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-I. INTRODUCTION,
In formulating approximate solutions by the finite element method it is

possible to obtain "bounding" values on the true strain energy content.,
If the approximation involves the use of a compatible displacement field then
it will represent in general the lower bound. Alternatively, if an equilibrating

stress field is used, then an‘gppgg bound on the stress energy will be obtai-
ned, (12
Energy bounds can be translated into bounds for the structural deflections,
providing a direct measure of convergence of the analysis, _
. Generatipn of compatible solutipns, while not always easy, presents'neverthe-'
less fewer difficulties than the derivation of equilibrating solutions, In fact,
many efficient solutions to both the plane elasticity and plate bending problems
have been derived (2)(3) using compatible displacement formulatione, The object
of this paper is to show how the slab analogy can help by utilising such solu-
tions to generate equilibrating solutions and obtain reciprocal bounds,
In addition the slab analogy will yleld always an alternative formulation of a
the problem which at times may be more efficieut from the computational point
of view. co R ’
Before proceeding further it will be convenient to recapitulate some facts

about the general slab analogy.

2, SLAB ANALOGY. S

The recognition of an analogy between the stress functions in plane problems

and the lateral displacements of plates was evident early %) via the identical
"bi-harmonic relationships valid for homogeneous and isotropic situations.

An extension of this to multiply connected regions and-to~non-homogemeoua situa-
tions came later (5)(6). Southwell (7) extended the analogy concept to a direct
relationship between displacements in the plane problem and two new stress
functions introduced for plate bending, Fung (8) dertved Southwell's equations
by the conplementary energy principle, extending them to plates of variable
thickness and mixed boundary conditions.

In the notes given below it will be seen that a "one to one" analogy is
evident for all steps of the formulation of the two problem, irrespective of
material properties assumed., The variables entering each problem will first be
listed and then the analogy stated. ; Ssr,

9’“\

SFe™2tag

¥

A, Plane elasticity.
The stress dependant part of strain can be defined in terms of d&apficements

o
%, 3
b sagnet®

¢ and v 1in direction of the x and y axes &
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" The last vector stands for thermal strains dué to a temperature rise T aﬁd an
expansion coefficient a + (The coefficient C 18 equal to unity for plane
stress or (1+v) for plane strain). _ ,
In the absence of dislocations the displacements u  and v- are single-valued,
With the help of (IA) they can be determined by the variational principle of

displacements

IW(cx. €y exy)dxdy -f (xu + Yv)dxdy .- ) Gn u, + ?tn ut)ds minimum

In (2A), the strain energy density W 1s a quadratic form containing the appro—

priate elastic constants to produce the linear stress-strain relations

oW oW ' 1 W
x  3c, y aey xy 2 aexy

X and Y are specified body forces; Gn and :;tn normal and tangential
stresses specified along parts of the boundary. Along complementary parts of

the boundary there are specified normal and tangential disPIAcements

u =u S ou = u . .. (4A)
The variational derivatives of the principle (2A), produce a palr of partial
differential equations for the unknowns -u and v , together with boundary

conditions supplementing (4A). They are respectively statements of equilibrium
with the body forces

30 T 90

ax* By ° ax 3y"'Y o (54)
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and equilibrium at the boundary with the specified stresses,

- o - P
- g g L ¢ Tnt

n n nt (64)

This defines uniquely the problem and permits its solution. »
The finite element method of approximation, relevant to this formulation of
the problem, makes use of displacement models for the finite elements.
Within each element the displacements are single-valued and differentiable;
the whole field being then piecewise differentiable, The elements are said
to bé "conforming" 1if the displacements are furthermore single-valued at the
interfaces, In such a case the variational principle (2A) remains applicable
to the structure as a whole and predicts a lower strain energy bound if
Eh - ﬁ‘ = 0 , aniupper bound if X = Y= 0 and 5; - ?tn =0,

An alternéte approach to the problem is through the use of a general solu-
tion to the equilibfium equations, ‘Such a solution is provided by setting

(o, ) o /eyl ¢+ F 9

{oh= [o | = | ore2er | R ¢
T - 24/ax3y
\ xy J L ' J

in wvhich F 1{s & body force potential such that

1

Xwa~yFfox .Y:9 - oF/ay

Along those parts of the boundary where stresses are specified (fig. I)

