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STRAIN-CONTROLLED XORPUOLOGIES OF THE TWO-PHASE STATE

I. INTRODUCTION

Phase transformation in solids usually involve crystal lat;ice
rearrangement with the island§ of the new phase inside the parent phase
matrix, Crystal lattice mismatch produced by phase transformation is
accommodated by elastic displacements generating the elastic strain
field within the body. The elastic emergy contaimed in the strain field
ﬁay contribute considerably to the thermodynamics of the phase transfcr—
mation, but the main effect of the elastic strain is far beyond the
trivial renmormalization of elastic energy. Unlike the "chemical" free
energy depending only on the volume of phases, the elastic energy also
depends on the morphology, shape, dispersion and mutual location of
inclusions. I# such a case the morphology of the alloy becomes an
internal thermodynamic parameter that can be found from the free emergy
minimization, This, in fact, means that the conventional thermodynamics
of phasé transformations based on the free energy aditivity should be
questioned and validity of certain classical results has to be re-—
examined. To make more clear how far we can go in revising the theory
of phase transformation when elastic energy is involved, it is note-
worthy to look at the other cases when the bulk free emergy proves to be
dependent on morphology. The other cases where this situation takes
place are ferromagnets and ferroelectrics whose magnetostatic and elec-
trostatic energy also'depend on shape, size and mutunal location of
domains, This dependence manifests itself, for example, in appearance
of the so—called demagnétization factor, and it affects the ground state

of ferromagnets. Indeed, the homogeneous single domain state that would



be expected without magnetostatic energy transforms into an array of
domains whose size tends to zero if the Bloch energy (surface emergy of
domain walls) vanishes. It is also known that the repulsive interaction
between the similar domains results in the formation of so—called bubble
domain structure.

The similar dramatic effects of the morphology on the thermo-

dynamics of a phase transformation could be expected in the case of a

transformation with large crystal lattice rearrangement. The specific

examples of such effects are formation of platelet precipitates with the
specific habit minimizing the strain energy as well as the formation of
agglomerates of various orientional variants of the new phase accommoda-
ting crystal lattice mismatch and eliminating elastic strain. The
latter effect is observed during martensitic transformation, ordering
and decomposiition and is a good example of the profound analogy with
the magnetic and ferroelectric domain strncturé°

The intensive studies of the elastic strain effect caused by the
other phase coherent inclusions were initiated by the classical works by
Eshelby [1] in the fifties who calculated the elastic energy of an
ellipsoidal inclusion in an isotropic case. The next step was made in
oﬁr work [2] and the work by Roitburd [3] where the idea that the
elastic strain eneregy minimization can be used for the habit plane
determination was first proposed.

The general theory of elastic energy of an arbitrary distributed
inclusion in elastically anisotropic medium in the homogeneous modulus
case was formulated by Khachaturyan and Shatalov [4] and developed by
Wen, Khachaturyan and Morris [5]. The theory was used for analyzing

morphology of a single precipitate [6-13] and morphology transformations
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of a group of precipitates [4,5,9,14-18]. The exact solution of the
elastic problem for an ellipsoidal inclusion in the heterogeneous modu-
lus case and anisotropic crystals was obtained by Lee, Barmett and
Aaronson [19].

The main topic of these lectures is the discussion of the applica-
tion of the elastic theory to practical problems which arise in struc—
tural studies of the morphology of two—phase alloys. The consideration
will be based on the theory developed for the homoéeneous modulus case
[2,4] because this approach enables onme to treat arbitrary dispersoids
using very simple mathematics. The cases where this approximation turns
out to be insufficient will be discussed separately. The applied as—
pects of the theory will be especially emphasized. There are three
groups of problems that deserve to be discussed in detail:

1. Morphology of a single coherent precipitate, its habit plaﬁe,
equilibrium shape, orientational relations and crystal lattice parame-
ters in the constraint state.

2. Shape transformations and ﬁorphology instabilities upon coarsen-—
ing.

3. Strain—-induced rearrangement of groups of precipitates upon

coarsening.

2. ELASTIC ENERGY AND ELASTIC DISPLACEMENTS INDUCED BY ARBITRARY
ARRAY OF COHERENT INCLUSIONS

Following [4] let us consider n types of inclusions that are
produced by different crystal lattice rearrangements, for example, the
rearrangements generating the different orientational variants of the

same phase. These inclusions may be characterized by stress—free

. s o [
transformation strains, sij(l). cees e;j(p), "'3ij(n) describing the



macroscopic shape change of the parent phase caused by the respective
crystal lattice rearrangements. These inclusions can be produced by
means of the four steps of the Eshelby cycle:

1. Cut inclusions from the matrix.

2. Let each inclusion be transformed to a new phase under the
stress—free strains e;j(1). ...s;j(n).

3. Restore the initial shape applying the surface traction to

create the opposite sign homogeneous elastic strains, -e;j(l),

change. The elastic energy required to induce this set of elastic

strains is

n
] [
if the elastic moduli of all phases are the same, where lijkl is the

elastic modulus tensor, i,j,k,1 are Cartesian indexes, v(p) the volume
of all inclusions of the pth type.

4. Reintroduce restored inclusions in their holes and weld them.

5. Remove the surface traction and allow the inclusionms and matrix to
relax. The relaxation energy, AE, by definition, should be a negative
value reducing the energy (1).

The total elastic emergy is then

E = (1/2) §=1v(p)xijns‘;j(p)s;1(p) + AE (2)
Calculation of the relaxation energy AE requires solution of the
elasticity problem. The elastic energy (2) is a functional of strain
field eij(r) at points r. In the approximation of linear elasticity
this functional has the‘form

n

= o o
B=(1/2) vy (heg (@) + (1/2)[£(e ;) ¢*x (3)



where °
f(sij) ~o- O'ij(r)gij"'kijkleijekl (4)

where a;j(r) and xijkl are the first- and second— order expansion
coefficients of the local elastic energy f(sij) which are material
constants. The unusual term in (4), linear in ejj» appears because in
the system with inclusions the stress—free states is not.a non-deformed
state., The minimization of eq.(3) with respect to elastic displacements
(finding mechanical equilibrium) requires solution of the equation of
elasticity, aaij/axj=0 where aij(r) is stress at the point r=(xy,x,,x3).
Stress cij(r) is, by definition, the first variation of (3) with respect
to &4 Together with (4), it gives

SE

aij(r) = g;;j(r)

= -a3 (D) + Aygppep (D) (5)

Let us reveal the physical meaning of the material constants, c;j(r).
At the stress—free state, °ij(r)=°' we have by definition of the stress—
free state
.c;j(r) = Aijkle;i(p) if r is inside a particle of the tyﬁe p.
0 otherwise
The latter condition can be rewritten in the condensed form
o33(8) = I Aygpiep;(0) Flp.1) (6)
where O(p,r) is the shape function of the precipitates of type (p); it is
equal to unity if vector r corresponds to a point within am inclusion of
the type p and is 0 otherwise. Introduction of shape function &(p,r) is

very convenient because they describe spatial distribution of arbitrary

inclusions. With definition (6) eq.(5) is

n
aij(r) = -§=1 U:j(p) sl(p.t) Bij + Aijkl 3k1 (7)



The elastic equilibrium equation acij/ax-=0 can then be rewritten in the

J
form
M, n 36(p,k)
Ay oqy —mmmem— =1L  o,.(p) —————m (8)
ikl 3207, p=t (HP T ax,
where the strain definitionm, &35 = (1/2)(8ui/8xj + auj/axi), was used.

Multiplying eq.(8) by the factor exp(—ikr) and integrating over r yields

n

. - [

Mijr1 Ejkg up(0) = =i 2, 0y5(p) ky 6(p.K) (9a)
or in the operator form

A—l N .

