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We develop a theory for strain control of Majorana zero energy modes and the Josephson effect in black

phosphorus (BP) devices proximity coupled to a superconductor. Employing realistic values for the band

parameters subject to strain, we show that the strain closes the intrinsic band gap of BP; however, the proximity

effect from the superconductor reopens it and creates Dirac and Weyl nodes. Our results illustrate that Majorana

zero energy flat bands connect the nodes within the band-inverted regime in which their associated density of states

is localized at the edges of the device. In a ferromagnetically mediated Josephson configuration, the exchange

field induces superharmonics in the supercurrent phase relation in addition to a ϕ0 phase shift, corresponding

to a spontaneous supercurrent, and strain offers an efficient tool to control these phenomena. We analyze the

experimental implications of our findings and show that they can pave the way for creating a rich platform for

studying two-dimensional Dirac and Weyl superconductivity.

DOI: 10.1103/PhysRevB.98.085414

I. INTRODUCTION

The topological phases in condensed matter have recently

attracted robust attention both theoretically and experimentally

due to the unique properties they offer [1–4]. The topological

phase supports gapless surface states which are anticipated to

serve as backscattering-free channels [1,2]. In the presence

of superconductivity, these surface modes can host Majorana

fermions with zero energy [the so-called topological super-

conducting (TS) phase]. The Majorana fermions are their own

antiparticles and are governed by non-Abelian statistics. These

fermions are expected to play a key role for fault-tolerant

topological quantum computation [3,4].
One of the main challenges in the context of topological

superconductivity is that natural materials rarely host this
phase [3]. A prominent example of natural topological su-
perconductors is the transition metal oxide superconductor
Sr2RuO4, supporting exotic pairings (such as the spin-triplet
chiral p-wave) [5,6]. Nevertheless, conclusive identification of
the TS phase even in Sr2RuO4 is still elusive [7,8]. Topological
superconductivity can also exist in Dirac and Weyl semimetals
as well as in other contexts that support zero energy flat bands
associated with the surface-localized Majorana zero energy
modes [9–24]. The Majorana flat bands were also discussed
in connection with superfluids [25,26]. Other ways to access
the TS phase have also been examined. In one attempt a spin-
orbit-coupled semiconductor nanowire was deposited on top
of a singlet superconductor, and an external magnetic field was
applied perpendicular to the nanowire [27–31], following the-
oretical suggestions [32–34]. The experimental observations
showed zero energy peaks through tunneling experiments, and
this zero-bias mode was attributed to the presence of Majorana

fermions, although not conclusively [27–31,35–37]. There
are also other ongoing efforts using, for example, thermal
Hall conductance to observe the Majorana fermions [38–40].
The experiments revealed fractional conductance at a filling
factor of 5/2 in quantum Hall states, providing a signature of
non-Abelian states.

Despite extensive efforts during the past decade, the detec-
tion of Majorana fermions has brought up numerous experi-
mental challenges. In addition to difficulties regarding material
parameters, one main challenge is the unique interpretation of
the performed experiments. For example, Fe atoms deposited
on top of a Pb superconductor self-recombine into straight
chains with a length of ∼50 nm, and the measured density of
states [41] near the ends of the chains shows a mode at zero
bias which is attributed to the presence of Majorana fermions.
This experiment was repeated by other groups as well [42,43].
However, a similar peak in the density of states near the ends
of such Fe chains was also observed for “nonsuperconducting”
substrates [44]. Furthermore, a recent experiment observed
that the zero energy peak at the ends of chains is not well
localized and indeed splits into two peaks located on lateral
sides of the chain [45]. These difficulties underscore the
fundamental importance to have at least more reliable and
controlled platforms when attempting to detect the TS phase.

In order to address this need, we propose device concepts
based on monolayer black phosphorus (BP) coupled to a
superconductor, with an externally exerted mechanical strain
as a control parameter. One advantage of BP is its intrinsic
large direct band gap. Also, BP is mechanically flexible and
can sustain strong strains without any rupture. Additionally,
its band gap is largely tunable by an externally applied strain
[46,47]. A recent angle-resolved photoemission spectroscopy
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FIG. 1. Schematic of the proposed devices made of a phosphorene

monolayer. The plane of black phosphorus is located in the xy plane,

and strain is exerted into the plane of the setups in the y direction.