;'--.3—29.-—331+i£ -giq-r
B a2 ge2 SR B , -
: | » - | ()
nt oton ason 98 ds

-

where dy/ds 1s the curvature of the boundary., The stress function ¢(x,y)

can be determined by the complementary enmergy principle
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/ (°(Og- Oy ‘xy’ + oCT(o, + qy)) dxﬁy

d
- (5, (_.Q _.&..‘lur)-u ('35%3‘ —ﬁ-ﬁ])ds minimum(9A?
The complementary energy density ¢ (stress energy) provides the same stress-
strain relations (3A), but solved for the strains ‘

3% 36 ' 1 _38
=" %0, y o, 2 »

The variational derivative of this principle for ¢ , yields

.323 aZe 32e
24X X = = 92(oCT) : (114)
ay? ax? %3y . o

It is a necessary condition for the integrability of single-valued displacements
u and v , defined according to (1A), After substitution of (IOA) and (7A), it
is also the partial differential equation governing the stress function, which

reduces to the non-homogeneous bi~harmonic equation

v‘i¢ s - -}n.ﬁ. v2 (aCT)

in the isotropic case, (The constant m is equal to unity for plane stress or
(1=v2) for plane strain). .
The variational boundary conditions, which supplement (8A), are 3

Y X

s ) 3 u :
from 6, : v +4 €, * aCT

(I24)

azﬁ“-.@.(ﬁ.ﬂ) .21‘:_“.94;‘-‘1‘?-( - .) --3-(: :+ aCT)
98 t ds Y] ds cn ‘t on t

from §&¢
. 282

This permits the problem to be solved, provided the domain is simply connected.
For simplicity we use straight barriers to reduce the multiply-connected case
to the simply connected one (fige I), Further statements of equilibrium are

necessary 3 across each barrier gtresses should be continuously transmitted
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*' | | o (134)
+ Yy -
nt ongt nt sngt
Eﬁuivalent statements are
et N &
LY
(14A)

L 3 -
’n = ¢n - Nc

The significance of the constants (Nn, Nt,-MB) appears in Appendix 1 ,

The variational transition equations based on (I4A) are obtained directly from
(I2A), Remembering that there are no specified displacements on a barrier, the
variation on -0; gives ' o

h e N _ -
(et + aCT) (et + oCT)

and the variation on ¢

Cl> _ oc o : -
235 (e room | P2 3:t--g-;(et+acr)|

In view of definitions (1A), these results are equivalent to

‘ '3ut + aut - 32u.‘+ | 32un N
v G -G (“2“] '(‘atz)

and yield the classical property discovered by Weingarten 9 and V, Volterra
(IO) that both sides of the barrier can undergo a kinematical relative displa-

cement ¢
u AU +p .
= 5 t .
(154)

4 - '
+ +
un = un w.t q
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Hence (IIA) is not sufficient for single~valuedness of the displacements,
Parameters in the solution for ¢ must be further adjusted to implement for
each barrier the single-valuedness conditions "in the large"

"pw™ao q=o w"0o (IﬁA)

‘Those parameters are, for instance, the "Michell" constants of the expressions
ax + By # y that can be added to ¢ along each Internal boundary of a cavity
without disturbing satisfaction of stress boundary conditions.

The finite element approximation, relevant to this alternate formulation, makes
use of equilibrium models for the finite elements. An equilibrium model can be
generated by a single-valued, twice differentiable stress function, defined in
its interior, The elements will be "stress diffusing" if the stresses defined
at the interfaces are continuously transmitted between adjacent elements, In
view of (8A), this property can be insured if F , ¢ and its normal slope
9¢/an remain single-valued at the interfaces, This condition is however not
quite necessary, since the surface z = ¢(x,y) of any element can be moved
bodily (a vertical translation and two rotations about the x and y axes)
without disturbing the stress field. This freedom, used along barriers, allows
the treatment of multiply connected cases,

The variational principle (9A) remains then applicable to the whole structure
and predicts upper stress energy bounds if Gn o ﬁt = 0, lower bounds if
X=Y¥s=o0 and E; = ?nt =0,

Because, in the general case, the approximations will not allow . ¢ to satisfy
the partial differential equation issued from (IIA), the diéplacement field
within an element will not be integrable, The only knowledge provided about
displacements will be in the form of weighted averages (1)(11).

