless coefficient ~ depends on the shape of the precipitate 

rather than its volume. 

The values of the coefficient ~ in eq.(34) for different shapes are 

given in Tabl e 1. 
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TABLE 1 

Shape 

Sphere 0.7087 

Cube 0.5580 

Needle 0.4692 

Thin Plate o 
---------_._--------

The total energy (33). elastic and interphase. is thus. 

or in the reduced form 

where 

.,S 

[(E-EoV)/E1 V] = ~ + V 
a 

(35) 

(36) 

is the material constant with dimension of length. volume-to-surface 

ratio, a = VIS. in a typical particle size. characterizing its degree of 

coarsening. 

Comparing the reduced energy (35) for the various shapes versus the 

ration ro/a characterizing the degree of coarsening. the critical 

trans it ion size from one shape to another can be found. The size a is 

related to the particle volume V by the following relations: 

for a sphere a = (VIS) = (413)(3/4w)1/3V1/3 :: 0.83V1/3 

for a cube a = (1/6)V1/3 :: 0.1666V1/3 

for an octahedron (41/3/J/4)V1/3 - 0.69V1/3 
a = -

for a tetrahedron (41/ 3/J/2)V1/ 3 - 0.35V1/3 
a = -

Therefore comparing the reduced energies (35) for a spheroid, 

(E-EoV)/E1V = 0.708 + 1.20 ro / lv, 
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and for a cuboid 

3 
one can see that a spheroidal inclusion is more stable at ~~ 7.6 ro 

and a cuboid precipitate becomes more stable upon coarsening when 

7v~ 7.6 rOe 

In the case of positive anisotropy, c11-c12-2c44 > 0, B(.) assumes 

minimum value at n = no = (l/.f'!:liff.l/.f'!) and thus the lowest elastic 

energy is attained for a platelet with the (111) habit. We can also' 

assume that an optimal polihedron which is formed from a spheroid during 

its coarsening should be faceted by the optimal (111) planes only. Such 

a polihedron is either octahedron or tetrahedron. 

Elastic energy of an octahedron given by integrating eq. (34) was 

calculated by TsakalakoSe 

3. APPLICATIONS 

A. GP Zones in AI-Based Alloys. 

X-ray and electron microscopic studies have shown that aging of 

some supersaturated alloys results in the formation of so-called GP 

zones, small segregations of atoms that later develop into metastable or 

stable precipitate phase. A GP zone may be either equiaxial (Cu-Co, Al-

Zn. AI-Ag etc.) or platelike (AI-Cu. Cu-Be) shapes. 

Formation of GP zones can be well understood if they are regarded 

as new phase precipitates which are formed as a result of isomorphic 

decomposition occurring according to metastable diagrams with miscibil-

ity gap. If the initial solid solution has the cubic lattice. such a 

decomposition results in atomic redistribution over crystal lattice 

sites of this lattice and formation of cubic phase precipitates enriched 

by solute atoms within the cubic phase matrix. Then theoretical results 
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formulated above may be applied to predict morphology and the structure 

of GP zone s. 

Since both phases have the same crystal lattice but different 

composition. the stress-free transformation shain is a pure dilatation: 

o 
8ij = «OOij = (da/adc) (cp-cm)oij (37) 

where da/adc is the concentration coeffeicient of the crystal lattice 

expansion. cp and cm are atomic fractions of solute atoms in the preci-

pitate and matrix. respectively. 

a. GP Zones in Al-Cu Alloys 

In Al-Cu alloys crystal lattice mismatch is very big. The concen-

tration coeffeicient of tho crystal lattice expansion is about l~: 

da/adcCu = -0.091 

For such a large mismatch tho plate-like morphology should be expected. 

12 
Since cll - c12 - 2c44 < 0 for Al (cll = 1.068 x 10 • c12 = 0.607 x 

1012 • c44 = 0.282 x 1012 dn/cm 2• the minimum of B(a) falls on the vector no = 

(001). This means that coherent precipitates should have {100} habit. 

According to Gerold [25J a GP zone in Al-Cu alloy is a sole plane 

(001) of Cu a tom s (F ig. 2). This hab it is in accordance Y i th the above 

theoretical predictions. Recent electron microscopic observations seems 

to confirm this. 