(a) A single s-wave superconducting electrode (S) of length dS is

proximity coupled to black phosphorus. In order to reveal the density

of states in the vicinity of the junction location along the x axis, the

STM tip should be placed close to the superconductor edge and black

phosphorus. (b) A ferromagnetic (F) phosphorene Josephson junction

of length dF and width WF .

experiment on BP demonstrated a large band inversion of
the order of ∼0.6 eV accompanied by the creation of stable
Dirac points [48]. The two devices considered in this work are
depicted in Fig. 1. We first state our main results and discuss
the technical calculations below. In Fig. 1(a) a single s-wave
superconductor (S) of length dS is proximity coupled to a BP
sheet, and an external mechanical force exerts strain in the
plane of the BP. Using band structure analyses with realistic
band parameters, our calculations reveal that the mechanical
strain is able to drive a phase transition and closes the band gap
of BP, while the presence of a superconducting gap reopens
it. Simultaneously, Dirac and/or Weyl nodes are created; the
nodes are connected by dispersionless flat bands at zero energy.
In addition, connecting single lines at finite energies appear.
The associated densities of states are localized at the edges of
the device. In the second device a ferromagnetic tunnel barrier
is inserted between two superconductors with a nonzero phase
difference, all proximity coupled to the BP sheet, as shown
in Fig. 1(b). Our results for the supercurrent flowing in the
BP demonstrate a ϕ0 state that can be controlled by an external
magnetic field or the exerted strain. Also, the strain can change
the direction of the supercurrent, suggesting an experimentally
controllable switch between zero and π states. Our findings
offer a glimpse of a rich band engineering potential and suggest
a simple platform to investigate two-dimensional Weyl and
Dirac superconductivity.

II. RESULTS AND DISCUSSION

To model the devices displayed in Figs. 1(a) and 1(b), we
employ the following low energy Hamiltonian describing a

monolayer BP with strain tensor components εii :

H =
∫

dk

(2π )2
ψ̂

†
kH (k)ψ̂k

=
∫

dk

(2π )2
ψ̂

†
k

{[

u0 + αiεii + (ηj + βijεii )k
2
j

]

τ0

+
[

δ0 + μiεii + (γj + νijεii )k
2
j

]

τx − χykyτy

}

ψ̂k, (1)

where indices (i, j ) run over coordinates x, y. Here τi are the
Pauli matrices in the pseudospin space, and the vector quan-
tities are denoted by boldface. In the presence of magnetism,
h = (hx, hy, hz), we invoke the real spin space and attach three
directions of spin to each valley, denoted by hxσx + hyσy +
hzσz, with σi being the Pauli matrices in the real spin space.
The material parameters are listed in Appendix B. In this case,
the field operator associated with the Hamiltonian is given by

ψ̂†(k) = (ψ
†
A↑, ψ

†
A↓, ψ

†
B↑, ψ

†
B↓), where the valleys and spins

are labeled by AB and ↑↓, respectively.
We assume that the superconductor can be described by

the BCS formalism. There are four different scenarios for the
coupling of particles in BP:

(i) �
AB
↑↓ 〈ψ†

A↑ψ
†
B↓〉 + H.c., (2a)

(ii) �
AB
↑↑ 〈ψ†

A↑ψ
†
B↑〉 + H.c., (2b)

(iii) �
AA,BB
↑↓ 〈ψ†

A↑,B↑ψ
†
A↓,B↓〉 + H.c., (2c)

(iv) �
AA,BB
↑↑ 〈ψ†

A↑,B↑ψ
†
A↑,B↑〉 + H.c. (2d)

Pairings of type (i) describe intervalley couplings with opposite
spins, type (ii) has intervalley couplings with equal spins, type
(iii) has intravalley couplings with opposite spins, and type
(iv) has intravalley couplings with equal spins. In general, the
intravalley couplings can have different coupling potentials
and therefore differing amplitudes in each valley. The obser-
vation of intrinsic superconductivity in BP has attracted much
attention [49–54] as well as controversies [55,56]. Here we
assume that the superconductivity can be induced extrinsically
in the BP by making use of the proximity effect. In this
paper we focus on only the intervalley singlet coupling, i.e.,

�
AB
↑↑ = �

AA,BB
↑↓ = �

AA,BB
↑↑ = 0 and �

AB
↑↓ �= 0, which is most

likely the energetically favored pairing in experiment [57].
We first discuss and analyze the band structure of BP with

a superconducting gap. To this end, we use the Nambu space
and write the Hamiltonian as

