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Abstract

Background: The theory of linear elasticity is insufficient at small length scales, e.g., when dealing with micro-devices.
In particular, it cannot predict the “size effect” observed at the micro- and nanometer scales. In order to design at such
small scales an improvement of the theory of elasticity is necessary, which is referred to as strain gradient elasticity.

Methods: There are various approaches in literature, especially for small deformations. In order to include geometric
nonlinearities we start by discussing the necessary balance equations. Then we present a generic approach for
obtaining adequate constitutive equations. By combining balance equations and constitutive relations nonlinear field
equations result. We apply a variational formulation to the nonlinear field equations in order to find a weak form,
which can be solved numerically by using open-source codes.

Results: By using balances of linear and angular momentum we obtain the so-called stress and couple stress as
tensors of rank two and three, respectively. Since dealing with tensors an adequate representation theorem can be
applied. We propose for an isotropic material a stress with two and a couple stress with three material parameters. For
understanding their impact during deformation the numerical solution procedure is performed. By successfully
simulating the size effect known from experiments, we verify the proposed theory and its numerical implementation.

Conclusion: Based on representation theorems a self consistent strain gradient theory is presented, discussed, and
implemented into a computational reality.

Keywords: Size effect, Micromechanics, Constitutive equations

Background
Traditional constitutive models relating stresses and
strains are independent of the size and shape of the con-
tinuous body. For example, we model the linear response
at small deformations with HOOKE’s law, which has
the same form for huge and small structures. Unfortu-
nately, such a simple approach becomes inadequate at the
micrometer scale. One of the basic approaches in statics,
the so-called EULER-BERNOULLI beam theory, results in
inaccurate solutions at very small dimensions. For exam-
ple, sub-micrometer structures frequently show a stiffer
response than predicted by traditional theory. This so-
called size effect has been known experimentally for a long
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time, see, e.g., (Morrison et al. 1939). Formally, the size
effect can be modeled by material properties that depend
on specimen size. However, in order to include the size
effect in a more rational manner, we will generalize the
theory of elasticity by means of higher gradient terms.
In fact, theories of higher gradients were proposed more
than four decades before, cf., (Mindlin and Tiersten 1962;
Mindlin and Eshel 1968). They are still under discussion.
Moreover, various variants were developed over the last
decades, see for an overview (Gurtin et al. (2010), §90).
Especially in micromechanics an applicable theory of gen-
eralized theory of elasticity becomes necessary, as pointed
out by (McFarland and Colton 2005).
We shall discuss deformation and its description in

terms of higher gradients of displacement within the
framework of continuum mechanics principles. First, we
present the balance equations of linear momentum and
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angular momentum, and identify their flux terms as stress
and couple stress, respectively. Second, when deriving
constitutive equations for the stress and the couple stress
we use tensorial relations. Balance equations in combi-
nation with constitutive equations will result in nonlin-
ear field equations. Third, in order to solve these field
equations we generate a weak form by using a variational
formulation. For the weak form discretization in time is
performed by making use of the finite difference method.
For discretization in space the finite element method is
used. Fourth, we implement a code in Python, see (Jones
et al. 2001), by using a novel collection of open-source
packages distributed under the FEniCS project, see (Logg
et al. 2011). We publish the code in (Abali 2015) under
GNUPublic license as stated in (Gnu Public 2007) in order
to encourage further studies.

Methods
Governing equations
We apply the standard nomenclature of continuum
mechanics including the summation convention on
repeated indices and use the initial positions of particles,
X, as reference frame where all functions are evaluated.
Consider a continuumbody deforming from its known ini-
tial frame, B0, to an unknown current frame, B, in time,
t. All particles move from their initial positions, X, to the
current positions, x = x(X, t). We apply Cartesian coor-
dinates and choose two particles 1 and 2 with current
positions:

1xi= xi(
1
Xj, t) ,

2xi= xi(
2
Xj, t) , i, j = 1, 2, 3 . (1)

The distance between these particles reads

�x = √
�xi�xi , �xi = 1xi − 2xi . (2)

The current distance vector, �xi, can be expressed by
expanding the position of one particle about the position
of the other particle by using a TAYLOR series:

1xi= xi
(

1
X, t

)
= xi

(
2
X, t

)
+ ∂2xi

∂Xj

∣∣∣∣ 2X,t
(

1
Xj − 2

Xj

)
+

+1
2

∂2xi
∂Xj∂Xk

∣∣∣∣ 2
X,t

(
1
Xj − 2

Xj

)(
1
Xk − 2

Xk

)
+ O

((
(
1
X − 2

X
)3)

,

1xi − 2xi= �xi = ∂xi
∂Xj

�Xj + 1
2

∂2xi
∂Xj∂Xk

�Xj�Xk + O(�X3) ,

(3)

with �Xi = 1
Xi − 2

Xi. If the initial and current distances
become infinitesimal,�Xi → dXi and�xi → dxi, respec-
tively, we obtain the transformation property for the line
element by neglecting second order terms:

dxi = Fij dXj , Fij = ∂xi
∂Xj

, (4)

where the deformation gradient, Fij, has been introduced
as transformation between the line elements (distances) in
the initial and current frames. This transformation leads
to the transformation of the current surface element, dai,
and volume element, dv, onto the initial surface element,
dAi, and volume element, dV , such that:

dai = (F−1)kiJdAk , dv = JdV , J = det(F) . (5)