6 1(kx) v(k) = -1 I Go(p) k 8(p,k) (9b)
where (671(K));5 = Ayppy kykps (So(p))yy = o3 (p)

v(k) = [/] uw(xr) exp (-ikr) a3z

9(p.x) = [/ 8(p.r) exp (-ikr) d3r (10)

In transition from (8) to (9), the boundary conditions om infinity,
u(g) -> 0 and 3ij(r) -> 0 at r =) ®», were used.

The solution of eq.(9) is

n
vE) = -iI 6(K) au(p) K O(2)
or in indices
Vi) = i T 6, () o} () ky BpB) (11)
p=1 ‘

where Gij(k)=(G(k))ij is the matrix reverse to the matrix
(G(k)-l)ij=xik1jkkk1. which, in fact is the Fourier transform of the Green
fanction of elasticity equation. Real displacements, wu(r), can be

found by the back Fourier transform,

a a3x .
w(r); = -1 I / ; G(k)ij oixky 8(p,k) exp (ikr) (12)
p=1 (2r)



Substitauting (12) to (3) and integrating over r within infinite body

results in to the Fourier representation of the elastic emergy

E = (1/2) 2 v(@) Ayjpy o35(0) egy(p) Ca3)
a3k
-(1/2) & [ ————= < klo,(p) G(K} oo(q) IX)0(p,.k) 6(q,k}*
p.Q (211’)3

where <klog(p) G(X) oo(@) k> = k; o} (p) 653 (K) oy (q)k;

The identities
; adx
8(p,k) 8(q,k)% ~~———— = v(p) &
(2m)3 r

where qu is the Kromecker symbol simplify (13):

adx

E = (1/2) I, / B(k/k),, 8(p,K) 8(q.k)* (14)

17 (2m3

wheze B(m), = v;iy; ¢;;(P) e51(0 = < aloe(p)® (n) ao(a)ln> and @ (m) =

k" 2G(k). Since the shape function &(p,r) whose Fourier transform enters
(14) can be a multiconnected function describing am array of inclusions
of the type p, eq.(14) may be nsgd for calculation of elastic energy of

both, an isolated arbitrary shape particle and groups of particles of
different types. Therefore eq.(14) is, in fact, close equation for
elastic energy of an arbitrary multiparticle system in an anisotropic
matrix in the homogeneous modulus case. This energy is the sum of
elastic energies of each isolated ﬁafticle (self-energy) plus strain-

induced pairwise interaction energies between particles.

3. A SINGLE PRECIPITATE IN AN INFINITE BODY
A. Elastic Energy of a Single Precipitate.
Closed equation for elastic enmergy of an isolated coherent particle

in an infinite crystal body can be obtained from (14) as a particular



case, The limit tramnsition to a single particle may be readily done if
we assume that the phase transition involves only ne type of the crystal
lattice rearrangement mode and if the shape function entering eq. (14)
describes a simply-connected region enveloping the new phase particle.
Then omitting summation over p in (14) we have a simple equation for the

elastic energy.

adx
E=1/2f B(x/k) lo(x) |2 (15)
(2m)3
where o o 0 °
n=k/k, er is stress—free transformatiomn strain, °;j=kijk18;1'

le(n)=k—2 Gjl(k) is the tensor inverse to 93%(1) = xjiklnink‘ B(m) > 0,

lox)12=1f0(r) exp(-ikr) a3rl?=|f exp(-ikr) a3cl2 @M
where integration is carried out over the particle volume V. Equation
(17), in fact, yields the Lane interference functiom describing diffrac-
tion on the particle. It is noteworthy that the last term in integrand
of (15), B(m), depends on the elastic constants and crystal lattice
mismatch only, being a material characteristic, while the second term,
le(x) |2, describes the geometry of inclusion omly.

For simple shapes we have the following functions for lo(x) 12:

sin? kxa/2 sinzkyblz sinzkzclz

lex) 12 = 5 5 5 (18a)
(k,./2) (ky/Z) (k,/2)
for a parallelopiped with the edge lengths a.b.c.k=(kxkykz).
3 sin?(X) - P(k) cost(kl2
lo(x) |2 = v2 (18b)

(?(x))3

. 2_ . . -1
for an ellipsoid where ¥(k) 'Lijkikj’ Lij is the tensor inverse to Lij
that determines the standard form of the ellipsoid surface, L;}xixj=1.

The eigenvalues of Lij are squares of the ellipsoid semiaxes, az.bz,cz.



The ellipsoid model is especially interesting since, as was shown by
Eshelby [1] for'isotropic elasticity and by Valpole [20] and Willis
[21], for anisotropic elasticity, elastic strain inside an ellipsoidal
inclusion (eigenstrain) is always homogeneous.

BEquation (15) contains the Eshelby solution for an ellipsoid in the
homogeneous modulus case as a particular case [22]. If the shape
function (18b) is used and the limit transition to isotropic elasticity
is made, v

Aijr1 > 845 Sp1 2 (V/1-29) + u(Byp8iq + 8;185;)
where i is the shear modulus, v is the Poisson’s ratio, eq. (15) is
reduced to the Eshelby solution [1].
B. Optimal Shape and Habit at the Low Interphase Enmorgy Limit.

This problem can be solved minimizing elastic energy (14) at the
fixed value of the érecipitate volume V.[2] Since B(m) and lox) |2 are

always positive

3
dx
E=1/2f B(a) l6(x)|2 > 1/2 (min B(n))
(27)
a3x
x [ le(x) 12 (19)
(2m)3
where min B(m) is the minimum value of B(m). With the identity
a3x
[ lex) 12 =V
(21:)3
inequality (19) is
adx
E=1/2 [ —— B(x/k) |8(x)12 > 1/2 (min B(m)) V  (20)
(27)

where the right side of (20) is the lowest possible limit for the

elastic energy at a given volume.



Let us introduce the unit vector n, providing the minimum of B(m):

B(n,) = min B(m) | (21)
For an infinitely thin and infinitely extended platelike inclusion with
the habit plane minimal to n,, the function |9(k)|2 differs from zero
only within infinitely thin and infinitely long rod in k-space along =ng
(this is a well known result from the diffraction theory; diffraction
from plate yield rod in reciprocal space minimal to the habit plane).
In this case the inequality (20) becomes equality. Therefore the mini-
mum elastic emergy is attained if am inclusion is "rolled out" into the
infinitely thin plate with the habit normal to the vector n, minimizing
B(n). The elastic emergy then is

E=E 1x = (1/2) min B(m) V = (1/2) B(my)V (22)
This strain energy (22) is proportional to the inclusion volume, V.
C. Bulk Energy of am Inclusion with Invarisat Plame Strsis Crystal

Lattice Rearrangement.

The case of an invariant plane transformation strainm plays an
especially important role in the theory of phase transformations. For
example, the idea of ianvariant plane strain is basic for the entire
crystallographic theory of martemsitic transformation which resulted in
remarkable achievements in understanding the cfystallography of this
transformation. The theoretical results obtained above enabls us to
realize what is the reason behind this.

According to the crystallographic theory, the habit plane of a
martensitic crystal is an invariant plane strain. It will be shown
below that this directly follows from eq. (22) as a result of the mini-

mization of the elastic emergy (15).
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The invariant plane strain has elways a form of a diadic product

[ ] [

nij = eolinj (23)
where 1 is a unit vector along the displacement direction, n’ is a wait
vector normal to the invariant plane.