B, Plate flexure,

In the Kirchhoff-Love theory of plate flexure, the curvatures produced by

the internal moments are related to the lateral displacement, w , by

‘1

( £y ] [ a2w/ox? = )
{c} = Ky = 8%},/372 “kg | - (XB)
K Tl 2w/ax
) ‘ 7 A

in which Ko is an initial, 1sotfop1c, curvature of the typa resulting from a
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temperature change. The internal noments can be related to the curvatures

through an energy WCKx, K _, ‘xy)' per unit area containing appropriate elastic

, y )
congtants o ’ i
’ W W ‘ 1 W !
x LU y axy xy Z a:xy

The problem for the laterai displacement is governed by the variational princi{
ple :

N

[wdxdy-qudxdy+](u -—-E w)ds- Ti-z-iwi minimum  (3B)

The lateral displacement can be specified along parts of the boundary .;'

vew L @B
Then, along complementary part the shear distribution E; is given, with,.
possibly, some concentrated 1oads -1 .
In the same manner the normal bending moment M is éiﬁen along parts of the

boundary complementary to those where the normal slope is known

w _ o . ; S |
w0 L ee

Finally, a known transverse pressure q(x,y) is applied.
The variational derivative of the minimum total energy principle, using (2B) .
and (1B), is

oM 32M 32M

x xy J -
+ 2 * w = q (6B)
ax2 Ixay ayz . .

- It {s convenient, for later use, to introduce as auxiliary quantity the shear

vector (Qx. Qy) | |
M. M aM M

0 X XY - i 4 :
\ Qx 9x + oy ) Qy _3§ZV¢ ay (78)

Then, the variational derivative is more clearly a statement of vertical equi-
1librium
3, 3 - .
F+3y.-q '(BB)
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Expressed through (2B) and (iB) in terms of w » it becomes the partial diffe-
rential equation governing the lateral displacement, For the isotropic case it
reduces to

1

Et3
12(1-v2)

w3 ®-

The variational boundary conditions, supplementing (4B) and (5B) are 1

aMnt
from ¢w . Kn - Qn + — " Kg : (9B)
ow . :
from ¢ (3-5) S M = ﬁn | (10B)
from 6"1. : u Hnﬁ (s1 4 0) = Mnt (s1 -0) = Z1 (1IB)

Equation (9B) introduces the general definition of the Kirchhoff equivalent
shear distribution along a curved boundary.

A displacement model for a finite plate flexure element will be defined by a
parametric, single-valued, twice~differentiahle lateral displacement field.

The elements will be conforming if w and Jw/3n are single-vaiued at the
interfaces. The varfational princible i§ applicable to a gridwork of conforming
clements and predicts a lower bound to the strain energy if w = o ’ (%%j = 0 ;
an upper bound if §=o0o, K =0, ﬁ; =0, 21 -0,

.The stress-diffusing properties of the elements, represented here by the single-
valuedness of Kh and Mn at the interfaces, will only be averaged in the
approximation, because the variations on w and 5w/dn at the interfaces are

constrained by the finite number of degrees of freedom,

The alternate approach to plate flexure is again through a general solution
to the equilibrium problem. If a stress-function vector (U, V) 1s introduced
such that -

! s o 1
( My aV/ax ~ P
M_ - av/ay‘ - P (12B)
: 1
- M =(3U + 3V
w | 7 (d /3y + aV/ax) J

the bending rigidity)
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Then, we.' have for the shear load vector (7B)
|
P 9P
a0 0 _ 88 __ o
! Qx - oy 9x Qy T 9y (138)
' . 1 3V au '
with , 0=z (55~ a—;) | (14B)
and the equilibrium equation (8B) is satisfied, provided
I (15B)

The stress—-function vector can be determined from the variational principle

J {Q(Mx. My, Mxy) - K, (Hx»+ My) } dxdy - [ G K, - g) M) ds minimum
(16B)