In local continuum mechanics it is assumed that the
particles interact within the local neighborhood, where
the distance becomes infinitesimal such that the first
gradient describes the behavior of material accurately.
We can generalize the behavior by including the sec-
ond gradient, which enables an interaction of particles
in a greater neighborhood. This theory is nonlocal and
we need different equations restricting the first and the
second gradients.
The formulation is easier to develop in displacements,

ui = xi − Xi, we introduce

ui,j = ∂xi
∂Xj

− δij , ui,jk = ∂2xi
∂Xj∂Xk

. (6)

The quantities ui,j and ui,jk are independent locally,
because we cannot determine the derivative of a func-
tion at a point just by knowing its value at that point.
Since these two quantities are independent, we need two
governing equations. We propose to apply two balance
equations of momenta in the current frame:(∫

B
plin.i dv

)•

=
∫

∂B
σjidaj +

∫
B

ρfidv , (7)(∫
B
pang.i dv

)•

=
∫

∂B
αjidaj +

∫
B

ρzidv ,

where plin.i , σij, fi are the linear momentum density (per
volume), the flux of linear momentum, and the supply
of linear momentum, respectively. pang.i , αij, zi denote
the angular momentum density, the flux of angular
momentum, and the supply term of angular momentum,
respectively. The linear momentum density, plin.i , and the
angular momentum density, pang.i , are conserved quan-
tities, i.e., they are given in balance equations without
production terms. They can be rewritten by using the spe-
cific (per mass) linear momentum and the specific angular
momentum:

plin.i = ρvi , pang.i = ρai . (8)

Moreover, the specific angular momentum is decom-
posed into an intrinsic specific spin, si, and into the
moment of (specific linear) momentum:

ai = si + εijkxjvk , (9)

where we have introduced the LEVI-CIVITA symbol, εijk .
The flux of linear momentum, σjk , is the CAUCHY stress
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tensor. Following (Müller (1973), Ch. II, § 2.d) we canmul-
tiply the balance of linear momentum in its local form by
εijkxj and subtract the result from the balance of angular
momentum for acquiring a balance of spin. The produc-
tion term of the spin reads εijkσjk . For non-polar media the
spin and its production vanish, i.e., si = 0 and εijkσjk = 0.
This assumption leads to a symmetric CAUCHY stress ten-
sor, σij = σji. A non-polar medium has no intrinsic spin
such that the continuum possesses three degrees of free-
dom given by the displacement, ui. For structures on the
macroscale the balance of linear momentum is sufficient
for calculating the displacement. The balance of angu-
lar momentum is automatically satisfied by a symmetric
CAUCHY stress tensor, in other words, the flux of angu-
lar momentum is assumed to vanish. For structures on
the microscale this assumption must be rediscussed and
a model for the flux of angular momentum needs to be
implemented.
The balance Eqs. 7 can be transformed onto the refer-

ence frame by using the solution for the balance of mass,
ρ0 = ρJ , with J = det(Fij). After applying GAUSS’s
theorem we obtain in every regular point of B0:

ρ0
∂vk
∂t

− ∂Prk
∂Xr

− ρ0fk = 0 , Prk = (F−1)rjJσjk , (10)

ρ0
∂ak
∂t

− ∂Ark
∂Xr

− ρ0zk = 0 , Ark = (F−1)rjJαjk .

Since the angular momentum consists of the spin and
the moment of (linear) momentum, the flux of angular
momentum, Aij, can be decomposed into two parts where
the first part is a flux of spin, μij, and the second part is
the moment of the flux of (linear) momentum:

Ark = μrk + εkjiXjPri . (11)

The flux of spin, μij, is usually called a couple stress, as
in (Mindlin and Tiersten 1962). Analogously, the supply of
angular momentum reads

zk = lk + εkjiXjfi . (12)

By following CAUCHY’s tetrahedron argument, as in
(Truesdell and Toupin (1960), Sect. 203), we relate the
stress to a traction on the surface, ti, and, analogously, the
couple stress to a moment couple on the surface,mi:

σij = nitj , μij = nimj . (13)

Note that the moment couple mj is an axial vector
(pseudovector). Thus, it does not have the same trans-
formation properties as a polar vector (tensor of rank
one). Therefore, instead of the axial vectors, ai, mi, we
use, as in (Truesdell and Toupin (1960), Sect. 203), the
skew-symmetric form that is well-known in rigid body
dynamics for the representation of the angular velocity.

We change the balance of angular momentum in the
reference frame into the skew-symmetric form:

ρ0
∂aik
∂t

− ∂Airk
∂Xr

− ρ0zik = 0 , (14)

with:

aik = 1
2
εikjaj , Airk = 1

2
εikjArj , zik = 1

2
εikjzj . (15)

Now by using the tensor identity:

εikjεjmn = εjikεjmn = δimδkn − δinδkm , (16)

we obtain

Airk = 1
2
εikjμrj + 1

2
εikjεjmnXmPrn = μirk

+ 1
2
(XiPrk − XkPri) = μirk + X[iPrk] ,

zik = 1
2
εikjlj+ 1

2
εikjεjlmXlfm= lik+ 1

2
(Xifk − Xkfi)= lik+X[ifk] .