Substituting (23) for s,

j to eq. (16) for B(m) yields

[ ]

o o o0
= MjjspRilfpls th(‘)ltmqr npapl,l (24)

One may see that at m=m, B(m,)=0 since by definition of 2~ *(n)

n_ n

[ ]
A‘tqu: rm

= nil(no)iq. Therefore the bulk enmergy (21) vanishes.
We have the following simplification‘in (24)
| o0 -1
th(n.) Xtmqrnrnm = ﬂjt(n.) Q ('°)tq = sjq

Using the latter in (23) we get B(my) = 0. We have proved the result
that in the case of an invariant plane transformation strain, the mini-
mum of the bulk elastic emergy equal to zero is attained when the
inclusion is a plate whose habit plane coincides with the invariant
plane. This exceptional situation when the choice of the optimal habit
plane may elipinate the most substantial volume dependent positive
elastic energy makes the case of the invariant plane strain so impor-
tant. For example, one substantial conclusion can be immediately made:
if any group of new phase coherent precipitates may rearrange itself so
that a plate—1like aggregate of various orientational variants of the

precipitate phase_gizes the macroscopic shape change described by an

inyariant plane‘strain. it will do this to eliminate the volume depend-

ent elastic strain, This conclusion gives us the direction of strain-
induced coarsening of such precipitate systems. The typical examples of

such systems are tetragonal precipitates in a cubic phase matrix that

ultimately form the martensite-type structure with the surface relief

11



and habit plane determined by the conventional crystallographic theory
of martemsitic transformation.
D. Habit Plane of Tetragonal amd Hexagonal Precipitates.

Equation (21) for the habit plane was solved for the thin plate
tetragonal plate—like inclusion in a cubic wmatrix in [12] and for a
hexagonal inclusio; in [11].

The solution for a tetragonal inclusionm gives two types c¢f the
habit, (h0l) for the negative elastic anisotropy €117c1272¢44 < 0, aad
(hhl) for the positive anisotropy cyy-cyg~2c4y > O.

(i) If cy9-cq9=2c44 < O, the normal to the habit flane. Ny, is

n, = (sin 6, 0, cos ©) where

0 if - <t ¢ —[(eqq/cqx)+1] and 1 ¢ t ¢ @
611 * 2633 ¢
cos20 = (1 + ————=" = if - [(eqq/egx)+1] < t < O
. f11tep 1t
1 if0<t <1 (25a)

o 0 ° ] )
where t= 811/333. 811 and 833 are non—zero components of the stress—
free transformation strain s:j (all other components are zero).
(ii) If cqq-cy9=2¢44 > O, the normal to the habit plane is

By = ((1//2) sin®, (1//2) sind, cose))

where
cos?e = 1 -2 if t; <t <O (250)
§(c11+2¢12)(2t~1) + 4(011+012)(t-1)
1 ’ if 0 €t < tz
(011+2¢12) + 4¢11(1“t)
§ if ty <t <ty
&(011"'2012) (1+2t)
(cqq+2¢14) 2¢
11 12 11
whers tl = ‘(611/012)-1 - § SEmm—————, tz =
4cqg 2¢93+8(cg1+2¢q3)
€11%2¢12
t3 =1 + 5 =T tl < t2 ( t3
4044

12



It follows from eq.(25a) and (25b) that for a cubic precipitate in a
cubic matrix (when t=1), the habit plane is (001) if €11-61272C44 < O
and is (111) if ej5-cy9~2cyy > O.

Similar calculations were made by Mayo and Tsakalakos for
precipitates éf orthorhombic and hexagonal phase [11]. They derived
explicit analytical expression for B(m) in terms of crystal lattice
misfit and elastic constants of the hexagonal phase. Minimizing this
equation with respect to n they were able to pfedict the habit of
precipitates. This approach was applied to Al-Mg-Zn alloy with Za/Mg
ratio between 2.5 and 7, and the total Zn content less than 20 wt pct.
The predicted {111}fcc habit plane of the n’ phase in the fcc Al-based
matrix is in agreement with electron microscopic observation; [23,24].
E. Blastic Energy of Fiamite Thim Plate Inclusions.

Finite thickness of a precipitate with the optimal habit normal to
no, should result in a positive correction to eq. (21), AEedge' Mathema-—
tically it is associated with the fact that the rod in k—-space where
le (k)|2 does not vanish for a finite thickness platelet has finite
thickness and finite length. They are of the order of magnitude 27/L
and 2r/D, respectively where L and D are typical length and thickness of
the plate-~like precipitate. In this case, the energy correction to (21)
is positive because integration over k in (15) is carried out over k
space region where B(k/k) does not assume its minimum value B(m,).
/E

Therefore the correction, AE is of the order of AE

edge’ edge’ “plate

~(/L)2, i.e.,

AE E (D/L)2 = 2e2(DL2)(D/L)%~ A(eoD)2 L~ A(g,D)2 P

edge “plate

where P is the platelet perimeter. .The physical meaning of the correc-

tion is quite clear. It is caused by the crystal lattice mismatch on

13



the edges of the inclusion along its perimeter. The energy correction,

AE can be interpreted as "string"™ emergy with the line teansions

edge’

~l(e°D)2. In fact this energy can be attributed to a dislocation loop
with the Burgers vector b=~g,D enveloping the precipitate in its habit

plane. Accurate calculations of the energy AE for a tetragonal

edge

precipitate in the cubic matrix gives

AE = g(d%/4r) 1n(L/D) P

edge

. |
. _ffi}gf;}j°113§3)? et it ¢33 (1+af)-2c;5a; = 2(ag+1)
°11 °11 C44

e;3 and N;l are crystal lattice mismatch along the ﬁetragonality axis
and in the normal to the plane (001), respectively, §=(cjj—cys=2c44)/cyy
is the anisotropy parameter [20]. In the case of a cubic precipitate in
a cubic matrix (e11=833=80),

(011"‘2012) 2 8% & (c11-¢12)

B= -
2
11

It was shown that in a general case of arbitrary symmetry phase the edge

energy of a plate—like precipitate is

- ; (dy/dx)2 1
AE = (D“/4r) 1a L/D 1By — == 4 By —m—m—————e dl
edge 1 +(dy/axn)? 2 +(ay/dx)?

where integration is taken over the contour y=y(x) enveloping the
precipitate in the habit plane, dl is the contour length element, ﬂl and
52 are second order expansion coefficients with respect to n—my. The

minimization of the AE energy with respect to the shape in the habit

edge
plane described under the additional comdition of comservaatiomn of its
area in the habit plane, S=/ y(x) dx, gives the Lagrange equation for

y=y(x). The solution of this equation results in the forms presented in

Fig. 1.

14



F. Crystal Lattice Parameters amd Crystal Lattice Rotation ia
Constraint Plate-Like Inclusion.
In the case of a single inclusion eq.(12) for elastic displacements
yields
3 3y a(xy 2O
u(r) = i [(a°x/(27)°) G(K) o k 6(k) exp(-ikr) (26)
The coordinate derivative anilaxj gives the distortion tensor,
uij(r).
AP : 3 3
uij(r) = aui/axj = f(G(k)a,k)ikj 9(n)exp(~ikr) d°k/(2n)

Since by definition of the Greea fuanction G(k),

1 :
G(k) = N where a = k/k,
k“ 2 (n)
a34(r) = [a (@ (om) gom); 6(K) exp(-ike) a3x/(2m)? (27)

In the cass of a plate-like inclusion eq. (27) is substantually simpli-
fied because the Fourier transform of its shape functions, 8(k), does
not vanish only within the thin and extended rod in k-space emerging
from the origin, k=0, along the direction my normal to the habit. Then
~ A :

w3500 T aj( 8 (ny) Gome); fO(K) exp(-ir) &’w/(2m)?  (28)
with accuracy of the ratio D/L<<1., The integral in the right hand part
of (28) is the back Fourier transform of ©(k) and therefore, by
definition, is equal to 6(z). Taking the latter into account we have
n? =S(n°) n? if r is inside the inclusion
° ° ij i%j
nij(t) = 8;(= )injO(r) =