H(k) =

(

H (k) − μ �̂

�̂
† −H T(−k) + μ

)

, (3)

in which μ is the Fermi energy and we have suppressed
the indices A,B and ↑↓ so that �

AB
↑↓ → �. The asso-

ciated field operator can now be expressed by ψ̂
†
BCS(k) =

[ψ̂†(k), ψ̂ (−k)]. In the presence of intervalley spin-singlet
coupling, the dispersion relations of particle and hole branches
can be obtained by diagonalizing the BCS Hamiltonian (3):

Ee,h(kx, ky ) = ±(F± 2
√

�)
1
2 ,

F = |�|2 + �
2 + �

2 + χ2
y k2

y, (4)

� = �
2(|�|2 + �

2) + �
2χ2

y k2
y,

085414-2



STRAIN-ENGINEERED MAJORANA ZERO ENERGY MODES … PHYSICAL REVIEW B 98, 085414 (2018)

FIG. 2. Band structure of a phosphorene monolayer, finite sized in the y direction, as a function of momentum in the x direction, i.e., kx .

(a) Strains εxx, εyy are set to zero, and superconducting gap |�| �= 0. (b) εxx = −0.2, εyy = 0, and |�| = 0. (c) εxx = −0.2, εyy = 0, and

|�| �= 0. (d) εxx = 0, εyy = −0.2, and |�| �= 0.

in which � = u0 + αiεii + (ηj + βijεii )k
2
j + μ and � = δ0 +

μiεii + (γj + νijεii )k
2
j . The normal strain components εxx and

εyy can take positive or negative values corresponding to ex-
pansion or compression, respectively. Through the dispersion
relation, one can examine where the band gap closes due to
the strain, and the presence of |�| reopens a gap. However, to
reveal the Majorana zero modes one needs to consider a system
of finite size as in Fig. 1(a). The strain is assumed to be in the
plane of BP. The Majorana fermions appear near the edges of
the device. Therefore, by placing a scanning tunnel microscope
(STM) tip right in the vicinity of the superconductor edge and
BP, the Majorana zero mode shows up as a peak at zero bias. We
also note that other methods such as point contact spectroscopy
might be able to uncover the signatures of Majorana fermions
through conductance data analyses [27–31].

The band parameters of BP under strain less than 25%
are obtained from density functional theory and symmetry
computations [58–62] and are presented in Appendix B. The
superconducting gap for conventional bulk materials such as
Al is of the order of ∼0.2 meV, and it can change when it
is induced in a nonsuperconducting material by means of the
proximity effect. Throughout our calculations, we set a nonzero
superconducting gap |�| and present energies in units of |�|.
In order to retain simplicity in our analyses, we assume that
the superconductivity in BP is (1) uniform and (2) finite sized
in the y direction with a representative relaxed length of dS ≈
50 nm [see Fig. 1(a)]. We note that many-body effects in the
presence of strain can change the electron-phonon interaction
parameter and the screening of the electron-electron interaction
potential. However, a detailed description of these fundamental
phenomena, giving rise to superconductivity, goes beyond the
scope of our paper, and therefore, we discard the effect of strain
on the superconducting couplings. Nevertheless, as long as the
strain does not change the type of pairing considered above,
the findings in this paper are unaffected.

Throughout the main text, we set the chemical potential
to zero, μ = 0; Appendixes B and C discuss the effects due
to a finite μ. By exact diagonalization of Eq. (3) together
with open boundaries at the edges, we find the band structure
for the device shown in Fig. 1(a). In Fig. 2(a) the band
structure is shown in the absence of strain εxx = εyy = 0 and
a nonzero superconducting gap |�| �= 0. As expected, the

