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ABSTRACT. A systematic study of the growth process of LaMnO3 (LMO) thin films, by pulsed 

laser deposition, on top of SrTiO3 substrates under different oxygen partial pressures (PO2) is 

reported. It is found that the accommodation of the orthorhombic LMO phase onto the cubic 

STO structure, i.e. the amount of structural strain, is controlled by background oxygen pressure. 

We demonstrate that magnetic behaviour can be continuously tuned from robust ferromagnetic 

(FM) ordering to an antiferromagnet. These results strongly point to a strain-induced selective 

orbital occupancy as the origin of the observed FM behaviour, in agreement with recent 

theoretical calculations. 

  



 3 

INTRODUCTION 

The LaMnO3 (LMO) perovskite compound has gained renewed interest for being an essential 

building block in some heterostructures showing emerging phenomena as, for instance, 

unexpected exchange bias in LaMnO3/LaNiO3 multilayers
1
 or the evidence of ferromagnetism 

(FM) at the interface of LaMnO3/SrTiO3 
2-3

 or LaMnO3/SrMnO3 
4
 heterostructures. Irrespective 

to the growth conditions used in those works, LMO layers were reported to exhibit robust FM 

behaviour in contrast to the antiferromagnetic (AF) character of the ground state of the 

stoichiometric LMO bulk material, where Mn
3+ 

magnetic moments are arranged in an A-type AF 

ordering.
5-7

 This unexpected FM character has been often detected in LMO films and in spite of 

several attempts to explain it, its origin is still unclear. First, it is known that LMO perovskite 

structure cannot accommodate oxygen excess at interstitial positions and thus, it must be 

accommodated by the creation of La and/or Mn vacancies. 
5
 In this scenario, to compensate the 

charge unbalance, a Mn
3+/4+ 

mixed valence state is invoked and therefore, the observed 

ferromagnetism is simply explained by a double exchange mechanism with the concomitant 

tendency to metallic behaviour, similar to doped manganites. 
8-10

 However, this explanation is in 

contradiction with some experimental results evidencing a FM-insulating (I) behaviour that 

should be excluded in a canonical double exchange model.
11-14

 To solve this puzzling situation 

several extrinsic origins have been proposed to account for the observed FM behaviour. Most of 

them are based on a non-stoichiometric La:Mn relationship
8, 12, 14

 and a multiple double exchange 

mechanism by the creation of Mn
2+

 ions.
15-16

 On the other hand, strain effects due to the 

film/substrate mismatching have also been invoked in some cases. As shown by theoretical 

studies, strain may lead to different patterns of octahedral distortions, either by Jahn-Teller 

distortions or by oxygen octahedral rotations, thus promoting selective magnetic/orbital 
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arrangements.
17-21

 Therefore, since magnetic and orbital ordering in LMO are directly corelated 

to the particular arrangement and configuration of the MnO6 octahedral framework, it is clear 

that strain may strongly affect its magnetotransport properties.
6, 22

 This possibility has raised new 

interest since strain-induced FM has already been reported in other manganese thin films. Quite 

recent first-principle calculations suggest that, in fact, FM-I could be an intrinsic ground state in 

these manganese oxides under some given values of biaxial strain.
23

  In this scenario, the change 

in the magnetic order (AF/FM) would be explained as due to the occurrence of a novel 𝑑3𝑧2−𝑟2/𝑑𝑥2−𝑦2 alternated orbital ordering that is stabilized in the distorted MnO6 octahedra of the 

strained LMO monoclinic cell.  

In this work we report on the magnetic, transport and structural properties of LMO thin films 

grown on SrTiO3 (STO) substrates. The influence of oxygen partial pressure (PO2) during the 

growth process on the accommodation of the orthorhombic LMO phase onto the cubic STO 

structure is thoroughly analyzed. Our results demonstrate that magnetic behaviour can be 

continuously tuned from a robust FM to an AF depending on the amount of structural strain 

accumulated in the structure. Our findings will be analysed in terms of recent theoretical 

calculations suggesting different orbital orderings in LMO as a function of biaxial strain. 

EXPERIMENTAL DETAILS 

LaMnO3 thin films have been grown on top of (100)STO single crystalline substrates by 

Pulsed Laser Deposition (PLD) at substrate temperatures between 700 C and 900 C and under 

a wide range of background oxygen partial pressures (from 200 mTorr down to 5x10
-3

 mTorr). 

