
Strain Hardening of Polymer Glasses: Effect of Entanglement
Density, Temperature, and Rate

ROBERT S. HOY, MARK O. ROBBINS

Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218

Received 24 May 2006; revised 28 July 2006; accepted 23 August 2006
DOI: 10.1002/polb.21012
Published online in Wiley InterScience (www.interscience.wiley.com).

ABSTRACT: The strain hardening behavior of model polymer glasses is studied with sim-
ulations over a wide range of entanglement densities, temperatures, strain rates, and
chain lengths. Entangled polymers deform affinely at scales larger than the entangle-
ment length as assumed in entropic network models of strain hardening.The dependence
of strain hardening on strain and entanglement density is also consistent with these
models, but the temperature dependence has the opposite trend. The dependence on tem-
perature, rate, and interaction strength can instead be understood as reflecting changes
in the flow stress. Microscopic analysis of local rearrangements and the primitive paths
between entanglements is used to test models of strain hardening. © 2006 Wiley Periodicals,
Inc. J Polym Sci Part B: Polym Phys 44: 3487–3500, 2006
Keywords: compression; computer modeling; glass; mechanical properties; modulus;
molecular dynamics; relaxation; rubber; simulations; stiffness; strain hardening

INTRODUCTION

Mechanical deformation of polymer glasses has
been studied for many decades, and the basic fea-
tures of the stress–strain curves are well known.1
At very small strains the response is elastic. At
slightly larger strains, yielding occurs when inter-
molecular barriers to segmental rearrangements
are overcome. Following yield, the material may
exhibit strain softening, a reduction in stress to
a level corresponding to plastic flow. At higher
strains, the stress increases again as the chain
molecules orient, in a process known as “strain
hardening.” The balance of strain softening and
strain hardening is critical in determining mate-
rial properties such as toughness. Polymers that
exhibit greater strain hardening, such as polycar-
bonate, are tougher and tend to undergo ductile
rather than brittle deformation, because strain
localization is suppressed.
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The complex stress–strain behavior of polymer
glasses has often been modeled using rubber elas-
ticity theory.2 Glasses are assumed3 to behave
like a crosslinked rubber, with the number of
monomers between crosslinks equal to the entan-
glement length Ne. The contribution of strain
hardening to the stress is then associated with
changes in the entropy of the entanglement net-
work under macroscopic deformation. For uniaxial
stress with a longitudinal stretch λ, this contribu-
tion is given by

σ (λ) = −λT
(

∂s
∂λ

)

T
, (1)

where σ (λ) is the true stress, s is the entropy
per unit volume, and T is the temperature. In
the simplest case, known as “Gaussian” harden-
ing, eq 1 yields σ (λ) = GR(λ2 − 1/λ), with GR

the “strain hardening” modulus. GR is predicted
to be linearly proportional to both T and the
entanglement density ρe: GR = ρekBT.

It is not clear why an entropic argument
should apply in the glassy state where chains
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cannot move freely to sample the configurational
entropy,4 but the network model of strain hard-
ening has had much success in describing exper-
imental results on polymer glasses. For exam-
ple, Gaussian hardening has been observed in
many uncrosslinked glasses.5,6 More recently, van
Melick et al. performed experiments7 that showed
GR has the predicted linear dependence on ρe.
However, in contrast with the entropic predic-
tion, GR was not proportional to T but instead
decreased linearly with increasing T. Also, GR was
found7 to be about 100 times larger than ρekBT,
even near the glass transition temperature Tg.
The higher modulus can be attributed8 to “fric-
tional forces” or to the greater energy necessary to
plastically deform a material below Tg, but quan-
titatively little is known. Other open questions
about glassy strain hardening remain as well, as
summarized recently by Kramer.4

In this paper we examine the effect of entan-
glement density, temperature, chain length, and
strain rate on the strain hardening behavior of
model polymer glasses. Several previous simula-
tion studies have considered strain hardening,9–14

but none have examined the factors controlling
GR over a wide parameter space. This is desir-
able to understand the results of van Melick et al.
and other recent experiments.7,15,16 To examine
chemistry-independent factors controlling GR, we
use a generic coarse-grained bead-spring model.17

The lower computational cost of this model allows
us to simulate a wide variety of relatively large
systems, allowing for good statistics and precise
measurements of GR.

We find that the functional form of the stress–
strain curves at fixed temperature and strain rate
is consistent with entropic elasticity as defined
by eq 1. Both Gaussian hardening and the more
dramatic “Langevin” hardening2 are observed.
Moreover, the transition between these two forms
is consistent with rubber-elastic predictions.2 In
addition,we reproduce the key result of van Melick
et al., GR ∝ ρe, over a comparable range of en-
tanglement densities.

Other simulation results reveal dramatic incon-
sistencies with the entropic network model. As in
the experiments of van Melick et al.,7 GR drops
linearly with increasing T. This drop extends
to the T → 0 limit, which is clearly inconsis-
tent with eq 1. The ratio of GR to ρekBT is also
comparable to experiment, remaining of order
100 even near Tg. Our results for the variation
of GR with T, intermolecular interactions, and
the rate of deformation can be understood if GR

scales with the plastic flow stress σflow rather than
a network entropy. Indeed entire stress–strain
curves at different strain rates and interaction
strengths collapse onto a universal curve when
scaled by σflow.

It is known that GR decreases with decreasing
molecular weight, and this has been attributed
to greater relaxation of the entanglement net-
work.15 We study the entire range of molecular
weights from the N $ Ne to N % Ne limits, with N
the degree of polymerization. We find significant
strain hardening even in unentangled systems. At
small strains the chains deform affinely, and their
increased length and alignment leads to strain
hardening that is very similar to that of entan-
gled chains. Only at large strains do the alignment
and strain hardening begin to drop below those
in entangled systems. The chain length depen-
dence combined with the rate dependence dis-
cussed above suggests that strain hardening can
be expressed as a product of the flow stress and a
factor that represents the amount of local plastic
deformation required to maintain connectivity of
the chains.