band structure possesses a direct gap (this happens also in the
absence of |�|, not shown). When the strain is large enough,
we set a representative value εxx = −0.2 (equivalent to 20%
compression) and |�| = 0; the gap in the band structure of
BP closes, and the top and bottom bands hybridize, as seen
in Fig. 2(b). In Fig. 2(c), we switch the superconductivity on
when the strain is nonzero (εxx = −0.2 and the gap of BP is
closed). We see that a dispersionless flat band appears at zero
energy and that it extends between the two created Dirac nodes
at positive and negative kx . The density of states related to this
specific band demonstrates edge localized states in the finite-
size superconductive BP and zero elsewhere (see Appendix B).
The zero energy mode inside the superconducting gap is called
a Majorana flat band. The occurrence of this feature is not
specific to the direction of the strain. In order to illustrate this,
in Fig. 2(d) we set εxx = 0 and εyy = −0.2 in the presence of
superconductivity. The Majorana flat band appears in this case
as well, except now its extension along kx is shortened. If the
band parameters given in Appendix B remain unchanged for
very high strains, Weyl nodes with connecting Majorana flat
bands, as well as single lines at finite energies, may appear (not
shown). An experimentally more easily achievable scenario is
to modify the Fermi level μ; then flat bands appear at moderate
strains εii � 25% (Appendix B, Fig. 4). We emphasize that
our conclusions in this paper remain the same for tensile stress
lower than 20%, as long as it keeps the band gap of BP closed.

The Fermi level can be tuned by a gate electrode or an in

situ deposition of K or Rb atoms on BP [47,48]. The gap-
closing condition can be determined by the chiral symmetry
transformation U (made of particle-hole and time-reversal
operators), so that

UH(k)U † =

(

0 G(k)

G†(k) 0

)

, U =
1

√
2

(τz + τx )σx,

(5)

where G(k) = −�
2σ0 − �

2σx − (χyky + i�)σy . Since

detH(k) = −detG(k)detG†(k), the solution to detG(k) =
�

2 − �
2 − (χyky + i�)2 = 0 determines the gap-closing

condition in the parameter space (see Appendix B).
In order to study the supercurrent behavior in the device

depicted in Fig. 1(b), we compute the current directly through
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FIG. 3. Supercurrent density Jy (ϕ) as a function of superconducting phase difference ϕ. (a) Different values of magnetization strength are

considered: hz = 0, 0.05, 0.1, 0.15, 0.2, and 0.25 eV, where we have set εxx = −0.25 and εyy = 0. (b) Magnetization strength is set to hz = 0.1

eV, and the current density is examined for differing values of εxx = 0, −0.05, −0.1, −0.125, −0.15, 0.175, −0.2, and −0.25 where εyy = 0.

its quantum definition:

J =
∫

d r{ψ̂†(r )
−→
H (r )ψ̂ (r ) − ψ̂†(r )

←−
H †(r )ψ̂ (r )}, (6)

where H(r ) is given by Eq. (3), using k → −i∇ [see
Eq. (B1)], and the arrows show the direction of derivatives.
The current density is in units of the elementary charge
and superconducting gap. Thus, to obtain the total charge
current in a junction of width WF , one must multiply the
current density by 2e|�|WF /h. The application of current
conservation law results in the continuity of wave functions at
the interfaces of a junction with left (l) and right (r) segments
ψ̂l = ψ̂r together with ∂kHl (k)ψ̂l = ∂kHr (k)ψ̂r . The wave
functions associated with the electron and hole branches are
given in Appendix A. Without any assumptions regarding the
location of the Fermi level the resulting expressions are very
complicated but, nevertheless, readily evaluated numerically.
The length of the relaxed ferromagnetic BP in Fig. 1(b) is
set to dF ≈ 7.5 nm, which is a representative value in the
tunneling regime. Figure 3 shows the charge current density
as a function of phase difference (ϕ = θl − θr ) between the
macroscopic phases of the left and right superconductors’ wave
functions θl,r shown in Fig. 1(b). We consider an applied strain
throughout the junction so that εxx = −0.2 and εyy = μ = 0
with uniform magnetization directed along the z axis, hz.
In Fig. 3(a) we show the current vs ϕ for various magnetic
fields. When the exchange field is zero, the supercurrent shows
the conventional nonsinusoidal current phase relation in the
ballistic limit. When the exchange field is nonzero, higher
harmonics appear. By increasing the exchange field, the second
harmonic dominates, while the amplitude of the supercurrent
decreases until the zero to π transition is complete. At the
same time, the supercurrent experiences a phase shift ϕ0, which
depends on hz and is pronounced at large enough values of
hz. Note that the exchange field is a Cooper pair breaking
factor. Therefore, by increasing the exchange field, while ϕ0

is enhanced, the amplitude of the total current is exponentially
suppressed. The ϕ0 Josephson state was also discussed in
other contexts [39,63–66] and recently realized in experiment
[67–69]. In Fig. 3(b) we set hz = 0.1 eV, εyy = μ = 0 and vary

