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Abstract Optimized material parameters obtained from parameter identification for verification wrt a certain
loading scenario are amenable to two deficiencies: Firstly, they may lack a general validity for different
loading scenarios. Secondly, they may be prone to instability, such that a small perturbation of experimental
data may ensue a large perturbation for the material parameters. This paper presents a framework for extension
of hyperelastic models for rubber-like materials accounting for both deficiencies. To this end, an additive
decomposition of the strain energy function is assumed into a sum of weighted strain mode related quantities.
We propose a practical guide for model development accounting for the criteria of verification, validation and
stability by means of the strain mode-dependent weighting functions and techniques of model reduction. The
approach is successfully applied for 13 hyperelastic models with regard to the classical experimental data on
vulcanized rubber published by Treloar (Trans Faraday Soc 40:59–70, 1944), showing both excellent fitting
capabilties and stable material parameters.
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1 Introduction

1.1 State of the art on hyperelasticity

Rubber-like materials or elastomers, respectively, consist of randomly oriented chain-like macromolecules
with more or less closely connected entanglements or cross-links. Two main characteristics are their ability
for large deformations subject to relatively small stresses and their retaining of the initial configuration after
unloading without considerable permanent deformation. This behavior is attributed to the network entropy as
the orientation of chains alters with deformation. Due to these special properties, the materials have numerous
technical application such as for tires, structural bearings, medical devices and base isolations of buildings;
see, e.g., [7].

Numerous phenomenological and micro-mechanically motivated models have been proposed in the liter-
ature in order to capture the elastic and nearly incompressible mechanical of rubber-like materials. Moreover,
the former can be classified into invariant-based and principal-stretch-based formulations, cf. e.g. [47].

Phenomenological invariant-based models are based on the theory of invariants as elaborated extensively
by Spencer in [46] for anisotropic materials. For the case of isotropy, an appropriate set of invariants dependent
on the right Cauchy–Green tensor are selected, which are included as polynomials with sufficiently high orders
into the strain energy function, known as Rivlin’s expansion, [43]. Classical examples such as the Neo-Hooke
material are of Mooney–Rivlin type, cf., e.g., [33,40–42]. Since then a vast variety of models have been
developed. For example, Yeoh [55] revealed that cubic terms of the first invariant are able to reproduce the
highly nonlinear S-shaped uniaxial behavior of rubber, also at very large strains. Alternatively to polynomial
formulations, logarithmic formulations are presented, e.g., in theGent–Thomasmodel [15], theGentmodel [14]
or the Pucci Saccomandi model [39]. In Khajehsaeid et al. [22], the combination of polynomials, logarithmic,
and exponential formulations is investigated. Another approach is given in the model of Carrol [9], which
combines powers of the first invariant with the square root of the second invariant. A prominent example for
a phenomenological principal-stretch-based model is presented by Ogden in [37].

Micro-mechanical models are derived from statistical mechanics arguments on networks of idealized chain
molecules. In this way, they account for a lower scale insight to the physical/chemical microstructure to explain
phenomenological macroscopic mechanical behavior, although this might render higher computational costs.
Well known examples for micro-mechanical models are the 3-chain, the 4-chain, and the 8-chain model as
well as the unit sphere (21-chain) model, cf. Arruda and Boyce [3] and Miehe et al. [32].

Many of the above-mentioned models for rubber-like materials are well advanced from the mathematical
point of view, [17], and the numerical point of view [31,45].

1.2 Criteria for a “good” parameter vector

Awell accepted first step for parameter identification is based on a least-squares functional, in order tominimize
the distance of simulated data and experimental data with respect to a chosen norm. However, this step leaves
open the precise meaning of a “good” vector of material parameters. In this work, we follow the outline in
[27] accounting for the three criteria of

• Verification
• Validation
• Stability.
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Verification is related to the fit quality of a material model as a consequence of parameter identification.
This step of model development assesses if the simulated outputs of the underlying model are adequate when
compared to measurement data which contribute to the underlying least-squares functional. In this way, all
measurement data involved in this step are known beforehand, such that more precisely it could also be termed
backwards-verification. Comparative studies on verification for models in hyperelasticity have been performed
for example in Marckmann and Verron [30], Boyce and Arruda [6], Seibert and Schöche [44]. Parameter
identification for Rivlin and Saunders type hyperelasticity [43] has been examined, e.g., by Hartmann et
al. [16]. The identification from inhomogeneous experiments on polyurethane is investigated in [53], where
particular focus has been set on error-controlled adaptive mesh refinement.

Some aspects of validation and stability are outlined next.

1.3 An aspect of validation: Conformity of data sets and constitutive model

In contrast to verification, validation of material models is related to the prediction capability. Alternatively, it
could also be termed forecast-verification, since this step ofmodel development assesses whether the simulated
outputs of the underlying model are adequate when compared to additional measurement data which are not
known or considered, respectively, in the backwards-verification step; see, e.g., [27].

In this work, we are particularly interested in possible remedies in case of non-validity for material models
in hyperelasticity. In particular, we will resort to a typical situation of laboratory testing, where a certain
number of data sets each related to a certain loading scenario is available. An example for such a set of
experimental data is provided by Treloar [48] for the three loading scenarios of uniaxial, biaxial, and pure
shear deformations. An extensive comparative study on the fit quality of 14 material models on these data is
provided by Steinmann et al. in [47]. Most of the models meet the criteria of verification, however, merely
wrt to one individual loading scenario with a certain vector of optimized material parameters (occasionally
with perfect agreement). Then, the same parameter vector is not able to capture different loading scenarios
(occasionally even showing disappointing agreement). This lack of validity motivates the following definition:

Definition 1 (on conformity between experimental data and constitutive model) Available experimental data
sets, all of them related to different loading scenarios (or stress modes, strain modes, respectively), and a
constitutive model are conform, if a reduced experimental data set is sufficient to validate the material model
for the remaining data sets.

Definition 1 applied to the extensive comparative study in Steinmann et al. in [47] renders, e.g., a poor
conformity between the Treloar data and the Isihara model [20], while the situation improves significantly for
the Carroll model [9].

It should be emphasized that Definition 1 on conformity is restricted to available data and, in this sense,
constitutes only a necessary but not a sufficient condition for general validation, that is, predictive simulation
for all loading cases that could be envisaged. Examples for further possible loading scenarios are hydrostatic
tension, uniaxial compression, equibiaxial compression, or hydrostatic compression (although experimentally
challenging) in order to get a more comprehensive (though in general still not complete) characterization of
the material.1

The experimental data sets in Definition 1 may have different origins. In practice, typically they may refer
to different loading scenarios, which allows us to exploit the extensive literature for modeling asymmetric
effects within the fields of plasticity and creep. Along this line constitutive equations have been formulated,
e.g., in [2,5,25,26,51,56–58], among others. It appears from the above mentioned references that so far no
common approach exists concerning the best strategy for taking account of individual loading scenarios in
the constitutive equations. A general agreement is the incorporation of odd power terms for odd invariants of
stresses; see, e.g., [5]. Furthermore, a scalar variable, which is expressed in terms of the ratio of the second
and third basic invariant of the deviatoric stress tensor, can be used as an indicator for detection of differences
in the loading modes. This quantity, stress mode angle or Lode-factor, respectively, has been applied, e.g.,
in [1,12,57], [25]. Based on [26], extensive use of the stress mode angle has also been made by this author
and co-workers for modeling asymmetric effects of experimental data in tension, compression and shear for

1 In the field of uncertainty, these are referred as epistemic data, characterized by lack of knowledge, cf., e.g., [34]. Contrary to
aleatoric uncertainties, in principle they can be reduced by empirical effort, e.g., investigating more in measurement. A variational
formulation for this kind of uncertain data by means of fuzzy analysis is presented e.g. in [28].
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metallic materials (such as AISI 52100) [10,11,29], with applications for cutting processes like hard turning
[49].

Aims of present work on non-conformity Amain purpose of this work is the extension of some well-known
hyperelastic material models in case they fail to be conform to given data sets according to Definition 1. To this
end, wemake extensive use of the above-mentionedworks on asymmetric effects. In particular, as a counterpart
to the stress mode angle used in [1,12,57], [25,26] a strain mode angle is introduced in order to characterize
the individual loading scenario. The key idea consists in an additive decomposition of the logarithmic isochoric
Hencky strain tensor, where each of the related quantities incorporates a weighting function dependent on the
strain mode angle. The advantage of this approach is, that certain (though not all) material parameters, such
as Mooney–Rivlin-type constants, can be obtained individually from specific loading modes such as uniaxial
tension, equibiaxial tension and pure shear, investigated experimentally in the laboratory.