Laser fluence was kept constant at 0.8 J/cm
2
. The number of pulses was adjusted to obtain film 

thicknesses in the range of 35-45 nm. The thickness of the films was determined by x-ray 

reflectometry and by contact profilometry. Systematic x-ray diffraction characterization was 
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carried out in a four-angle diffractometer with a Cu-K radiation source (X´Pert MRD-

Panalytical) and a Bruker D8 Advance GADDS system. Phase purity and structural quality of the 

films was confirmed by standard -2 diffraction measurements. The strain of the films was 

careful studied by performing reciprocal space maps around some selected LMO Bragg peaks. 

The relative concentration of La and Mn cations in the deposited films was studied by 

Wavelength Dispersive Spectrometer (WDS) microprobe analysis. X-ray absorption 

spectroscopy (XAS) at the Mn L2/3 edge was measured at BESSY II in total electron yield (TEY) 

configuration. Magnetic properties were measured in a commercial SQUID magnetometer 

(Quantum Design). Field-cooled temperature dependent magnetization measurements and 

magnetic hysteresis loops were performed up to applied magnetic fields of 70 kOe between 10K 

and 250 K. Magnetic field was applied parallel to the substrate plane. The diamagnetic 

contribution of the STO substrate was accurately subtracted by measuring magnetization loops at 

300K and assuming a temperature independent susceptibility. 

RESULTS AND DISCUSSION 

Magnetic and transport properties of LMO thin films as a function of PO2 during the growth 

process are shown in Figure 1. The evolution of the temperature dependent magnetization 

(measured at 5 kOe) is plotted in Fig 1(a) while M(H) curves at 5K are plotted in Fig. 1 (b). It is 

evident from the figures that films grown at the lowest available pressure (PO2 ~ 5x10
-3

 mTorr) 

show a negligible magnetization from 300K down to 140 K. At this temperature there is a slight 

cusp in the M(T) curve and, then, magnetization increases up to a value of 0.25 μB/f.u. This 

dependence is consistent with the canted AF behavior usually reported for bulk stoichiometric 

LMO material with TN~140K and a residual moment of 0.16 μB/f.u. at 10K.
24

 In our case, M(T) 

dependence below 100K suggest the existence of a antiferromagnet where some uncompensated 
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moments are responsible for the slightly higher residual magnetization. Hysteresis loops also 

reflect the change of magnetic properties for the different samples. It is evident from Fig. 1(b) 

that coercivity diminishes as magnetization increases. Moreover, M(H) loops for samples grown 

below PO2 =0.1 mTorr could correspond to an AF material in a background of unbalanced 

magnetic moments. As PO2 is increased during deposition the magnetization of films 

progressively rises. At the highest available PO2, i.e., PO2  200 mTorr, LMO films show a 

robust ferromagnetic behavior with TC ~200 K and Ms(10K) ~ 3.6 μB/f.u (as determined from 

MvsH curves). This result is to be compared either with 4 μB/f.u. expected for Mn
3+

 ions or with 

a 40% content of Mn
4+

 in a double exchange scenario. Possible variations on the Mn oxidation 

state between different samples have been evaluated by means of XAS experiments. It has been 

previously reported that as Mn valence is increased, Mn L3 edge peak shifts towards higher 

energies (almost 1.5-2 eV in the case of Mn
3+

to Mn
4+

) and the ratio of L3 (~642.5 eV) to L2 

(~653.5 eV) intensity decreases
25-26

. Figure 1(c) shows the TEY spectra around the L2/3 edge for 

three different films prepared under different PO2 partial pressures. Neither energy shift in the 

peak position nor overall change of the spectral shape on the PO2 partial pressures can be 

detected. This result clearly indicates that the Mn
3+

/Mn
4+

 ratio remains unchanged through the 

whole series of samples. The small shoulder observed around 640eV in the sample grown at 