The complementary energy ¢ , per unit area, yields the inner moments-curvatu-

res relations (2B) in inverted form . _

3d ’ 2o 1 29 ;
e =2 g m o SL O S (17B)
x M M 2 oM

M y 3y xy xy

To apply the brinciple by varying the quantities U and V we can rely on
definitions (I2B) but we must also express the boundary loads in terms of the

stress-functions., In natural boundary coordinates, let Un s U_ be the compo—-

t
nents of the stress-function vector. Then

gel((t_ _n ' - | (18B)

and, using a set of transformation rules detailed in Appendix 2,

A\
ou_ U - : ‘ ' ' _ '
Mn it I,o Y * Un ds Po ' (198)

oM oP A 1) ¢ U

‘ nt oo ___o_Ll 9 ( t,_1n
K" G * 55 "5t "% ~Z 35 5n ' 3E
2
220 2P,

¢ 283t on
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or, finally i
32U aP
AR * e U ds) an : (208)

i ' asz

Hh -and Kn as given by (I9B) and (20B) should be substituted into the boun=
- dary term of the principle, The variational derivatives for U and V are

respectively

9 K g :
ax oy 3x
(218)
a o
X ay oy

They represent necessary integrability conditions for a single-valued lateral
displacement w , as defined by (1B). When modified through (I7B) and (12B),
they become the pair of partial differential equations governing the stress |
functions, The boundary values associated to them are (I9B) and (20B), where
Kn and Mh are specified and the complementary set, where deflections and

slopes are specified ¢

L-—‘ks aﬂ' ) 22B
" 2 ( ) ds ~ %¢ ¥ % a2 o ( ,)

stemming from the boundary variations on Un » and

.?...(.g.‘;i) S dy L 3% (23B)

8 38 ds <nt anst

stemming from the boundary variations on U,

This, in principle, formulates the problem to be solved for a simply connected
domain., The additional statements of equilibrium required for a multiply-
connected domain are the continuity of Kn and Mn across the barriers,

Once again, taking straight barriers for simplicity, (I9B) and (20B) show

that those equilibrium conditions are equivalent to-

U v
ty+ ty-
Ge) - G
(azun)\-~ _ azvn)_
a2 at?
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(Pd and aPo/an are assumed single-~valued throughout),
Hence
+ - j
(24B)
+ .

-* -
Un - Un ¥y Tt

The significance of the constants He o #un' and T appears in Appendix I .
The variational transition equations based on (24B) can be written directly
from (22B) and (23B), Bacause there are no specified displacements on the
barrier, the variation om U: ‘yields

(‘nt)+ = (eny)

and the variation on U;

(. *+ "o)# = (c, + )

t t

In view of definitions (1B), these results are equivalent to

32y (4 52 - | 2 2 ...
Gme) - G0 md ()" - ()

at2 at2
or, finally
K J -
LA B hB + un t
Lo : (258B) -

I

. n n t

As in the céie of plana elasticity, this expresses that the two sides of the
barrier can undergo a kinematical relative displacement 3 a relative vertical
translation hB and two relative rotations about the local axes n and ¢t
in B, :

Again conditions (2IB) are not sufficient for single-valuedness of the lateral
displacement and its slopes, To avoid dislocations, parameters in U and  V
mst be adjusted to obtain

h, = o LN ] W wo o ' (26B)
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on each barrier; Those paraméters can be the arbitrary constants in the expres-
sions (a~ wy) and (B+ wx) that can be added respectively to U and V

along each internal boundary of cavity without disturbing stress boundary condi-
tions. The equilibrium models of finite plate flexure elements can be generated
by a parametric, single-~valued, differentiable stress-function vector couple&
with a parametric ioading function P° » 1f transverse loading modes are desireddq.
The elements will be stress~diffusing if the stress-function vector remains
single-valued at the interfaces, together with the loading function and its
normal slope. &his follows immediatly onvinSpeEtion of equations (I9B) and
(ZOB)..In the multiply-connected case U and V can be taken single~valued

in the domain cut by a set of barriers, Across those, U and V will even-
tually suffer a rigid body type discontinuity (distributed like u, " wy ,

yo‘+ wx along the barrier). The variational principle (I6B) will remain appli~
_cable to the gridwork of elements and produce upper stress energy bounds if
w=o, (——)-o,lowerboundsif q=o, -I'('n-o, .N:n-o.