Our simulations also allow us to examine micro-
scopic quantities that are not easily accessible in
experiments. Entangled chains deform affinely at
large scales, as expected if entanglements act like
crosslinks, and there is little entanglement loss
through slippage at chain ends. The underlying
entanglement structure is studied using primitive
path analysis.18 A primitive path is the shortest
path a chain fixed at its ends can take without
crossing any other chains.19 The scaling of prim-
itive path lengths with increasing strain is well
described by a model assuming affine stretching
of paths, and also by the nonaffine tube model of
Rubinstein and Panyukov.20 The degree of plastic
deformation is studied by examining the nonaffine
component of deformation at low temperatures.
Results for different entanglement densities fall
on a universal curve for low strains, but increase
more rapidly for higher entanglement densities
at large strains. Strain hardening is related to
microscopic plastic events, which are required to
maintain chain connectivity. As the stress rises
with increasing strain, both the number of events
and the energy dissipated per event increase.

In the following section we describe the polymer
model used in our simulations, and the protocols
used to strain the system and identify primi-
tive paths and entanglement lengths.18 Next we
describe the effect of entanglement density, tem-
perature, interaction strength, strain rate, and the
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microscopic rearrangements of monomers, chains,
and primitive paths. The final section contains
conclusions.

POLYMER MODEL AND METHODS

We employ a coarse-grained bead-spring polymer
model17 that incorporates key physical features
of linear homopolymers such as covalent back-
bone bonds, excluded-volume and adhesive inter-
actions, chain stiffness, and the topological restric-
tion that chains may not cross. All monomers have
mass m and interact via the truncated and shifted
Lennard-Jones potential:

ULJ(r) = 4u0

(((a
r

)12
−

(
a
rc

)12
)

−
((a

r

)6
−

(
a
rc

)6
))

, (2)

where rc is the potential cutoff radius and ULJ(r) =
0 for r > rc. Unless noted, rc = 1.5a. We express
all quantities in terms of the molecular diame-
ter a, binding energy u0, and characteristic time
τLJ =

√
ma2/u0.

Covalent bonds between adjacent monomers on
a chain are modeled using the finitely extensible
nonlinear elastic (FENE) potential

UFENE(r) = −kR2
0

2
ln

(
1 − (r/R0)

2), (3)

with the canonical parameter choices17 R0 = 1.5a
and k = 30u0/a2. N monomers are bound together
to make a linear chain, with equilibrium bond
length l0 & 0.96a. As a means of varying entangle-
ment density, we introduce chain stiffness using
the bending potential

Ubend(r) = kbend(1 − cos θ), (4)

where θ is the angle betweeen consecutive cova-
lent bond vectors along a chain. Stiffer chains
(higher kbend) produce higher entanglement den-
sities, as discussed below.

The values of N employed in this paper range
from 4 to 3500, but most simulations have N =
350, which is long enough for the systems to be
in the highly entangled (N > 8Ne) limit. The ini-
tial simulation cell is a cube of side length L0,
which is chosen to be greater than the typical

Table 1. System Parameters and Values of Ne

from PPA
kbend C∞ N Ntot f Ne

2.0 3.2 350 70,000 0 22
1.5 2.6 350 70,000 0 26
2.0 3.2 350 70,000 0.25 28
2.0 3.2 350 70,000 0.33 29
1.5 2.6 350 70,000 0.25 36
0.75 2.0 350 70,000 0 39
2.0 3.2 350 70,000 0.5 45
0 1.7 500 250,000 0 71
0.75 2.0 350 70,000 0.5 77
0 1.7 3500 280,000 0.5 165

Values of the entanglement length Ne and chain stiffness
constant C∞ are given as a function of kbend and the fraction f
of monomers in short chains of five beads. The total number of
monomers Ntot in the simulation, and length N of long chains
are also given.

end–end distance of the chains. Nch chains are
placed in the cell, with periodic boundary condi-
tions applied in all three directions. Nch is chosen
so that the total number of monomers Ntot = NNch

is 30,000–280000, and typically 70000 (Table 1).
The monomer number density is ρ = 0.85a−3.

Each initial chain configuration is a random
walk of N − 1 steps with the bond angles chosen
to give the desired large-scale chain structure

C∞ = lK

l0
= 1 + 〈cos(θ)〉

1 − 〈cos(θ)〉 , (5)

where C∞ is the chain stiffness constant and lK

is the Kuhn length. In melt studies, C∞ increases
from 1.8 to 3.34 as kbend is increased from 0
to 2.0u0.21 Larger values of kbend produce local
nematic order,22 which is undesirable since we
wish to simulate amorphous systems.

After the chains are placed in the cell, we
perform molecular dynamics (MD) simulations.
Newton’s equations of motion are integrated with
the velocity-Verlet method23 and timestep δt =
0.007τLJ − 0.012τLJ. The system is coupled to a
heat bath at temperature T using a Langevin
thermostat24 with damping rate 1.0/τLJ.

We equilibrate the systems thoroughly at T =
1.0u0/kB, which is well above the glass transi-
tion25 temperature Tg & 0.35u0/kB. For short,
poorly entangled chains, we use the “fast pushoff”
method.21 The cutoff radius rc is set to 21/6a, as
is standard in melt simulations.17 The chains are
allowed to diffuse several times their end–end
length before the system is considered equili-
brated. For longer chains, the time required for
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diffusive equilibration is prohibitively large, so we
use the double-bridging-MD hybrid algorithm.21

In addition to standard MD, Monte Carlo moves
that alter the connectivity of chain subsections are
periodically performed, allowing the chain config-
urations to relax far more rapidly.26 In some cases,
to reduce the entanglement density, we cut a frac-
tion f of the long chains into pieces with N =
5 after the initial equilibration. Additional MD
equilibration is then performed until the newly
created short chains have diffused several times
their length.

Glassy states are obtained by performing a
rapid temperature quench at a cooling rate of
Ṫ = −2 × 10−3u0/kBτLJ. We increase rc to its final
value and cool at constant density until the pres-
sure is zero. The quench is then continued at zero
pressure using a Nose-Hoover barostat.23 Unless
noted, the final temperature is 0.2u0/kB, which
is about 3/5 of Tg. This temperature is chosen
because it is high enough to observe significant
thermal relaxation and strain rate effects, but still
well below Tg. The resulting glasses have den-
sity ρ & 1.00a−3. We have checked that results
from other quench protocols are consistent with
the conclusions presented below.

