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1. Introduction The development of consistent refined theories of shells (and plates)
based upon discarding the Love-Kirchhoff (L.K.) assumptions has attracted increasing
attention during recent years. Outside the purely heuristic interest, there is the advent of the
new exotic materials, such as composites, which has constituted the greatest stimulus for
these refined theories. From the multitude of works dealing with this problem we shall refer
only to two groups of works which involve similar features in their mathematical treatment.

The first group concerns the so-called Timoshenko shell (or plate) theory (T.S.T). The
displacement field appropriate to model its kinematic behavior is represented as:

Vx(xw, x3) = + x^V), V} (x<°, x3) = F(30)(xra). (1)

The second group of works concerns the so-called higher-order shell theory (H.O.S.T). It
constitutes in fact an extension of the former model, in the sense that the appropriate
displacement field may be represented as:

r s
Pjt(x'°, x3) = £ (x3)rFj,r)(x<0); P3(xra, x3) = X (x3)sF3,s)(xro). (2)

r=0 s = 0

In Eq. (2), R and S (Rs? S) are two natural numbers defining the level of truncation in the
series expansion (across the shell wall thickness).

In this connection it should be stressed that the large diversity of high-order shell (or
plate) theories relies upon the various selection of R and S. The extant literature on the
problem may be relevant in this regard (see, e.g., the works devoted to high-order shell [1-8]
and plate [9-12] theories). In contrast to the T.S.T., a framework in which a great number
of basic results have been obtained (see, e.g., [13]—[18]), the H.O.S.T. still needs improve-
ments in order to become a complete and consistent theory. Nevertheless, it is worth
reporting that:

(i) in the monograph [19], the general theory of shells as substantiated in the framework of
the Cosserat continuum concept furnishes valuable results for the high-order shell (and
plate) theories, as well, and
(ii) a large part of the monograph [20] deals with the substantiation of the high-order shell
(and plate) theories, treated both in linear and nonlinear formulations.

However, as far as the authors of the present paper are aware, no results concerning the
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compatibility equations (C.E.) appropriate to H.O.S.T. are available in the literature. And it
may be inferred from the classical and Timoshenko shell theories that the mere existence of
such results has constituted the necessary premise for further remarkable contributions in
the field.

The derivation of compatibility equations appropriate to the high-order linear shell
theory is the basic object of the following sections.

2. Preliminaries. Let the points of the 3D space of the shell be referred to a set of
curvilinear normal coordinates xl(x", x3) where x3 = 0 defines the shell middle surface.
Accordingly, the following relations for the spatial metric tensor hold valid:

g«p = ga 3 = ga3 = 0; g33 = g33 = 1; (3)

here aXl0 denotes the metric tensor of the middle surface, while Hp is defined by:

Hi = 5} - x3^ (4)

S"p being Kronecker's symbol; bis the second fundamental form of the middle surface. As
shown in [21], $ is nonsingular. Its inverse, denoted by (/i~ and satisfying

= (5)

may be expressed as (see [21])

z (*3>w (6)
In (5), is defined by

where, in addition,

(b% = bt(b"-L)l = b°(b"-rp (7)

(bn)j, = dp for n = 0

= 0 for n < 0 (8)

As was emphasized in [21], n"p and (h'1)} (called shifters) play an important role in es-
tablishing the relationships between space tensor components and their surface (shifted)
counterparts.

Concerning the relationships between covariant differentiation of space and surface
tensors (see [21]), the following relations will prove useful in what follows:

Tx\\fi = ~ bvp T3); T.||3 = ^fv,3; X3ii<x = ^3, a + bexTe; T3^3 = T3 3, (9)

where the shifted components are denoted by an upper bar; the double and single strokes
are used to identify the covariant differentiation with respect to the space and surface
metrics, respectively, while a comma denotes partial differentiation. Throughout this paper,
Latin indices run over the range 1,2,3, and Greek indices over the range 1,2.