0 otherwise (29a)

where ° A o .
S(a’) = i (mg)aom " (29b)

ij°

For the cubic -> cubic phase transformation ai; = (cqq1 + 2cqy) €ob

It has been shown in section 3D that if °11_°12—2°12 <{ 0, the habit is

(001), m, = (001) and thus oome = (cqq + 2cy5)eomo. On the other hand O

(no)mg = 1/011 mo if me = (001). Using these relations gives

15



S(ng) = 0 (ny) oome = goMo(cy1+2cq,)/cy;. Then the eignstrain ut. in

i]
eq.(29) can be rewritten as
qu = S(no)in; = Boninj (011 + 2012)/011
: 000
= 30((011+2012)/¢11) 000 (30)
001

Therefore a constraint coherent (001) platelet precipitate of a cabic
phase has always a strain-induced tetragomality described by (30), the
axial ratio being (c/a)=l+eo(cqy+2¢y9)/cqq. If C11-61272c44 > 0, me=
1//3 (111) and the similar calculation yields

s 1 011 + 2012 111
Vs S ——— Eo 111

3 011 + 2012 + 4044 111

Therefore a constraint coherent (111) platelet of a cubic phase has
always strain-induced rhombohedricity.

Equation (29) leads us to the following important conclmsioms:

1. The distortion within a platel ike inclusion, n:j. is homoge-
neous. Distortion outside the inclusion in the matrix asymptotically
vanishes when D/L ~)> 0.

2, Since almost all elastic strain is concentrated within the
platelet, the total elastic energy is not sensitive to the elastic
moduli of the matrix. Therefore eq.(22) for elastic emergy of a plate-
let derived in the homogeneous modulus case is nevertheless asymptoti-
cally correct also in the heterogeneous modnins case if the elastic
moduli, xijkl in (22) are substituted by the elastic moduli of the
precipitate.

3. The total distortion within a constraint platelet transforms the
matrix lattice to the constrain preceipitate lattice is always an invar—

iant plane strain, the invariant plane normal to my, coinciding with the
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habit plane. Therefore any crystal lattice translation in the habit
plane of a constraint precipitate exactly coincides with the correspond-
ing translation in the matrix plane parallel to the habit.

4, The crystal lattice rotation caused by fitting two different
lattices along the habit plane is described by the asymmetric part of
the distortion temnsor n;j:

1 = (1/2) [ug5-u;) = (1/2) [S(me); njn;Sime) ;]
or by the rotation vector '
?=1/2 (S(n,) x n°)
The direction of P is the rotation axis direction, the absolute value of ?
is the rotation angle.
G. Needle-Like Precipitates.

As was shown above that the elastic energy assumes its minimum for
a platelike precipitate whose habit is normal to the vector n° minimi-
zing B(n)., Mayo and Tsakalakos [11] have shown that this is not always
the case. Needle-like precipitates may be more stable if the minimum of
the‘fnnction,B(n) is degenerated with respect to n lying in the plane.
Such a situation may be epected if B(m) has the cylindrical symmetry
with respect to n.

If B(m) has a cylindrical symmetry with respect to an axis directed
along the direction e, the fnnctipn.B(n)depends on the scalar product
ne: B(am) = B(me). In the case of interest when B(am) assumes its
absolute minimum at n normal to the symmetry axis (at (ne)=0), one may
expand B(m) in a power series of

(ne): B(n) = minB(n) + B(ne)? + . . . (31)
substituting (31) to (27) and using the identity

flex) 12 a3x/(2m)3 = v yields
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E = (1/2) minB(a)V + (1/2) Bf(me)2lom |%2a3x/(2m3  (32)
The energy (32) is minimized for a needle along the direction e because
the function 16(n)|2 for a needle does not vanish within thin extended
plate in u space normal to the needle axis e where ne = 0. Estimation
of the integral in (33) for a needle along the axis e describing strain
concentration near the needle tip yields [22]

AE = (1/2) Bf(ae)? lo(x) 12 a3x/(2m3 = (1/2) pR3 4/3x

edge
where B~xe:. R, is a needle radius.
For a thin and long needle the correction to the bulk energy AEedge

is much smaller than the corresponding correciton AE ~ xa:DL for a

edge
thin plate. The bulk energy term (22) for a plate is the same as for a

needle but the energy corrections AE for a needle is much smaller

edge
than that for a plate (the first is proportional to Kg while the second
to DZL)° The calculations similar to that for a plate-like precipitate
[22] give for a needle the folléving result:

1. Strain inside a coherent needle—like precipitate parallel to the

dirgction ¢ is homogeneous and has the form

835 = (1/2) a(8;; - eje;)
For a particulaf case of a fetragonal elastically isotropic precipitate
e = (3;1 + va;3)/(1+v).vvhetevv is the Poisson ratio, e;3 and 3;1 are
the tetragonal stress-free strains along and perpendicular to the tetra-
gonal axis.

2. Crystal lattice translations of constraint needle-like precipi-
tate exactly coincide with the corresponding translatioms of the matrix
phase. The iattef can be seen from the equation

r; = [Sij + a(bij - °i°j)] T8 = Tee

which shows that the length roe along the direction e does not change.
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Néw a few words concerning cylindrical degeneration of B(mn). Analysis
of equation (16) for the function B(m) shows that the function B(m) may
be cylindrically degenerated with respect to n in the cases of the
cubic—tetragonal phase transitions in an alloy based on almost isotro-
pic cubic solvent (Al, Nb, Mo, W and so on) as well as for a cubic—-
hexagonal, cubic——trigonal and hexagonal—hexagonal phase tramsitions in
anisotropic alloys. The cylindricalldegeneration is not sufficient how-
ever, for a needle to be formed. It occurs when the minimum of B(m) is
degenerated with respect -to any n belonging to the phase normal to the
cylinder axis. This puts a certain constraint on the transformaiton
strain and elastic amnisotropy.

Concluding this section two important points should be emphasized:

1. Formation of needles can be expected not only -in the case of the
cylindrical degeneration of the function B(m). Needles can also be
stabilized by the interphase energy. Balance between elastic and inter-
phase energy may produce the preferential needle—like shapes as an
intermediate form during cooling a precipitate from a spheroid to
platelet.

2. The function B(i) is the Fourier transform of interactionmn
energy of two precipitates in the long-distant limit. In the case of
the cylindrical degeneration when B(m) = min B(m) + ﬁ(ko)zlkz. the
back Fourier transform gives this interactiom V(r) in the form of the
dipole—dipole interaction

Viz) = eieijﬂ(sij/r3 - 3(rirj/r‘) =8B (1/£3 - 3(re)2/c5)
where the coefficient B plays the role of the dipole momeant magnitude.

This fact will be discussed later in connection with the analogy between
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elastic shain and magnetostatic energy of magnets and electrostatic
energy of ferroelectrics.

4. SHAPE TRANSFORMATIONS OF A CUBIC PHASE PRECIPITATE
IN A CUBIC MATRIX UPON COARSENING

As was mentioned above the equilibrium shape of a precipitate is a
result of competition between the elastic and interphase energies.
Equation (15) enables one to evalunate the elastic emergy of an arbitrary
shape precipitate while the interphase energy may bé assumed to be equal
to the product of surface tension coefficienmt, y, and interphase area,
S, if the interphase temsion is isotropic, i.e.