To examine trends in GR with entanglement
density, it is necessary to measure ρe = ρ/2Ne.
Melt entanglement lengths have been obtained for
undiluted18 systems and vary from about 70 for
fully flexible chains (kbend = 0) to 20 for semiflexi-
ble chains with kbend = 2.0u0. Measurements have
not been made for diluted systems. Also, although
quenching a melt into a glass has little effect27 on
Ne, we still measure ρe at the various tempera-
tures employed. The changes in ρe upon cooling
are primarily due to changes in ρ. Values of ρe

are measured by performing primitive path analy-
ses (PPA)18,28 on systems with N % Ne. We also
apply PPA to deformed states to examine how the
primitive paths evolve with increasing strain.

In PPA,all chain ends are fixed in space and sev-
eral changes are made to the interaction potential.
Intrachain excluded-volume interactions are deac-
tivated, while interchain excluded-volume inter-
actions are retained. Turning off intrachain inter-
actions means that self-entanglements are not
preserved, but their number is negligibly small
for the systems considered here.29 The covalent
bonds are strengthened by setting k = 100u0, and
the bond lengths are capped at 1.2a to prevent
chains from crossing one another.29 The FENE
potential is linearized for r < 0.75a so the length
minimization takes place at constant tension.28

For semiflexible chains, the bond-bending poten-
tial is deactivated by setting kbend = 0. For sys-
tems diluted with short chains, the short chains
are removed. This is justifiable because the short
chains’ contour length is smaller than the tube
diameter.

In the final stage of the PPA the system is cou-
pled to a heat bath at T = 0.001u0/kB so that ther-
mal fluctuations are negligible, and the equations
of motion are integrated until the chains minimize
their length. This typically requires 1000τLJ. Once
the chain contour lengths have been minimized,
we calculate the primitive path lengths Lpp. For
undeformed systems, we use the formula given in
ref. 18 to calculate the entanglement length:

Ne = 〈R2
ee〉

L2
pp/(N − 1)

, (6)

where 〈R2
ee〉 is the average squared end–end dis-

tance. The primitive paths have Gaussian ran-
dom walk statistics, with Ne monomers per Kuhn
segment.18,29 Results for different systems are
summarized in Table 1.

Several atomistic simulation studies have cov-
ered various aspects of strain hardening, but most
have been for tensile deformation.9–12 For fun-
damental studies of strain hardening, compres-
sive rather than tensile deformation is preferred
because it suppresses strain localization. This
allows the stress to be measured in uniformly
strained systems. Previous atomistic simulations
of strain hardening in compression13,14 used
united-atom models of polyethylene, and focused
on dihedral (trans/gauche) transition physics
rather than quantitative measurement of GR.

A plurality of the experiments7,15,16,30,31 most
relevant to the present study have employed uni-
axial compression; we therefore do the same. The
systems are compressed along one direction, z,
while maintaining zero stresses along the trans-
verse (x, y) directions.32 The rapidity of the quench
minimizes strain softening, which in turn yields
ductile, homogeneous deformation even at the low-
est temperatures and highest strains considered
here.

The uniaxial stretch λ is defined as Lz/L0
z , where

L0
z is the cube side length at the end of the quench.

Since we consider compression, λ is less than
one. Compression is performed at constant true
strain rate ε̇ = λ̇/λ, which is the favored proto-
col for strain hardening experiments.8 We use ε̇

of between −3.16 · 10−5/τLJ and −10−3/τLJ. These
rates are significantly lower than those employed
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in some previous simulations.11,12 The systems
are compressed to true (logarithmic) strains up to
εfinal = −1.5, corresponding to λfinal = exp(−1.5) &
0.223.

RESULTS

Variation of Stress with Strain and Ne

As noted in the introduction, the entropic network
model of strain hardening reproduces the mea-
sured variation of stress with strain and Ne. It
assumes that the polymer glass acts like a network
with chains of Ne beads between crosslinks, and
that the stress is proportional to the derivative
of entropy with strain (eq 1). Many experiments
can be fit to the simplest Gaussian strain harden-
ing model where the chains are assumed to obey
Gaussian statistics. For volume-conserving uni-
axial compression, the Gaussian strain-hardening
model predicts

−σ = σ0 + GRg(λ), (7)

where GR is the hardening modulus, g(λ) ≡ 1/λ −
λ2 describes the functional form of the hardening,
and a constant offset σ0 must be added to fit the ini-
tial yield stress. Note that we consider −σ so that
compression gives positive values in subsequent
plots.

The Gaussian approximation breaks down as
the root-mean-squared (rms) distance between
entanglements

√
〈R2(Ne)〉 approaches the contour

length Nel0. The “Langevin” hardening model
includes the change in configurational entropy
as the ratio h ≡

√
〈R2(Ne)〉/Nel0 increases.33 For

uniaxial compression at constant volume,

−σ = σ0 + GRg(λ)L−1(h)/3h, (8)

where L−1(x) = 3x + 9x3/5 + 297x5/175 + · · ·
is the inverse Langevin function and h =√

(λ2 + 2/λ)C∞/3Ne for an affine strain.34 For
small h the ratio of Langevin to Gaussian harden-
ing is 1 + 3h2/5, and the Gaussian approximation
is usually considered adequate2 for h < 1/3.

Figure 1 illustrates how the strain hardening
varies with Ne in our simulations. The four cases
shown span the range of Ne studied below. All
simulations were done at ε̇ = −10−3/τLJ, and
other parameters are listed in Table 1. As in many
experiments,the stress is plotted against g(λ) so
that Gaussian strain hardening corresponds to a
straight line.

Figure 1. Strain hardening for various degrees of
entanglement. The strain rate is ε̇ = −10−3/τLJ and
T = 0.2u0/kB. Successive curves from bottom to top are
for Ne = 165, Ne = 71, Ne = 26, and Ne = 22 and
other parameters are provided in Table 1. Solid black
lines indicate linear fits used to determine GR. A dashed
curve shows a fit to eq 8, with the fit value of Ne = 14.25.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

The behavior at small g is nearly independent
of Ne. In this limit, g is proportional to strain.
An initial elastic response is followed by yield-
ing at a stress σy and nearly ideal plastic flow at
a stress σflow. For the results shown in Figure 1,
σy & σflow, but postyield strain softening occurs at
lower temperatures and slower quench rates.