Again, since in the approximation, the functions U and V are not required
to and will generally not satisfy the partial differential equations issued
from (2IB), the lateral displacement w will not be integrable, Numerical
information on lateral displacements &nd slopes 18 only provided in the form

of weighted averages,

C. The analogies.,

The comparison of relations A and B £or both systems show clearly the
mathematical analogies which exist on a one to one basis between various quanti-

ties and equations. Table I shows this in detail.

The formal elegance of the analogies could be improved by the adoption of

the following unusual notation for plate flexure theory

M and  x instead of M_ and «

y y 1il o X b 4
e . - } ! » . Y T,
(] " 'y
ﬂx and | _Kx - . - M& lgnd Ky
~M,_ and -x U M__ and «

xy . xy xy

It will be observed that the role of stresses and strains, streés functions and
displacements, equilibrium conditions and integrability conditions become at
all times reversed, '

This includes the analogy between physical dislocations in multiply connected

domains and multi-valuedness of stress functions.
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| TABLE I,
(ﬁ' (o) —————p (128)
| c M
y
€ ety M
e:'cy | - Mxy
aCT a-—-——-----, Po. '
. u N ) U
v P E——" v
(I1A) (6B)
 (164) @ (24B)
P e
| ®&—m——p Mo
w : -T
(74) @—— (IB)
°x Ky
o, | w———> Ky
T -
xy . xy
. F “—————-—-—-’ - o
;‘ ‘-—-—-—-————’ w
(54) @————— (ZIB)
(146d) e (25B)
Ny gy
N, P W,
o by
(3A) eE———pn (17B)
(IOAV) st emran b (28)
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3. APPLICATIONS TO FINITE ELEMENT TECHNIQUES,

Conforming displacement models, analyzed by matrix methods, have discrete

elastic characteristics described in terms of a set of generalized displace-

ments | q };‘ and a corresponding set of generalized loads { g }e

{egl.=x,{a), | (1)

where Ke' is the stiffness matrix of the element ™ @ & (II).
Stress diffusing equilibrium models can be described in the same way; the

stiffness matrix in this case is of the form

R, = C, F_ =1 c! - ' 2

where Fe i1s the flexibility matrix of the element (the matrix of the stress
energy in terms of stress parameters) and Ce a load connection matrix, rela-

ting generalized loads and the set {v }e of stress parameters.

fele=t, (vl | 3

This procedure can lead to elements with spurious kinematical degrees of free-.
dom, which then require special handling in the treatment of the problem at

the structural level (1) (11) (12), .
The use of the analogies opens wew possibilities in the construction of stress—
diffusing equilibrium models and in their handling at the structural level,
From the analysis of the analogies it becomes clear that eéch conforming dis-
placement model of a finite element produces an: analogue stress~diffusing equi-
librium model by identification of the parametric displacement fileld of the
former to a parametric stress-function field of the latter, However a plate
flexure element generates a plane stress (or strain) element and vice-versa.

A good example 1s the conforming plate flexure quadrilateral which goes over
into a plate extension equilibrium element with linear stress variations by
analogy between w and ¢ (13) - ‘

However, even the treatment of the problem at the structural level can benefit
from the analogies, .

The analogue matrix relation to (I) is

(elamr, Lo), @
where { ¢ ]e 1s the set of local values of (¢ and 9¢/an) or (U and
V) analogous to the local displacements (w and dw/dn) or (u and v) .

-Fe is now an "extended" flexibility matrix.
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While the flexibility matrix in (2) 1is non-singular, the extended one is singu-
lar because the equation :

F° {2}-0 | : ; (5)

has three independant solutions, representing rigid modes of the stress func-
tions (the analogues of kinematical displacement modes) which generate no stres-
ses and consequently no strains, The column matrix { c }e is precisely in
the nature of generalized strains as can be seen as follows.

From (4) and Clapeyron's theorem, the strain energy of the element is

s lel, (el o ®

Generalized loads can now be defined as in (3) through an "extended" load con-

nection matrix Ce_

{ 8'}e =c, {e}l, | B )

There are exactly as many generalized loads as there are local values of the

stress function so that, in contrast to (3) the load connectfon matrix is

sguare.