E=E + E, (33)

elast
where

Es‘ = v§

is the interphase energy, and the elastic energy, Eelast‘ is given by
eq.(15). Let us consider the cubic—to—cubic phase t:ansformationlin the
case of the negative elastic amisotropy. c11—c22-2c44 < 0;

Then integration in (15) yields the elastic energy inm the form

E ZE, V + EqV  (34)

elast

where E, = a: (cq5 + 2¢q9)(cq1-c19)/c11s EoV is the elastic enmergy of an

infinite thin plate of the volume V with the optimal (001) habit, and

2
(011 + 2012) (2044 + C12"011) 2
El = 8o

2 °11(e13+e12+2044)

The dimensionless coefficient n depends on the shape of the precipitate
rather than its volume.
The vaiunes of the coefficient m in eq.(34) for different shapes are

given in Table 1.
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TABLE 1

Shape n
Sphere 0.7087
Cube 0.5580
Needle 0.4692
Thin Plate 0

The total energy (33), elastic and interphase, is thus,
E =By + E;Vq + 8
or in the reduced form

Y8 To
[(E-EoqV)/EsV] = n + 5 =0 + —— (35)

a
where
ro = v/Eq (36)

is the material constant with dimension of length, volume—-to-surface
ratio, a = V/S, in a typical particle size, characterizing its degree of
coarsening.

Comparing the reduéed energy (35) for the various shapes versus the
ration ro/a characterizing the degree of coarsening, the critical

transition size from one shape to another can be found. The size a is

related to the particle volume V by the following relations:

for a sphere a = (V/S) = (4/3)(3/4-")1/3V1/3 = 0.83v1/3
= (1/6)v1/3 = o.1666v1/3
(41/3/374)v1/3 = 9.69v1/3

(41/3/3/2)v1/3 = 0.35v1/3

for a cube

for an octahedron a

for a tetrahedron a
Therefore comparing the reduced energies (35) for a spheroid,

(E-EoV)/E{V = 0.708 +1.20 g, / }V.
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and for a cuboid

(E-EV)/E,V = 0.07 + 6 ngo / 97:
one can see that a spheroidal inclusion is more stable at %ﬁré§7.6 Lo
and a cuboid precipitate becomes more stable upom coarsening when
}V'> 7.6 z,.

In the case of positive anmisotropy, €y17¢1272c44 > 0, B(m) assumes
minimum value at m = no = (1//3,1//3,1//3) and thus the lowest elastic
energy is attained for a platelet with the (111).h§bit. We can also’
assame that an optimal polihedron which is formed from a spheroid duriag
its coarsening should be faceted by the optimal (i11) plines only. Such
a polihedron is either octahedron or tetrahedron.

Elastic emergy of am octahedron given by integrating eq. (34) was

calculated by Tsakalakos.

3. APPLICATIONS
A. GP _Zones in Al-Based Alloys,

X-ray and electron microscopic studies have shown that aging of
some supersaturated alloys results in the formation of so—-called GP
zdnes, small segregations of atoms that later develop into metastable or
stable precipitate phase. A GP zome may be either equiaxial (Cu-Co, Al-
>Zn. Al-Ag etc.) or platelike (Al-Cu, Cu-Be) shapes.

Formation of GP zones can be well understood if they are regarded
as new phase precipitates which are formed as a result of isomorphic
decomposition occurring according t; metastable diagrams with miscibil-
ity gap. If the initial solid solution has the cubic lattice, such a
decomposition results in atomic redistribution over crystal lattice
sites of this lattice and formation of cubic phase precipitates enriched

by solute atoms within the cubic phase matrix. Then theoretical results
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formulated above may be applied to predict morphology and the structure
of GP zones.
Since both phases have the same crystal lattice but different
composition, the stress—free transformation shain is a pure dilatation:
(]

g.. = e,sij = (da/ade) (cp-cm)s

ij 37)

ij
where da/adc is the concentration coeffeicient of the crystal lattice
expansion, °s and Cp 8re atomic fractions of solute atoms in the preci-

pitate and matrix, respectively.
a, GP_Zones in Al-Cu Alloys
In Al-Cu alloys crystal lattice mismatch is very big. The concgﬁ-
tration coeffeicient of the crystal lattice expgnsion is about 10%:
da/adcp, = -0.091
For such a large mismatch the plate-like morphology should be expected.

Since ¢yq - €15 — 2¢44 < O for Al (cy; = 1.068 x 1012, ¢ , = 0.607 x

1012, c4q = 0.282 x 1012 4n/cm?, the minimum of B(m) falls on the vector n, =

(001). This means that coherent precipitates should have {100} habit.
According to Gerold [25] a GP zone in A1-Cu alloy is a sole plane
(001) of Cu atoms (Fig. 2). This habit is in accordance with the above
theoretical predictions. Recent electron microscopic observations seems
to confirm this.
Let us estimate the distance between the Cu filled (001) plame and
the nearest se plames. According to (30) for a plate—like precipitate

of a cubic phase in the cubic matrix with the (001) habit

Gomy = (cqq + 2cy9)eome = (cia + 2c3,) (da/adc) (cp—cm)lo
Q(n,) = (1/cqq) m
Therefore
011 + 2012 da
8(n,) = B(mp)oome = ———————— | -—- (cp—cm)nw
©11 adc ]
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and the transformation strain (30) within the constrain (001) plate-like

precipitate is

c + 2¢ da
. o, o _ 11 12 ) o 0 _
uij = S(a)ym; = (adc (cpmen) 2485 =
€11
011 + 2312 da 000
= ——m—————— — (cp-cm) 000 (38)
©11 adc ’ 001

It follows from (38) that the total strain within a constraint platelet
precipitate with the (001) habit transforms its cubic lattice into a
tetragonal one. This is the stress—induced tetragonality. The dis-
placement of Al (001) plane nearest to the Cu (001) plane toward the Cu
(001) plane produced by eigenstrain n;j given by (37) is

a = u;3 8p1/2 = ¢4 + 2¢q5/¢qq (da/adecy) (ey—eplay, /2 (39)
where a,; is the Al crystal lattice parameter and aA1/2 is the interpla-—
nar distance for a (001) plane.

The GP zone hay be regarded as a plate—like precipitate whose
thickness is equal to 2 interplanar distances (D = a). Half crystal
lattice sites of such a precipitate are filled by Cu atoms and the other
half by Al atoms. Therefore, we may assume that p = 1/2. Since matrix
does not have Cu atoms, €p = 0. Using the latter in eq.(38) together

with (da/ade¢) =~ —0.091 and Al lattice elastic constants we have

| 4.041
cqq * 2c da a 1.068 + 2 * 0.607 *
a = _u_____u(--_) (172) 2A1. C (20.091) ——m % ~0.196A°

2 1.068 4

€11 adg
The best fit between calculated and observed x—-ray diffuse scattering
has been obtained when displacement of the A1l (001) plane toward the
nearest (001) Cu plane is u ~ -0.2A° [26]. The theoretically predicted

value u = -0.196A° is in the excellent agreement with that. It should

also be mentioned that the calculation based on the crystal lattice
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static theory [22] gives the same equation for displacement if the
phonon spectrum dispersion is neglected.

The matrix n;j given by (37) also predicts that the crystal lattice
parameters of GP zome in (001) plane are exactly the same as in Al
matrix.

b. 8" Phase

Aging above 100°C results in dissolution of GP zones and appearance
of platelets of 0" metastable phase that is formed by altermation of Cu
and AL (001) planes in the fcc lattice Cu Al Al Al Cu Al Al Al...
Therefore atomic fraction of Cu in 8" phase is Cp=1/4., The 6" pha;;
formed due to such a sequence is a tetragonal phase with c:2asc and a:an
6" phase being an ordered fcc-based superstructure enriched by Cu atoms
has misfit described by eq.(37) and therefore should also be formed as
platelike precipitates vitﬁ (100} habdit.