Let us estimate the distance betyeen the Cu filled (001) plane and 

the nearest so planes. According to (30) for a plate-like precipitate 

of a cubic phase in the cubic matrix with the (001) habit 

Therefore 

aoBo = (cll + 2c12)«oao = (C11 + 2c1a)(da/adc) (cp-cm)ao 

0(110) = (l/cU) ao 
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I 
and the transformation strain (30) within the constrain (001) plate-like 

prec ip ita te is 

• 0 0 c11 + 2c12 
Uij = S(. )inj = ---------­

c11 
( ~~~) (c -c ) 
adc P m 

da (000) --- (cp-cm) 000 
adc 001 

= --------- (38) 

It follows from (38) that the total strain within a constraint platelet 

precipitate with the (001) habit transforms its cubic lattice into a 

tetragonal one. This is the stress-induced tetragonality. The dis-

placement of Al (001) plane nearest to the Cu (001) plane toward the Cu 

COOl) plane produced by e igenstrain U~j given by (37) is 

• u = u33 aAl/2 = c11 + 2c12/c11 (da/adcCu){cp-cm)aAI/2 (39) 

where aAI is the Al crystal lattice parameter and aAI/2 is the interpla­

nar distance for a (001) plane. 

The GP zone may be regarded as a plate-like precipitate whose 

thickness is equal to 2 interplanar distances (D = a). Half crystal 

lattice sites of such a precipitate are. filled by Cu atoms and the other 

half by Al atoms. Therefore. we may assume that cp = 1/2. Since matrix 

does not have Cu atoms. c m = O. Usin& the latter in eq.(38) together 

with (da/adc) :: -0.091 and Al lattice elastic constants we have 

u = 
c + 2c (da)· a 1.068 + 2 • 0.607 4.041 
~ ____ :.1.2.. ---. (1/2) ~ == -------------- • ( ) ... 6Ao 

-0.091 --- .... -0.19 

cl1 ade 2 1.068 4 

The best fit between calculated and observed x-ray diffuse scattering 

has been obtained when displacement of the Al COOl) plane toward the 

nearest COOl) Cu plane is u :: -0.2A
o 

[26]. The theoretically predicted 

.... 0 
value u - -0.196A is in the excellent agreement with that. It should 

also be mentioned that the calculation based on the crystal lattice 
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static theory [22] gives the same equation for displacement if the 

phonon spectrum dispersion is neglected. 

The matrix U~j given by (37) also predicts that the crystal lattice 

parameters of GP zone in (001) plane are exactly the same as in Al 

matrix. 

b. 9" Phase 

Aging above 1000 C results in dissolution of GP zones and appearance 

of platelets of 9" metastable phase that is formed by alternation of Cu 

and AL (001) planes in the fcc lattice Cu Al A1 A1 Cu A1 Al A1. •• 

Therefore atomic fraction of Cu in 9" phase is Cp=1/4. The 9" phase 

formed due to such a sequence is a tetragonal phase with c=2a sc and a=au 

9" phase being an ordered fcc-based superstructure enriched by Cu atoms 

has misfit described by eq.(37) and therefore should also be formed as 

platelike precipitates with {l00} habit. 

Let us calculate the 9" phase crystal lattice parameters using eq. 

(37). 

Since the para.eterl of the constraint 9" phase in the (001) habit plane 

should be exactly the same as 1n the matrix. we predict 

o 
a - aAI ~ 4.041 A 

o 0 
The calculated values c=7.69A and a=4.041A are perfectly matched to 

o 0 
the observed crystal lattice parameters c=7.7A and a=4.04A. Therefore 

both the habit plane orientation and crystal lattice parameters of 9" 

fit very well the theoretical predictions. 
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c. e' Phase 

The intermediate tetragonal e' phase that succeeds the elf phase in 

the course of aging has the fcc-faced lattice A1 2CuO , where 0 

designates vacancy. The presence of built-in vacancies in the fcc 

lattice of the e ' phase introd~ce the additional contraction to the 

stress-free transformation strain. The theory predicts that a' phase 

precipitates should also be platelets with the COOl} habit. This con-

clusion is in agreement with electron microscopic observation. 