200mTorr may be attributed to the presence of Mn
2+

 formed at the surface of the film after 

exposure to air as previously reported for manganite films.
27

 Temperature dependence of the 

electrical resistivity of the LMO thin films is depicted in Fig. 1 (d). All the measured samples 

exhibit insulating behavior with no sign of metallic-insulating transition within our accessible 

range of resistances. The electronic transport properties of LMO films may be affected by the 

presence of La/Mn vacancies. It is usually observed that La vacancies promote metallic behavior 



 7 

by a double exchange mechanism while doping induced by Mn vacancies is claimed to lead to 

insulating behavior.
10-11, 13-14

 To exclude this scenario it is crucial to ensure a stoichiometric 1:1 

La:Mn relationship in all the films. WDS results, shown in the Inset of Figure 1(c), indicate that 

this is the case, except for a small La deficiency detected in samples grown at the lowest PO2. 

For these samples grown at the lowest PO2 WDS results indicate a La:Mn ratio of about 0.97. 

Thus, suggesting that the generation of La vacancies is the mechanism to accommodate oxygen 

vacancies during the growth process in reducing atmosphere. Therefore, for samples grown at 

the lowest PO2, assuming no change in the Mn oxidation state, charge equilibrium would lead to 

a film composition of La0.97MnO3+, clearly in the AF-I region of the phase diagram. In all the 

other samples, even at high oxygen pressures, La:Mn ratio is 1 and the above arguments cannot 

be invoked to explain the observed transport properties.  

As mentioned in the introduction, the electronic properties of LMO samples may also be 

affected by structural strain. In this regard, it is worth mentioning that epitaxial accommodation 

of the highly distorted orthorhombic LMO structure onto cubic STO substrates is not trivial. We 

recall that at thin film growth temperatures (T= 850ºC), stoichiometric bulk LMO crystallizes in 

a Pbnm orthorhombic structure with pseudocubic parameters a/√2~b/√2~c/2 ~ 0.3932 nm.
28

 At 

750K, a cooperative Jahn-Teller transition takes place and even the structure is still described by 

a orthorhombic Pbnm space group, MnO6 octahedra are highly distorted and cell parameters 

change to a = 0.5533nm, b = 0.5727 nm, c = 0.7668nm (at 300K).
6
 As a result, two different Mn-

Mn matching distances are found, 0.3982 nm in the ab-plane and 0.3834 nm along c-axis, 

resulting in about -2% compressive or +2% tensile mismatching, respectively. In oxygen rich 

atmosphere, La and/or Mn vacancies may be created to accommodate oxygen off-stoichiometry 

although, for clarity, LaMnO3+ notation is commonly used in the literature. Pbnm symmetry is 
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maintained and lattice parameters vary then as a function of this oxygen excess up to values of a 

= 0.5507 nm, b = 0.5495 nm, c = 0.7766 nm for = 0.07 
7
. In this case, Mn-Mn distances are 

0.3890 nm in-plane and 0.3883 nm out-of-plane. Here, strain induced by STO substrate 

(aSTO=0.3905nm) is tensile both in parallel and perpendicular configuration and lower than 0.6%. 

At higher values of , the phase is no longer described by Pbnm space group and instead a 

rhombohedral R3c structure is found.
5-7

  Due to the close competing epitaxial relationships, it is 

important to first determine if LMO growths with its c-axis parallel or perpendicular to the plane 

of the substrate  as schematically indicated in Figure 2(a) and (b). To distinguish between these 

two possible crystallographic orientations we have performed a series of phi-scans around 

integer and half-integer reflections. These half-Integer Bragg peaks are associated to the 

rotations of oxygen octahedral and their occurrence (or absence) is used to determine the 

orientation of LMO orthorhombic c-axis relative to substrate. 
29-30

 In particular, assuming h, k, l 

Miller indexes following the reciprocal space axes Qx, Qy and Qz, of a primitive cubic cell, when 

c-axis is contained in the plane of the substrate reflections of the type h/2,k,l (with h=odd) appear 

while h,k,l/2 with l=odd are only present if LMO c-axis is out-of-plane. Reflections of the type 

(h/2,k/2,l/2) with all index h,k,l being odd are allowed for both orientations. In figures 2(c) and 

(d) we have plotted a two dimensional projection of the reciprocal space map (in units of STO 

cell) with Qip=√(Qx
2
+Qy

2
) being the in-plane component (referred to substrate) and Qz 

component of momentum perpendicular to substrate. For both samples, reflections with integer 

h,k,l are masked by those of the STO substrate while reflections of the type (h/2,k,l) are observed 

and those of the type (h,k,l/2) are absent. This result is consistent with orthorhombic LMO with 

c-axis in-plane following both [100] and [010] directions of the STO substrate (Figure 2(a)). 