1.4 An aspect of stable material parameters: I-criteria

The solution of the underlying least-squares problem for parameter-identification might render a satisfactory
agreement between simulated and experimental data; however, it might be susceptible to instability, in the
sense, that a small perturbation of experimental data may lead to a large deviation of the resulting parameter
solution. Two possible reasons for this undesirable effect (or even non-uniqueness) have to be distinguished:
1. Deficiency of the material model, where (too many) functional terms and/or parameters may be lead to
(almost) linear dependencies within the model (overparametrization) or 2. Deficiency of experimental data,
where certain material effects intended by the model are not properly activated (incomplete data). see, e.g.,
[27].

For detection of possible instabilities several indicators are proposed in the literature. A well-known
example is the correlation matrix, which is defined, e.g., in [38]. In addition, an indicator for perturbations
of the measurements is given in [50]. Alternatively, statistical methods can be considered as discussed, e.g.,
in [27]. Since the generation of experimental data might become costly, this approach can be supported by
stochastic simulation, cf., e.g., [35,36].

In the field of optimum experimental design a confidencematrix is introduced, which typically may be con-
structed in terms of the Jacobian of the underlying least-squares functional. Then, different indicator functions
for evaluation of a stable solution vector are defined, known as A-,E-,D- and M-criterion and subsequently
generally denoted as I-criteria; see, e.g., [4] and [24] for precise definitions. In the field of optimal control
problems, the indicator function may be dependent on further design variables such that an optimality problem
can be formulated, cf., e.g., [4] and [24].

Aims of present work on stable material parameters
Following [50], we perform a first-order perturbation analysis in order to investigate the influence of

perturbed experimental data to the perturbation of material parameters. This analysis motivates the definition
of four so-called I-criteria known from optimal control problems. In this work, these criteria will be applied, to
give a stability assessment of material parameters related to the strain mode decomposition discussed above,
which eventually can be exploited for model reduction.

1.5 Structure of this work

The structure of the paper is as follows: Based on the preliminaries in Sect. 2 for hyperelasticity in continuum
mechanics, Sect. 3 presents a general framework for strain mode-dependent hyperelasticity. To this end,
strain mode related weighting functions are introduced, which are incorporated into a new formulation of a
general strain energy function. We propose a general framework for convenient implementation, including
the consistent tangent modulus, for any free energy density in terms of the principal isochoric stretches,
the eigenvalues and respectively the invariants of the isochoric right Cauchy–Green strain tensor. Section
4 considers aspects of stable parameter identification. We perform a perturbation analysis to motivate four
different so-called I-criteria known from optimal control theory. In Sect. 5 we propose a practical guide for
model development accounting for the criteria of verification, validation and stability by means of the strain
mode-dependent weighting functions. In Sect. 6 the approach is applied for 13 hyperelastic models with regard
to the classical experimental data on vulcanized rubber published by Treloar [48]. Detailed investigations with
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a focus on verification, validation and stability by means of the strain mode-dependent weighting functions
and techniques of model reduction will be presented.

Notations

Square brackets [•] are used throughout the paper to denote ’function of’ in order to distinguish from
mathematical groupings with parenthesis (•).

2 Preliminaries of hyperelasticty in continuum mechanics

This section provides a brief review on the modeling of hyperelasticty in the finite strain regime of continuum
mechanics. Particular interest is directed to basic kinematics, spectral decomposition, and the derivation of
stress tensors and tangent operators associated to a given strain energy density.

We focus on hyperelastic properties for rubber-like materials which exhibit a decoupled response to volu-
metric and isochoric deformations. For this purpose, the following kinematical quantities are indispensable

1. F = ∂ϕ/∂X, 2. J = det[F], 3. C = FTF, 4. C = J−2/3C. (1)

Here the material gradient F is defined as the partial derivative of the nonlinear deformationmap ϕ with respect
to the position vector X ∈ R

3 in the Euclidean space R3, J is its determinant, C is the right Cauchy–Green
tensor and C is the isochoric right Cauchy–Green tensor, cf. e.g. [18,19]. The decomposition (1.4) can also be
derived from the multiplicative split F = (J 1/31) · F̄ of the deformation gradient that goes back to Flory [13]
and satisfies the incompressibility condition det F̄ = 1. Here, also the second-order unity tensor 1 has been
used.

In the subsequent exposition, extensive use will be made of the following relations; see, e.g., [45]:

1. C =
3∑

a=1

�aMaa, 2. Maa = Na ⊗ Na ⇐⇒

3. C =
3∑

a=1

�̄aMaa, 4. �̄a = J−2/3�a .

(2)

Here Eq. (2.1) represents the spectral decomposition of the right Cauchy–Green tensor C in Eq. (1.3) with
associated eigenvalues �a and eigenvectors Na , a = 1, 2, 3. Analogously, Eq. (2.3) represents the spectral
decomposition of the isochoric right Cauchy–Green tensor C in Eq. (1.4) with associated eigenvalues �̄a and
eigenvectors Na , and where the eigenvalues �a and �̄a , a = 1, 2, 3 are related by Eq. (2.4). According to
standard notation, see, e.g., [19], we introduce the three principal stretches

1. λa = √
�a, 2. λa =

√
�̄a = J−1/3λa, a = 1, 2, 3 (3)

in terms of the eigenvalues �a and �̄a , respectively. Note, that λa and λa are the eigenvalues of F and F̄,
respectively.

Moreover, three invariants I1 := tr[C], I2 := 1
2

(
tr[C]2 − tr[C2]) and I3 := det(C) of the right Cauchy–

Green strain tensor C, and analogously defined for its isochoric part C are written in terms of the eigenvalues
�a and �̄a , respectively, as

1. I1 = �1 + �2 + �3, I2 = �1�2 + �2�3 + �1�3, I3 = �1�2�3

2. Ī1 = �̄1 + �̄2 + �̄3, Ī2 = �̄1�̄2 + �̄2�̄3 + �̄1�̄3, Ī3 = �̄1�̄2�̄3 = 1.
(4)

In the last relation the condition det[F̄]) = λ1λ2λ3 = J̄ = 1 for the isochoric incompressible material behavior
has been exploited. In view of Eq. (1.4), the above invariants are related as

Ī1 = J−2/3 I1, Ī2 = J−4/3 I2, Ī3 = J−2 I3 = 1. (5)
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A well accepted starting point for modelling hyperelastic materials is an additive decomposition of the
strain energy function into volumetric (shape preserving) and isochoric (volume preserving but shape changing)
parts:

ψ[C, κ] = ψ̂[J, κ] + ψ[C, κ]. (6)

Additionally, in Eq. (6) we have accounted for a vector of material parameters κ ∈ K ⊂ R
np , where K ⊂ R

np

denotes the np-dimensional space of admissible parameters, which will be investigated more deeply in the
ensuing Sect. 4.

The second Piola–Kirchhoff stress tensor S is given as the derivative of the free energy wrt C multiplied
by 2, that is S = 2∂ψ/∂C, and a further derivative wrt C multiplied by a factor 2 renders the fourth-order
elasticity tensor (or tangent operator) C = 2∂S/∂C = 4∂2ψ/∂C∂C, cf. e.g. [45]. Exploiting the additive
decomposition Eq. (6) yields the corresponding decoupled stress tensor and tangent operator as

1. S = Ŝ + S = 2
∂ψ̂

∂C
+ 2

∂ψ

∂C
, 2. C = Ĉ + C = 2

∂Ŝ
∂C

+ 2
∂S
∂C

. (7)

By use of the chain rule, the volumetric stress tensor can be expressed as

Ŝ = 2
∂ψ̂(J )

∂ J

∂ J

∂C
= J pC−1, where p = ∂ψ̂(J )

∂ J
. (8)

Here p is known as the hydrostatic pressure and the result ∂ J/∂C = 1/2C−1 has been used, cf. e.g. [45].