Since crystal lattice mismatch for e' phase in the Al matrix cannot 

be determined at the moment (we only know that its dilatational part 

. - is much larger than for the e" phase), we cannot calculate par am-

eter c using the same equation as with the e" phase. However, the 

theory predicts that the crystal lattice parameter, a, which is situated 

in the habit plane must coincide exactly with the crystal lattice para-

o 
meter of pure AI. i.e., aAl=4.04lA. This prediction is also in excel-

lent agreement with the observed results: 

d. GP Zones with Small Crystal Lattice Mismatch 

GP zones were also observed in Cu-Co, Al-Zn. AI-Ag alloys. The 

difference between atomic diameters os solute and solvent atoms for them 

is less than about 31fe. Since the GP zone volume is small. the theory 

predicts spherical shape of precipitates (see section 4). This is in 

agreement with x-ray and electron !Dicroscop ic observations. It is of 

interest to note that estimations of the elastic moduli of the precipi-

tate phase in Al-Zn alloys gives c11-c12-2c44 > 0 [27]. In this situa-

tion the theory developed above predicts spherical shape in the early 
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stage of aging which should be transformed into octahedron (or tetrahe-

dron) and later into {Ill} platelets. 

e. GP Zones When Precipitate Phase Is Hexagonal 

Calculations by Mayo and Tsakalakos for GP zones and metastable ~' 

hexagonal phase give the {lll}AI habit [11] which is in agreement with 

IJlectron microscopic observation. Precipitates of the ~' metastable 

hexagonal phase in AI-Zn-Mgalloys give one more confirmation that a 

coherent plate-like precipitate and matrix have exactly the same crystal 

lattice parameters in the habit plane. Crystal lattice parameters of 

constraint hexagonal ~' phase are 

aft' = 4.96Ao. c , = 8.68Ao 
" ~ 

° The AI-based matrix has the parameter ao=4.054A. The [1/2 112 1] 0 and 

[1/2 1 112]0 translations of the fcc matrix lying in the (Ill) plane 

w·hich are transformed into the parameter a~, of the ~' phase are equal 

to 

T ([1/2 1/2 1]) = T{[1/2 1 1/2]) = ao ./3/2 = 4.054 ·/3/2= 4.96SAo. 

This value with accuracy of x-ray measurements coincides with the value 

° a=4.96A observed. 

B. PrecipitatioB of Nitrides fa Fe-N Alloys 

Elastic strain theory formulated above can be applied to determine 

morphology and crystal lattice correspondence of nitride precipitates in 

Fe-N martensite [9,22]. 

a. Precipitates of a" Phase (Fe16N2) in Fe-N Martensite 

The decomposition reaction that occurs in tempered bet Fe-N 

martensite leads to the formation of ordered bee-based tetragonal 

nitride, Fe16N2 (a") in the bee aFe matrix which later transforms into 
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fcc-based y' phase (Fe4N). According to lack. [28]. a." phase is 

a tetragonal phase with 

a(a.") = 2aFe = 2.2.86 = 5.72A
o 

o 
c(a") = 6.292A - 2ao 

The spacing a(a") is exactly equal to twice the crystal lattice 

parameters of the aFe. This coincidence cannot be accidental. It may 

be explained if a" phase precipitates are coherent platelets with the 

(001) habit. Then the theory predicts that parameter a(a") situated in 

the habit plane (001) should be exactly equal to the corresponding 

parameter 2aFe of the (001) matrix plane. In other words. the crystal 

lattice parameters observed by lack. are parameters of constraint 

precipitate. This conclusion which directly follows from the theory was 

proved by the crystal lattice parameter measurements of the single phase 

ordered a" phase solid solution which is. by definition. the stress-free 

Fe-8.56 atfJIN single phase alloy for the measured crystal lattice 

parameters are 

o 
a(a") = 5.692 A 

c ( a") = 6.180 A 
0 

[29] 

For this alloy da.") '" 2aFe which proves that coincidence of a(a") with 

2aFe observed by lack. isa result of constraint. For the stoichiometric 

alloy the stress-free strain is 8~1 = -0.006537. 8;3 = 0.107397. 