Let us calculate the 0" phase crystal lattice parameters using eq.

(37). It predicts

cqq+2¢ da '
11 12
¢ = (1+ugg) 21y = 1 +|————= (---)- (1/4) ° 2 ° 4.04
©11 adc
1.068+2°0.607 * (-0.091) 1/4
=1 + - * 2°4,041 = 7.69 A°
1.068 .

Since the ;ltanetcrs of the constraint 6" phase in the (001) habit plane
should be exactly the same as in the matrix, we predict

A= ay = 4,041 4°
The calculated values c=7.69A° and a=4.041A° are perfectly matched to
the observed crystal lattice parameters c=7.7A° and a=4.04A°. Therefore
both the habit plane orientation and crystal lattice parameters of 6"

fit very well the theoretical predictions,
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c. &' Phase

The intermediate tetragonal 6’ phase that succeeds the 6" phase in
the course of aging has the fcc-faced lattice A12Cn(] s where [J
designates vacancy. The presence of built—-in vacancies in the fcc
lattice of the & ' phase introdnce the additional contraction to the
stress—free transforhation strain. The theory predicts that ©' phase
precipitates should also be plateléts with the {001} habit. This comn-
clusion is in agreement with electron microscopic observation.

Since crystal lattico mismatch for 6’ phase in the Al matrix cannot
be detefmined at the moment (we only know that its dilatational paft

is much larger than for the 6" phase), we cannot calculate param—-

eter ¢ using the same equation as with the 6" phase. However, the
theory predicts that the crystal lattice parameter, a, which is situated
in the habit plane must coincide exactly with the crystal lattice para-
meter of pure Al, i.e., aA1=4.041A°. This prediction is also in excel-
lent agreement with the observed results:

ags = 4.04 A°

s
3

cgs > 5.8A°

d. GP_Zones with Small Crystal Lattice Mismatch

GP zones were also observed in Cu—-Co, Al-Zn, Al-Ag alloys. The
difference between atomic diameters os solute apd solvent atoms for them
is less than about 3%. Since the GP zone volume is small, the theory
predicts spherical shape of precipitates (see section 4)., This is in
agreement with x-ray and electron microscopic observations. It is of
interest to note that estimations of the elastic moduli of the precipi-
tate phase in Al-Zn alloys gives cyy=cqy-2c4y > 0 [27]. In this situa-

tion the theory developed above predicts spherical shape in the early
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stage of aging which should be transformed into octahedron (or tetrahe-
dron) and later into {111} platelets.
e. GP_Zones When Precipitate Phase Is Hexagonal

Calculations by Mayo and Tsakalakos for GP zones and metastable 1y’
hexagonal phase give the {111},; habit [11] which is in agreement with
electron microscopic observation. Precipitates of the n’ metastable
hexagonal phase in Al-Zan—-Mg alloys give one more confirmation that a
coherent plate-—like precipitate and matrix have exactly the same crystal.
lattice parameters in the habit planme. Crystal lattice parameters of
constraint hexagonal n’ phase are

ayr = 4.96A°, c . = 8.68A° |
The Al-based matrix has the parameter a,=4~054A°. The [i72 i72 1], and
[1/2 1 1/21, translations of the fcc matrix lying in the (111) plane
which are transformed into the parameter an,of the n’ phase are equal
to
T ([1/2 1/2 11) = T([1/2 1 1/21) = ao /3/2 = 4.054 * /3/2= 4.965A°.

This value with accuracy of x-ray measurements coincides with the value
a=4.96A" observed.
V B. Precipitation of Nitrides im Fe-N Alloys

Elastic strain theory formulated above can be applied to determine
morphology and crystal lattice correspondence of nitride precipitates in
Fe-N martensite [9,22].

a. Precipitates of a" Phase (F°16N2) in Fe—N Martensite

The decomposition reaction that occurs in tempered bct Fe-N
martensite leads to the formation of ordered bcc-based tetragonal

nitride, Fe16N2 (@") in the bcc aFe matrix which later transforms into
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fcc-based y’' phase (Fey4N). According to Jack [28], a" phase is

a tetragonal phase with

ala") = 2ap, = 2.2.86 = 5.724°

cla") = 6.2924° ~ 2a,
The spacing a(a") is exactly equal to twice the crystal lattice
parameters of the aFe. This coincidence cannot be accidental. It may
be explainéd if a" phase precipitates are coherent platelets with the
(001) habit. Then the theory predicts thaﬁ parameter a(a") situated in
the habit plane (001) should be exactly equal to the corresponding
parameter 2ap, of the (001) matrix plane. In other words, the crystal
lattice parameters observed by Jack are parﬁmeters of constraint
precipitate. This conclusion which directly follows from the theory was
proved by the crystal lattice parameter measurements of the single phase
ordered a" phase solid solution which is, by definition, the stress—free
Fe—8.56 at%N single phase alloy for the measured crystal lattice
parameters are

aa") = 5.692 A’

c(a") = 6.180 A’ [29]
For this alloy a(a") # 2ap, which proves that coincidence of a(a™ with
ZaFe observed by Jack is a result of constraint. For the stoichiometric
alloy the stress—free strain is 3;1 = —0.606537. 3;3 = 0.107397.
These values enables ome to calculate the crystal lattice parameters
of the constraint (001) precipitate using eq.(29). The calculation
gives

a(a")

)
2ag, =2 ° 2.80 = 5.720 A

c(a") = 6.289 A°

which is in excellent agreement with the Jack observationms.
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-0.004895
0.080413

In the case of the (001) habit the conmstraint strain (29) has the form

2¢ 000
12
u;j = 8;3 + ———— 3;1 000

ordered phase _Fe4 [28]. The crystal lattice parameter of the vy’ phase
near its stability limit is

s, = 3.791 A°
whereas, that of the bece Je matrix is

a3, = 2.860 A’

Since the stress—free transformation strain for bcc -)> fcc crystal

lattice rearrangement is the tetragonal Bain strain, its components

are »
837 = 833 = 8,+/80/2) -1 = (3.791/2.86/2) -1 = -0.0627
e33 = 8,1/80) -1 = (3.791/2.86) -1 = 0.3255
t = ey;/e3) = -0.1926

With this numerical value t = -0.1926 using the elastic constants of

pure iron in eq.(25a) we have
o = (0.484, 0, 0.875)y ..

This unit vector is normal to the predicted habit plane which deviates
only by 2.4° from the (:l02)b¢c habit observed [31]. Making use of the
elastic constants of aFe and value t = —0.0608 in eq.(25a) yields the
vector n, minimizing B(m) in the form

n’ = (sin 8, 0, cos @) where & = 18.6° or a' = (0.279, 0, 0.960)
which is a deviate less than 1° from the normal to the (207)bcc plane.
Therefore a large coherent precipitate of the a" phase whose shape is

predominantly dictated by the elastic energy relaxation should be
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produced in the form of a thin plate with habit close to (207)bcc [22].
¥Vhen this result was first obtained there was the impression that it
contradicts the electron microscopic observations of the a" phase in the
form of a thin plate with (001) habit. However, using the same theory
Hong, et al. have demonstrated that for a small a" phase precipitate
whose equilibrium aspect ratio is less tham 11, the habit plane is
(001)bcc [9]. Only later with particle coarsening should it be trans-
formed to the (207) habit. The electron microscopic observations seem
to confirm this prediction. The (001) habit plane was observed to be
transformed into puckered (001) plane composed of segments of planes
close to the {207} planes [30].