It is emphasized that the shifted components can be functions of x3.

3. Displacement field in the shell: definition of the nth order strain measures. Let us
consider the displacement vector V(xra,x3) of the 3D points of the shell, expressed in terms
of the spatial and their shifted components as

V = Va a* + V3 a3 = Vx t + I?3g3 (10)
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where ga and aa denote the space and surface base vectors (related by ga = n* aj while
g3 and a3 (where g3 = a3) denote the unit normal vector to the mid-surface. It is easily seen
from (10) that:

K = ^v„- v3 = v3 (li)

where

F.s K(xa,x3)- V3 s F3(x»,x3).

Let us adopt for the shifted displacements Va, V3 the general representation (2), in which,
for the sake of simplicity, we shall assume that R — S = N. As will be shown later, the
results so obtained may easily be modified when such an equality is not invoked a priori.

Consideration of (9) and (2) in the strain-displacement linear equations

2 etJ = Vm + Vm (12)

yields the following representation of the strain components etj in the 3D medium of the
shell:

2<W = 1% (x3)" + ^£ (x3f,
n = 0 n = 0

*33 = £ y(zl (x3T, 2ex3 = £ y<"3> (x3)". (13)
n = 0 n = 0

In the following development we choose y$ = y^xm); y'^j = y^x01) and (xw) as the
nth-order shell-strain measures. Consistent with (2) and the restriction R = S s N, these
nth-order strain measures may be written in the form:

y(;J = K1P ~ b„\f for n = 0,N — 1,
= V[Z - Kp K} for n = N,

>3 = (n + 1) V["+11 - (n - 1) b\ V["} + for n = 0, TV — 1,

= —(N — 1) KV[N) + V(3n\ for n = N,

yw = (n + 1) F(3+1) for n = 0,N - 1,

= 0 for n — N. (14)

We now consider some special cases of the above results.
For the L.K. model, consistent with its geometrical content stipulating the vanishing of

transverse shear and transverse normal strains (i.e. with = y(3] = 0 for all n > 0), one
obtains from (14) the following restrictions on the coefficients in (2)

Vf = F(30) for n = 0,

= 0 for Vn > 1;

V[n) = K<0) for n = 0,

= ~(K K<0) + K(3°i) for n = 1,

= 0 for Vn > 2. (15)
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In light of the above, there results that in the framework of the L.K. theory the non-
vanishing strain measures are:

(16)
= )<$ = - K, n0) = for n = 0,
= = V*iI = for n = 1

Consistent with (15), the representation of shifted displacements is:

VMm,x3) = C - AK V[0) + VZ), V3 (xM, x3) = F(30) (*•). (17)

In the case of T.S.T. the pertinent representation of the shifted displacements is given by
(1), or in a more extended form as:

K = Vl0) + x3 Ki1'; V3 = K«30) + x3 n1'. (18)

Consistent with (18), the appropriate shell-strain measures as derived from (14), are:

7$ = 7$ = Kit - Kp K(30) ee yxP for n = 0,

= 7$ = - baf V(3] = Kxli for n = 1,

= 0 n > 2;

= 7$ =V[i} + blV\0) + VZ = yx3 for n = 0,
= yiV = ^3,i = ^3 for n = 1,

= 0 for n>2;

733 = 733 = ^3U = l'33 for K = 0,

= 0 for Vn > 1.

(19),
Consistent with (1), the appropriate strain-measures are obtained from (19) by mod-

ifying only }•[)), 733, which in this instance become:

yiv=nv?; >'1V = 0; = 0. (19)2
For other representations of shifted displacements encountered in the field literature

(see e.g. [1]—[12]), the specialization of the general results (14) is a simple matter. Therefore
we shall not proceed to further specializations of the above results.