These values enables one to calculate the crystal lattice parameters 

of the constraint (001) precipitate using eq.(29). The calculation 

gives 

a(a") = 2aFe = 2 • 2.80 = 5.720 A
O 

o 
c(a") = 6.289 A 

which is in excellent agreement with the lack. observations. 
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-0.004895 

t = ---------- = -0.0608 
0.080413 

In the case of the (001) habit the constraint strain (29) has the form 

o 2c12 0 

833 + ---- 811 

C11 
(

000) 
000 

00' 

ordered phase Fe4 [28]. The crystal lattice parameter of the y' phase 

near its stability limit is 

a
y

, = 3.79' A
O 

whereas, that of the bcc aFe matrix is 

ao = 2.860 A
O 

Since the stress-free transformation strain for bcc -) fcc crystal 

lattice rearrangement is the tetragonal Bain strain, its components 

are 

o 
833 = a1,/ao) -1 = (3.791/2.86) -1 = 0.3255 

o 0 

t = 811/a3) = -0.1926 

With this numerical value t = -0.1926 using the elastic constants of 

pure iron in eq.(25a) we have 

Do = (0.484, 0, 0.87S)bcc 

This unit vector is normal to the predicted habit plane which deviates 

only by 2.4
0 

from the (102)bcc habit observed [31]. Making use of the 

elastic constants of aFe and value t = -0.0608 in eq.(25a) yields the 

vector .0 minimizing B(.) in the form 

o . 0 0 
• = (sln &, 0, cos &) where & = 18.6 or. = (0.279, 0, 0.960) 

o 
which is a deviate less than 1 from the normal to the (207)bcc plane. 

Therefore a large coherent precipitate of the a" phase whose shape is 

predominantly dictated by the elastic energy relaxation should be 
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produced in the form of a thin plate with habit close to (207)bcc [22]. 

When this result was first obtained there was the impression that it 

contradicts the electron microscopic observations of the a" phase in the 

form of a thin plate with (001) habit. However. using the same theory 

Hong. et a1. have demonstrated that for a small a" phase precipitate 

whose equilibrium aspect ratio is less than 11. the habit plane is 

(OOl)bcc [9]. Only later with particle coarsening should it be trans-

formed to the (207) hab it. The electron microscopic observat ions seem 

to confirm this prediction. The (001) habit plane was observed to be 

transformed into puckered (001) plane composed of segments of planes 

close to the {207} planes [30]. 

c. Ha1tit PlaDe of ii-Phase ia v-a Alloys. 

p phase in vanadium hydride is an interstitial bcc-based solid 

solution with H atom occupying the sale Oz octahedral sublattice of bcc 

V host lattice. Such an occupancy produces pseudotetragonal distortion. 

~ phase crystal lattice parameters are 

o 0 
a = 3.002 A C = 3.311 A 

The V matrix lattice has the parameter 

Therefore. the stress-free transformation strain is 

p 0 
811 = = -0.0099 Iss = 0.0890 and t = -0.111 

VVith the V elastic constants eq.(2Sb) yields 

Do = (0.277. 0.277. 0.920) 

which is close to the normal to the (227)bcc habit. The normal to the 

observed habit plane of the P phase is 

Dobs = (0.293. 0.236. 0.926) [37.38] 

o 
Deviation of calculated habit from the observed one is about 0.9. This 
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agreement can be regarded as very good because the theory does not have 

any filt~ring parameters. 

6. lIagnetoatatic Energy and AnaloKY with Blastic Strain EnerlY. 

As was mentioned in the Introduction there is the profound analogy 

between elastic strain energy of a two-phase coherent dispersoid and 

magnetostatic energy of ferromagnets and electrostatic energy of ferro-

electrics. The consequences of this analogy are so important that they 

deserve a special discussion. Below the equation for magnetostatic 

energy of the system of ferromagnetic domains will be described, and it 

will be shown that mathematically the equation for magnetostatic energy 

is analogous to one for the elastic strain energy. It will be demon-

strated that the k-space technique developed above for the elastic 

energy can be with the same efficiency applied for magnetostatic energy 

of ferromagnets in the cases when the Bloch wall thickness is well below 

the typical size of domains [22]. 

As is known. the magnetostatic energy may always be represented as 

the sum of interacting magnetic dipoles 

Emag = 1/2 II 
[ 

& •• 
3 3 1J 

d rd r'm(r). --------3 
1 lr-r'13 

(r-r') . (r-r')j ] 

-I~~~I-;----- m (r') j 
(40) 

where .(r) is the magnetization density at the point r. the integration 

in (40) is taken over the infinite crystal body. Using the Fourier 

representat ions: 

m(r) = 
d3k 

/­
(21r)3 

lI(k) np( ikr) 

r-3&ij - r-S 3rirj = 41r I (k ik j /k2 ) • exp(ikr) d3k/(21r)3 

in (37) one has 

CII III(k)kI 2 

Emag = (1/2) III 41r -------- (41) 
-CII 
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where for simplicity the magnetic susceptibility is assumed to be equal 

to unity. 