(17)

Since we deal with a non-polar medium the specific
angular momentum simplifies to

aik = 1
2
εikjaj = 1

2
εikjεjlmXlvm = 1

2
(Xivk−Xkvi) = X[ivk] .

(18)

The skew-symmetric form was presented in a similar
way in (Mindlin and Eshel 1968; Toupin 1962), (Truesdell
and Toupin (1960), Sect. 205). However, the starting point
and the motivation are different here.
The objective is to find such a displacement field, ui =

xi −Xi, so that Eq. (10)1 and Eq. (14) are satisfied. By using
the time rate of displacements as the velocity:

vi = ẋi = u̇i , since Ẋi = 0 , (19)

and by employing a comma for denoting the partial
derivatives in Xi the balance equations of momenta read

ρ0ük − Prk,r − ρ0fk = 0 ,
ρ0X[iük] − μirk,r − P[ik] − X[iPrk],r − ρ0lik − X[ifk] = 0 .

(20)

Since we will solve both of them simultaneously we can
subtract the first one multiplied by X[i from the second
one and obtain

ρ0ük−Prk,r−ρ0fk =0 , −μirk,r − P[ik] − ρ0lik = 0 . (21)

These equations ofmotion include supply terms, fi, lij, to
be given and flux terms, Pij,μijk , to be definedwith respect
to the displacement (or its gradient). Only then Eqs. (21)
are closed and can be solved.

Constitutive relations
In order to complete Eqs. (21) we need to define constitu-
tive equations for the stress, Pij, and for the couple stress,
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μijk . The main objective of the whole theory is to find
the displacement, ui. Therefore, the constitutive equations
shall depend on ui,j and ui,jk—this dependence is consis-
tent with the motivation of the theory leading to Eqs. (6).
Instead of ui,j we can employ the GREEN-LAGRANGE
strain:

Eij = 1
2
(Cij − δij) , Cij = FkiFkj , (22)

which is obviously symmetric. Instead of ui,jk we can apply
the gradient of the GREEN-LAGRANGE strain, Eij,k . Hence,
the stress tensor and the couple stress tensor may depend
on the strain and its gradient. We want to find out their
general form for linear and isotropic materials. For a lin-
ear isotropic material the dependence of the stress on the
strain gradient vanishes, as well as the couple stress fails to
depend on the strain, see (dell’Isola et al. (2009), Sect. 3).
Since the strain is a symmetric tensor, Eij = Eji, we use the
second PIOLA-KIRCHHOFF stress tensor, Skj = (F−1)jiPki,
which is also symmetric, Sij = Sji, based on the defini-
tion of the first PIOLA-KIRCHHOFF stress tensor, Pij, in
Eq. (10)2. Hence the general linear relations for the stress
and the couple stress read

Sij = CijklEkl , μijk = DijklmnElm,n . (23)

By following (Suiker and Chang 2000) we acquire the
general tensorial form of isotropic tensors of rank four and
six, i.e., for Cijkl and Dijklmn, respectively. For the sake of
brevity we skip the detailed explanation that can be found
in the Appendix starting on p. 9. An isotropic tensor of
rank four from Eq. (68) on p. 10 reads

Aijkl = c1δijδkl + c2δikδjl + c3δilδjk . (24)

We can use this form forCijkl and obtain the constitutive
equation between Sij and Eij in Cartesian coordinates:

Sij = CijklEkl , Cijkl = λδijδkl +μδikδjl + νδilδjk . (25)

Since Eij = Eji we conclude that μ = ν and obtain
ST. VENANT’s law for elasticity:

Sij = λEkkδij + 2μEij , (26)

where the LAMÉ parameters, λ, μ, are determined by
using engineering constants, namely YOUNG’s modulus,
E, and POISSON’s ratio, ν:

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
. (27)

Next we find Dijklmn for isotropic materials by using the
same procedure. We apply the relation in Eq. (70) on p. 15
for Dijklmn in Eq. (23)2, and obtain

μijk =c01δijEkm,m + c02δijElk,l + c03δijEll,k + c04δikEjm,m+
+ c05δikElj,l + c06δikEll,j + c07δjkEim,m + c08Eij,k+
+ c09Eik,j + c10δjkEli,l + c11Eji,k + c12Eki,j+
+ c13δjkEll,i + c14Ejk,i + c15Ekj,i .

(28)

Fifteen parameters, c01 . . . c15, need to be determined.
Since Elm,n = Eml,n we obtain

μijk = (c01 + c02)δijEkm,m + c03δijEll,k + (c04 + c05)δikEjm,m+
+ c06δikEll,j + (c07 + c10)δjkEim,m + (c08 + c11)Eij,k+
+ (c09 + c12)Eik,j + c13δjkEll,i + (c14 + c15)Ejk,i .