The strain hardening at g > 0.5 depends
strongly on Ne. For large Ne, the entire curve
shows linear Gaussian strain-hardening. As Ne

decreases, nonlinear Langevin strain-hardening
sets in at smaller g. The nonlinearity becomes pro-
nounced when h exceeds 1/3, as expected from
the Langevin expression (eq 8). For Ne = 22,
h = 0.4 in the unstrained state, and the results
show pronounced curvature at all g. We find that
such strongly nonlinear curves cannot be fit to the
Langevin expression unless Ne is taken as a fitting
parameter. The quality of such fits is illustrated
by the dashed line in Figure 1. The fit value of
Ne = 14.25 is about 2/3 of the value of Ne = 22
obtained from the PPA and plateau modulus.18

Experimental fits to Langevin strain harden-
ing also produce smaller entanglement lengths
than those determined from the plateau modu-
lus.30,35 This might be interpreted as a shift in
the length between the effective crosslinks pro-
duced by entanglements, but may also reflect the
limitations of the entropic network model. One is
the assumption of constant volume. While volume
changes less than 1% for the two systems that
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Figure 2. Plot showing proportionality of hardening
modulus GR and entanglement density ρe. As shown
in Figure 1, GR is obtained from linear fits for 0.5 ≤
g(λ) ≤ 3. Filled (empty) squares indicate the undiluted
(diluted) systems from Table 1; the fractions f of short
chains are indicated in this table. Error bars are of order
the symbol size. Results for Ne = 22 are not shown
since Langevin hardening extends to low strains, but
Langevin fits to this and other Ne are consistent with
the line drawn through the data.

show Gaussian hardening, systems with Ne = 26
and 22 contracted by 3.2 and 5.5% respectively.
Much of this contraction occurred at large g and
could affect the fit to Langevin hardening.

The network model also predicts that GR should
increase linearly with entanglement density, and
this prediction was verified in the recent experi-
mental work of van Melick et al.7 Following their
work, we obtain GR from linear fits to the stress
over the range 0.5 ≤ g(λ) ≤ 3. Except for the most
entangled system, Ne = 22, the behavior is nearly
Gaussian over this range, and linear and Langevin
fits to GR differ by less than 10%. Results for GR

are plotted against ρe in Figure 2 over a slightly
wider range (26 ≤ Ne ≤ 165) than considered
in the experiments.7 As predicted by the network
model, the results are well fit by a line passing
through the origin. In the following sections we
will consider whether GR/ρe scales with the tem-
perature or the flow stress. The results in Figure 2
do not distinguish between these interpretations
because T is constant and σflow only varies by
±10%.

Some authors have suggested that the Kuhn
length lK , or more properly the chain stiffness con-
stant C∞, plays a critical role in determining GR.
They argue that the reason that GR is observed
to be higher for polymers with larger C∞ is that
straight chains are harder to deform.8,9 However,
these tests were performed on undiluted systems,

in which C∞ and ρe cannot be varied indepen-
dently. The data in Figure 2 show that systems
of very different C∞ have similar GR if they are
diluted so that they have the same entanglement
density. We find that diluting gives an approxi-
mately linear decrease in both GR and the entan-
glement density from PPA. In particular, GR ≈
(1− f )G0

R where G0
R is the undiluted value. Thus it

appears that straighter chains have larger GR pri-
marily because they are more densely entangled.

To our knowledge, all previous simulation stud-
ies of strain hardening have employed dihedral
(trans/gauche) interactions. Since dihedral inter-
actions are absent from the model employed
here, our results show that these interactions
are not essential for strain hardening. Angular
interactions apparently affect strain hardening
only because they control the entanglement den-
sity through the equilibrium Kuhn length, and
because of their less important effects on density
and yield stress.

Effect of Temperature

While both the form of the stress–strain curves
shown in Figure 1 and the proportionality between
GR and ρe are consistent with entropic elastic-
ity, the temperature dependence is not. Figure 3
shows stress–strain curves for temperatures rang-
ing from near zero to slightly below Tg. At higher
temperatures, stress increases monotonically with
strain, and exhibits a smooth transition to plas-
tic flow. At low temperatures, the initial elastic
response is followed by a clear peak and strain

Figure 3. Strain hardening at kBT/u0 = 0.01, 0.1, 0.2,
and 0.3 from top to bottom. Simulations are done at
strain rate −3.16 · 10−4/τLJ with Ne = 39, Nch = 200,
and N = 350. Lines are fits to Gaussian hardening.
[Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]
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Table 2. Temperature Dependence of the Strain
Hardening Modulus GR, Entanglement Density ρe,
and the Ratios of GR to the Network Model Prediction
and the Flow Stress σflow

kBT/u0 GRa3/u0 ρea3 GR/ρekBT GR/σflow

0.01 0.51 0.0134 3800 0.35
0.1 0.44 0.0131 340 0.39
0.2 0.38 0.0129 150 0.41
0.3 0.32 0.0125 85 0.51

Data are for Ne = 39 and ε̇ = −3.16 · 10−4/τLJ.

softening. In all cases, Gaussian hardening ensues
at g(λ) & 0.5. Again, values of GR are deter-
mined by linear fits to the stress over the range
0.5 ≤ g(λ) ≤ 3 and are reported in Table 2.

Our results for GR show a linear decrease over
the entire range of T from 0 to ∼Tg. A linear
decrease was also seen in van Melick et al.’s exper-
iments7 on increasing T from about 0.6Tg to 0.9Tg.
The main difference from our observations is that
a greater fractional change in GR was observed in
experiments.7,15,30 This is due to the high strain
rate employed in our simulations. The yield stress
and GR only vanish at Tg in the low strain rate
limit. Previous studies in similar systems show
that σy drops linearly with temperature at all
shear rates.25 At the strain rate used here, σy only
decreases by about a factor of two as T changes
from 0 to Tg. As the strain rate is decreased, σy

goes to zero at Tg and the fractional change with
temperature diverges. The relatively small change
in GR with temperature in Table 2 is consistent
with these observations, and rate dependence is
discussed further below.