Let us consider an arbitrary system of ferromagnetic particles with 

various possible directions of magnetization designated by the index p. 

Then the spatial distribution of the magnetization produced by the 

system of magnetic particles or magnetic domains is 

.(r) = Mo keep) ij(p.r) (42) 

(compare with eq.(6). where ~(p.r) is again the shape function of 

domains of the pth type. e(p) is the unit vector along the magnetization 

direction of pth domains. The Fourier transform of (42) is 

substituting this equation to .(41) yields 

where 

Emsg = 211'~ k 
p.q 

(43 ) 

is the angular function of the k vector direction. a = k/k. One may 

readily see that eq.(43) for the magnetostatic energy has absolutely the 

same form as eq.(14) for the elastic energy. 

For a single domain particle eq.(43) gives the analog of eq.(lS) for 

the elastic energy of a single coherent inclusion: 

Emag = 211'M: f B(k/k)mag 19(k)12 d3k/(211')3 (44) 

where B(.) = (e.)2. Equation (44) can also be rewritten as 

Emag = 211'M:a V 

where 

is the k-space representation for the so-called demagnetization factor. 

the dimensionless coefficient depending only on the shape of the 

I1art ic18. 
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It should be emphasized that eq.(43) gives the close solution for an 

arbitrary set of ferromagnetic domains whose size is well above the 

Bloch wall thickness. This equation can be efficiently used for 

calculation of the reverse magnetization and for analysis of 

morphologies of domain structures. To the authors knowledge. this k-

space formulation of the magnetostatic energy is new and can be very 

useful in various applications because of its mathematical simplicity. 

The formal analogy between the elastic energy (14) and (15). and 

the magnetostatic energy (43) and (44) consists in the fact that both 

have the same mathematical form. The kernel function B(k/k)pq in the 

elastic energy (14) as well as the corresponding kernel function 

B(k/k);~g depend on the direction of the wave vector k rather than on 

its absolute value. The kernel functions B(k/k)pq are. in fact. the 

Fourier transform of the pairwise interaction between elements of volume 

of the domains (or coherent particles) of the type p and q. These 

energies can be found by the back Fourier transform which gives the 

singular function 

v (r-r') = 1/Ir-r'1 3 1l' «r - r')/Ir - r'l) pq 

where If(.) is the function of the direction, (r-r')/lr-r'l. This is the 

typical form of the dipole-dipole like interaction. The elastic inter-

action between elements of coherent precipitate volume has exactly the 

same the form of the dipole-dipole interaction when B(n) has the cylin-

drical symmetry about a certain axis e, i.e. when 

B(n) = B(ae) ; maxB(n) + p(ae)2 + ••• 

Then the back Fourier transform yields 
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which corresponds to interaction between two dipoles. ~e. separated by 

the distance r-r'. 

The major physical consequence of the fact that B(k/k);:g depends 

only on direction of k vector is the well known effect. dependence of 

the magnetostatic energy on morphology of ferromagnetic particles. It 

results in instability of a homogeneous state of the ferromagnetic phase 

with respect to decomposition into the system of domains. In the case 

of a uniaxial ferromagnet film a large domain with the opposite magneti­

zation direction than the matrix also proves to be unstable with respect 

to spl itt ing into the array of bubble domains. The reason for this is 

the same, repulsion between volume elements of the domain which repel 

each other as parallel identical dipoles. 

Summing up the foregoing one can see that instability of a homoge­

neous state of ferromagnet (and ferroelectric) is caused by the fact 

that the magnetostatic energy of a ferromagnetic phase unlike the ex­

change energy depends not only on the volume of the phase. but also on 

its morphology. shape and spatial distribution. It will be shown below 

that the same is true for the elastic eneergy of a coherent dispersoid. 

7. Strai.-IDduced I .. tability of Coherent Particles in Two-Phase Cubic 

Alloys. 

The elastic energy. unlike the "chemical" free energy of a two­

phase alloy depends not only on the precipitate phase volume. but also 

on its shape and spatial distribution. The situation here is the same 

as with magnetostat ic energy. Therefore. one could expect that 

dependence of elastic energy on morphology would produce the same ef­

fect. viz. instabil ity of large coherent part icles. This instab il ity. 

splitting large coherent precipitates. analogous to the splitting 
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instability resulting in formation of bubble domains would seriously 

affect the traditional concepts of coarsening in two-phase cubic alloys. 