(29)

Hence the most general form of the couple stress or
the flux of spin for linear elasticity has nine phenomeno-
logical constants. Quite often two more assumptions are
made. First, one takes μijk ≈ μjik for granted. Second,
one assumes that μijkEij,k is a part of the (deforma-
tion) energy, such that Dijklmn = Dlmnijk holds. Under
these assumptions nine constants reduce to five material
constants, see (dell’Isola et al. (2009), Eqs. (3.1)–(3.7))
and for an overview of such theories refer to (Askes
and Aifantis (2011), Sect. 2). We try to avoid introducing
assumptions restraining the formulation to specific type
of materials.
In the last section we have obtained the governing

equations. There have been some assumptions, which
bring in further restrictions in order to make the form
of Dijklmn admissible with Eqs. (21). We can neglect the
supply term lik or at least restrict it to be antisymmet-
ric, lik = −lki. Hence we observe by inspecting Eq. (21)2
that μijk has to be antisymmetric in the indices i, k , i.e.,
μijk = −μkji or equivalentlyμijk+μkji = 0. This condition
implies

c01 + c02 = −(c07 + c10) , c03 = −c13 ,
c04 + c05 = c06 = c09 + c12 = 0, c08 + c11 = −(c14 + c15) .

(30)

After employing these restrictions and renaming the
constants the couple stress reads

μijk = α
(
δijEkm,m − δjkEim,m

) + β
(
δijEmm,k − δjkEmm,i

) +
+ γ

(
Eij,k − Ejk,i

)
.

(31)

In a heterogeneous material the material parameters, α,
β , γ , can depend on position and they may also depend on
temperature. Here we will implement them as constants
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and investigate their roles in deformation. The constitu-
tive Eq. (31) for the couple stress tensor and Eq. (26) for
the stress tensor will be implemented in the numerical
investigation.
There is a well-known material equation for the cou-

ple stress with one parameter, see for example (Gao and
Park 2007):

μijk = cSjk,i , (32)

which is actually a special choice of the parameters of
Eq. (31), α, β , and γ . In order to see this we insert Eq. (31)
and Eq. (26) into Eq. (32) as follows

α
(
δijEkm,m − δjkEim,m

) + β
(
δijEmm,k − δjkEmm,i

) +
+ γ

(
Eij,k − Ejk,i

) = cλEll,iδjk + 2cμEjk,i .
(33)

One possible choice of α, β , γ can be obtained by multi-
plying Eq. (33) with δij and by using a direct analysis with
the assumption of α = β such that:

2αEkm,m + 2βEmm,k + γEii,k − γEik,i = cλEmm,k + 2cμEik,i ,
2α − γ = 2cμ , 2β + γ = cλ ,

if : α = β ⇒ α = β = c
(

λ

4
+ μ

2

)
, γ = c

(
λ

2
− μ

)
.

(34)

Another possible choice results analogously by multi-
plying Eq. (33) with δjk and, again, by assuming α = β as
follows

− 2αEim,m − 2βEmm,i + γEik,k − γEkk,i = 3cλEll,i + 2cμEkk,i ,
− 2α + λ = 0 , −2β − λ = 3cλ + 2cμ ,

if :α = β ⇒ α = β = −c
(
3
4
λ + μ

2

)
, γ =−c

(
3
2
λ +μ

)
.

(35)

Therefore, the constitutive Eq. (32) is a special choice of
the proposed relation in Eq. (31). Of course the assump-
tion α = β is difficult to justify. Thus we will use the more
general formulation given by Eq. (31).

In the following section we will implement the balance
Eqs. (21) complemented by the constitutive equations:

Sij = λEkkδij + 2μEij ,μijk = α
(
δijEkm,m − δjkEim,m

)+
+ β

(
δijEmm,k − δjkEmm,i

) + γ
(
Eij,k − Ejk,i

) (36)

in a numerical computational environment that allows us
to comprehend the role of the parameters α, β , γ .

Computational approach
There are various numerical implementations of theories
dealing with higher order materials. We skip a discussion
of pros and cons between different implementations and
refer to (Askes and Aifantis (2011), Sect. 5) instead. In this

work we solve the balance equations complemented by the
constitutive equations numerically in a discrete fashion,
viz., by using the finite element method in space and the
finite difference method in time. First, we obtain the so-
calledweak form for Eqs. (21) within a finite domain,, in
a standard manner by multiplying them with correspond-
ing test functions and by performing integration by parts
on the flux terms:

F1=
∫



(
ρ0ükδuk+Prkδuk,r−ρ0fkδuk

)
dV−

∫
∂

PrkδukNrdA ,

F2 =
∫



(
μirkδuk,ir−P[ik]δuk,i−ρ0likδuk,iδuk,i

)
dv−

∫
∂

μirkδuk,iNrdA .

(37)

The choice of the test functions can also be based on
introducing a new field such as a rotation instead of δuk,i,
see for example (Bauer et al. 2012). However, because
we want to determine the displacement field there is
no reason or computational benefit to introduce another
quantity such as a rotation field. Therefore, we use δuk,i
and obtain two integrands in Eqs. (37) in the same unit of
energy density. Hence we can sum them up:

F = F1 + F2 . (38)

The weak form, F, is of second-order in space regarding
the displacement field. Therefore, we choose finite ele-
ments of the continuous GALERKIN type of second poly-
nomial degree. In other words, the displacements and also
their test functions are from a HILBERT space, ui, δui ∈
H2 as described in (Hilbert 1902). Moreover, their gradi-
ents have to exist, i.e., more specifically the solution space
is a SOBOLEV space within the finite domain, referred
to as finite elements. Elements are discrete subdomains,
i ∩ j = {} , ∀i �= j, which collectively constitute the
region,

∑
e = B0, where the computation takes place.