the strain in the x direction. When εxx is zero, the supercurrent
is vanishingly small. This can be understood by noting that
in this parameter regime where εii = μ = 0 the BP is fully
gapped. By increasing εxx , the gap starts to close, and hence,
the supercurrent begins to increase. When εxx = −0.1, the
supercurrent is negative almost throughout the phase difference
interval ϕ = [0, π ]. By increasing the compressive strain to
εxx = −0.125, the higher harmonics emerge gradually, and the
supercurrent changes sign. A further increase in the magnitude
of εxx makes the supercurrent reversal more pronounced.
Therefore, the external strain can control the supercurrent
reversal, the appearance of higher harmonics, and the phase
shift ϕ0. For further investigations of the influence of the strain
tensor in the presence of a finite chemical potential on the
supercurrent, see Appendix C.

III. CONCLUSIONS

In conclusion, we have shown that a black phosphorus
monolayer subject to external strain hosts a variety of phe-
nomena in the presence of superconductivity. Specifically, our
results reveal that a finite-size superconductive BP exhibits
strain-driven Majorana zero energy edge modes. Manipulating
the applied strain and chemical potential, one is able to create
Dirac and Weyl nodes with connecting dispersionless zero en-
ergy flat bands. Thus, superconductive BP offers an experimen-
tal platform for studying Dirac and Weyl superconductivity.
We also study the behavior of supercurrent in a ferromag-
netic BP Josephson junction. We find that the magnetization
induces higher harmonics, i.e., sin nϕ, n = ±2,±3, . . . in
the current phase relation and causes nonzero current at zero
to π crossovers. The strain tunes the higher harmonics and
induces supercurrent reversals. In addition, the supercurrent
experiences a phase shift ϕ0, causing a spontaneous super-
current at zero superconducting phase difference. Our findings
demonstrate that black phosphorous offers a topological strain-
effect transistor which is an excellent framework for studying
a number of exotic transport phenomena.
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APPENDIX A: WAVE FUNCTIONS

In the Appendixes, we first present the eigenvalues and
associated wave functions in the normal and superconductive
BP (Appendix A). Next, we give band parameters and extend
our study in the main text to further analyze the band structure
of the superconductive BP (Appendix B). Finally, we study
the influence of εxx, εyy , and μ on the supercurrent behavior
(Appendix C).

By directly diagonalizing Eq. (3) in the main text we find
the following wave functions for the electrons ψ̂e and holes
ψ̂h propagating along the y direction in the plane of BP in the
presence of singlet superconductivity with a gap of �:

ψ̂h = (f1, f2, f3, 1)Teikyy,

f1 =
χyky[ζ − �(� + ε−)] + i�[�2 − ζ + �(� + ε−)]

�(χyky� − i�ε−)
,

f2 = i
χ2

y k2
y� + �

2
� − ζ (� + ε−)

�(χyky� − i�ε−)
,

f3 = −
iχyky� − �

2 + ζ

iχyky� + �ε−
, (A1)

and

ψ̂e = (g1, g2, g3, 1)Teikyy,

g1 =
−χyky[ζ + �(� + ε+)] + i�[�2 + ζ + �(� + ε+)]

�(χyky� + i�ε+)
,

g2 = i
χ2

y k2
y� + �

2
� + ζ (� + ε+)

�(χyky� + i�ε+)
,

g3 = i
iχyky� + �

2 + ζ

χyky� − i�ε+
, (A2)

with the associated eigenvalues

ε± =
√

χ2
y k2

y + �2 + �2 + �2 ± 2ζ , (A3)

in which we have defined

ζ =
√

χ2
y k2

y�
2 + �2(�2 + �2) (A4)

and T stands for the matrix transpose operation. The wave
functions in the nonsuperconducting region for the propagating
electrons and holes become simpler in the absence of �:

ψ̂e =
(

−iχyky+�√
χ2

y k2
y+�2

, 1, 0, 0

)T

e−ikyy, (A5)

ψ̂h =
(

0, 0,
iχyky−�√
χ2

y k2
y+�2

, 1

)T

e−ikyy, (A6)

TABLE I. Band parameters of the phosphorene monolayer subject

to externally applied strain [59,60].

u0 (eV) δ0 (eV) αx (eV) αy (eV) μx (eV)

−0.42 +0.76 +3.15 −0.58 +2.65

μy (eV) ηx (eV Å
2
) ηy (eV Å

2
) γx (eV Å

2
) γy (eV Å

2
)