3 A general framework for strain mode-dependent hyperelasticity

3.1 Strain mode-dependent energy function

Many existing hyperelastic models known from the literature are well advanced both from the mathematical
and the numerical point of view and offer a convincing fit quality for a variety of nonlinear experimental
stress-strain data. However, in many cases, optimized material parameters obtained for a certain strain mode
(e.g., uniaxial tension) lack a general validity for different strain modes (e.g., equibiaxial tension or pure shear),
and consequently are not conform according to Definition 1 in Sect. 1.3. This section presents a framework for
extension of hyperelastic models for rubber-like materials exhibiting different behaviors in different loading
scenarios, which can be examined individually in the laboratory.

The starting point for the strain mode related approach is the following isochoric part of the strain energy
ψ in Eq. (6):

1. ψ[C, κ] =
S∑

i=1
wiψ

i [C, κ i ], where

2. wi = wi [E(C)].
(9)

The above mathematical structure is identical to the one in [26] for creep simulation of asymmetric effects by
use of stress mode-dependent weighting functions. Equation (9.1) represents an additive decomposition of the
energy function into S strainmode related quantities. Each of them incorporates a strainmode-dependent energy

function ψ
i
dependent on the isochoric right Cauchy–Green tensor C, and a vector of material parameters κ i

associated to the i th strainmode investigated individually in the laboratory, such that κ = {κ i }3i=1. Furthermore,
in the above skeleton structure (9) a weighting function wi is associated to each mode i , which is dependent
on a strain tensor E(C), and for which it is stipulated that

1.
S∑

i=1
wi [E(C)] = 1

2. wi [E(C
j
)] = δi j ,

(10)

where δi j is the Kronecker-delta. Also, the strain tensors E(C
j
), j = 1, 2, .., S refer to independent charac-

teristic strain modes, which for example can be investigated experimentally in uniaxial tension, equibiaxial
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tension and pure shear, respectively. Note, that Eq. (10.1) can be regarded as a completeness condition, whereas
Eq. (10.2) constitutes a normalization condition for the weighting functions. We remark also, that above Eq.
(9) are restricted to isotropic materials. The aspect of anisotropy combined to strain mode-dependent material
behavior is not within the scope of this paper.

3.2 Choices for strain mode related weighting functions

For illustrative purpose, we consider three independent strain modes for uniaxial tension (UT), equibiaxial
tension (ET) and pure shear (PS), respectively, as published by Treloar [48] for experimental data on vulcanized
rubber. For UT, only one out of three principal stretches λa, a = 1, 2, 3 is prescribed, λ1 = λ say, for ET there
are two prescribed values λ1 = λ2 = λ say, and for PS we require λ1 = λ and λ2 = 1 say. From the condition

on incompressibility Ī3 = λ
2
1λ

2
2λ

2
3 = 1, and the assumption of isotropy, the complementary principal stretches

follow accordingly. In summary, the corresponding deformation gradients and the right Cauchy–Green tensors
are, cf. e.g. [47]:

• Uniaxial tension (UT)

F̄UT =

⎡

⎢⎢⎣

λ 0 0

0 λ
−1/2

0

0 0 λ
−1/2

⎤

⎥⎥⎦ �⇒ C
UT =

⎡

⎢⎢⎣

λ
2

0 0

0 λ
−1

0

0 0 λ
−1

⎤

⎥⎥⎦ (11)

• Equibiaxial tension (ET)

F̄ET =

⎡

⎢⎢⎣

λ 0 0

0 λ 0

0 0 λ
−2

⎤

⎥⎥⎦ �⇒ C
UT =

⎡

⎢⎢⎣

λ
2

0 0

0 λ
2

0

0 0 λ
−4

⎤

⎥⎥⎦ (12)

• Pure shear (PS)

F̄PS =
⎡

⎢⎣
λ 0 0

0 1 0

0 0 λ
−1

⎤

⎥⎦ �⇒ C
PS =

⎡

⎢⎢⎣

λ
2

0 0

0 1 0

0 0 λ
−2

⎤

⎥⎥⎦ . (13)

The above tensors are formulated in terms of powers of λ. This motivates the following choice for the strain
tensor E in Eq. (9) as the Hencky strain tensor in logarithmic form

E := 1

2
lnC = 1

2

3∑

a=1

ln �̄aMaa =
3∑

a=1

ln λaMaa, (14)

whereMaa is the dyadic basis in Eq. (2.2), and where the relation (3.2) has been used. Application of Eq. (14)
to the three loading scenarios in Eq. (11) to Eq. (13) renders

EUT = 1

2
ln �̄

⎡

⎢⎣
1 0 0

0 −1/2 0

0 0 −1/2

⎤

⎥⎦ , EET = 1

2
ln �̄

⎡

⎢⎣
1 0 0

0 1 0

0 0 −2

⎤

⎥⎦ ,

EPS = 1

2
ln �̄

⎡

⎢⎣
1 0 0

0 0 0

0 0 −1

⎤

⎥⎦ .

(15)

Observe the property tr[Ei ] = 0 for all three cases i = UT, ET, PS, where the trace operator is defined by
tr[•] := 1 : [•]. This infers Ei = dev[Ei ] for all three cases, where the deviatoric operator is defined by
dev[•] := • − 1 : [•]1.
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Fig. 1 Top: Octahedral plane in the logarithmic isochoric strain space. Here ln λ1, ln λ2, ln λ3 denote the principal logarithmic
isochoric strains. Circles, squares, and triangles represent strain modes of uniaxial tension (UT), equibiaxial tension (ET) and
pure shear (PS), respectively. Middle: Weighting functions (21) in terms of the strain mode angle θ for UT, ET and PS. Bottom:
Weighting functions (22) in terms of the strain mode angle θ for UT and ET

With these properties at hand, we can follow the same procedure as extensively outlined by [12] for
deviatoric stress tensors. The three modes in Eq. (15) are represented in the octahedral plane of the associated
logarithmic isochoric strain tensor. To this end the quantities

1. θ = 1

3
arccos [ξ ] , where

2. ξ =
√
27

2

J3
J 1.52

3. Jk = 1

k
1 : Ek, k = 2, 3

(16)

are defined. Here θ shall be referred to as the strain mode angle dependent on the strain mode factor ξ .
Furthermore, in above Eq. (16.3) J2 and J3 denote the second and third basic invariant of the logarithmic
isochoric strain tensor E, respectively. Exploiting the spectral decomposition of the logarithmic Hencky strain
tensor in Eq. (14) renders

1. J2 = 1

2

(
(ln �̄1)

2 + (ln �̄2)
2 + (ln �̄3)

2) ,

2. J3 = 1

3

(
(ln �̄1)

3 + (ln �̄2)
3 + (ln �̄3)

3) .

(17)

A graphical interpretation of the strain mode angle θ is given at the top of Fig. 1. In particular, it becomes
apparent, that the independent strain modes of UT, ET, and PS, respectively, are characterized by the strain
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mode angles

1. UT: ξ = 1 �⇒ θ1 = 2π

3
n, n = 0, 1, 2, ...

2. ET: ξ = −1 �⇒ θ2 = 2π

3
n + π

3
, n = 0, 1, 2, ...

3. PS: ξ = 0 �⇒ θ3 = π

3
n + π

6
n = 0, 1, 2, ...

(18)

and for each of the strain modes the following periodicity angles

1. UT: θ̃ (1) = 2π

3

2. ET: θ̃ (2) = 2π

3

3. PS: θ̃ (3) = π

3

(19)

are obtained. Based on these observations, in addition to the relations (10) the following is required for the
weighting functions

1.
S∑

i=1
wi [θ ] = 1

2. wi [θ j ] = δi j

3. wi [θ ] = wi [θ + θ̃ i ].

(20)

For the strain modes related to the loading scenarios of uniaxial tension, equibiaxial tension and pure shear,
respectively, we set S = 3 and the requirements (20) are satisfied by the following weighting function

1. UT: w(1)[θ ] =
⎧
⎨

⎩

1

2
+ 1

2
cos 3θ, if −π

6
+ nθ̃ (1) ≤ θ ≤ π

6
+ nθ̃ (1)

0, else

2. ET: w(2)[θ ] =

⎧
⎪⎨

⎪⎩

0, if −π

6
+ nθ̃ (1) ≤ θ ≤ π

6
+ nθ̃ (1)

1

2
+ 1

2
cos 3θ, else

3. PS: w(3)[θ ] = 1

2
+ 1

2
cos (3θ − π)

(21)

and where n = 0, 1, 2, ... are integer values. A graphical representation of the weighting functions (21) is given
in the middle graph of Fig. 1. For the case, that experimental data are available only for loading in uniaxial
tension and equibiaxial tension, respectively, with S = 2, the following weighting functions can be used

1. UT: w(1)[θ ] = 1

2
+ 1

2
cos 3θ

2. ET: w(2)[θ ] = 1

2
+ 1

2
cos (3θ − π).