C. Habit Plane of f—Phase in V-H Alloys.

B phase in vanadium hydride is anm interstitial bcc—based solid
solution with H atom occupying the sole 0z octahedral sublattice of becc
V host lattice. Such an occupancy produces pseudotetragonal distortion.
B phase crystal lattice parameters are

a=3.002A° C-=3.3114"
The V matrix lattice has the parameter
ao = 3.032 A°
Therefore, the stress—free transformation strain is
ef; = = -0.0099 ¢;, = 0.0890 and t = -0.111
With the V elastic constants eq.(25b) yields
n, = (0.277, 0.277, 0.920)
which is' close to the normal to the (227), .. habit. The normal to the
observed habit plane of the B phase is
n = (0.293, 0.236, 0.926) [37,38]

obs

Deviation of calculated habit from the observed one is about 0.90. This
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agreement can be regarded as very good because the theory does not have
any filtering parameters.
6. Magnetostatic Energy and Analogy with Elastic Strain Energy.

As was mentioned in the Introduction there is the profound analogy
between elastic strain energy of a two-phase coherent dispersoid and
magnetostatic energy of ferromagnets and electrostatic emergy of ferro-
e¢lectrics. The consequences of this analogy are so importaat that they
deserve a special discussion. Below the equation for magnetostatic
energy of the system of ferromagnetic domains will be described, and it
will be shown that mathematically the equation for magnetostatic energy
is analogous to one for the elastic strain energy. It will be demon~
strated that the k-space technique developed above for the elastic
energy can be with the same efficiency applied for magnetostatic energy
of ferromagnets in the cases when the Bloch wall thickness is well below
the typical size of domains [22].

As is known, the magnetostatic energy may always be represented as
the sum of interacting magﬁetic dipoles .

8., (r-r') . (r-1')j
E . = 1/2 [f 3:d®rm(n), | —3—— -3 - n(r’); (40)

ma
& |-z |3 Py

wheres =m(x) is the magnetization density at the point r, the integration

in (40) is taken over the infinite crystal body. Using the Fourier

representations:
a3x
nlr) = [ M(k)exp(ikr)
(27m)
£, - 70 3ryr; = 4n [ (kik /K%)= exp(ikn) ¢’x/(2m)3
in (37) one has
® IM(x) k|2
Epag = (1/2) [I 47 ———o—m- a3x/(2m)3 (41)
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where for simplicity the magnetic susceptibility is assumed to be equal
to unity.

Let us consider an arbitrary system of ferromagnetic particles with
various possible directions of magnetization designated by the index p.
Then the spatial distribution of the magnetization produced by the
system of magnetic particles or magmetic domains is

m(r) = My Ze(p) 8(p,.r) , (42)
(compare with eq.(6), where 6(p,r) is again the shape functiom of
domains of the pth type, e(p) is the unit vector along the magnetization
direction of pth domains. The Fourier transform of (42) is
vl(k) = My Ze(p) 6(p.k)
substituting this equation to .(41) yields

- mag s 3 3
Epag 2r M2 i . / B(x/x)228 6(p.1) 8(q.®)° k/(2m) (43)

where :
B(n);:g = (e(p)m) (e(q)m)

is the angular function of the k vector direction, n = k/k. One may
readily see that eq.(43) for the‘magnetostatic energy has absolutely the
same form as eq.(14) for the elastic energy. |

For a single domain particle eq.(43) gives the analog of eq.(15) for

the elastic energy of a single coherent inclusion:

= 2 2 43 3
Epag = 27M5 [ B(K/X) . l6(X)|° d7k/(2m) (44)
where B(n) = (em)?. Equation (44) can also be rewritten as
_ 2
Emag = 2nrMga V

where
e = V1 [[tex)?/x2]l0(0) 12 a3x/(2m)3

is the k-space representation for the so-called demagnetizatiom factor,
the dimensionless coefficient depending omnly on the shape of the

particle.
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It should be emphasized that eq.(43) gives the close solution for an
arbitrary set of ferromagnetic domains whose size is well above the
Bloch wall thickness. This equation can be efficiently used for
calculation of the reverse magnetization and for analysis of
morphologies of domain structures. To the authors knowledge, this k-
épace formulation of the magnetostatic energy is new and can be very
useful in various applications because of its mathematical simplicity.

The formal analogy between the elastic energy (14) and (15), and
the magnetostatic energy (43) and (44) consists in the fact that both
have the same mathematical form. The kernel fnnction.B(k/k)pq in the
elastic energy (14) as well as the corresponding kermel function
B(k/k)“l;:;8 depend on the direction of the wave vector k rather than on
its absolute value. The kermel functionas B(k/k)pq are, in fact, the
Fourier transform of the pairwise interaction between elements of volume
of the domains (or coherent particles) of the type p and q. These
energies can be foand by the back Fourier transform which gives the
singular function

qu(r—t') =1/le2'13 ¥ (e - )/ =-2'D)
where ¥(m) is the function of the direction, (x-x')/lr-2’l. This is the
typical form of the dipole-dipole like interaction. The elastic inter—-
action between elements of coherent precipitate volume has exactly the
same the form of the dipole-dipole interaction when B(n) has the cylin-
drical symmetry about a certain axis e, i.e. when
B(n) = B(ne) = maxB(n) + B(me)2 + . . .
Then the back Fourier transform yields

V(r-r') = B|r-r'|-3 [1-3 ((r—2)e)2/l—2'12 1
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which corresponds to interaction between two dipoles, /Pe, séparated by
the distance r=x'.

The major physical consequence of the fact that B(k/k);:g depends
only on direction of k vector is the well known effect, dependence of
the magnetostatic emergy om morphology of ferromagngtic particlies., It
results in instability of a homogeneous state of the ferromagnetic phase
with respect to decomposition into the system of domains. In the case
of a uniaxial ferromagnet film a large domain with the opposite magneti~-
zation direction than the matrix also proves to be unstable with respect
to splitting into the array of bubble domains. The reason for this is
the same, repulsion between volume elements of the domain which repel
each other as parallel identical dipoles.

Summing up the foregoing one can see that instability of a homoge-
neous state of ferromagnet (and ferroelectric) is caused by the fact
that the magnetostatic emergy of a ferromagnetic phase unlike the ex-
change enexgy depend§ not only on the volume of the phase, but also on
its morphology, shape and spatial distribution. It will be shown below
that the same is true for the elastic eneergy of a coherent dispersoid.
7. Strxain—-Induced Instability of Cohereat Particles im Two-Phase Cubic

Alloys.

The elastic energy, unlike the "chemical™ free energy of a two-
phase alloy depends not only on the precipitate phase volume, but also
on its shape and spatial distribution. The situation here is the same
as with magnetostatic energy. Therefqre. one could expect that
dependence of elastic energy on morphology would produce the same ef-
fect, viz. instability of large coherent particles. This instability,

splitting large coherent precipitates, amalogous to the splitting
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instability resnlting.in formation of bubble domains would seriously
affect the traditional concepts of coarsening in two—-phase cubic alloys.
The main result of the conventional theory of coarsening, that a two-
phase alloy-becomes more stable upon coarsening should be questioned.

First of all, all studies concerning evolution of alloy upon coars-
ening implicitly assume that precipitates remain intact and, if they
coarsen, just monotonically increase their size} The theory [2,4]
enables us to test this assumption. Following [32] we shall demonstrate
that when a cuboidal particle of a cubic phase precipitate reaches a
certain critical size, multiple of the typical length r, introduced
above by eq.(36), the cuboid becomes unstable and decomposes into a
doublet and later into an octet of subparticles. This phenomenon re-
flects repulsive interaction between elements of volume of a cuboid
which, in fact, opposes the coarsening. Similarly we can predict that
large plate should also be unstable with respect to splitting into
several subplates and so on.

