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Strain Induced Vertical and Lateral Correlations in Quantum Dot Superlattices
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Vertical and lateral ordering of quantum dots in superlattices is shown to be determined by the elastic
anisotropy of the matrix material and by the growth orientation. For large anisotropies, complicated dot
stacking sequences with correlations inclined to the growth axis may be formed, and the lateral ordering
tendency is much stronger than for isotropic materials.
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Much effort has been devoted to the fabrication of
semiconductor nanostructures because of their great po-
tential for semiconductor devices. Apart from processing
techniques involving lithography and etching, the direct
growth of nanostructures has evolved as a promising new
approach. It is based on the tendency of strained epi-
taxial layers to spontaneously form coherent three dimen-
sional (3D) islands after completion of the two dimensional
(2D) wetting layer. In multilayer structures, the buried
dots tend to influence the nucleation in subsequent lay-
ers [1–4]. Based on a one dimensional isotropic model,
Tersoff et al. [4] have proposed that the resulting verti-
cal alignment of the dots in subsequent layers can lead to
a lateral ordering as well. Although the vertical correla-
tion can be nearly perfect [1–3], experimentally, the lat-
eral ordering was found to be much less pronounced [4–
6]. In addition, apart from the vertical dot alignment in
Ge�Si and InAs�GaAs superlattices, an anticorrelation of
the dots on subsequent interfaces was observed for sub-
monolayer CdZnSe islands embedded in ZnSe [7], which
was explained by considering the elastic interactions as a
function of spacer thickness [8]. Even more, for PbSe
dot superlattices we have recently reported a fcc-like
ABCABC vertical dot stacking sequence [9].

It is the purpose of this Letter to show that all forms of
vertical and lateral correlations in self-assembled quantum
dot superlattices can be explained by taking into account
the elastic anisotropy of the materials. In these superlat-
tices, dot correlations are induced by the interaction of the
dots via their elastic strain fields. Above the buried is-
lands, the elastic energy distribution on the surface exhibits
pronounced minima and maxima in the lateral directions.
This leads to a diffusional bias of the deposited adatoms
and to a preferential nucleation of the dots at the local strain
minima on the surface, which are linked to the dot positions
in the previous layer. Here it is shown that depending on
the elastic properties and the growth orientation, a variety
of dot stacking types may be formed, and that a most effec-
tive lateral ordering occurs for materials with high elastic
anisotropy.

For a given nonuniform strain distribution eij�r� (i, j �

x, y, z) within a strained dot superlattice, the elastic en-

ergy density on the surface at z � 0 is given by E�x, y� �

1�2cijklekl�r�eij�r�jz�0, where cijkl are the elastic con-
stants in the coordinate system defined by the sample sur-
face. Because of the lattice distortions around the buried
dots, the strain distribution on the wetting layer is given
by the superposition of the homogeneous lattice-mismatch

strain e
�0�
ij and the contribution e

�1�
ij �r� of the buried islands.

For an infinite elastically anisotropic medium, the strain
distribution Deij�r� induced by a buried point stress source
has been solved analytically [10].

To obtain the solution for a semi-infinite medium, we
have solved the equilibrium equations

≠Dsjk

≠xk

� DG
≠d�r 2 R�

≠xj

, j � x, y, z , (1)

where Dsij is the stress tensor due to an elementary stress
source DG � e0DV �cc

11 1 2c
c
12� [11] in a point R. DV

is the infinitesimal volume of the stress source, e0 the
lattice mismatch between source and surrounding crystal,
and c

c
ab the elastic constants in the crystallographic coor-

dinate system. The equilibrium equations were solved by
the Fourier method [12] with the boundary condition of
an unconstrained free surface Dsjz � 0jz�0. The strain

e
�1�
ij �r� caused by a buried island can then be calculated

by a summation of the Deij�r� over the whole island vol-
ume Visland. Outside of the highly strained quantum dot
regions, the continuum elasticity calculations are usually
in good agreement with atomistic calculations [13].