Note that this epitaxial relationship has important implications on the analysis of the expected 
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magnetic behaviour of the films as ab-planes are lying perpendicular to the substrate and the 

expected staggered orbital ordering leading to the AF state will be out-of-plane arranged as 

schematically shown in Fig. 2 (a).  

As LMO thin films reflections are difficult to resolve from those of substrate, resolution of 

usual reciprocal space maps (for example, using 114 reflection) are not enough to elucidate the 

in-plane strain state of the LMO thin films. For this, we have performed high-resolution 

reciprocal space maps around hk0 reflections with grazing incidence. In this experimental 

configuration, low x-ray penetration minimizes the substrate signal and information on LMO 

thin film can be accurately obtained. Figures 3(a) and (b) show reciprocal space maps around 

200 reflections for the same samples as in Figure 2. We see (Fig. 3 (a)) that the sample grown 

under low PO2 presents a microstructure with well defined twinned domains corresponding to 

two different in-plane cell parameters of 0.3946 nm and 0.3866 nm. Comparing with the 

expected bulk values (0.3982nm and 0.3834 nm) we may conclude that film is partially relaxed. 

The cross shape of the in-plane map is consistent with the formation of (110) twin planes 

inducing a slight in-plane rotation of the domains, which produces the spread in angle shown in 

the map. On the contrary, for films grown under oxidizing atmospheres, only one clear peak is 

observed and in-plane parameters match those of the underlying substrate aSTO=0.3905 nm (Fig. 

3 (b)). In this case, LMO films are fully strained. Films grown at intermediate oxygen pressures 

exhibit different degrees of strain. A way to monitor this continuous evolution of the 

microstructural strain state of the films has been possible by studying the equivalent out-of-plane 

pseudocubic lattice parameter. The out-of-plane values obtained by fitting the -2 (002 LMO + 

002 STO) high resolution XRD profiles are plotted in Figure 4(a) as a function of oxygen partial 

pressure during deposition. Error bars, determined from the standard deviation of the least 
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squares fit increase as LMO peak position approaches that of the underlying substrate. We may 

observe that out-of-plane parameter ranges from values as high as 0.400 nm when LMO is grown 

under reducing conditions down to 0.392 nm, i.e., close to the STO lattice parameter in highest 

pO2 atmosphere. This structural evolution is concomitant to the variation of the functional 

properties presented above and, indeed, there is a close relationship between saturation 

magnetization and out-of-plane parameter as shown in Figure 4 (b). In light of these findings a 

plausible scenario emerges to account for spread of experimental results reported on LMO thin 

films. At reducing atmospheres, LMO thin films are partially relaxed, with their structure close 

to that of stoichiometric bulk compound. Cooperative Jahn-Teller distortions lead to the 

stabilization of a staggered 𝑑3𝑥2−𝑟2/𝑑3𝑦2−𝑟2 ordering resulting in an A-type AF-I state. 

However, magnetic moments are supposed to be aligned along the orthorhombic b axis that, in 

twinned films, is pointing out of the substrate at four possible directions forming 45º with the 

direction perpendicular to the film substrate. As a consequence, it is difficult to observe a clean 

and net AF response. This twinned structure, leading to antiferromagnetic domain walls could 

account also for the residual magnetic moment observed in the AF phase. In films deposited at 

progressively higher pO2, film substrate mismatch is reduced, allowing a coherent epitaxial 

growth of fully strained films. In this situation, strain modifies the usual Jahn-Teller distortion 

picture and different orbital orderings are possible. In our case, a FM-I phase is stabilized 

compatible with recent theoretical proposals suggesting a three-dimensional 𝑑3𝑧2−𝑟2/𝑑𝑥2−𝑦2orbital ordering 
23

. Note that, in both cases, the expected orbital arrangements lead to a 

mixing of occupied out-of-plane and in-plane orbitals (see Figure 2). Thus, the usual synchrotron 

techniques to study orbital occupancy as, for example, x-ray linear dichroism (XLD) are not 

longer straightforward to apply. Furthermore, the presence of twinned microstructures would 
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make almost impossible to derive any solid conclusion about selective orbital occupancy from 

XLD measurements. Nevertheless, our results showed that studying the possible orbital and 

magnetic arrangements and the role of cooperative Jahn-Teller distortions in the parent 

compound LaMnO3 and other reported FMI phases as, for example, low doped La1-xSrxMnO3 

deserves further attention
31-32

. 