The main result of the conventional theory of coarsening, that a two­

phase alloy"becomes more stable upon coarsening should be questioned. 

First of all, all studies concerning evolution of alloy upon coars­

eniug implicitly assume that precipitates remain intact and, if they 

coarsen. just monotonically increase their size. The theory [2,4] 

enables us to test this assumption. Following [32] we shall demonstrate 

that when a cuboidal particle of a cubic phase precipitate reaches a 

certain critical size, multiple of the typical length ro introduced 

above by eq.(36), the cuboid becomes unstable and decomposes into a 

doublet and later into an octet of subparticles. This phenomenon re­

flects repulsive interaction between elements of volume of a cuboid 

which, in fact, opposes the coarsening. Similarly we can predict that 

large plate should also be unstable with respect to splitting into 

several subplates and so on. 

Splitting is not the only way to prevent formation of too large 

overgrown precipitates. Elastic interaction between them may produce 

the same effect. This interaction would just oppose coarsening, the 

phenomenon which was really observed. 

To analyze the elastic energy change upon transition of a monlytic 

precipitate into a group of subparticles we should compare the elastic 

energies of both states. To do this. let us represent the shape 

function, 9(r) of a group of identical subparticles as the sum of their 

shape functions, ~o(r-Rj) 

~(r) = Ej 9o (r-Rj ) 

where the index j labels all subparticles Rj describes the position of 
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the center of gravity of the jth subparticle. The Fourier transform of 

this function is 

(45) 

where the mutual location of precipitates is taken into account by the 

"structural factor," Lj exp(-iUj ). SoCk) is the Fourier transform of 

the shape function of a subparticle. 

Substituting (45) to (15) gives the close equation for the elastic 

energy of this group of precipitates: 

(46) 

Using the expansion of the function B(n) in the series of cubic harmo-

nics and terminating the corresponding series by two forms. we have 

where Eo and E1 are given in comments to eq.(34), 

The dimensionless coeff lcients 11 and 12 have the form 

11 = V-1 f T1(k/k) ISo(k) 12 IL
j 

exp(-ikIl
j

) 12 d3k/(21f)3 

12 = y-l f T~(k/k) ISo(k) 12 IL
j 

exp(-ikIl
j

) 12 d3k/(21f)3 (47) 

where 

(nx,~.nz) are Cartesian components of the unit vector .. o The constants 

11 and 1 2 are geometrical factors which depend on shape and mutual 

locat ion of subpart icles. Numerical calculat ions of the integrals (47) 

at c11-c12-2c44 < 0 show that a cuboidal particle has greater elastic 

energy than an octet of cuboidal subpart icles, the energy of the octet 

be ing the lowest when cuboidal subpart ic1es are separated by the dis­

tance u = 0.4a where 2a = Tv is the edge length of the initial cuboid 

(Fig. 2). The cuboid subparticle has also the greater elastic energy than 
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the doublet of the identical parallelopiped subparticles formed due to 

splitting the cuboid. The lowest energy of the doublet is attained when 

separation distance between subparticles is 0.8a (Fig. 3). The elastic 

energy of the octet is less than that of the doublet of the same volnme( F"~)' 

As for the interphase energy. its increase is caused by the formation of 

new interphase because splitting is less for the doublet than for the 

octet. Therefore. for a smaller precipitate when the interphase energy 

contribution dominates. a doublet should be expected. For the layer 

precipitate when the elastic energy prevails. the octet is favored. The 

numerical caluculation and comparison of the elastic and surface ener-

gies of both morphologies show that the cuboid -) doublet transformation 

may occur when tv :;;. 27 ro where V is the cubo id volume. ro is given by 

eq.(36). Doublet -) octet transformation may occur when Jv-~ 82ro. At 

greater volumes the octet ceases to be stable with respect to transfor-

mation to a platelet. These results naturally fit the results in sec-

tion 4 concerning the shape transformaiton of a monolitic particle from 
3 

a spheroic to a cuboid which occurs when .;v-~ 7.6ro. Together these 

results confirm our qualitative conclusions formulated above that the 

morphology transformation is determined by the ratio between the effi-

3 
cient particle size f'V"'and characteristic length ro depending on inter-

3 
phase energy. crystal lattice misfit and elastic moduli. The mro 

ratio. in fact. is the measure of contribution of elastic energy with 

respect to interphase energy to the coarsening process. The more is 

this ratio. the more contribution of elastic energy. 