The assoclated generalized displacements are such that the energy of the ele=~

ment is also
Flsl (ol (el o (aly  ®

Comparing (8) with (6) and noting that the equality must hold for any { ¢ }e

¥ L o o
{elg=cy {al, | L@

This shows how the generalized strains are deduced from the genéralized displa-

cements, ' |

The extended load connection matrix‘is‘iingular for it 1is obvious that, since
stresses vanish for { ¢ }e = { z} , so must the generalized loads in (7)

ce'{ z}s=o ' (10)

From a classical theorem of algebra, 1f the homogeneous system (I0) has three

" independant non trivial solutions, so has the system
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c;{y}so : | (11)

In view of (9) those solutions are to bé identified with the 3 rigid displace-~ |
ment modeg of the element (which generate no strains). ' :
Since there is no other solution.to (II) there are also no apurious.kinematical.
freedoms in the element., Hence the fact the stress-diffusing equilibrium model
derives from an analogy with a conforming displacement model is sufficient to
guarantee the absence of spurious kinematical freedoms,

In the displacement models the laws for assembling elements are those of stiff—?
ness addition or load addition ) @) ) producing for the whele structure a
relation between all the generalized extermal loads { g } and the nodal
displacements { q}

{g)=x {q} | .

with a master stiffness matrix

; K=3% L' K L
e © e e

generated by the "localizing" matrices L, defined by

e {(al =1, {a}

In the aﬁalogous equilibrium models the laws of assembly are those of flexibi-
lity addition or strain addition, producing for the whole structure a relation

(e}=r fc)

between the generalized strains for the whole structure and the complete array.
of nodal stress-function values., The master flexibility matrix

3 .
Tl

is obtained by the same localizing matrices as in the analogue structure,

The procedure is particularly well adapted to equilibrium models because the
number of self=-stressing states, represented by eéch element of { c } ’

is markedly lower than the number of generalized displacements, The equafions

to be solved are both well conditioned and fewer in number.,

-d {
+
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| Appendix I

St

Interpretations of the stress functions,

1

A, The Airy stress function ¢(x,y).

i
b

Let (Nx, Ny) denote the resultants of stresses generated by ¢ along a
path from a reference point A to (x,y) leaving matter on the left-hand side,

-w 29
de - Txy dx + 9 qy e d (ay)

\:" -‘ - e -ai
.dNy -~ o, dx + Ty 97 d (ax)

Honee W = FE (xy) - (%—;‘%)A

' 3 d
N = - 2 (x,y) + (-;,g)A

Similarly for the moment M about the point (x,y)

. - _ (3 -2
@ = N dy - N dx = dy (T?‘)A dx (-5-3)A dy

it e bCe3) = 4y - (x - % @Y

-y -y, )
. A

LAY

Since the stress field determines ¢ except for the addition of an arbitrary

linear form a +a x ¢+ 2, Y it is always possible to make ¢ and its

1
firat derivatives vanish at the chosen reference point,

In this case we have simply
- -- —ai = . . -% -
¢(x,y) M 3% (x,y) Ny %y (x,y) Nx

The result is the same for all reconcileable paths from A to (x,y) ,
because the stress field generated by ¢ does not involve body loads.
Applying this to the closed path from A to B around a cavity (fig. 2), we
conclude that in I4A , Nn » Nt
the directions of n and t and the moment about B .of the loads applied

and My are respectively the resultants in

to the boundary of the cavity, Should the cavity be loaded by a system stati-

cally equivalent to zero, the stress function would remain single-valued;
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otherwise not, In particular, considering the application of a concentrated
load or couple at an interior point as the limit of a loading distribution
inside a circular cavity of vanishing radius, we conclude that such loads

destroy the single~valuedness of the stress function,

B. The Southwell stress-functions U and V.

The total transverse load generated by the stress-functions along the path
from A to (x,y) (matter on the left-hand side) is denoted by T .,

dT = - Qy dx + Qx dy = dq
Hence T = o(x,y) - Q,

‘The moments of the same stresses about axes parallel to x and y through

the final point (x,y)‘ are denoted by My and My o Then

d =M dx-~M dy = T dy - dU + 2, d
AL y ny y Ay

du, = =M _dx+M dy+TdxedV =g d

and u, = U(x,y) - U, + v -y) 8,

]

y VFx,y) -V, - (x- X,) o,

-Since U and V are determined except for the addition of arbitrary terms
(uo Wy , Vv, o+ wx) , it is always possible to let U , V and Q vanish

at the reference point A . Then we have simple interpretations
T = a(x,y) g = Uxy) g = V(x,y)