(22)

These functions, which are illustrated at the bottom of Fig. 1, do also satisfy the requirements (20).
Upon using the definition (16.1), alternatively the functional relationships (21) and (22) can be rewritten

in terms of the strain mode factor ξ as

1. UT: w(1)[ξ ] =
{

ξ2, if ξ ≥ 0

0, else

2. ET: w(2)[ξ ] =
{
0, if ξ ≤ 0

ξ2, else

3. PS: w(3)[ξ ] = 1 − ξ2

(23)
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or

1. UT: w(1)[ξ ] = 1

2
(1 + ξ)

2. ET: w(2)[ξ ] = 1

2
(1 − ξ)

, (24)

respectively, which is more convenient for numerical implementation of the strain energy ψ in Eq. (9).

3.3 Hyperelasticity based on principal stretches

A general formulation for the strain energy function for isotropy may be written as ψ = ψ[λa, κ], which we
assume as continuously differentiable with respect to the three principal stretches λa, a = 1, 2, 3 of Eq. (3.1).
In order to account for incompressibility and strain mode-dependent material behavior, the free energy density
for the isochoric part in Eq. (9) is now postulated in a mixed formulation as

ψ[C, κ] =
S∑

i=1

wi [�̄a]ψ i [λa, κ i ] (25)

in terms of the eigenvalues �̄a introduced in Eq. (2) and the principal isochoric stretches λa, a = 1, 2, 3 of

Eq. (3.2). Closed-form expressions for the related stresses and tangent moduli of ψ
i [λa, κ i ] in terms of the

reference configuration as well as the current configuration have been derived in [45]. A summary for the
isochoric second Piola–Kirchhoff stress tensor S and the corresponding tangentC of Eq. (7) is provided, e.g.,
in [47].

A reformulation of the mixed relation (25) purely in terms of the eigenvalues �a requires a reparametriza-

tion of the individual energy functions from a stretch based formulation ψ
i [λa, κ i ] to an eigenvalue based

formulation ψ
i [�̄a, κ

i ], which is easily achieved by means of the relations (3). Accordingly, straightforward
differentiation renders by means of the chain rule the isochoric second Piola–Kirchhoff stress tensor in Eq.
(7.1) as

1. S = 2
∂ψ

∂C
=

S∑

i=1

S
i
, where

2. S
i = 2

∂(wiψ
i
)

∂C
= 2

3∑

a=1

∂(wiψ
i
)

∂�a

∂�a

∂C
= 2

3∑

a=1

siaMaa,

3. sia = ∂(wiψ
i
)

∂�a
= wi S

i
a + ψ

i
W

i
a

4. S
i
a = ∂ψ

i

∂�a
=

3∑

b=1

∂ψ
i

∂λb

∂λb

∂�a

5. W
i
a = ∂wi

∂�a
=

3∑

b=1

∂wi

∂�̄b

∂�̄b

∂�a

(26)

where the second-order basis tensors Maa are defined in Eq. (2.2). In Eq. (26.4) the functional relation

ψ
i [λa, κ i ] defined in (25) has been taken into account. Moreover, the following results are required for

evaluations of Eq. (26.4–5):

1.
∂λa

∂�b
=

3∑

c=1

∂λa

∂�̄c

∂�̄c

∂�b
, where

2.
∂λa

∂�̄b
=
⎧
⎨

⎩

1

2λb
, for a = b

0 else
3.

∂�̄a

∂�b
= J−2/3

(
δab − 1

3

�a

�b

)
.

(27)
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Remarks 3.3

1. The coefficients S
i
a in (26.4) characterize the constitutive part of the hyperelastic model. The coefficients

∂ψ
i
/∂λb must be obtained for the individual material model. Examples for some classical material models

are provided in Appendix B.

2. Due to the same structure for S
i
a in Eq. (26.4) and for W

i
a in Eq. (26.5), the coefficients W

i
a can be

interpreted as stress like coefficients.

3. Setting S = 1 and wi = const in the above general structure (25) ensues W
i
a = 0 for the stress like

coefficients in Eq. (26.5), such that the stress tensor S boils down to classical results as, e.g., in [45].

Similarly, the isochoric tangent operator in Eq. (7.2) is derived as

1. C = 2
∂S
∂C

=
S∑

i=1

C
i
, where

2. C
i = 2

∂S
i

∂C
= 4

3∑

a=1

3∑

b=1

ciabMaabb + 2
3∑

a=1

3∑

b=1,b �=a

sib − sia
�b − �a

M̂abab

3. ciab = ∂sia
∂�b

= wiC
i
ab + W

i
aS

i
b + S

i
aW

i
b + ψ

i
Wab

4. C
i
ab = ∂S

i
a

∂�b
=

3∑

c=1

3∑

d=1

∂2ψ
i

∂λc∂λd

∂λc

∂�a

∂λd

∂�b
+

3∑

c=1

∂ψ
i

∂λc

∂2λc

∂�a∂�b

5. W
i
ab = ∂W

i
a

∂�b
=

3∑

c=1

3∑

d=1

∂2wi

∂�̄c∂�̄d

∂�̄d

∂�b

∂�̄c

∂�a
+

3∑

c=1

∂wi

∂�̄c

∂2�̄c

∂�b∂�a

(28)

where the fourth-order basis tensors Mabcd = Na ⊗ Nb ⊗ Nc ⊗ Nd and M̂abab = (Mabab + Mabba) have
been defined. The coefficients ∂2ψ

i
/∂λa∂λc must be obtained for the individual material model. Examples

for some classical material models are provided in Appendix B. The derivatives ∂λa/∂�̄a and ∂�̄b/∂�a are
given in Eq. (27). Moreover, the following results are required for evaluation of Eq. (28.4–5):

1.
∂2λa

∂�b∂�c
=

3∑

d=1

3∑

e=1

∂2λa

∂�̄d∂�̄e

∂�̄e

∂�b

∂�̄d

∂�c
+

3∑

d=1

∂λa

∂�̄d

∂2�̄d

∂�b∂�c
, where

2.
∂2λa

∂�̄b∂�̄c
=

⎧
⎪⎨

⎪⎩

− 1

4λ
3
a

for a = b = c

0 else

3.
∂2�̄a

∂�b∂�c
= −1

3
J−2/3

(
1

�c

(
δab − 1

3

�a

�b

)
+ δac

�b
− �a

�2
b

δbc

)
.

(29)

3.4 Hyperelasticity based on invariants

Alternatively to the principal-stretch-based formulation (25) a strain energy function can be written depending
on the invariants of the right Cauchy–Green tensor. A general formulation reads ψ = ψ[I1(C), I2(C), I3(C)],
which we assume as continuously differentiable with respect to the three invariants IA, A = 1, 2, 2 in Eq.
(4.1) of the right Cauchy–Green strain tensor. In order to account for incompressibility and strain mode-
dependent material behavior, the free energy density for the isochoric part in Eq. (9) is now postulated in a
mixed formulation as

ψ[C, κ] =
S∑

i=1

wi [�̄a]ψ i [ Ī1[C], Ī2[C], κ i ] (30)



724 R. Mahnken

in terms of the eigenvalues �̄a introduced in Eq. (2) and the two invariants ĪA, A = 1, 2 in Eq. (4.2) of
the isochoric right Cauchy–Green strain tensor. Closed-form expressions for the related stresses and tangent

moduli of ψ
i [ ĪA, κ i ] have been derived, e.g., in [21] for a formulation based on invariants, see also [31]. A

summary for the second Piola–Kirchhoff stress tensor and the corresponding tangent of Eq. (7) is provided
e.g. in [47].