+2.16 +0.58 +1.01 +3.93 + 3.83

βxx (eV Å
2
) βyx (eV Å

2
) βxy (eV Å

2
) βyy (eV Å

2
)

−3.48 −0.57 +0.80 +2.39

νxx (eV Å
2
) νyx (eV Å

2
) νxy (eV Å

2
) νyy (eV Å

2
) χy (eV Å)

−10.90 −11.33 −41.40 −14.80 +5.25

and the associated eigenvalues are given by

εe =
√

χ2
y k2

y + �2 + �, (A7)

εh =
√

χ2
y k2

y + �2 − �, (A8)

where we have defined

� = u0 + αiεii + (ηj + βijεii )k
2
j , (A9)

� = δ0 + μiεii + (γj + νijεii )k
2
j . (A10)

APPENDIX B: BAND STRUCTURE ANALYSES

To gain more insight into the influences of strain on Dirac
and Weyl nodes as well as the dispersionless flat bands, we
plot the band structure E(kx ) of finite-size superconductive
BP in Fig. 4, where the confining edges are located in the y

direction so that particle momentum in the x direction kx is
a good quantum number. The Hamiltonian in real space takes
the following form:

H (r) =
[

u0 + αiεii − (ηj + βijεii )∇2
j

]

τ0

+
[

δ0 + μiεii − (γj + νijεii )∇2
j

]

τx + iχy∇yτy .

(B1)

Also, we obtained the band parameters of BP through density
functional theory and symmetry computations. These band
parameters are given in Table I. The rest of the parameters are
identical to those of Fig. 2 in the main text, except now we set a
representative finite chemical potential μ = 1.5 eV. Figure 4(a)
exhibits E(kx ), where εxx = −0.25 and εyy = −0.25. We
see that the Dirac points in Fig. 2(c) or 2(d) split into two
Weyl nodes around kx = 0. The Weyl nodes on each side are
connected by a flat band, and its associated wave function is
localized at the edges in the y direction (see below). Also,
two Dirac points at finite energies appear that are connected
by a single band. This picture remains intact in cases where
εxx = +0.25, εyy = −0.25 and εxx = −0.25, εyy = +0.25,
as shown in Figs. 4(b) and 4(c). As seen in Fig. 4(d), the
case εxx = +0.25, εyy = +0.25 exhibits six Weyl nodes at
zero energy distributed equally around kx = 0. The two inner
nodes are connected by a flat band, while the outer two nodes
located at positive and negative values of kx are separately
connected by two flat bands. Also, we see that the Dirac nodes
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FIG. 4. (a)–(d) Band structure of finite-size black phosphorus in the y direction as a function of momentum in the x direction, i.e., kx .

The parameters are set equal to those of Fig. 2, except now the chemical potential possesses a nonzero value, μ = 1.5 eV. (a) εxx = −0.25

and εyy = −0.25. (b) εxx = +0.25 and εy = −0.25. (c) εxx = −0.25 and εyy = +0.25. (d) εxx = +0.25 and εyy = +0.25. (e1) and (e2) Band

structure of superconductive BP with parameters set identical to those in (a), except now no boundaries are applied to the system. (f1) and (f2)

Band structure of infinite superconductive BP without any boundaries with parameters set identical to those in (d). In (g), (h1), and (h2) we set

|�| �= 0, dS = 40 nm, εxx = −0.2, and εyy = kx = 0. (g) Eigenenergies Eℓ vs the energy index ℓ. (h1) and (h2): The absolute wave function

|ψ (y )| vs the location y(nm) ∈ [0, dS] inside the system, corresponding to different eigenenergies presented in (g).

at finite energies are now split into two Weyl nodes shifted
in energy and yet connected by single bands. Interestingly, the
outer Weyl nodes are tilted to some extent and are suggestive of
creating type-II Weyl nodes by proper combinations of strain
and finite chemical potential [12–15,22,70–73]. Figures 4(e1)
and 4(e2) exhibit the low energy band structure as a function
of kx and ky where no boundaries are imposed and kx and ky

are good quantum numbers. The band parameter values are set
identical to those of Fig. 4(a). A similar study is exhibited in
Figs. 4(f1) and 4(f2) with parameters corresponding to those
of Fig. 4(d). As seen, the gap closes at ky = 0 and specific
values of kx . To obtain exact values of kx where the gap closes,
we use detG(k) = �

2 − �
2 − (χyky + i�)2 = 0 given in the

main text and set ky = 0. After straightforward calculations
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FIG. 5. Supercurrent density Jy (ϕ) in the y direction for various values of magnetization strength hz = 0, 0.05, 0.1, 0.15, 0.2, and 0.25 eV,

where we have fixed the chemical potential at μ = 1.5 eV. (a) εxx = −0.25 and εyy = −0.25. (b) εxx = +0.25 and εyy = −0.25. (c) εxx = −0.25

and εyy = +0.25. (d) εxx = +0.25 and εyy = +0.25.

we find

kx = ±

√

√

√

√

�0�x − �0�x ±
√

�2
x

(

�
2
0 + �2

)

− 2�0�x�0�x + �2
x

(

�
2
0 − �2

)

�2
x − �2

x

, (B2)

where we have defined �0 = u0 + αiεii − μ, �x = ηx +
βixεii, �0 = δ0 + μiεii, �x = γx + νixεii .

To illustrate the edge localized zero energy states, we have
plotted the eigenenergies Eℓ vs the energy index ℓ in Fig. 4(g).
The setup is shown in Fig. 1(a) in the main text. We have set
|�| �= 0, dS = 40 nm, εxx = −0.2, and εyy = kx = 0, where
the edges are located in the y direction at y = 0, 40 nm. The
corresponding band structure is shown in Fig. 2(c) of the main
text. As seen, in Fig. 4(g), there is a gap in the eigenenergies at
ℓ = 400 with in-gap states at zero energy indicated by the blue
circle. In other words, this zero energy state is well separated
from the other states displayed by the red circles, indexed from
0 to 800. To show the difference between the zero energy state
and other states, we plot the corresponding wave functions
|ψ (y)|, which are proportional to the local density of states,
in Figs. 4(h1) and 4(h2), respectively. We see that the state at
zero energy is highly localized at the edges y = 0, 40 nm and
rapidly decays to zero when moving away from the edges. The
other states propagate throughout the system and vanish at the
edges y = 0, 40 nm, as seen in Fig. 4(h2) for a representative
state.

APPENDIX C: SUPERCURRENT

Finally, we study the influence of strain on the supercurrent
in a BP-based ferromagnetic Josephson junction with a finite
chemical potential. Figure 5 shows the supercurrent density
as a function of superconducting phase difference ϕ where the
chemical potential is fixed atμ = 1.5 eV and the exchange field
varies (hz = 0, 0.05, 0.1, 0.15, 0.2, and 0.25 eV). In Fig. 5(a)

we set εxx = −0.25, εyy = −0.25. The supercurrent has a
small deviation from zero at ϕ = 0 for hz = 0.05 eV. When the
magnetization is equal to 0.1 eV, we see that the supercurrent
reversal is apparent now due to the stronger contribution
of higher harmonics and the nonzero supercurrent at ϕ = 0
grows as well. At hz = 0.15 eV, the contribution of higher
harmonics is again less than the first harmonic, except now
the current has overall changed its sign compared to the case
where hz = 0. By increasing the magnetization strength to
hz = 0.2 eV, the finite supercurrent at zero phase difference
is highly suppressed in addition to the suppression of higher
harmonics. By further increasing hz to 0.25 eV, these two
phenomena show up again, except now the amplitude of the
supercurrent is highly suppressed by the magnetization itself.
In Fig. 5(b) we set εxx = +0.25, εyy = −0.25. We see that
the appearance of higher harmonics and the ϕ0 phase shift
in the presence of weak magnetization is more pronounced
now. Specifically, the supercurrent experiences a fairly large
nonzero value at zero phase difference ϕ = 0 if hz = 0.10
or 0.20 eV. Figure 5(c) shows that when εxx = −0.25, εyy =
+0.25, the supercurrent can change direction compared to the
previous case in Fig. 5(b). Additionally, the ϕ0 phase shift is
now suppressed even more than in Fig. 5(a). Similar to the
band structure shown in Fig. 4(d), the supercurrent shows
richer features when εxx = +0.25, εyy = +0.25. The corre-
sponding supercurrent is plotted in Fig. 5(d). We see that for
nonzero values of magnetization strength, the higher-harmonic
contributions to the supercurrent dominate. Additionally, the
spontaneous supercurrent at zero phase difference for nonzero
magnetizations is stronger than in the previous cases illustrated
in Figs. 5(a)–5(c).
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