The decrease in GR with T in experiment7 and
our simulations is inconsistent with entropic net-
work models derived from eq 1. In the simplest
form these predict GR = ρekBT. Experimental and
simulation values for both GR and GR/ρe (Table 2)
decrease linearly with increasing T rather than
rising linearly. It has been suggested30,34,36–38 that
a drop in effective entanglement density with
increasing T could explain a decrease in GR near
Tg. However, in order for a network model to
explain the observed monotonic drop in GR from
T = 0, the entropy would have to diverge faster
than 1/T as T → 0, an unlikely proposition.
Another difficulty with the network model is that
even near Tg the values of GR are much larger than
ρekBT. We find GR/ρekBT is of order 100 for T = 0.2
and T = 0.3, which is similar to the experimental
ratios7 in the same range of T/Tg.

Refs. 15,16 argue that thermally assisted relax-
ation of the entanglement network is the primary
source of the drop in GR with increasing T. Prim-
itive path analysis does not support this hypothe-
sis. The stretching of primitive paths with strain,
Lpp(λ)/L0

pp, is the same for T = 0.3u0/kB as it
is for T = 0.01u0/kB (∼1.47 at ε = −1.5). Also,
measurements of the nonaffine displacement of
atoms as a function of chemical distance from the
chain ends indicate that chain end slippage does
not occur. Therefore, entanglement loss is negligi-
ble, at least at the large strain rate (ε̇ = −3.16 ·
10−4/τLJ) used in these simulations. Instead, it
seems that thermally assisted rearrangement at
scales below the entanglement mesh is the pri-
mary source of the drop in GR with increasing T.

Local rearrangements are required to maintain
chain connectivity during deformation of the glass.
The local stresses required for these rearrange-
ments must be of order of the flow stress. This
decreases with increasing T due to thermal activa-
tion over local energy barriers (Fig. 3).25,39,40 The
final column in Table 2 gives GR/σflow, with σflow

measured at the onset of the strain hardening
regime, g(λ) = 0.5. The ratio of hardening mod-
ulus to flow stress changes relatively little over
the entire range of T, while GR/ρekBT changes
dramatically. In the next section we examine the
correlation between GR and σflow in more detail.

Scaling of GR with Flow Stress

The most direct way to vary the flow stress is by
changing the intermolecular interactions. Chang-
ing the strength of the potential u0 will of course
produce proportional increases in GR and σflow

because all energies scale with u0. The flow stress
also increases when the form of the potential
is altered by increasing the cutoff rc, because a
larger region contributes to the energy barriers
preventing chains from sliding past each other.
Table 3 shows that increasing rc produces compa-
rable increases in both GR and σflow. Their ratio
does not change within our numerical uncertain-
ties as they increase by more than 50%. Note that
the network model would not predict any change
in the configurational entropy or GR with rc.

Studies of the strain-rate dependence of the
stress also reveal a correlation between GR and
σflow. Figure 4 shows stress–strain curves for an
Ne = 39 system at four different strain rates rang-
ing from −3.16 · 10−5/τLJ to −10−3/τLJ. The lowest
three strain rates show a continuous transition
between the elastic regime and plastic flow, while
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Table 3. Variation of Strain Hardening Modulus
GR and Flow Stress σflow with the Range of Adhesive
Interactions rc for ε̇ = 3.16 · 10−4/τLJ, N = 350,
and Ne = 39

rc/a GRa3/u0 σflowa3/u0 GR/σflow

1.5 0.38 0.92 0.41
1.8 0.45 0.97 0.46
2.2 0.56 1.25 0.45
2.6 0.60 1.44 0.42

the highest rate shows a slight postyield strain-
softening. At all strain rates Gaussian strain hard-
ening is observed for 0.5 ≤ g(λ) ! 3. Both GR and
σflow increase by about 35% with strain rate. The
increase in GR is not accounted for in standard the-
ories of strain hardening,30,34,36 where GR depends
only on ρe and T. However, if GR scales with σflow,
its rate dependence can be explained in terms of
thermally activated local rearrangements.

Experimental6,41 and theoretical1,25,40 studies
of the yield and flow stresses generally find a
logarithmic dependence on deformation rate. The
simplest explanation is provided by the Eyring
theory of thermal activation over an energy bar-
rier that decreases linearly with stress.42 As
the rate increases, there is less time for ther-
mal activation, and the stress required for flow
increases as

σflow(ε̇) = σflow(ε̇0) + b ln(ε̇/ε̇0), (9)

where ε̇0 is a reference rate, b ≡ kBT/V ∗, and V ∗

is a constant with dimensions of volume. While
studies25,40,43 show that b has a more complex
dependence on temperature, the basic logarithmic

Figure 4. Strain hardening at ε̇ = −3.16 · 10−5/τLJ,
−10−4/τLJ, −3.16 · 10−4/τLJ, and −10−3/τLJ from bottom
to top. Here kBT/u0 = 0.2 and Ne = 39.

dependence on rate is quite general. The varia-
tions in the flow stress observed in Figure 4 are
consistent with these studies.

If the hardening modulus is proportional to the
flow stress, then the stress–strain curves should
scale as

σ (λ, ε̇) = F(λ)σflow(ε̇), (10)

where F is a dimensionless function of strain. The
stress–strain curves for all rates should collapse
onto a universal curve, F(λ), when normalized by
σflow. As shown in Figure 5, this approach provides
an excellent collapse of our data, particularly for
g(λ) ! 3. There is a small deviation near the yield
stress for the highest strain rate that is not sur-
prising because σy is known to vary with aging as
well as rate, while σflow only depends on rate.40,44

We found that data for different rc could also be col-
lapsed onto the same universal curve. The dashed
line in Figure 5 illustrates this for rc = 2.6a and
ε̇ = 10−3. The total change in σflow is a factor of two
for the curves collapsed in Figure 5.

We also examined the rate dependence of strain
hardening for Ne = 22 where the hardening is
highly nonlinear. The stress–strain curves at dif-
ferent rates also collapsed when scaled by the
flow stress, but on a more nonlinear F(λ) because
of the greater entanglement. Thus the correla-
tion between strain hardening and the stress
required for local rearrangements applies for both
Gaussian and Langevin hardening regimes.