A possible formulation related to the i th strain mode for the energy function in Eq. (25) is given as the
Mooney–Rivlin/Saunders model [43]

ψ
i [ ĪA, κ] =

Ki∑

k=0

Li∑

l=0

cikl( Ī1 − 3)k( Ī2 − 3)l , i = 1, ..., S, (31)

where the vector of material parameters associated with each strain mode is defined as

κ i = [C0i0i , . . . ,CKi Li ], i = 1, ..., S. (32)

A reformulation of the mixed relation (30) purely in terms of the eigenvalues �a requires a reparametriza-

tion of the individual energy functions from an invariant based formulation ψ
i [ Ī1[C], Ī2[C], κ i ] to an eigen-

value based formulation ψ
i [�̄a, κ

i ], which is easily achieved by means of the relations (4.2). Accordingly,
a reparametrization of the results for the second Piola-Kirchhoff stress tensor in Eq. (26) is achieved by the

chain rule. Consequently, the stress coefficients S
i
a in Eq. (26.4) become

S
i
a = ∂ψ

i

∂�a
=

2∑

A=1

∂ψ
i

∂ ĪA

∂ ĪA
∂�a

. (33)

The coefficients ∂ψ
i
/∂ ĪA must be obtained for the individual material model. Examples for some classical

material models are provided in Appendix B. Moreover, the following results are required for evaluation of
Eq. (33):

1.
∂ ĪA
∂�a

=
3∑

b=1

∂ ĪA
∂�̄b

∂�̄b

∂�a
, A = 1, 2, where

2.
∂ Ī1
∂�̄a

= 1, 3.
∂ Ī2
∂�̄a

= �̄b + �̄c

(34)

and where ∂�̄b/∂�a is given according to Eq. (27.3).
Analogously, the results for the corresponding tangent in Eq. (28) are reparametrized from an invariant

based formulation to an eigenvalue based formulation. The tangent coefficients C
i
ab in Eq. (28.4) become

C
i
ab = ∂S

i
a

∂�b
=

2∑

A=1

2∑

B=1

∂2ψ
i

∂ ĪA∂ ĪB

∂ ĪA
∂�a

∂ ĪB
∂�b

+
2∑

A=1

∂ψ
i

∂ ĪA

∂ Ī 2A
∂�a∂�b

. (35)

The coefficients ∂2ψ
i
/∂ ĪA∂ ĪB must be obtained for the individualmaterialmodel. Examples for some classical

material models are provided in Appendix B. The coefficients ∂ ĪA/∂�̄a are given in Eq. (34). Moreover, the
following results are required for evaluation of Eq. (35):

1.
∂2 ĪA

∂�a∂�b
=

3∑

d=1

3∑

e=1

∂2 ĪA
∂�̄d∂�̄e

∂�̄e

∂�a

∂�̄d

∂�b
+

3∑

d=1

∂ ĪA
∂�̄d

∂2�̄d

∂�b∂�a
, A = 1, 2, where

2.
∂2 Ī1

∂�̄a∂�̄b
= 0, 3.

∂2 Ī2
∂�̄a∂�̄b

=
{
0 for a = b

1 else

(36)

and where the coefficients ∂2 ĪA/∂�̄a∂�̄b are obtained based on (34). Observe the analogous structure of the
results (29.1) and (36.1).

The general results (26) and (28) require the coefficients W
i
a in (26.5) for the stress like coefficients and

the coefficients W
i
ab in (28.5) for the corresponding tangent coefficients, which are derived in Appendix A.
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4 Aspects of stable parameter identification

4.1 Least-squares minimization problem (inverse problem)

We denote by d̄ ∈ D = R
nd a measurement vector of experimental data obtained from laboratory testing. The

corresponding vector of nd simulated data shall be termed d[κ], where as before κ ∈ K denotes the vector
of material parameters of the underlying material model. In general nd ≥ np, such that the distance between
both data types must be minimized by means of a suitable least-squares function f : D ×K → R, e.g., in the
following simple form:

1. κ∗ := arg{min
κ∈K

f [d̄, κ]}, where 2. f [d̄, κ] = 1

2

nd∑

k=1

(
dk[κ] − d̄k]

)2
. (37)

Occasionally, problem (37) will also be referred as the inverse problem. The first-order necessary and the
second-order sufficient optimality condition, respectively, are

1. ∇κ f [κ∗] = J T (d[κ∗] − d̄) = 0, 2. δκ∇2
κ∗ f [κ]δκ ≥ 0 ∀δκ ∈ K (38)

where

1. J = ∇κd[κ], 2. H = ∇2
κ∗ f [κ] = HGN + M

3. HGN = J T J , 4. M =
nd∑

k=1

∇2
κ∗d[κ](dk[κ] − d̄k).

(39)

Variational formulations for determination of M are provided e.g. in [28,50]. Details on solution strategies for
the minimization problem (37) are given elsewhere and shall not be considered here, cf. e.g. [27]. At this stage
we only point out, that the Jacobian J and the Gauss–Newton matrix HGN play key roles in the performance
of different solution strategies.

The solution κ∗ of problem (37)might render a satisfactory agreement between simulated and experimental
data; however, it might be susceptible to instability, in the sense, that a small perturbation of experimental data,
δd̄ say, may lead to a large deviation δκ for κ∗. Possible reasons for this undesirable effect [or even non-
uniqueness of problem (37)] are two-fold, [27]:

1. Deficiency of the material model: Functional terms and/or parameters may lead to (almost) linear depen-
dencies within the model (overparametrization), or

2. Deficiency of experimental data: Certainmaterial effects intended by themodel are not properly ”activated”
(incomplete data).

In the sequel, two different indicators are formulated in order to quantify stability for the solution κ∗ of
the minimization problem (37):

1. Stability indicator by correlation matrix
2. Stability indicators by I-criteria.

4.2 Stability indicator by correlation matrix

Following, e.g., [38] the coefficients of the correlation matrix are given as

Ci j [κ∗] =
∑nd

k=1 ∂dk[κ]/∂κi · ∂dk[κ]/∂κ j√∑nd
k=1(∂dk[κ]/∂κi )2

∑nd
k=1(∂dk[κ]/∂κ j )2

∣∣∣∣∣∣
κ∗

. (40)

The correlation coefficient −1 ≤ Ci j ≤ 1 is a quantitative measure for the correlation or respectively linear
dependence between parameter κi and κ j . Positive correlations occur for Ci j ≥ 0 where an increase of κi
results in an increase of κ j . Negative correlations with Ci j < 0 lead to decreasing κ j for increasing κi and
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vice versa. There are no correlations when Ci j = 0. If |Ci j | = 1, i �= j , the correlation is called perfect and
ensues

1. Ci j = 1 �⇒ κi = aκ j + b, with a > 0

2. Ci j = −1 �⇒ κi = aκ j + b, with a < 0.
(41)

Regarding the results of parameter identification |Ci j | � 1 , i �= j is desirable for a stable—or respectively
a robust—solution vector κ∗.

4.3 First-order perturbation analysis

In order to perform a first-order perturbation analysis, following [50], let us define a function F : K×D → K.
The first-order necessary condition Eq. (38) for a given measurement vector d̄ becomes

F[κ∗, d̄] := J T (d[κ∗] − d̄) = 0. (42)

The implicit function theorem guaranties the existence of a neighborhood D0 ⊂ D and a continuously differ-
entiable function κ̂ : D0 → K such that

F[κ̂[d̄], d̄] = 0 ∀ d̄ ∈ D0 (43)

and where κ̂[d̄] is a solution of problem (37) for given data d̄. The total derivative of F[κ̂[d̄], d̄] wrt to d̄ is

1.
dF[κ̂[d̄], d̄]

dd̄
= ∂F[κ̂[d̄], d̄]

∂κ

∂κ

∂ d̄
+ ∂F[κ̂[d̄], d̄]

∂ d̄
= H

∂κ

∂ d̄
− J T = 0 �⇒

2.
∂κ

∂ d̄
= H−1 J T .

(44)

Here, H and J are the Hessian and the Jacobian in Eq. (39), respectively, and from Eq. (42) the relation
∂F[κ, d̄]/∂ d̄ = −J T has been used, assuming existence of H−1. For a perturbation of data δd̄ the above
function κ̂[d̄] renders by means of a Taylor series

δκ̂ = κ̂[d̄ + δd̄] − κ̂[d̄] = ∂ κ̂

∂ d̄
δd̄ + O (||δd̄||2D

)
. (45)

With the result in (44.2) Eq. (45) becomes

δκ̂ = H−1 J T δd̄ + O (||δd̄||2D
)
. (46)

Several possibilities can be envisaged to obtain an estimate from Eq. (46); see, e.g., [50]. Neglecting the
second-order term O (||δd̄||2D

)
and taking a selected norm on K, we obtain

||δκ̂ ||K ≤ ||H−1||K ||J T δd̄||K ≈ ||H−1
GN ||K ||J T δd̄||K (47)

where in the last term the Hessian H has been approximated by the Gauss–Newton matrix HGN . Mathemati-
cally, this means, that only first-order information of the functional F[κ̂[d̄], d̄] is used. This is reasonable for
small model errors dk[κ] − d̄k in (39.4), such that the matrix M in (39.4) can be neglected.