The result is the same for all reconcileable paths because U and V alone
imply zero transverse pressure-on tﬁe plate. |

Applying it to the closed path of fig. 2, we conclude that in (248) , T , My
and B, are respectively the total transverse load and the bending moments
about the axes n and t of the loads applied to the cavity boundary.
Unless the loading system is statically equivalent to zero, the functions U
and V are not single-valued. In particular, considering the application of

a concentrated transverse load or bending couple at an interior point of the
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plate as a limiting case of cavity loading, we conclude that such loads destroy]
the single~valuedness of the stress functions (6).
This raises an interesting question in the finite element approach, when

an Interior point becomes a vertex common to several plate elements, Because
in each element a corner load ' {

Zw A Mnt

will appear, due to the jump in Mnt as we turn around the corner, we should
infer from the foregoing considerations that if U and V are single-valued,
the sum of all the corner loads must vanish.

The slab analogy provides an elegant proof of this, The analog to Mnt being
L the corner load is, except for a constant factor, measured by the
change in wedge angle in the analogue state of plane stress described by
single-valued displacement functions u=1U and ve=V, Since, at an inte-.
rior point, the sum of all wedge angles remains equal to 2 % , the sum of

all wedge angle alterations must vanish and the corner loads consequently add
up to zero. - A
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As the local axes (n,t) of fig. I are moved along the boundary, the uﬁit;

vectors on them undergo the following changes

gt s dn 7 ay
ds ds ds 8

which involve the radfus of curvature of-the boundary (ds = R dy) .
will indicate that we take or do not take into

2
ds ot
account the change In orientation of the local axes,

The notations EL- and

‘a) Yor a scalar ¢(x,y) there is no difference

2%
t s

b) For a vector u = u n +u T o the identity
3u - 3u
3%t " Ts

This, applied to the gradient vector

grad ¢ --g%'r: +2¥%-€ . yielc.ls'
2, a2 52 2
-a—-L-E_L-ﬂ -d-—w- unu+a¢ ﬂ

atdn onds 96 ds 2t2 a2 On ds

¥

(2)

3)

)

c) For a symmetrical cartesian tensor, we have first the rules of component

transformation




Laboratoire d’Aéronautique: UNIVERSITE DE LIEGE.

23,

2 2 =3
/ M =1 M o +m My + 2 im Mxy

2 2 -
M o =o® M+ M_y szMxy (5)

Mnt w gm (My Mx) + (¢ m<4) Mx

y

where § and m .are the compbnents of the unit vector n » 80 that the follo-

wing formulas hold .

3L, TSR] m n, 4y |
m ° Y mds n~° al."ds - (6)
It follows then that
M M
n_hw 3y 4pim dm o, o9ty
== "5c * 2 (2 TR (t33+m)) Mxy)
or, using (6) and interpreting
oM oM
08 st ds nt
Similarly
M M .
—ta_t_ .4 -
55~ 3t~ 2Ts Mnt M
oM M
nt __ nt - g_\g -
98 ot * ds (Mt Mn)
\ | 4_
We note that . : : . ULg - BST-Sc appl & Math
on at *451000318*
, . sy,
U 3u i o\ §
. -t % &
\ 9n ot J? ,ylesaet\"\\
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is a cartesian tensor. Hence by a similar procedure we can establish the follo-

wing |
|
|

i%u. v U AU .
8sa'n aton ds ‘ot on
2 :
aU“.:.?._ (E_U..E)+.El.‘li(.w_t.+3.l.1.‘l) (9)
2 ds ot ds ‘on ot .
ot :
2 X .
2 Un A (avn)* ay (aUn ) aUt) . 1)
2 EY ] at . ds ‘on ot
ot ‘
2 2 3 2 _
B WU gy U Wy -
ason atan ds ‘ot on

Further transformations of those results by (3) allow to expreés the right hand

sldes entirely in terms of 8 and n derivatives.,