CONCLUSIONS 

In summary, we have carefully studied the epitaxial growth process of LaMnO3 thin films on 

STO substrates demonstrating that the accommodation of the LMO orthorhombic structure onto 

STO cubic structure is a complex process that can be properly controlled by modifying the 

nominal oxygen pressure during growth process. This structural accommodation imply a 

substantial modification of the amount of structural strain in the LMO film that, in turns, have 

subtle effects on the final magnetic and electronic properties of the films. Our results show that 

films with bulk-like AF-I properties are obtained only when growing under reducing 

atmospheres that lead to partially relaxed structures. In contrast, when film growth takes place 

under oxidizing conditions, fully strained films exhibiting a FM-I behavior are obtained. Other 

scenarios, such as La or Mn vacancies, leading to a variation of the Mn oxidation state have been 

excluded in base of WDS and XAS measurements. Although further spectroscopic research may 

be necessary to get a complete picture of the magnetic and orbital arrangements while still 

disregarding doping effects, our results strongly point to a strain-induced selective orbital 

occupancy as the origin of the observed FM behaviour in agreement with recent theoretical 

calculations.  
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Figure 1. Magnetic and electronic properties of LMO thin films grown at different oxygen 

pressures, PO2= 200mTorr (black), 40mTorr (green), 0.2mTorr (orange), 0.04mTorr (red) and 

5x10
-3

 mTorr(blue). (a) Temperature dependence of magnetization measured at 0.5T. (b) 

Hysteresis loops at 10K. Diamagnetic contribution of substrate has been removed. (c) 

Manganese L-edge XAS spectra measured by TEY for three different LMO samples showing 

that no significant change in the Mn
3+

/Mn
4+

 ratio is observed. (d) Temperature dependence of the 

electrical resistivity. Inset of (d) shows the La:Mn ratio as measured from WDS. 
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Figure 2. Schematic representation of the possible crystallographic orientation of LMO thin 

films, either with orthorhombic c-axis in the plane of the substrate (a) or perpendicular to it (b). 



 14 

Schema of the expected orbital ordering leading to antiferromagnetic state is shown in (a). (c) 

and (d) are two dimensional projections of the reciprocal space map for the samples grown at the 

lowest (5x10
-3

 mTorr) and highest (200mTorr) oxygen pressures respectively. For clarity, STO 

substrate units are used by taking aSTO=0.3905 nm. Reflections are labeled in yellow showing 

that only half-integer reflections of the kind (h/2,k,l) are observed, compatible with 

crystallographic orientation in (a). Integer LMO reflections are masked by those of the STO 

substr ate (labeled in violet). 
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Figure 3 In-plane reciprocal space maps around 200 reflections of samples grown at (a) the 

lowest (5x10
-3

 mTorr) and (b) highest (200mTorr) oxygen pressures. 

  



 16 

10
-2
10

-1
10

0
10

1
10

2

0.392

0.396

0.400 (b)

a


 (n
m

)

PO
2
 (mTorr)

(a)

0.390 0.395 0.400
0

1

2

3

4

M
s
 (

 B
/f

.u
.)

a

 (nm)

 

Figure 4 (a) Variation of the out-of-plane lattice parameter (referred to pseudocubic lattice) of 

LMO thin films as a function of oxygen pressure. (b) Dependence of saturation magnetization 

with out-of-plane lattice parameter.  
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The amount of structural strain in Pulsed Laser Deposited LaMnO3 thin films is controlled by 

modifying the nominal oxygen pressure during growth. Bulk-like antiferromagnetic films are 

obtained when reducing conditions lead to partially relaxed films. On the opposite under 

oxidizing conditions, fully strained films exhibit ferromagnetic insulating behavior related to 

strain-induced orbital ordering. 
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