4. Other representations of shell-strain measures. At this point a few remarks about
some other possible representations of the nth-order strain measures are in order. In this
connection it must be emphasized that in addition to 7$ (intervening in the kinematical set
{T} = {7$, 7,3, 7<3"!}(h = 0, N)), still other variants of them could be defined. The coeffi-
cients el"/l associated with the various powers of x3 in the expansion of as under:

e«e= I (x3)ne$, (20)
n = 0

play the role of a such new variant. By identifying the coefficients of the same powers in (13)
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and (20), the following relationship between and results:

2e$ = y[°p + 7/)°' (n = 0),

= - K Yrf - K (« = i).
= y$ + yfi - K 7mV - bf VmV (« = 2),
= (y$ + yfJ - K bp & - UK e(j> + bi O). • • ■
< y7 + yff - K y%~11 - yZ~" («= N)> (21)

2eJS = y*3; efi = 733 (n = 0, iV). {£} = {e$, e(3"i} (n = 0, N) could constitute another
variant of strain measures in the linear H.O.S.T., as in [22]. It is easily seen that in contrast
to {r}, where the components of are asymmetric, their counterparts el"J in {£} are
symmetric. It is worth mentioning that the strain measure set {£} may result also through
linearization of the pertinent kinematical measures as obtained either in [19], with the use
of the Cosserat continuum concept, or in [20], on the basis of 3D elasticity theory. In the
framework of Timoshenko shell theory, consistent with (18), the strain measure set {£}
reduces to {£}, i.e. {£}—* {£} = {e$, e1"^, (n = 0, 1). These strain measures have been
obtained in [19] through the appropriate specialization of their nth-order counterparts. In
the framework of L.K.T., the symmetrical counterpart of {f} = {y$} is {£} = {e$}
(n = 0, 1). These last symmetric kinematic measures coincide with those derived in another
way in [23} (and referred to as Naghdi's strain measures). It is to be pointed out that in both
{£} and {£}, the strain measures are not intervening, although they are different from
zero quantities. This is because, in the framework of T.S.T. and L.K.T.,e$ are not indepen-
dent quantities, being expressible exactly and entirely in terms of efj and , as it may
result from (21). In addition to {T} and {£}, still other possible strain measure re-
presentations could be defined in H.O.S.T. However, it is most desirable that such new
representations should be obtained in close connection with the requirement of the re-
duction in he number of compatibility equations, as it was done in the classical framework
in [23, 24], This problem will be considered at a later stage, after the deduction of compati-
bility equations appropriate to H.O.S.T.

5. The compatibility equations. The relations expressing the nth-order shell-strain
measures in terms of displacement components may be regarded as a set of partial differ-
ential equations (in number (In — 1) or (6n — 1) according as {T} or {£} are used as strain
measure variants, respectively) for only 3n unknown functions V("\ (n = 0, N).

As in 3D elasticity theory (see e.g. [25]), it may be argued that the differential equation
system will assume the existence of a single-valued solution (within a rigid-body motion) if
the selected nth-order strain measures satisfy certain conditions referred to as compatibility
equations (C.E.). These will be derived by using the condition ensuring the continuity of the
deformed shell space (assumed to be a simply connected one). The condition is

V,., = 0. (22j)

From the purely mathematical point of view, (22) expresses the integrability condition of
partial differential equations correlating VA with the linearized nth-order strain measures.
Special forms of (22) have been used in [16, 20]; for a comprehensive discussion of this
condition see [19]. In (22) and in what now follows, e"p and denote the e-system of the
middle surface.
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Consistent with the representation (2) of shifted displacements and the definition (14) of
nth-order strain measures, the condition (22j) used in conjunction with (10) and the well-
known Gauss-Weingarten equations (see e.g. [21] or [20, Appendix C]), there results:

[ySi v - Kiy'pl -(n+l)V$ + 1) + nb}
+ [?$b° + $}, , - (n + 1)K<",;+ n(b} F<;%]a3} = 0 (n = OJV). (222)

From (222) it is clear that the coefficients of a" and a3 must vanish separately, yielding:

Chilly - K(y$ - (»+ D^+1) +«bt> Kn)y] = 0;
e'Ty!#b* + yjg,, - (n + 1)K£*1) + n(b} K(v">),y] =0 (n = OJV). (23)

The equations in (23) are basic in deducing the compatibility equations. In order to
express them explicitly in terms of the selected strains, we differentiate covariantly (23^
with respect to x", multiply the result by exd and use Mainardi-Codazzi equations and also
(14)3. This yields

| ys ~ bya Jpl | s+ ("+ 1 )byay%+11

+ bw bpd -/3"\ - (nbya b} V[n)), J = 0 (n = 0, N), (24)

which again contains the displacement V[n). It is easily seen that for n = 0, (24) may be
expressed entirely in terms of strain measures as:

^e"yLy%\ yt - Kyyj,°3>li + byi7<V + byab„y\°n = 0. (25)
(25) constitutes a first C.E. In order to obtain the remaining compatibility equations, (23x)
will be used again. For n = 1 it yields:

8* Wl y - byaiypi ~ 2n2) + K n1 •)] = 0. (26)
In order to express (26) in terms of the selected strains, we shall use (23^ specialized for
n = 0 which gives:

- K'1» = - eHyx 7<°3> + y. (27)

Insertion of (27) into (26) followed by covariant differentiation with respect to xd and
subsequent multiplication by ead yields a second C. E.:

e-VWI+ (bp viv'i y)] i a byJa$ + ft j y[°j),a + 2bjy$ + | ft„a ?&>)] = 0. (28)

A similar procedure can be followed step by step so as to obtain from (231) succesively for
n = 2, ... N — 1, the pertinent C. E. However, it may be shown that we may write:

p-i
-p Kjr'- e" Z(fe"«ir1)-^y<vP3—U] (p = 0, N) (29)

n = 0

and consequently the remaining C. E. following from(23x) may be written compactly as:

t - bya y'r'")] M + (p + 1 )byaly%+1)
U = o .

+ (p + ir1fc/My^] =0 (p — 0, N — 1). (30)
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It is easily seen that the simple specialization of (30) for p = 0 and p = 1 allow us to recover
(25) and (28).

The C. E. following from (23 j) for n = N requires special attention. For this case, the
term V{p+ X) is obviously zero and the resulting equation becomes:

^Ty%\ y - byx - N bya b} K'vN)] =0. (31)
The problem is ow to express the last displacement term in (31) in terms of shell-strain

measures. For this purpose (29) specialized for p = N will be substituted into (31). Multi-
plying the result by £aco and using the identity

$lt K b} = 5 3 b* bi (SH = er'0 (32)
yields another C. E. The result is:

v - KM) + Ycra^rr1' - mi*-"-1']} = o. (33)

We now consider the remaining equation, (232). This may easily be expressed in terms of
the nth-order linearized shell-strain measures as:

«"[(» + I)"/"/1' + (1 - n)b*y(;; + #} l y] = 0 (n = 0, N - 1), (34)
while for n = N it reduces to:

^[(i-AO&JySP + yjf? ,,] = o. (35)
It is easily seen that for N = 1 (i.e. in the framework of both L. K. and T. S. models), (35)
reduces to trivial identities. Consequently, in these cases (35) will be suppressed. Eq. (30),
(32)-(35) (in number (2N + 3)), expressed in terms of nth-order strain measures, are the
exact C. E. pertinent to the high-order linear theory of shells.

Some specifications emerging from the non-fulfilment of the equality relation R = S, on
which the C. E. derived above are based, are now in order. In this respect it is worth
stressing that the C. E. derived for R — S also subsist when R # S. However, in this last
instance some precautions are to be taken. Thus, when R> S, then R = N will be con-
sidered and in the summation process in the C. E. only the appropriate non-vanishing
strain terms are retained. Conversely, when S > R, then S = N will be considered and
further the procedure mentioned above will be introduced.