For the 2-norm, one obtains

||δκ̂ ||2 ≤ ||H−1
GN ||2 ||J T δd̄||2 = μmax ||J T δd̄||2. (48)

Here

μmax := max
1≤i≤np

μi [C], where C = H−1
GN (49)

andwhereμi are the eigenvalues of thematrixC . Eq. (48) reveals that the eigenvalueμmax has the interpretation
of an amplification factor for the weighted perturbation of data J T δd̄ to the perturbation of parameters δκ .
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κ  2

Fig. 2 Visualization of four I-criteria (51) in two dimensions, cf. [23,52]

4.4 Stability indicators by I-criteria

In addition to the eigenvalue μmax defined in Eq. (49), several amplification factors have been introduced in
the field of optimum experimental design, subsequently denoted as I-criteria with general structure; see, e.g.,
[4] and [24]

φI [κ] := φI [C[κ]]. (50)

Common examples of φI are, see, e.g., [4] and [24]

1. A-Criterion: φA[C] := 1

np
tr[C] = 1

np

np∑

i=1

μi

2. E-Criterion: φE [C] := μmax = max
1≤i≤np

μi [C]

3. D-Criterion: φD[C] :=
∣∣∣∣ det[C]

∣∣∣∣

1
np =

∣∣∣∣∣

np∏

i=1

μi

∣∣∣∣∣

1
np

4. M-Criterion: φM [C] :=
∣∣∣∣max

{√
Cii , i = 1, ..., np

}
.

(51)

Thus, the E-criterion in Eq. (51.2) is identical to the criterion in Eq. (49). Figure 2 provides geometrical
interpretations of all four I-criteria based on the confidence ellipsoid for np = 2, cf., e.g., [23,52]. The A-
criterion is proportional to the average length of the confidence ellipsoid, the D-criterion to its volume, the
E-criterion to its the largest expansion, and the M-criterion to the largest side length of a box around the
confidence ellipsoid.

The A-criterion in Eq. (51.1) is related to the E-criterion in Eq. (49.2) as

φA[C] = 1

np

np∑

i=1

μi ≤ 1

np
npμmax = μmax = φE [C]. (52)

A relation between the D-criterion in Eq. (51.3) and the E-criterion in Eq. (49.2) is

φD[C] =
∣∣∣∣ det[C]

∣∣∣∣

1
np =

∣∣∣∣∣

np∏

i=1

μi

∣∣∣∣∣

1
np

≤
{
μ
np
max

} 1
np = μmax = φE [C]. (53)

A general relation between the M-criterion in Eq. (51.4) and the E-criterion in Eq. (49.2) does not exist.
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Remarks 4.4

1. In the field of optimal control problems, the indicator functionφI [C[κ]]may be dependent on further design
variables such that an optimality problem can be formulated, cf. e.g. [4] and [24]. Then, in summary, two
requirements are formulated: The solution vector κ∗
(a) should minimize the least squares function (representing a model error) according to (37)
(b) should minimize the confidence criterion according to (50).

2. In this work, the generality of the methodology of optimal control problems will not be exploited. Instead,
the different criteria in (51) will simply be used, to give an assessment of existing solutions κ∗ for different
well known formulations of the energy density functionψ[C, κ]. The treatment of parameter identification
as an optimal design problem dependent on additional design variables will constitute an aspect of future
work. To the knowledge of the author, there is no similar work so far which applies A-,E-,D-, andM-criteria
in the field of hyperelasticity.

3. A mathematical correct definition of stability is given e.g. in [50]. From there, we point out that local
stability guarantees local uniqueness but not global uniqueness of the inverse problem (37).

5 A practical guide for model development

In order to account for the criteria of verification, validation and stability bymeans of the strainmode-dependent
weighting functions of Sect. 3, a practical guide for model development is summarized in Table 1. As input for

the resulting flowchart, we assume that measurement data d̄
i ∈ Di = R

nid and an initial set of energy functions

ψ
i
, both related to strain modes i = 1, ..., S, are given.

Step 1: Verification for each mode data set

In this step of Table 1 each set of experimental data d̄
i ∈ Di = R

nid , i = 1, ..., S is used separately to
minimize mode data related least squares functionals of the form (37) to obtain

κ i = arg{min
κ∈K

f [d̄ i , κ]}, i = 1, ..., S. (54)

Step 2: Stability for each mode data set

In order to account for mode data related stability of all solution vectors κ i , based on the general structure
in Eq. (50), in Step 2 of Table 1 we evaluate (at least one of) the following I-criteria:

ϕI [κ i ] := φI [Ci [κ i ]], I = A, E, D, M, i = 1, ..., S. (55)

Here we use Ci = [(J i )T J i ]−1 with Jacobian J i ∈ R
nid×nip according to Eq. (39.1) applied to all modes

i = 1, ..., S.

Step 3: Validation for complete data set

In order to check conformity according to Definition 1, in Step 3 of Table 1 each solution κ̂
i of Step 2 is

used to simulate the remaining modes i = 1, ..., S, j �= i . This defines the following complete data related
least-squares functional

F[κ̂ i ] :=
S∑

j=1

f [d̄ j
, κ̂

i ], i = 1, ..., S. (56)

Note, that f [d̄ j
, κ̂

i ], j = i is identical to the functional value in (the last iteration of) the verification step of

Eq. (54), whereas the values f [d̄ j
, κ̂

i ], j = 1, ..., S, j �= i are obtained by predictive simulation of the j-th
data set with the optimized parameter vector κ̂

i .

Step 4: Stability for complete data set
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In order to account for complete data related stability in Step 4 of Table 1 based on the general structure
in Eq. (50), we evaluate (at least one of) the following I-criteria


I [κ̂ i ] := φI [C[κ̂ i ]], I = A, E, D, M, i = 1, ..., S. (57)

Here we use C = [J T J ]−1 with Jacobian J ∈ R
nd×np according to Eq. (39.1), and where, contrary to Eq.

(55), nd = ∑S
i=1 n

i
d refers to the complete set of available experimental data.

Step 5: Selection of final parameter vector

In Step 5 of Table 1 the final parameter vector is selected as

κ∗ = arg
κ̂ i

{
min

i=1,...,S

I [κ̂ i ]

}
. (58)

Consequently, if this step is reached, there is no need for the strain mode-dependent formulation Eq. (9).

Step 6: Weighted mode-related model extension

In case Step 3 on validation and/or Step 4 on stability fail, Step 6 in Table 1 is activated, which makes use of
the strain mode-dependent formulation Eq. (9) with verified and stabilized mode-related material parameters
κ̂
i as a result of Step 1 and Step 2.

Remarks 5

1. The loops in Step 1 and Step 2 in Table 1 render verified and stabilized material parameters κ̂
i related to

each mode data set d̄
i
, i = 1, ..., S.

2. Provided Step 3 and Step 4 in Table 1 are successful, Step 5 guarantees validated (in the sense of Definition
1) and stabilized set of material parameters κ i related to the complete data set.

3. Contrary, failure of the validation check in Step 3.b or the stability check in Step 4.b results into the extended
weighting formulation in Step 6.

4. The selection in Step 5 and respectively Eq. (58) is done from a practical viewpoint, andmight be somewhat
arbitrary. It could also involve results for the least-squares functions F[κ̂ i ], i = 1, ..., S, in Step 3. A further
alternative is based on complete data related simultaneous fitting

Solve: κ∗ := κAL = arg{min
κ∈K

F[d̄, κ]}
Evaluate: 
I [κAL] := φI [C[κAL]]

(59)

to obtain the final parameter vector.
5. Since the strain mode-dependent formulation (9) in Step 6 in Table 1 employs verified and stabilized mode

related material parameters κ̂
i , i = 1, ..., S, as a result of Step 1 and Step 2, no further optimization is

necessary.

6. In Step 6, conformity according to Definition 1 cannot be investigated, since all available data d̄
i ∈ Di =

R
nid , i = 1, ..., S, in Table 1 are exploited. For this purpose, additionalmeasurement data activating different

modes are required.
7. In practice, the two requirements of Remark 4.4.1 on small model error and stable results might be

contradictory, and therefore have to be carefully balanced. Of course, this issue is strongly related to
tolerances tol f , tolφ in the input data of Table 1. The issue of concrete choices for tol f and tolφ however
has not been investigated so far.