Since we are interested mainly in generic effects, we
restrict our analysis to the case where the lateral and
vertical extent of the islands can be neglected, and the
whole stress source is thought to be concentrated in a single
point R. This describes the actual situation rather well as
long as the thickness of the spacer layer is about 3 times
larger than the island size. Then, the strain distribution on
the surface of the wetting layer is

eij�r� � e
�0�
ij 1 Deij�r�Visland�DV . (2)

Using Eq. (1), the relative change of the strain energy on
the surface above a buried island is given by

r�x, y� � �E1�r� 2 E0��E0jz�0 , (3)
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where E0 is the constant energy density in the wetting layer
due to the misfit strain, and E1 is the energy density with a
buried island underneath. Because of this renormalization,
r does not depend on the lattice mismatch between island
and matrix material. However, r still scales linearly
with the island volume, which varies for different material
systems and growth conditions. To allow a comparison,
we have fixed the island volume to 7200 nm3 (pyramid
of 20 nm height and 50 nm base length). In addition, the
magnitude of the r variations decreases inversely with the
cube of the spacer thickness h. In the following, h was
fixed to 50 nm, but it is emphasized that the shapes of the
energy density contours are invariant when plotted over the
dimensionless coordinates x�h and y�h.

From our calculations it turns out that the elastic en-
ergy distributions are determined by two key parameters,
namely, (1) the elastic anisotropy of the matrix material,
and (2) the surface orientation. For cubic materials, the
elastic anisotropy can be characterized by the anisotropy
ratio A � 2c

c
44��cc

11 2 c
c
12�. It is roughly equal to the ra-

tio between the Young’s modulus E along the �111� and
the �001� directions. These are the directions where E has
its extremal values. For isotropic materials A � 1, i.e., E

does not depend on the direction of the applied extensional
forces. For the group IV, the III-V and II-VI semicon-
ductors with diamond or zinc-blende structure and with
the chemical bonds along �111�, the �111� directions are
the elastically hard directions, and the �001� directions the
soft directions (A . 1). The anisotropy is largest for the
II-VI compounds, with A � 2.04 for ZnTe and 2.53 for
ZnS. For C, Si, and Ge, A increases from 1.21, 1.56, to
1.64, respectively; and for the III-V compounds, A ranges
from 1.83 for GaAs to 2.08 for InAs. For rock salt mate-
rials, however, the next nearest neighbors are along �001�.

Thus, A , 1 and �001� are the hard directions and �111� the
soft directions. For the IV-VI semiconductors, the elastic
anisotropy is particularly large, with A � 0.18, 0.27, and
0.51 for SnTe, PbTe, and PbS, respectively.

To characterize the elastic interactions between the dots
on the surface and the buried dots, we have calculated
the elastic energy distributions for different material sys-
tems and growth directions. Representative r�x, y� con-
tour plots for the (001), (111), and (113) surfaces are shown
in Fig. 1, together with cross sectional profiles r�r� for
PbTe, PbS, Si, GaAs, and ZnSe as matrix materials. For
elastically isotropic spacer layers (dashed lines), the energy
minimum is always in the origin of r�x, y�, independent of
the surface orientation. However, the elastic anisotropy
changes both the depth and the position of the energy
minima; in particular, the r�x, y� distributions are quali-
tatively different for the growth along the elastically hard
or soft directions.

For the growth along the hard direction ([111] for
diamond and zinc blende and [001] for rock salt materials),
the depth of the energy minimum strongly increases with
increasing anisotropy, but its position above the buried dot
remains unchanged. The opposite behavior is observed for
growth along the soft direction ([001] for diamond and zinc
blende and [111] for the IV-VI materials); i.e., the depth
of the minimum decreases as the anisotropy increases.
Even more, when the anisotropy ratio exceeds a critical
value, the central minimum is replaced by several side
minima in the r�x, y� distributions. For the (001) surface
and A . 1.5, r�x, y� exhibits four minima along the �110�
directions. For Si and GaAs these minima are quite
shallow, but become pronounced for higher anisotropies
(see ZnSe, Fig. 1). For the (111) surface and A , 0.6