For the time discretization we use the finite difference
method:

∂(·)
∂t

= (·) − (·)0
�t

, �t = t(k+1) − t(k) , (39)

where time is discretized as a list of length n equally
separated, t(k) = {�t, 2�t, . . . n�t}. This approach is sim-
ple and stable for real-valued problems because it is an
implicit method. In order to see this, we can apply a TAY-
LOR expansion to the value (in any position) at the time
instant t(k) in order to find the value (in the same position)
at the time instant t(k+1) as follows

ui
(
xi, t(k)

)
= ui

(
xi, t(k) + �t − �t

)
= ui

(
xi, t(k+1) − �t

)
=

= ui
(
xi, t(k+1)

)
− �t

∂ui
∂t

(
xi, t(k+1)

)
,

(40)

where the higher order terms are omitted subject to the
condition that �t is sufficiently small. Since the time
derivative is evaluated at time t(k+1), for which the value
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is sought, it is an implicit method. Obviously by rewriting
the latter we acquire Eq. (39) for the time discretization.
We employ the GALERKIN type finite element method, so
that the test functions are chosen from the same SOBOLEV
space as the displacements. Hence, the notation, δui, gets
a fully consistent meaning. The weak form discretized in
time and space by integrating over each finite element,e,
and assembling by summing them up reads

F =
∑

elements

∫
e

(
ρ0

ui − 2u0i + u00i
�t�t

δui+Pjiδui,j −ρ0fiδui + μijkδuk,ij −

− P[ik]δuk,i − ρ0likδuk,i

)
dV −

∫
∂

(
Pjkδuk + μijkδuk,i

)
NjdA .

(41)

Since the latter functional or weak form is nonlinear in
ui we can only solve it by using a linearization. We use a
NEWTON-RAPHSON linearization scheme at the level of
differential equations. In other words, this linearization
is implemented before the assembly operation (build-
ing matrices). Therefore, the success of the linearization
depends only on the starting value for approximation.
Since we solve the problem transiently the starting value
is either the initial condition, which is exact, or the solu-
tion from the last time step, which is exact up to machine
precision. The NEWTON-RAPHSON linearization can be
realized as an expansion of the functional, F = F(ui, δuj),
for finding the values in the next time step, ui(t+�t). For
a sufficiently small �t this can be rewritten into:

ui(t + �t) = ui(t) + �ui(t) . (42)

If the change,�ui, is small then the above relation yields
the correct ui(t + �t). If this is not the case, then we can
solve it incrementally until |�ui| is smaller than a given
value (tolerance). For a small time step,�t, this incremen-
tal approach leads to the correct solution. In order to find
the increment, �ui, we can again employ a TAYLOR series
truncated after linear terms on the functional:

F(ui + �ui, δui) = F(ui, δui) + Ji �ui , (43)

where the JACOBIan, Ji, is simply the derivative of F with
respect to the unknowns, ui. Since the weak form shall be
zero:

F(ui, δui) + Ji �ui = 0 , (44)

we have obtained an equation linear in the increment,
�ui, which is solvable. By updating the solution:

ui := ui + �ui , (45)

and solving the increment once more until the value is
smaller than the given tolerance, we determine the cor-
rect value of ui(t + �t). We have programmed in Python
and computed by using the novel collection of open-
source packages, developed under FEniCS project (Logg

et al. 2011). The directional derivative, Ji�ui, is calculated
by using the following procedure:

Ji �ui = d
da

F(ui + a�ui, δui)
∣∣∣∣
a=0

. (46)

This approach is fully automatized by using a symbolic
derivation, see (Alnaes and Mardal 2010). Therefore, the
only necessary input is the weak form given in Eq. (41).
All 3D-visualizations are realized by using ParaView.1
All 2D-plots were created by MatpPlotLib packages, see
(Hunter 2007), developed for NumPy, see (Oliphant 2007).
The code used for solving the examples in the next section
is published in (Abali 2015) under GNU public license as
declared in (Gnu Public 2007).

Results
In order to analyze the effect of the material parameters,
α, β , γ in the proposed constitutive equation for the cou-
ple stress μijk we construct a simple example to solve.
Consider a three-dimensional beam clamped on one end
which deforms when subjecting it to a shear loading on
the other end. The beam is of length 10μm. It is a slen-
der beam since its width/length and height/length ratios
are both 1/30. For all calculations we use the material
parameters of generic aluminum:

ρ =2700 · 10−15 g/μm3 , E=72GPa=̂mN/μm2 , ν =0.33 .
(47)

We analyze three different loadings, viz., shear loading,
tensile loading, and torsion. The loading has been imple-
mented as a NEUMANN boundary condition at the end of
the beam in Eq. (41) by defining a traction vector, t̂i, as
follows

t̂k = PjkNj (48)

Since the other boundaries are free the traction vanishes.
Analogously a traction for the couple stress can be defined

τ̂ki = μijkNj (49)

causing a spin on the boundaries by applying a moment
at the micron scale. For free boundaries as well as for the
both ends we assume that the system is lacking such a
traction. We employ homogeneous NEUMANN, in other
words, natural boundary conditions for the couple stress
term. For each one of the loadings we have performed four
simulations:

Sim. I (color: gray) : α = 0mN , β = 0mN , γ = 0mN ,

Sim. II (color: red) : α = −1mN , β = 0mN , γ = 0mN ,

Sim. III (color: green) : α = 0mN , β = −1mN , γ = 0mN ,

Sim. IV (color: blue) : α = 0mN , β = 0mN , γ = −1mN .