730 R. Mahnken

Table 1 Flowchart for model development accounting for verification, validation and stability
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6 Representative examples

6.1 Selection of experimental data and hyperelastic models

In this section, the experimental data on vulcanized rubber published by Treloar [48] are used to demonstrate
the steps for model development according to Table 1. Three loading scenarios, that is uniaxial tension (UT),
equibiaxial tension (ET) compression and pure torsion (PS), respectively, are considered. The data in [48] are
given in pairs of principal stretches λk and principal nominal stresses PTreloar [λTreloar

k ] for all three loading
cases.

Regarding the hyperelastic models, we follow very closely the selection provided by Steinmann et al.
in [47]. Here, both phenomenological and micro-mechanically motivated models have been investigated in
order to capture the elastic and nearly incompressible effects of rubber-like materials investigated in [48]. The
complete list of hyperelastic models investigated in this paper is as follows:

1. Neo-Hooke model (1943)
2. Mooney–Rivlin model (1940)
3. Isihara model (1951)
4. Gent–Thomas model (1958)
5. Swanson model (1985)
6. Yeoh model (1990)
7. Arruda–Boyce model (1993) (invariant form)
8. Gent model (1996)
9. Yeoh–Fleming model (1997)
10. Carroll model (2011)
11. Ogden model (1972) (K=2)
12. Three chain model (1943)
13. Eight chain model (1993).

Regarding the extensive literature on the above hyperelastic models we refer also to [47], and therefore shall not
be repeated here. As mentioned before, the corresponding isochoric free energy densities related to each strain

mode ψ
i
in Eq. (9), the partial derivatives ∂ψ

i
/∂λb in (26.4) and ∂2ψ

i
/∂λa∂λc for principle stretch-based

formulations, as well as the partial derivatives ∂ψ
i
/∂ ĪA in (33.3) and ∂2ψ

i
/∂ ĪA∂ ĪB in (35) for invariant-based

formulations, and moreover the corresponding material parameters κ i are summarized in compact form in
Appendix B of this work.

6.2 Analytical stress formulations for UT, ET, and PS

Assuming an isotropic and incompressible material, an analytical Pi
a [λa] formulation is provided, e.g., in

[19,47,54] as

Pi
a = ∂ψ

i

∂λa
− p

λa
, a = 1, 2, 3. (60)

Our implementation departs slightly from the one in [47] by exploiting a generality for UT, ET, and PS as
follows:

• Uniaxial tension (UT): For given deformation gradient according to Eq. (11), the stresses normal to the
load directions are zero, that is PUT

2 = PUT
3 = 0. By setting Eq. (60) to zero, for example for a = 3, and

inserting the resulting pressure into Eq. (60) for a = 1, renders

p = λ3
∂ψ

UT

∂λ3
�⇒ PUT

1 = ∂ψ
UT

∂λ1
− λ3

λ1

∂ψ
UT

∂λ3
. (61)

• Equibiaxial tension (ET): For given deformation gradient according to Eq. (12), here the stresses in the
load directions are equal, that is PET

2 = PET
3 , while the third direction is stress-free. Therefore, by setting

Eq. (60) to zero for a = 3, and inserting the resulting pressure into Eq. (60) for a = 1 and a = 2, renders

p = λ3
∂ψ

ET

∂λ3
�⇒ PET

1 = PET
2 = ∂ψ

ET

∂λ1
− λ3

λ1

∂ψ
ET

∂λ3
. (62)
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Observe the same rule in Eq. (61) and in Eq. (62), which is due to the above choice a = 3 for UT.
• Pure shear (PS): For given deformation gradient according to Eq. (13) the stress in the third direction is
zero. Therefore, by setting Eq. (60) to zero for a = 3, and inserting the resulting pressure into Eq. (60) for
a = 1 and a = 2, renders

p = λ3
∂ψ

PS

∂λ3
�⇒ PPS

1 = ∂ψ
PS

∂λ1
− λ3

λ1

∂ψ
PS

∂λ3
, PET

2 = ∂ψ
PS

∂λ2
− λ3

λ2

∂ψ
PS

∂λ3
. (63)

Observe the same rule for PPS
1 in Eq. (63) as in Eq. (61) and Eq. (62).

Consequently, Eqs. (61), (62) and (63) require ∂ψ
i
/∂λa for principle stretch-based formulations. In the

case of invariant-based models according to the reduced form ψ
i [ Ī1, Ī2] analogously to Eq. (30) and in view

of the relations (3), (4) a reparametrization is governed by the chain rule as

∂ψ
i

∂λa
= ∂ψ

i

∂ Ī1

∂ Ī1
∂λa

+ ∂ψ
i

∂ Ī2

∂ Ī2
∂λa

, where
∂ Ī1
∂λa

= 2λa,
∂ Ī2
∂λa

= 2λa(λ
2
b + λ

2
c) (64)

for i = UT, ET, PS. The partial derivatives ∂ψ
i
/∂λa in Eq. (60) for principle stretch-based formulations,

and the partial derivatives ∂ψ
i
/∂ ĪA in Eq. (64) for invariant-based formulations, respectively, are summarized

for thirteen hyperelastic models in compact form in Appendix B of this work.
In our implementation Eq. (60) is used for the final stress calculation for all three load-cases (UT, ET

and PS), by accounting for the case-dependent pressure p. It applies throughout for all phenomenological
(invariant-based and stretch-based formulation) and micro-mechanically motivated models of the above list
with thirteen models. This unified procedure might be at the expense of some numerical effort, but avoids
the implementation of load case-dependent and material-dependent formulations as provided in [47]. With
this framework, the material-dependent information provided in Appendix B is sufficient for the subsequent
discussions.

6.3 Model development according to Table 1

Subsequently, the steps in the flowchart for model development in Table 1 are applied. An excerpt of additional
results for the correlation matrix Ci j [κ∗] defined in Eq. (40) is provided in Appendix D.

Input: Least-squares functional

Setting dik[κ] = Pi
1[λTreloar

k , κ] and d̄ ik[κ] = Pi
Treloar [λTreloar

k ] in Eq. (37) renders the mode data related
least-squares functionals Eq. (54) as

f [d̄ i , κ] = 1

2

nid∑

k=1

(
Pi
1[λTreloar

k , κ] − Pi
Treloar [λTreloar

k ]
)2

, i = UT, ET, PS (65)

and where nUTd = 23, nETd = 17, nPSd = 13. Detailed values for the data Pi
Treloar [λTreloar

k ], i = UT, ET, PS
are provided e.g. in [47].

Step 1: Verification for each mode data set

Each set of experimental data for UT, ET and PS is used separately to minimize the mode data related

least squares functionals f [d̄ i , κ] in Eq. (54). We point out, that in our simulations no attempt has been made
to modify respectively improve the optimized material parameters obtained in [47]. That is, for evaluation
of the above criterion (54), for κUT, κET, κPS we exploit directly the results from [47] and also summarized

in Eq. (B,•,4) in Appendix B of this work. A summary of results for the least-squares functionals f [d̄ i , κ i ],
i = UT, ET, PS in Eq. (54) is given in Tables 2, 3 and 4, respectively.

Step 2: Stability for each mode data set
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In order to account for stability of all three vectors κ i , i = UT, ET, PS taken from [47], I-criteria
ϕI [κ], I = A, E, D, M according to Eq. (55) are calculated. A summary of related results is also given in
Tables 2, 3 and 4, respectively.

Step 3: Validation for complete data set

As in [47], each set of optimal material parameters κUT, κET and κPS which minimize the least squares
functionals (54), is used to simulate the remaining two deformationmodes. Asmentioned before, for evaluation
of the criterion (56) we use κ̂

i = κ i , i = UT, ET, PS, according to Eq. (B,•,4). This step renders results for
the complete data related least-squares functionals (56) in Tables 5, 6 and 7.

Step 4: Stability for complete data set

In order to account for stability, in addition to [47] and based on the general structure in Eq. (50) we distin-
guish the I-criteria 
I [κ̂ i ], I = A, E, D, M in Eq. (57). For this purpose we use κ̂

i = κ i , i = UT, ET, PS,
according to Eq. (B,•,4). A summary of results for the I-criteria (57) is also given in Tables 5, 6 and 7,
respectively.