6. Special cases. The results derived in the previous sections will now be specialized
for two known cases, i.e. for the L. K. and T. S. T. models. In the first case, making use of
(16), the general derived C. E. reduce to:

Exie + V] = o,
^[e^\y + s"Xy%\y]=0, (36)

= 0.

These equations are identical to those obtained in [21] and are equivalent—see e.g. [20,
Chapter II] - to those derived in [26].
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Specializing the general C. E. for the T. S. T. model, consistent with (18) and (19) one
obtains:

£"S£Py[y%\ yd — Vfi3 I dbyot + h/ni'/pa + bps y33)] = 0,

y - byxyJ/3) + y - byx y$)} = 0, (37)

y + 7$ + y$ky] = 0.

The above C.E. coincide with the ones derived in an ad hoc manner in [16, Part 1], Later
on, consistent with the representation (1) of shifted displacements, another variant of C.E.
(also belonging to the T.S.T. model) may be derived. This may result either from (37) (which
are to be modified by (19)2) or from the general set of C.E., where the precautions already
mentioned (arising from the fact that in this instance R = 1, S = 0) are to be applied. All
these lead to the C.E. as derived in lines of curvature in [27] and in invariant form in [28],

7. Additional remarks. In the foregoing sections of the paper some variants of the
nth-order strain measures have been defined. In the same context, the C.E. appropriate to
linear, high-order shell theories have been derived. These involve the strain measure set as
identified by {T}, i.e. the asymmetric strain measures y$, as well as the transverse shear y(apj
and transverse-normal y(/j strain measures (p = 0, N). The results include as special cases
the corresponding C.E. pertinent to L.K. and T.S.T. theories.

A problem worthy of further study is the appropriate representations of symmetric
strain measures which could lead to a reduction in the number of C.E. In the framework of
T.S.T. such representations may easily be obtained. A first such new representation may be
obtained by modifying y$ appearing in the,;set {f} = {y$, y$, , y^} (n = 0, 1). In this
sense, by defining the modified counterpart ofy$ as:

7yfi = y'yfi - b"fi yJJJ' + yfi | y, (38)
it results from (373) that the antisymmetric part of (38), i.e. y|^], is identically zero, from
which the symmetry yjg*' = 7$ simply follows. As a result, a symmetric representation
corresponding to y'^' may be chosen as:

y'V = Y/jV = Wply + y$) - + b°y y$) + W?31 y + y^'i a)- (39)
yj.y considered in conjunction with y[°^, y^', y^V, y^ may constitute a first new set of
shell-strain measures appropriate to T.S.T. model. It appears evident that Eq. (373) ex-
pressed in terms of the strain measures as modified above becomes a trivial identity which
may consequently be suppressed.

Let us consider now the two symmetric strain measure sets {f}Mod = {y\°l), YiV>; 1x3,
y(30^} and {£} = {e$, (n = 0,1), both of which are appropriate to T.S.T. From their
comparison it simply emerges that: (i) the difference between them occurs in the expressions
of 7$, and only; (ii) in terms of the former representation only, Eq. (37)3 becomes a
trivial identity which is to be suppressed, and (iii) in the framework of the classical L.K.
theory the two variants reduce to a single one, i.e. to the set {£} = {e$, e$}, in terms of
which the property of the reduction in the number of C.E. still maintains. As a matter of
fact, it is worth remarking that {£} has been obtained first in [23], just by requiring the
identical fulfillment of (36).