(50)
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Fig. 1 Shear loading. The initial shape of the beam is outlined by black lines. Gray (Sim. I), red (Sim. II), green (Sim. III), blue (Sim. IV) beams present the
50 times upscaled deformed shape with different material parameters

For each loading case we present all simulations and
by comparing them we try to comprehend the effects of
the α, β , γ parameters on the deformation. We start with
shear loading. The beam lies along the x-axis and the load-
ing at the tip is applied in z-direction. All simulations can
be seen in Fig. 1.
The initial shape is denoted by black lines. The classical

beam bending (without couple stress) is colored in gray for
comparison. The parameter α = −1 (red) has an insignif-
icant effect relative to the parameters β = −1 (green) and
γ = −1 (blue). The green and blue colored deformations
present an additional bending, such that the amount of
bending on yz-plane decreases. In other words, the beam
responds stiffer to shear loading in case of existing β or γ

parameters.
Next we analyze tensile loading. The same configura-

tion for simulations has been used and the results are
presented in Fig. 2 by using the same colors.
The initial geometry is again denoted by black lines,

we have tilted the geometry for better visualization. The
gray deformation is the classical stretching without couple

stress. The effect of α (red) is significant again by causing
an additional bending motion. Relative to the effect of α

the effects of β and γ can be neglected.
Finally we analyze torsion. Four simulations with the

previous color codings are depicted in Fig. 3.
The initial shape can be seen in black lines in the front

view. In this case γ (blue) causes the most significant
deviation from the classical solution (gray) without couple
stress.
By observing the three loading cases we can conceive

possibilities for measuring the parameters, α, β , γ . During
shear loading the effects due to the α and γ parameters are
smaller than the effect of β , such that it may be neglected.
For tensile loading the effects of β and γ are smaller than
α and may be ignored. In torsion the effect of α is sig-
nificant and the effects of β and γ may be neglected.
Under these simplifications the parameter α (red) can be
measured by a tensile test by assuming that green and
blue deformations are the same as the gray deformation
in Fig. 2. The parameter β (green) can be measured by a
shear test with the simplification that the red, blue, and

Fig. 2 Tensile loading. The initial shape of the beam is outlined by black lines. Gray (Sim. I), red (Sim. II), green (Sim. III), blue (Sim. IV) beams present
the 50 times upscaled deformed shape with different material parameters
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Fig. 3 Torsional loading. The initial shape of the beam is outlined by black lines. Gray (Sim. I), red (Sim. II), green (Sim. III), blue (Sim. IV) beams present
the 50 times upscaled deformed shape with different material parameters

gray deformations are the same in Fig. 1. The parameter
γ (blue) could be measured by a torsion test under the
assumption that the red and green deformations in Fig. 3
are the same as the gray deformation.
The proposed strain gradient theory is an extension

of the classical elasticity theory. Therefore, in the limit,
strain gradient theory has to correspond to the classical
theory of elasticity. In other words, the effect of couple
stress should decrease while increasing the size of the
geometry. We can examine the correspondence between
strain gradient and classical elasticity by using an analytic
solution. The EULER-BERNOULLI beam theory presents
a closed-form solution for a slender beam in elastostat-
ics. If the geometry is such that the length, �, is ten
times more than its width and thickness, then the beam
can be considered as being slender. The deflection, w,
of such a beam is well known as a function along the
axis:

w = F�3

6EI

(
3

(x
�

)2 −
(x

�

)3)
, (51)

where the load, F , is the bending force shearing at
tip of the beam, x = �, and the modulus of elas-
ticity E together with the moment of inertia I result
in a bending rigidity EI along the axis of the deflec-
tion. We consider a rectangular cross sectional area with
width and height, b, h, respectively. The bending is on
the axis along the width so that the moment of inertia
becomes

I = bh3

12
. (52)

By inserting the moment of inertia, we obtain

E = 4F
bumax.

z

(
�

h

)3
, (53)

if we consider the deflection at the end of the beam,w(x =
�) = umax.

z . Since the modulus of elasticity shall be con-
stant in classical beam theory we can compute umax.

z by
an appropriate simulation for a three-dimensional contin-
uum body with varying beam’s length � (and holding the
geometric ratio fixed, �/h = 30). According to classical
beam theory the ratio of shearing force to deflection at

the tip shall be constant in beam’s length. However, exper-
imental results demonstrate that a smaller beam presents
a stiffer behavior, see (Lam et al. 2003) and McFarland
and Colton (2005). We have observed this stiffening phe-
nomenon in Fig. 1 for one specific length. Now we vary
the length for the beam and examine the correspondence
of strain gradient theory to classical elasticity by using the
following parameters:

ρ =2700 · 10−15 g/μm3, E = 72GPâ=mN/μm2 , ν = 0.33 ,
α = 0mN , β = −1mN , γ = 0mN .