Glassy strain hardening has been the subject
of many constitutive models.3,6,15,16,30,34,36,41,45 In
all of these, the strain and rate dependence is

Figure 5. Ratio F(λ) of stress to flow stress for the
data from Figure 4 with ε̇ = −3.16 · 10−5/τLJ (black),
−10−4/τLJ (blue), −3.16·10−4/τLJ (green), and −10−3/τLJ

(red) with rc = 1.5a. A dashed purple line shows the
ratio of stress to flow stress for rc = 2.6a with ε̇ =
10−3/τLJ.
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assumed to be additive rather than multiplicative:

σ (λ, ε̇) = σ1(λ) + σ2(ε̇), (11)

where σ1 and σ2 represent the nondissipative
rubber-elastic stress and viscous stress, respec-
tively. If the stress had this form, the curves in
Figure 4 would be shifted vertically by constant
offsets and GR would be independent of defor-
mation rate. The rate dependence of GR and the
collapse of stresses in Figure 5 from the rescaling
of eq 10 clearly show that rate-dependent correc-
tions to the stress are multiplicative rather than
additive. Note that the correlation of GR to the flow
stress is particularly hard to interpret in rubber
elasticity models. These models do not naturally
produce a flow stress, and the offset σ0 in eqs 7
and 8 must be added as an ad hoc fitting parame-
ter rather than the central quantity that scales all
stresses.

Values of GR/σflow in Table 2 increase slightly
with temperature, showing a bigger variation than
the changes with rc and rate discussed in this
section.This shows that thermally activated relax-
ation processes reduce σflow by more than they
reduce GR. One possible explanation is that GR

reflects the local rather than global flow stress,
because local rearrangements must occur around
each chain to maintain its connectivity during
deformation. Studies of the global yield stress
show that it decreases with increasing system size
because there are more possible sites for fluctua-
tions to nucleate yield.46 This effect should become
more pronounced with increasing temperature,
leading to a greater reduction of the large scale
flow stress relative to the local flow stress. The rise
in GR/σflow with increasing T in Table 2 would be
reduced if GR was normalized by a larger local flow
stress at higher T.

Chain Length Dependence

Our simulations allow us to test aspects of
the microscopic picture underlying the network
model. If the effective crosslinks come from entan-
glements, strain hardening should disappear for
N < Ne and saturate for N % Ne. In addition,
the system should deform affinely at scales larger
than

√
〈R2(Ne)〉, something that is difficult to test

in experiments.
Figure 6 shows stress–strain curves for undi-

luted systems with Ne = 39 and chain lengths
between 4 and 350. The initial elastic response
and yield is fairly independent of N, although for

Figure 6. Variation of strain hardening with N for
systems with Ne = 39 at kBT/u0 = 0.2 and ε̇ = −10−3/τLJ.
From bottom to top, N = 4, 7, 10, 16, 25, 40, 70, 175
and 350. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

large N the yield stress is slightly larger and there
is some strain softening. For the N = 4 system,
yield is followed by perfect-plastic flow, with no
strain hardening. All other systems show strain
hardening that increases monotonically with N.
As expected from the network model, the stress
appears to saturate for N % Ne, and simulations
at N = 500 showed no further change. Note how-
ever that there is a surprisingly large amount of
strain hardening even for chains much shorter
than the entanglement length. For example, the
data for N = 25 show linear Gaussian hardening
over the entire range of g.

Strain hardening can occur as long as there is
some order parameter that continues to evolve
with increasing strain. We find a correlation
between strain hardening and any measure of
large scale chain orientation and deformation. A
particularly simple one is the rms end to end
length as a function of strain R(λ) normalized by
its value in the initial state (λ = 1). Figure 7
plots R(λ)/R(1) for the systems whose stress–
strain curves are depicted in Figure 6. A dashed
line shows the prediction for an affine uniax-
ial deformation at constant volume, R(λ)/R(1) =√

λ2/3 + 2/3λ, that is assumed to apply in the
Langevin strain hardening model (eq 8).34 Results
for highly entangled chains lie very close to this
affine prediction, providing strong evidence that
entanglements act like permanent crosslinks dur-
ing deformation of these glassy systems. The small
deviation (∼3% for N = 350) can be explained
by noting that the entanglements will not be
at the very ends of the chains and that the
segments past the last entanglement need not
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Figure 7. Ratio of total rms length R(λ) to unstrained
value R(1) as a function of g(λ) for N = 4, 7, 10, 16,
25, 40, 70, and 350 from bottom to top. A dashed line
shows the predicted increase for an affine uniaxial com-
pression at constant volume. Data for N = 175 lie on
top of the N = 350 results and are not shown. Results
are for Ne = 39 at ε̇ = −10−3/τLJ. [Color figure can
be viewed in the online issue, which is available at
www.interscience.wiley.com.]

deform affinely.* Note that neutron scattering
experiments on deformed glasses also show that
long chains deform nearly affinely on the scale of
the radius of gyration, but short chains do not.47

There is a clear correlation between the degree
of strain hardening (Fig. 6) and that of chain
stretching (Fig. 7). The magnitude of the changes
in both quantities increases monotonically with
N and saturates above 5 to 10Ne. In this large
N limit the chains deform affinely at large scales
and their total length becomes irrelevant. Results
for shorter chains follow the asymptotic large N
behavior at small strains, and then cross over to a
less rapid rise at a g that decreases with decreas-
ing N. This suggests that the deformation involves
straightening segments of increasing length as g
increases. Only when this length becomes compa-
rable to the chain length or Ne do the stress and
R(λ) begin to saturate or follow the asymptotic
behavior.

While chains of length 25 are only 60% of
the entanglement length, they remain close to
the asymptotic behavior up to g ≈ 2. Thus for
this chain stiffness, entanglements only appear to
affect strain hardening for g > 2. We expect that
the degree of elongation in unentangled systems

*Indeed this would predict an error of order Ne/N if the
ends did not deform at all. The smaller error observed indi-
cates that the ends also deform substantially. There is also a
small correction associated with the change in volume during
deformation (∼1.3%).

depends on a competition between the friction pre-
venting relaxation of stretched configurations, and
the decreasing number of configurations with a
given degree of elongation. Thus the monomer fric-
tion, temperature, and strain rate may all affect
the value of g where entanglements become impor-
tant. For example, the higher shear rates used
in the simulations of Lyulin et al.12 may have
prevented nonaffine relaxation of short chains,
explaining why GR was essentially the same for
entangled and unentangled systems.