(PbS, PbTe, etc.), three deep side minima occur along

FIG. 1 (color). Normalized elastic energy density r�x, y� on the surface above a strained self-assembled quantum dot at 50 nm
below the surface for various matrix materials and for the (001), (111), and (113) surface orientations (from left to right). The
curves represent cross sections of r in the directions indicated by the arrows in the insets. Insets: 2D contour plots with
250 # �x, y� # 150 nm and with a 0.5% step width between contours. The yellow areas correspond to the minima of r.
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the �112� directions. Such side minima are a general
feature for all surface orientations close to a soft direction,
provided that the elastic anisotropy is sufficiently large.
Although otherwise only one r minimum appears, it is
not necessarily located above the buried dot but can be
displaced in a lateral direction. As shown in Fig. 1, for
(113) Si and GaAs (A . 1) the minimum is shifted in the
�332� direction, and in the �333� direction for A , 1.

The chemical trends are summarized in Fig. 2 for the
(001) and (111) surface orientations. The top panel shows
the energy density r�0� at x, y � 0 (full dots) and rmin

at the side minima (open circles) versus anisotropy ra-
tio. Clearly, the more A deviates from unity, the more
pronounced is the difference between the center and the
subsidiary minima. To characterize the minima positions,
we define a as the angle between surface normal and the
vector from the buried island to the energy minimum on
the surface. As shown in the lower panel of Fig. 2, this
angle changes continuously with varying anisotropy. For
the (001) surface, a increases linearly with increasing elas-
tic anisotropy (defined in terms of 1�A), with a � 16±,
23±, and 32± for Si, GaAs, and ZnSe, respectively. A simi-
lar trend is observed for (111) surfaces, i.e., with increasing
anisotropy a increases from 19± for PbS to 41± for SnTe.

One can then ask about the consequences for the ver-
tical dot correlations formed during superlattice growth.

FIG. 2. Upper figures: Normalized energy density in the
center above the buried islands r�0� and at the side minima
positions rmin (≤ and ±, respectively) plotted as a function
of elastic anisotropy for (001) and (111) surfaces. Lower
figures: angle a relative to the surface normal under which
the minima of r�x, y� appear on the surface versus elastic
anisotropy. Insets: Expected stacking in dot superlattices,
centered tetragonal for (001) and A $ 1.6, and trigonal for
(111) and A # 0.6.

For materials and growth orientations with only one
central r�x, y� minimum, the dots should be vertically
aligned, provided that the minima are deep enough to
promote preferential growth under given conditions. For
other growth orientations, dot correlations along direc-
tions inclined to the growth axis are expected. This
applies, e.g., for (113) SiGe�Si or InAs�GaAs dot super-
lattices, where the dots should be aligned at about 10± to
the surface normal. If several minima are formed on the
surface, however, then these minima also define a pre-
ferred lateral dot arrangement. This is clearly most fa-
vorable for the formation of 3D ordered dot arrays. For
(111) growth and A ø 1, the three subsidiary minima of
r create a triangle with equally long sides. Therefore, one
expects a hexagonal ordering within the growth plane, and
a trigonal fcc-like ABCABC dot stacking sequence in the
vertical direction, as shown in the right inset of Fig. 2.
For (001) growth and A ¿ 1, the four side minima de-
fine a preferred square arrangement of the dots within
the growth plane. Therefore, one may expect an order-
ing in a tetragonal body centered lattice with an ABAB

vertical stacking sequence, as shown in the left inset of
Fig. 2.