(54)

The numerical results have been compiled in Table 1.
Due to the parameter β the size effect is significant

and it is qualitatively consistent with the experimental
results presented in (Lam et al. (2003), Fig. 12). In Fig. 4
we demonstrate this by simulating with β = −1mN (with
couple stress) and also with β = 0mN (without couple
stress) in order to verify that the code works as expected.
As discussed previously the stiffening behavior is due to

additional bending resulting from the couple stress. How-
ever, this bending does not affect the curvature. We have
observed this behavior by plotting the normalized (with
respect to the tip deflection) z-displacement of each beam.
Since the curvature remains the same, we omit to present
the results.
We emphasize that the material constant, E, does not

change in reality. This example demonstrates that the
beam when treated as a continuous body by using strain
gradient elasticity responds stiffer than predicted by the
EULER-BERNOULLI beam theory.

Table 1 Variation of YOUNG’s modulus predicted by the
EULER-BERNOULLI beam theory for the ratio �/h = �/b = 30 in
case of changing the length of the beam

� in μm umax
z in μm E in mN/μm2 = GPa

100 495.19 · 10−3 73

60 176.05 · 10−3 74

20 17.72 · 10−3 81

10 4.11 · 10−3 88

5 0.96 · 10−3 94
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Fig. 4 Stiffening due to the size effect. The blue dots (connected with
the continuous line) denote simulations with β = −1mN and the red
diamonds (connected with the dashed line) are computed by setting
β = 0mN. By increasing the length of beam, �, the strain gradient
corresponds with the classical theory

Conclusion
We have briefly outlined strain gradient elasticity from
a continuum mechanics perspective. Starting from the
balances of momenta we have obtained the so-called
stress and couple stress tensors (of rank two and three,
respectively). By applying general tensor relations we
have obtained the necessary constitutive equations for the
stress and for the couple stress. It is significant that we
have proposed a couple stress with three material parame-
ters, viz., α, β , and γ . In order to comprehend their impact
during deformation we have implemented a numerical
solution procedure where the discretization in time has
been combined with the finite differencemethod. The dis-
cretization in space was realized with the finite element
method. By simulating different loading cases we analyzed
the couple stress parameters. We also verified the pro-
posed theory qualitatively by establishing a simulation of
the size effect.
There have been three main difficulties that we have

overcome with some assumptions and left their discus-
sions to further studies. The first difficulty arises by moti-
vating a flux of spin in a non-polar medium. Since spin
fails to exist in a non-polar medium and since we have
assumed that the CAUCHY stress tensor is symmetric (so
that the spin production vanishes), it is rather difficult
to justify why the flux of angular momentum (couple
stress) should exist. Nonetheless, our objective has been
the modeling of couple stress for a non-polar medium.
The second difficulty lies in determining a description
for a measurement procedure for the material parame-
ters in the proposed couple stress, namely α, β , γ . We
have discussed their possible measurement after some
assumptions, where α is determined by tensile, β by shear,

and γ by torsion. However, the correctness of simplifi-
cations based on these assumptions is difficult to test.
The third difficulty arises by varying the material param-
eters in order to comprehend their roles quantitatively.
Their effects seem to be counter-intuitive and difficult
to explain in a straightforward way. Numerical problems
arise by choosing positive or greater values for the param-
eters. Unfortunately, we could not find general conditions
in order to restrict the possible values of parameters. For
using positive definiteness or thermodynamical laws we
need to define the energy due to the spin. Spin is assumed
to vanish and the stored energy is not uniquely defined for
strain gradient theory. Therefore, the verification of the
chosen parameters, and thus, the validation of presented
results seem to bemore difficult than expected. Any quan-
titative verifications by using experiments have been left
to further research.

Endnote
1http://www.paraview.org

Appendix
A EUCLIDian transformation expressed in a Cartesian
coordinate system:

xi′ =Oi′jxj + bi′ , Oi′j= Oi′j(t) , bi′ = bi′(t) ,
∂xi′
∂xj

= Oi′j ,

(55)

results in an objective tensor being transformed as:

Ai′j′k′...r′ = Oi′iOj′jOk′k . . .Or′rAijk...r , (56)

where Oi′j is a rotation tensor,O−1 = OT and det(O) = 1,
between two Cartesian coordinate systems characterized
by orthonormal base vectors. An arbitrary tensor, B, is
referred to as an isotropic tensor if its components in any
orthogonal coordinate system transform such that:

Bi′j′k′...r′ = Qi′iQj′jQk′k . . .Qr′rBijk...r , (57)
Bijk...r = Bi′j′k′...r′Qi′iQj′jQk′k . . .Qr′r ,

where Qij is a proper transformation between two arbi-
trary orthogonal coordinate systems. Therefore, an objec-
tive tensor is isotropic under rotations:

Ai′j′k′...r′ = Oi′iOj′jOk′k . . .Or′rAijk...r , (58)
Aijk...r = Ai′j′k′...r′Oi′iOj′jOk′k . . .Qr′r .