The very shortest chains in Figures 6 and 7,
N ≤ 10, lie below the asymptotic curves at all
g. The value of R(1) for these chains is already
near the completely stretched limit Nl0 and they
cannot align significantly under strain. For exam-
ple, chains with N = 4 (about two Kuhn lengths)
start at 80% of their fully extended length and
show no strain hardening. For N = 7, R(1)/Nl0 =
0.6 and chains only stretch about 10% at the
largest g studied.

A recent experimental result48 is consistent
with our observation of strain hardening for
chains with N < Ne. Wendlandt et al. found that
the level of segmental orientation during plastic
strain well below Tg is indicative of an effective
constraint density much higher than the entangle-
ment density in the melt. In addition to topological
entanglements, they postulate the existence of
frictional constraints, which cannot relax on the
time scale of the experiment. Friction clearly pre-
vents relaxation of the stretching in short chains
in our simulations.

Plasticity and Nonaffine Displacements

One measure of the amount of plasticity is the
deviation of monomer displacements from an
affine deformation:†

D2
na ≡ 〈(0r − F̄0r0)

2〉, (12)

where F̄ is the macroscopic deformation tensor, 0r
is the current position of a given monomer, 0r0 is its
initial position at zero strain, and the average is
taken over all monomers. To minimize the contri-
butions to D2

na from thermally activated diffusion,
we present results for a very low temperature,
kBT/u0 = 0.01. Previous studies have focused on
deformation-enhanced mobility at higher temper-
atures.11–14

†Small nonaffine deformations accompany elastic defor-
mations in disordered media,49 but we consider strains well
beyond the elastic regime.
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Figure 8. Nonaffine displacement D2
na as a function

of g(λ) = 1/λ − λ2. Successive curves from bottom to
top are for Ne = 71, Ne = 39, Ne = 26, and Ne = 22.
Solid lines indicate linear fits to the data for g(λ) ≥ 3.
The system parameters are given in Table 1 and
the strain rate is −3.16 · 10−4/τLJ. [Color figure can
be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 8 shows data for D2
na plotted against g(λ)

for four different entanglement densities. As noted
above, we have also calculated D2

na as a function
of the position of atoms along highly entangled
chains (N > 5Ne). There is no statistically signifi-
cant variation with position, indicating that chain
end slippage does not play an important role.

For strains up to g(λ) & 1 (λ & 0.7), the D2
na data

fall on a Ne-independent curve, showing that plas-
tic deformation occurs on length scales below the
scale of the entanglement mesh. At larger strains,
well into the strain hardening regime, the rate
of increase of D2

na with g(λ) gradually increases,
becoming linear in g(λ) at large strains. As in plots
of stress and other quantities, the increase in the
slope of D2

na occurs sooner for lower Ne.
Remarkably, the slopes of D2

na at large strains
(g(λ) ≥ 3) are proportional to ρe. Table 4 shows val-
ues of (∂D2

na/∂g(λ)) obtained from linear fits to D2
na

for g(λ) ≥ 3. The fit lines are also shown in Figure
8. Values of Ne(∂D2

na/∂g(λ)) vary by only about
5%. This result is very surprising, especially since
the more densely entangled samples are undergo-
ing Langevin hardening at these strains while the
hardening in the less entangled samples remains
nearly Gaussian. The scaling of D2

na with N−1
e at

large g suggests a simple picture in which the
amount of plastic deformation is proportional to
the density of entanglements.

The increase in stress associated with strain
hardening implies that more work must be done
to produce each increment in strain. We observe a
small increase in energy during deformation that

is not expected from the network model, but is
much smaller than the work performed. For the
systems considered in Figure 8, the percentage of
the work that goes into potential energy increases
from 8 to 18%, with decreasing Ne. The entropic
contribution to the change in free energy is also
small, particularly, at the low temperature con-
sidered in this section. As a result, most of the
work is dissipated as heat following local plastic
rearrangements. The rate of work is proportional
to the stress and should scale as the rate of plas-
tic rearrangements times the energy dissipated in
each.

One way of quantifying the rate of plasticity is
to examine the nonaffine deformation δD2

na over
a small strain interval δε = 0.025. Another is to
count the number of atoms that undergo the large
nonaffine displacements associated with plastic
events. We find that the two measures are cor-
related because δD2

na is dominated by the atoms
undergoing large displacements with typical size
greater than 0.2a. Both show an increase in plas-
tic deformation with increasing g. There is a rapid
rise as the strain approaches the yield point, and
then a slower rise in the strain hardening regime.
Thus one factor in strain hardening is the increase
in the amount of plastic deformation needed to
maintain the connectivity of chains as g increases
or the degree of entanglement increases. However,
it appears that the stress rises more rapidly than
the rate of plastic events at large g, particularly for
Ne = 22. This implies that the energy dissipated
in the events is increasing with g. Further studies
of plastic deformation are underway.

Primitive Path Statistics

For the systems considered here, the deformation
of chains is nearly perfectly affine on the end–
end scale and there is negligible disentanglement
through chain-end slipping. The network model of
entanglements then suggests that the entangle-
ment points and the primitive path between them

Table 4. Slope of Nonaffine Deformation
(∂D2

na/∂g(λ)) versus ρe

Ne (∂D2
na/∂g(λ)) Ne(∂D2

na/∂g(λ))

71 1.41 100
39 2.42 94
26 3.52 92
22 4.29 94

Strain rate is ε̇ = −3.16 · 10−4/τLJ.
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Figure 9. Variation of Lpp(λ)/L0
pp−1 with λ for Ne = 22

(bottom) and Ne = 39 (top). Solid lines are fits to
c(Y(λ) − 1) with c=0.58 and 0.70, respectively. [Color
figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

will deform affinely. One way of testing this is to
compare the increase in the contour length of the
primitive path Lpp to the network model. Figure 9
shows Lpp(λ)/L0

pp − 1 for Ne = 22 and Ne = 39. We
now show that these results can be described by
two seemingly different models.

Affine deformation of the entanglement net-
work implies that the primitive paths should
deform affinely at all length scales. We calcu-
late the change in Lpp by considering an initial
Gaussian path and applying a volume conserving
uniaxial compression. Then averaging the change
in length over steps with all initial orientations
yields:

Y(λ) ≡
Laffine

pp (λ)

L0
pp

= 1
2

(

λ + sin−1(
√

1 − λ3)√
λ − λ4

)

.