Using a development similar to that performed in the L.K. theory (see [23,24]), another
representation of the strain measures allowing the reduction in the number of C.E. may be
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obtained. For this purpose and according to this procedure,^' appearing in (39) is decom-
posed into its unique symmetric and antisymmetric parts according to y= y^ + , in
which

vZ = \ (C + C); yZ = \ y%] - y£>) • (40)
This yields the symmetric representation

ft; - til - Yi: + \ WS + «!,) - \Ml, + >©,)

= y\lp» ~ 2

{r}Mod = {yVp , y\°j)), y(°i, yiV, 733} may be selected as a new set of strain measures in the
T.S.T. A comparison of the two sets of strain measures {r}Mod and{r}Mod reveals that (i) the
difference occurs in the expressions of 7$ and only; (ii) both of them fulfill identically
Eq. (373) (which is to be suppressed when such strain representations are used); (iii) as per
L.K.T. the modified strain variants {f}Mod and {f}Mod reduce to those referred to as
Nagdhi's [23, 24] and Koiter-Sanders-Budiansky's (see [29, 31]) strain representations,
respectively.

It is to be mentioned, in addition, that the strain set {r}Mod agrees with the one derived
in a different manner in [32] (for the case when y(3°3 = 0. The formulation of similar
symmetric strain representations in the more general framework of H.O.S.T. still remains
an open problem, which nevertheless merits further work.

It is worth remarking, also, that the results previously derived are founded upon the
concept of the expansion of all the field variables in power series across the shell thickness.
However, another expansion procedure in terms of Legendre polynomials (L.P.) has been
also successfully employed in the theory of shells (see e.g. [33, 34]). It is instructive to
compare the expressions of the nth-order strain measures in H.O.S.T. as resulting from the
two above-mentioned approaches. To do this, these kinematical relations will be briefly
deduced by using the latter expansion approach. Let us represent the shifted components
Vi (x", x3) of the displacement vector as:

K(x",x3)= (41)
n = 0

where Pn (x3) are the Legendre polynomials, x3 = x3/h is the reduced transverse coordi-
nate, 2/i denotes the shell thickness, and N is a natural number denoting the level of
truncation of the Legendre series.

It is easily inferred that, consistent with (41), the strain tensor may be expressed as:

eu(xM, x3) = £ h"efj\xn P„(x-3). (42)
n-0

Making use of the orthoganality property of Legendre polynomials as expressed by
I1-1 Pm(x3) Pn(x3) dx3 = 2SmJ(2n + 1), (42) may be inverted to give:

e\f = (m + i/2)/im + 1 eijPm(x3)dx 3. (43)
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Employment in (43) of (12), (11), (9), (4), (41) and of the recurrence formulae (see e.g. [35]):

P'K(x3) = (2K - 1 )PK.l(x3) + (2K - 5)PK-3(x3) + ...,

x3P'K(x3) = KPk(x3) + (2K - 3)P*_2(*3) + (2K - 7)Px.4(x3) + ....

*3 P*(*3) = (2K + 1)-'((* + l)PK+1(x3) + KPk_x(x 3)), (P'K = dPK/dx3)

yields the kinematical equations correlating the nth-order shell-strain measures e\f to the
displacement components d-"1. These are given by:

2e<;J = h2"+l ,,(n) i .An) _   (Lfi .,(n-l)
V*p + Iffia in - 1

+ - h2 (Ky%+1) + b^+1)) (44)

2 = h2" + W - nb*v(? + (2n + lK" + 1)

+ (2n + 1) ZK = i,2,...v*+1+2K)h2K

~(2n+l)bt I t/j + 2Jt)fc2*] ( = ?£!),
X= 1,2

e(3"l = (2n + l)h2n + 1 fl3n + 1)+ Z /,2V3n + 2X+1) ( = /31,

where
-Q = ^ " ^(n,3 (n = 0,AO.

Comparison of (44) with (21) and (14) allows us to conclude that, with the exception in
(44) of some scale factors and of the underlined terms, the corresponding expressions for the
nth-order strain measures are formally similar one another. Moreover, this formal sim-
ilarity entails the conclusion that the general form of compatibility equations as deduced in
Sec. 5, in the framework of the former approach, will be preserved in the latter instance too.
Nevertheless, the effective derivation of C.E. in this last context may be performed without
any difficulty by paralleling the developments in Sec. 5.
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