Every even or odd formal orthogonal invariant polyno-
mial function depending on n vectors:

F = F
(
a(1)
i , a(2)

i , . . . , a(n)
i

)
, (59)

can be represented in a linear form:

F = c1F1 + c2F2 + · · · + cmFm , (60)

http://www.paraview.org


Abali et al. Mechanics of AdvancedMaterials andModern Processes  (2015) 1:4 Page 10 of 11

where the scalar functions, F1, F2, . . . , Fm, are built
by two different combinations of its arguments,
a(1)
i , a(2)

i , . . . , a(n)
i . The first combination is the sum of

scalar products of every set of two vectors:

a(α) · a(β) = δija(α)
i a(β)

j , α �= β . (61)

The second combination is to use the determinant for
every set of l odd vectors:

det
(
a(1)
i a(2)

j . . . a(l)
r

)
= εij...ra(1)

i a(2)
j . . . a(l)

r . (62)

In the Cartesian coordinate system the KRONECKER
symbol, δij, is the metric tensor:

δij =
{
1 if i = j
0 otherwise , (63)

and the LEVI-CIVITA symbol, εij...r , is equal to the permu-
tation symbol:

εij...r =
⎧⎨
⎩

+1 if ij . . . r is an even permutation of 1, 2, . . .m
−1 if ij . . . r is an odd permutation of 1, 2, . . .m
0 otherwise

.

(64)

Both, δij and εij...r , are isotropic tensors, therefore, the
following relation holds for an isotropic tensor, Aij...r :

F
(
a(1),a(2), . . . ,a(n)

)
= Aij...ra(1)

i a(2)
j . . . a(n)

r . (65)

Consider an isotropic tensor of rank two, Aij. We apply
the procedure:

Aija(1)
i a(2)

j = F
(
a(1),a(2)

)
= c1δija(1)

i a(2)
j , (66)

Aij = c1δij ,

since the arguments are arbitrary. The constant c1 is called
the material parameter in a constitutive equation relating
two tensors of rank one.
Consider an isotropic tensor of rank three, Aijk . In this

case we obtain

Aijka(1)
i a(2)

j a(3)
k = F

(
a(1),a(2),a(3)

)
= c1εijka(1)

i a(2)
j a(3)

k ,

Aijk = c1εijk ,
(67)

where c1 is again a parameter to be determined for a con-
stitutive equation relating a tensor of rank one to a tensor
of rank two. For an isotropic tensor of rank four, Aijkl,
which is indeed necessary for Eq. (23)1, wemake use of the
same approach and acquire

Aijkla(1)
i a(2)

j a(3)
k a(4)

l =F
(
a(1),a(2),a(3),a(4)

)
=c1δija(1)

i a(2)
j δkla(3)

k a(4)
l +

+ c2δika(1)
i a(3)

k δjla(2)
j a(4)

l + c3δila(1)
i a(4)

l δjka(2)
j a(3)

k ,

Aijkl = c1δijδkl + c2δikδjl + c3δilδjk .

(68)

For the case of a tensor of rank six the methodology is
similar:

Aijklmna(1)
i a(2)

j a(3)
k a(4)

l a(5)
m a(6)

n = F
(
a(1) ,a(2) ,a(3) ,a(4),a(5) ,a(6)

)
=

= c01δija(1)
i a(2)

j δkla(3)
k a(4)

l δmna(5)
m a(6)

n + c02δija(1)
i a(2)

j δkma(3)
k a(5)

m δlna(4)
l a(6)

n +
+ c03δija(1)

i a(2)
j δkna(3)

k a(6)
n δmla(5)

m a(4)
l + c04δika(1)

i a(3)
k δjla(2)

j a(4)
l δmna(5)

m a(6)
n +

+ c05δika(1)
i a(3)

k δjma(2)
j a(5)

m δlna(4)
l a(6)

n + c06δika(1)
i a(3)

k δjna(2)
j a(6)

n δlma(4)
l a(5)

m +
+ c07δila(1)

i a(4)
l δjka(2)

j a(3)
k δmna(5)

m a(6)
n + c08δila(1)

i a(4)
l δjma(2)

j a(5)
m δkna(3)

k a(6)
n +

+ c09δila(1)
i a(4)

l δjna(2)
j a(6)

n δmka(5)
m a(3)

k + c10δima(1)
i a(5)

m δjka(2)
j a(3)

k δlna(4)
l a(6)

n +
+ c11δima(1)

i a(5)
m δjla(2)

j a(4)
l δkna(3)

k a(6)
n + c12δima(1)

i a(5)
m δjna(2)

j a(6)
n δlka(4)

l a(3)
k +

+ c13δina(1)
i a(6)

n δjka(2)
j a(3)

k δlma(4)
l a(5)

m + c14δina(1)
i a(6)

n δjla(2)
j a(4)

l δkma(3)
k a(5)

m +
+ c15δina(1)

i a(6)
n δjma(2)

j a(5)
m δkla(3)

k a(4)
l ,

(69)

thus we obtain

Aijklmn = c01δijδklδmn+ c02δijδkmδln+ c03δijδknδml + c04δikδjlδmn+
+ c05δikδjmδln + c06δikδjnδlm + c07δilδjkδmn + c08δilδjmδkn+
+ c09δilδjnδmk + c10δimδjkδln + c11δimδjlδkn + c12δimδjnδlk+
+ c13δinδjkδlm + c14δinδjlδkm + c15δinδjmδkl .

(70)
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