(13)

The solid lines in Figure 9 are fits to c(Y(λ) − 1),
where c = .58 for Ne = 22 and c = .70 for Ne = 39.
The agreement is excellent, although it is not clear
why c is reduced from unity. It appears that there
are deviations from affine deformation on the scale
of a few monomer spacings. This is insignificant at
the scale of an entire chain, but not at the separa-
tion of individual entanglements (∼8a), allowing
the primitive path length to stretch less than
predicted.

An alternative approach is to calculate the
expected evolution of Lpp(λ) from the nonaffine
tube model of Rubinstein and Panyukov.20 Lpp(λ)

is related to 〈R2
ee(λ)〉 and the strain-dependent

tube diameter a(λ) by Lpp(λ) = 〈R2
ee(λ)〉/a(λ).

For volume-conserving compression the nonaffine

tube model predicts

a(λ) = a0√
3

√

λ + 2√
λ

, (14)

where a0 is the tube diameter in the undeformed
state. The affinity of the deformation at the end–
end scale gives 〈R2

ee(λ)〉 = (λ2+2/λ)〈R2
0〉. Replacing

〈R2
0〉 with L0

ppa0, a0 drops out after some algebra,
and the prediction is

Z(λ) = Lpp(λ)

L0
pp

= 1√
3

λ2 + 2λ−1

√
λ + 2λ−1/2

. (15)

The data in Figure 9 are equally well fit by
d(Z(λ) − 1), where d = 0.27 for Ne = 22 and d =
0.33 for Ne = 39. The reason is that Z(λ)−1 = (35/

16)(Y(λ)−1) to within a few percent over the entire
range of λ explored here. The correspondence
of Y(λ) and Z(λ) is somewhat surprising, given
the different approaches to their calculation, one
coming from a purely mathematical single-chain
treatment and the other from a physically moti-
vated mean-field tube model. To the best of our
knowledge this has not been previously reported.

CONCLUSIONS

Simulations of strain hardening were carried out
for glassy polymer systems with a wide range
of entanglement densities. At fixed temperature
and strain rate, the results are consistent with
the entropic network model. The strain harden-
ing modulus GR is linearly proportional to the
entanglement density ρe and does not correlate
with chain stiffness alone.8,9 Both Gaussian and
Langevin hardening are observed and the transi-
tion between them occurs at the expected entan-
glement density.

The effect of temperature on strain harden-
ing is in dramatic disagreement with the entropic
model. Both GR and GR/ρe decrease linearly with
increasing T rather than being proportional to T.
This behavior extends between the T → 0 and
T → Tg limits. To accomodate this behavior, an
entropic description would require that S diverge
faster than 1/T as T → 0. In addition, values of GR

at all temperatures considered were much larger
than the entropic prediction GR = ρekBT. Near Tg

the ratio GR/ρekBT is of order 100 in both our sim-
ulations and recent experiments.7 The decrease
in GR with increasing T is similar to the corre-
sponding decrease in the flow stress, suggesting
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that thermally assisted local rearrangements may
reduce both quantities at higher temperatures.

The correlation between GR and the flow stress
extended to variations with interaction parame-
ters and rate. While both GR and σflow increase with
the strength and range of adhesive interactions,
the ratio GR/σflow remains essentially constant.
Correlated increases with strain rate were also
observed. Indeed the stress–strain curves for dif-
ferent rates and interactions collapsed onto a
universal curve when normalized by σflow. The
observed multiplicative dependence on strain and
strain rate (eq 10) is very different than the
additive dependence commonly assumed in con-
stitutive laws (eq 11). The experimental literature
offers conflicting results on the rate dependence
of strain hardening. Some experiments6,16,39 show
rate-dependent hardening, while others37,50 do
not. Most experiments are fit to additive consti-
tutive laws like eq 11, but a multiplicative form
like eq 10 has also been employed.41 In many cases
the flow stress may not change by a large enough
factor to distinguish between the two forms, but
it would be interesting to test the multiplicative
relation on a wider set of experimental data.

The effect of chain length on strain harden-
ing was examined over the entire range of chain
lengths from unentangled to fully entangled. Sig-
nificant strain hardening was found in systems
with chains much shorter than the topological
entanglement length Ne. Hardening occurs as long
as chains are able to continuously orient with
increasing strain.

The evolution of microscopic quantities inac-
cessible to experiment was studied. The nonaffine
part of the deformation was observed to fall on an
Ne-independent curve at strains up to the early
part of the strain hardening regime (g(λ) ≈ 1).
This suggests that the deformation is restricted to
chain segments shorter than Ne at small strains.
The onset of a more rapid rise in the deformation
moves to lower strains as Ne decreases and at high
strains the rise in deformation is proportional to
ρe. This is consistent with a simple model in which
the amount of nonaffine (or plastic) deformation
is proportional to the entanglement density. Stud-
ies of local plastic rearrangements indicate that
strain hardening results from an increase in the
amount of local plastic deformation with increas-
ing strain and ρe, as well as an increase in the
energy scale of rearrangements. Finally, the scal-
ing of the increase in primitive path lengths was
found to be consistent with both an affine primi-
tive chain model and a nonaffine tube model, but

the absolute values of the increases were smaller
than those predicted.

We hope that the connections we have shown
between GR and flow stress provide additional
insight into the physics controlling GR. The flow
stress is related to small scale structure and there
is a growing understanding of the factors that
control it.25,40,44,46 The success of the network mod-
els in explaining the form of strain hardening
suggests that entropic arguments may be able
to predict the amount of deformation required to
maintain chain connectivity, and thus the func-
tion F(λ) that multiplies σflow. Combining this
approach with models for σflow may allow strain
hardening to be predicted directly from knowledge
of the microsopic interchain interactions.

Edward J. Kramer provided the inspiration for this
work. Jorg Röttler and Kenneth S. Schweizer pro-
vided useful discussions. Gary S. Grest provided the
DBH-equilibrated initial states. The simulations in this
paper were carried out using the LAMMPS molecular
dynamics software (http://www.cs.sandia.gov/∼sjplimp/
lammps.html). This material is based upon work sup-
ported by the National Science Foundation under
Grants No. DMR-0454947 and PHY-99-07949.
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