For the (111) growth direction, the formation of a trigo-
nal dot lattice has indeed been observed for PbSe�PbEuTe
dot superlattices [9], and the measured trigonal corre-
lation angle of a � 39± agrees remarkably well with
the 36± derived from our calculations. From Fig. 2, this
angle is predicted to vary linearly with A for other IV-VI
materials. The situation is more complex for (001) su-
perlattices. For SiGe�Si and InAs�GaAs, experimentally,
no centered tetragonal ordering has been observed, but
only a simple vertical dot alignment [2,3,6]. This is due
to the fact that the elastic anisotropy is not sufficiently
large in these materials. Thus, the r side minima are
still very weak, and their lateral spacing is less than the
typical island sizes on the surface. In addition, the finite
extent of the buried islands will also lead to a smear-
ing of the energy minima. As a result, only one new
island will grow on top of a buried island, which is
experimentally observed. For the more anisotropic II-
VI compounds, the subsidiary minima are about 3 times
deeper as for GaAs (see Fig. 1), and indications for a
nonvertical dot replication have indeed been reported [7].
Therefore, the II-VI materials seem to be the most suitable
candidates for the formation of body-centered tetragonal
dot arrangements.

The calculations presented so far imply that for Si�Ge
or InAs�GaAs (001) superlattices no lateral ordering of
the dots should occur. However, experimental studies
have indicated that a weak lateral ordering tendency is
present along the �100� directions. This can be explained
by considering the superposition of r�x, y� from adjacent
buried islands. As shown in the inset of Fig. 3, for Si
(001) besides the four energy minima near the origin (not
shown in this plot), an additional four local r maxima
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FIG. 3. Growth simulation of the island positions after several
superlattice periods: (a) SiGe(001) islands separated by 20 nm
Si spacer layers after the 9th (1) and 10th (±) layers, (b) PbSe
(111) islands separated by 50 nm PbEuTe spacers after the 10th
(≤), 11th (±), and 12th (�) layers. Insets: 2D Fourier power
spectrum of the island positions on the surface. Lower inset
in (a): Elastic energy distribution r�x, y� above a single SiGe
island. Only positive r values are plotted, the regions with
r , 0 are not shown (white area in the center). The dark
areas are unfavorable for island nucleation.

occur along �110�. For a pair of buried dots aligned
along �100�, the superposition of the strain fields leads
to a local r minimum in between the dots along the �110�
direction. This causes a weak lateral ordering tendency in
spite of the absence of pronounced side minima of r on
the surface.

To prove this phenomenon, we have performed a
growth simulation where for each dot layer, we distribute
randomly N � 104 adatoms on the surface and let them
move to the nearest energy minimum. After completion
of the layer, we calculate the energy density r�x, y�
on top of the next wetting layer by summation of the

contributions of all islands. Starting from a surface with
constant r, this procedure was repeated several times. In
contrast to the isotropic 1D model of Tersoff et al. [4],
here we take into account explicitly the elastic anisotropy,
and the simulation was performed in two dimensions. For
SiGe�Si superlattices, the SiGe dot layers were separated
by 20 nm Si spacer layers. Figure 3(a) shows the dot
positions after the 9th and 10th layers (crosses and circles,
respectively). In agreement with the above arguments, we
find that the dots are nearly perfectly aligned vertically,

with a weak lateral ordering along the �100� directions
(see 2D Fourier power spectrum of the dot positions in
the upper inset). If we neglect the elastic anisotropy,
we do not find any lateral ordering tendency in our
simulations. For (111) PbSe�PbEuTe dot superlattices, a
similar simulation was carried out. It is emphasized that
in this case we find a very effective hexagonal ordering
in the lateral direction, and an ABCABC stacking in the
vertical direction [see relative dot positions in the 10th,
11th, and 12th layers in Fig. 3(b)]. This is exactly the
dot arrangement observed experimentally [9].

In conclusion, we have demonstrated that the elastic
anisotropy is of crucial importance for lateral and vertical
self-organization in quantum dot superlattices. Our calcu-
lations indicate that a rich diversity in the 3D dot stacking
exists for different materials and growth orientations. The
model explains the essential features observed in several
multilayer systems, and predicts pronounced 3D ordering
for systems with a high elastic anisotropy. This could
open the way for fabrication of homogenous dot arrays
for device applications.
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