The stability limits found above characterize the conditions when 

one morphology becomes energetically more favorable than another. 

However. it should be emphasized that the "overgrown" microstructure is 
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not automatically transformed into another. It ~ay still be stable with 

respect infinitesiD·al variations of the shape. In this situation the 

overgrown microstructure is ~etastable. It can be transformed into the 

stable one only by the finite shape transformation playing the same role 

as the critical nucleus fluctuation in the conventional phase transfor­

ma t 1 OJ> t]le rmodynam ic s. Since the critical shape fluctuation required 

for the shape transformation is macroscopically large, all metastable 

morphologies should be very stable and transform into the stable mor­

phology only near the metastability limit where II metastable particle 

also becomes unstable with respect to infinitesimal shape variations. 

Simple qualitative interpretation of the microstructvre transforma­

tion, spheroid-)cuboid-)doublet-)octet-)platelet. upon coarsening is the 

following. In the relevant case when cl1-c12-2c44 ( 0 elements of the 

precipitate phase volume repel each other along the <Ill) directions. 

This repulsion transforms a spheroid into cuboid due to stretching of 

the spheroid volume along the (111) directions. The same effect results 

in splitting the cuboid along the same (111) ~)rection transforming the 

cuboid into an octet. Tbe only reason why new phase precipitates can 

exist as monolitic homogeneous particles is the interphase energy ef­

fect. The interphase energy opposes the splitting since it produces new 

jnterphase. The situation here is the same as in the case of ferrcDlsg­

nets, because both elastic energy and magnetostatic energies destroy the 

homogeneolls state of a particle in the zero interphase energy limit, or 

in the limit of large particle volume when interphase energy plays the 

minor role. The example of H'C} (. t'·el-,3.viour gives a strip ferromagntic 

domain which becomes unstable with respect to splitting into the set of 

bubble domains because of repulsion between the ele~ents of the strip 
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domain volume repelling each other as parallel magnetic diploes. 

The above results show that the mathemetically simple theory based 

on the homogeneous modulus case approximaiton can be efficiently applied 

to the important techincal alloys. For example. it has been shown above 

in section 3F. that the homogeneous modulus approximation gives neverthe­

less asymptotically exact value of the elastic energy of pl~telike 

precipitates if the elastic moduli of the precipitate phase are used. 

The reason for that is the concentration of elastic strain within the 

platelike particle (the ratio of elastic energy concentrated out side 

and inside the particle tends to zero as the squared aspect ratio (D/L)2 

-> O. where D is the thickness, L is the length of the particle). On 

the other hand. equations for the edge energy of the plate in section 3£ 

are also a symptocially correct if elastic moduli of the matrix are 

used. The reason for that is the same. The edge energy is the one that 

is concentrated in the matrix with the same asymptotic accuracy (d/L)2 ~ 

~ O. Therefore. all results concerning the habit plane. eigenstrain and 

orientational relations obtained in section 3 in the homogeneous modulus 

approximation proves to be valid if the moduli are different. In fact. 

reduction of elastic energy upon strain-induced stage of coarasening 

occurs mainly due to redistribution of elastic strain from the matrix to 

the precipitate phase so that ultimately all elastic strain proves to be 

contained in thin plate particles. In limit case of the martensite-like 

optimal structure at which bulk elastic energy completely vanishes. the 

value of elastic moduli does not matter at all. This is the reason why 

pure crystallographic theory of martensitic transformation proved to be 

so effie ient. 
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Fig. 1 Calculated optimal shape of the platelet particle 
in the habit plane. 

(a) slightly anisotropic case (oval shape) 
(b) strongly anisotropic case (lense shape) 

43 

a 

8 



.-

~ 
2u 

i 
-~ ... 2u .......... -

Fig. 2 Schematic drawing of octet that results from the decomposition 

of a cuboidal particle. 
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Fig. 3 Schematic drawing of doublet of plates that results from 

the decomposition of a cuboidal particle. 
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Fi~. t:. Ccn~igurational elastic energy, in di~ensionless forJ"l, as a 

f~nction of di~ensionless particle spacing (u/a) for an octet 

of c~bes (dark line) and a doublet of plates (li~ht line). 
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