Splitting is not the only way to prevent formation of too large
overgrown precipitates, Elastic interactionm between them may produce
the same effect. This interaction would just oppose coarsening, the
phenomenon which was really observed.

To analyze the elastic emergy change upon tramsition of a monlytic
precipitate into a group of subparticles we should compare the elastic
energies of both states. To do this, let us represent the shape
function, O(r) of a group of identical subparticles as the sum of their
shape functions, 5,(:~Rj)

8(r) = Zj Oo(r-lj)

where the index j labels all subparticles lj describes the position of
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the center of gravity of the jt subparticle. The Fourier transform of

this function is

0(k) = 04 (Kk) Zj exp(—iklj) (45)
where the mutual location of precipitates is taken into account by the
"structural factor,"” Zj exp(-ik!j), 8,(k) is the Fourier transform of
the shape function of a subparticle.

Substituting (45) to (15) gives the close equation for the elastic
energy of this group of precipitates:

E = 1/2 [B(/%)19,(x) 211 exp(-ikR )2 ¢3x/(2m)3 (46)
Using the expansion of the function B(n) in the series of cubic harmo-
nics and terminating the corresponding>series by two forms, we have

E = Eo,V + E,V 4[I, + 27ul,/2]
where E, and B, are given in comments to eq.(34),
= (eq9 = c19 = 2¢c44)/(cqq *+ 2cqg + dcyy)

The dimensionless coeff icients I, and I, have the form

V1 [y (x/x) 6, (x) |2 Iz

V1 y.(x/x) l6,(x) 12 Iz, exp(—n:nj)l2 SBx/(2m3 @

2 2 2.2 2
nxny + non; + nynz

2.2 2
nxnyn z’

I, exp(—ikkj)lz a3x/(2m)3

I,

where v,(m)

v3(m)
(nx,ny,nz) are Cartesian components of the unit vector an. The constants
I, and I 9 are geometrical factors which depend on shape and mutual
location of subparticles. Numerical calculations of the integrals (47)
at °11—°12_2°44 ¢ 0 show that a cuboidal particle has greater elastic
energy than an octet of cuboidal subparticles, the energy of the octet
being the lowest when cuboidal subparticles are separated by the dis-
tance u = 0.4a where 2a = }V'is the edge length of the initial cuboid

(Fig. 2). The cuboid subparticle has also the greater elastic energy than
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the doublet of the idemtical parallelopiped subparticles formed due to
splitting the cuboid. The lowest energy of the doublet is attained when

separation distance between subparticles is 0.8a (Fig. 3). The elastic

energy of the octet is less than that of the doublet of the same volume( Figq),

As for the interphase energy, its increase is caused by the formation of
new interphase because splitting is less for the deublet tkan for the
octet. Therefore, for a smaller precipitate when the interphase energy
contribution dominates, a doublet should be expected. For the layer.
precipitate when the elastic energy prevails, the octet is favored. _The
numerical caluculation and comparison of the elastic and surface ener—
gies of both morphologies show that the cuboid -> doublet tragsformation
may occur when %V'> 27r, where V is the cuboid volume, r, is given by
eq.(36). Doublet ~> octet tramsformation may occur when ;V'< 82r,. At
greater volumes the octet ceases to be stable with respect to tramsfor-
mation to a platelet. These results naturally fit the results in sec-
tion 4 concerning the shape transformaiton of a monolitic particle from
a spheroic to a cuboid which occurs when 3V‘< 7.6;0. Together these
results confirm our qualitative conclusions formulated above that the
morphology transformation is determined by the ratio between the effi-
cient particle size %vnand characteristic length r, depending on inter-
phase energy, crystal lattice misfit and elastic moduli. The%ﬂﬂro
ratio, in fact, is the measure of éontribntion of elastic energy with
respect to interphase energy to the coarsening process. The more is
this ratio, the more contribution of elastic energy.

The stability limits found above characterize the conditions when
one morphology becomes energetically more favorable thanm another.

However, it should be emphasized that the "overgrown" microstructure is
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not auntomatically transformed into another. It may still be stable with
respect infinitesisal variations of the shape. In this situation the
overgrown microstructure is metastable.. It can be transformed into the
stable ore only by the finite shape transformation playing the same role
" as the critical nucleus fluctuation in the conventional phase transfor-
matior thermodynamics. Since the critical shape fluctuation required
for the shape tramsformation is macroscopically large, all metastable
morphologies should be very stable and transform into the stable mor-
phology ouly near the metastability limit wkere a metastable particle
also becomes unstable with respect to infinitesimal shape variations.
Simple gualitative interpretation of the microstructure transforma-
‘tion. spheroid-)puboid-)doublet-)octet—Splatelet, upon coarsening is the
following. In the relevant case when °11_°12—2°44 { 0 elements of the
precipitate phase volume repel each other along the (111> directions.
This repulsion transforms a spheroid into cuboid due to stretching of
the spheroid volume along the <(111) directions. The same effect results
in splitting the cuboid along the same <111) direction transforming the
cuboid into an octet. The only reason why new phase precipitates can
exist as momolitic homogeneous particles is the interphase energy ef-
fect. The interphase energy opposes the splitting since it produces new
interphase. The situation here is the same as in the éase of ferrcmag-
rets, because both elastic energy and magnetostatic energies destroy the
homogeneous state of a particle in the zero interphase emergy limit, or
in the limit of large particle volume when interphase energy plays the
minor role. T%e example of sucl & lelaviour gives a strip ferromagntic
domain which becomes unstable with respect to splitting into the set of

bubble domains because of repulsion between the elements of the strip
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domain volume repelling each other as parallel magnetic diploes.

The above results show that the m;fhémeticaliy simple theory based
on the homogeneons modulus case approximaiton can be efficiently applied
to the important techincal alloys. For example, it has been shown above
in section 3F that the homdgeneons modulus approximation gives neverthe-
less asymptotically exact value of the elﬁstic energy of platelike
precipitates if the elastic moduli of the precipitate phase are used.
The reason for that is the concentration of eiastic strain within the
platelike particle (the ratio of elastic energy concentrated out side
and inside the particle tends to zero as the squared aspect ratio (ﬁ/L)2
-> 0, where D is the thickness, L is the length of the particle). On
the other hand, equations for the edge energy of the plate inm section 3E
are also a symptocially correct if elastic moduli of the matrix are
used. The reason for that is the same. The edge energ& is the one that
is concentrated in the matrix with the same asymptotic accuracy (d/L)2 >
> 0. Therefore, all results concerning the habit plane, eigenstrain and
orientational relations obtained in section 3 in the homogeneous modulus
approximation proves to be valid if the moduli are different. In fact,
reduction of elastic energy upon strain—induced stage of coarasening
occurs mainly due to redistribution of elastic strain from the matrix to
the precipitate phase so that ultimately all elastic strain proves to be
contained in thin plate particles. In limit case of the martemsite-1like
optimal structure at which bulk elastic energy completely vanishes, the
valune of elastic moduli does not matter at all, This is the reason why
pure crysfallographic theory of martensitic transformation proved to be

so efficient.
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Fig. 1 Calculated optimal shape of the platelet particle
in the habit plane. '

(a) slightly anisotropic case (oval shape)
(b) stronqly anisotropic case (lense shape)
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2 Schematic drawing of octet that results

of a cuboidal particle.
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2a

Schematic drawing of doublet of plates that

the decomposition of a cuboidal particle.
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Configurational elastic energy, in dimensionless form, as a
function of dimensionless narticle spacing (u/a) for an octet

of cubes (dark line) and a doublet of piates (1ight line).
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