Note, that in all cases the relations φA[C] ≤ μmax = φE [C] in Eq. (52) and φD[C] ≤ μmax = φE [C]
in Eq. (53) are verified, which reveals the eigenvalue μmax = φE [C] as a conservative estimate for the
amplification of data perturbations. Regarding the M-criterion both cases φM [C] < μmax = φE [C] as well as
φM [C] > μmax = φE [C] do occur.

In view of the extensive discussion in [47] on all thirteen models, in this work we restrict a detailed
discussion to three representative hyperelastic models, that is the Neo-Hooke model (No. 1 in the list of Sect.
6.1), the Isihara model (No. 3 in the list of Sect. 6.1) and the Caroll model (No. 10 in the list of Sect. 6.1)
to Appendix C of this work. The comparative study in Fig. 5 reveals a poor verification quality of the Neo-
Hooke model. A good verification quality of the Isihara model with however disappointing validation quality
is illustrated in Fig. 6. Figure 7 visualizes a superior model performance of the Carroll model on Treloar’s
data, due to both, a perfect fit quality and remarkable predictive results for UT, ET, PS, respectively.

Step 5: Selection of final parameter vector

Here, according to Remark 5.4 we simply select a final parameter set κ∗ according to Eq. (58), in case Step
4 is successful. In view of the excellent model performance on verification and validation in Fig. 7 as well as on
stability in Tables 5, 6 and 7, respectively, this applies only for the Caroll model. Consequently, the parameter
vector κUT in Eq. (B.10.4) could be selected for κ∗, which renders lowest value for 
A[κUT] according to
Table 5. The remaining models would require the weighted mode related model extension according to Step 6.

In order to obtain an overview on the performance of all models, still, results of a fourth optimization step
are shown next, that computes material parameters κAL under simultaneous consideration of the complete data
set set, that is, UT, ET and PS. To this end, as in the previous Sect. 6.3 no attempt has been made to modify and,
respectively, improve the optimized material parameters κAL obtained in [47] and summarized in Eq. (B,•,4)
in Appendix B of this work. Clearly, as a consequence no additional data are left for validation.

A comparative study of the verification quality in this step for all original hyperelastic models on Treloar’s
data is given in Fig. 3. The corresponding results for the least-squares functional F[d̄, κAL] in Eq. (58) and the
design functions 
I [κAL], I = A, E, D, M , in Eq. (50) are summarized in Table 8 for each model in the first
line.

Contrary to the individual fit capability for single measurement sets, some of the models do not capture
the S-shape behavior anymore. This deficiency becomes apparent, e.g., for the Isihara model, if the results in
Fig. 6 are compared to those in Fig. 3.3. This illustrative effect is confirmed by the relatively high value for
F[d̄, κAL] in Table 8. The deficiency of the material model of non-uniqueness discussed in Sect. C.2 for the
Isihara model has dramatic consequences for almost all design functions 
I [κ] in Table 8.

As mentioned before, from the macroscopic models the Carroll model [9] captured very well all three
deformation patterns with the lowest least-squares value F[d̄, κAL] of all models considered here. This positive
phenomenon is accompanied by relatively low values for the design functions 
I [κAL].

From the microscopic models the eight-parameter model is able to reproduce almost perfectly all defor-
mations. When compared with the Carroll model, higher values for the design functions 
I [κAL] confirm the
conclusion of [47] of “a questionable sensitivity wrt the initial values”, such that “small changes may already
yield a completely different set of values.”
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Fig. 3 Comparative study of all original hyperelastic models on Treloar’s data with parameters κAL. On corresponding results
for least-squares functional F[d̄, κAL] in Eq. (58) and design functions 
I [κAL] in Eq. (50) see Table 8, “simult. fitting”
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Fig. 3 continued

Step 6: Weighted mode-related model extension

All models, except the Carroll model, require a model extension according to Step 6 in Table 1 by means of
the strain mode-dependent formulation (9.1). Comparative results are provided in Table 8, where additionally
to the results of simultaneously fitting in Step 5 two cases are distinguished for each model:

• The second line in Table 8 of each model corresponds to the weighted model according to Eq. (9). We use
material parameters κ∗ = {κ i }3i=1, i = UT, ET, PS taken from [47] and summarized in compact form in
Eq. (B,•,4) in Appendix B of this work. The corresponding diagrams are provided in Fig. 4. Apart from
the Neo-Hooke model, the Mooney–Rivlin model and the Gent–Thomas model, almost all models show a
satisfying up to excellent fitting quality.

• The third line in Table 8 of each model corresponds to Eq. (9.1) with new with material parameters
κ∗ = {κ̂ i }3i=1, i = UT, ET, PS obtained by model reduction, such that in general n̂ip = dim |κ̂ i | ≤
dim |κ i | = nip holds. The resulting material parameters κ̂

i are summarized in compact form in Eq. (B,•,5)
in Appendix B of this work. Note, that model reduction has been performed only for some selected models.
Table 8 reveals a drastic reduction of the corresponding I-criteria 
I [κ i ] in Eq. (57) in some cases. E.g.
for the Isihara model the total number of material parameters np is reduced from 9 to 6, with the same least
squares functional F[κ i ] = 7.79e-1 in Eq. (56) but a reduction for the E-criterion 
E [κ] in Eq. (57) from
∞ to 7.97e-3.
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Fig. 4 Comparative study of all weighted hyperelastic models on Treloar’s data with parameters κ∗ = {κ i }3i=1, i = UT, ET, PS.
On corresponding results for least-squares functional F[d̄, κ∗] in Eq. (58) and design functions 
I [κ∗] in Eq. (50) see Table 8,
“weighted model”
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Fig. 4 continued

Table 2 Verification and stability investigations for all hyperelastic models on Treloar’s UT-data: Least-squares functional

f [d̄UT, κUT] Eq. (54), I-criteria ϕI [κUT] Eq. (55)

Model np f [κUT] ϕA[κUT] ϕE [κUT] ϕD[κUT] ϕM [κUT]
1 Neo-Hooke 1 5.72e+00 1.77e−03 1.77e−03 1.77e−03 4.20e−02
2 Mooney–Rivlin 2 5.66e+00 5.10e−02 1.02e−01 6.61e−03 3.14e−01
3 Isihara 3 6.52e−01 1.09e+10 3.28e+10 4.44e+00 1.39e+05
4 Gent–Thomas 2 5.72e+00 5.74e−01 1.15e+00 2.25e−02 1.07e+00
5 Swanson 4 2.02e−02 6.09e+00 2.35e+01 1.76e−03 4.67e+00
6 Yeoh 3 4.55e−02 3.90e−03 1.17e−02 7.14e−07 1.08e−01
7 Arruda–Boyce 2 6.77e−02 1.08e+01 2.16e+01 8.49e−02 4.64e+00
8 Gent 2 4.33e−02 8.66e+01 1.73e+02 2.49e−01 1.32e+01
9 Yeoh–Fleming 4 1.52e−02 4.99e+01 1.96e+02 2.30e−01 1.40e+01
10 Carroll 3 2.44e−02 6.29e−01 1.89e+00 1.89e−06 1.37e+00
11 Ogden (K=2) 4 3.41e−02 2.10e+01 8.27e+01 5.12e−04 8.96e+00
12 Three chain 2 3.15e−02 4.49e+01 8.98e+01 1.92e−01 9.48e+00
13 Eight chain 2 3.13e−02 4.98e+00 9.95e+00 6.36e−02 3.15e+00
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Table 3 Verification and stability investigations for all hyperelastic models on Treloar’s ET-data: Least-squares functional

f [d̄ET, κET] Eq. (54), I-criteria ϕI [κET] Eq. (55)

Model np f [κET] ϕA[κET] ϕE [κET] ϕD[κET] ϕM [κET]
1 Neo-Hooke 1 2.91e−01 9.45e−03 9.45e−03 9.45e−03 9.72e−02
2 Mooney–Rivlin 2 3.19e−02 9.25e−03 1.85e−02 4.40e−04 1.36e−01
3 Isihara 3 1.21e−01 3.47e+09 1.04e+10 3.36e+00 7.71e+04
4 Gent–Thomas 2 2.91e−01 1.74e−01 3.46e−01 2.85e−02 5.85e−01
5 Swanson 4 1.10e−02 2.11e+01 8.36e+01 3.83e−02 8.89e+00
6 Yeoh 3 1.54e−02 1.09e−02 3.26e−02 6.41e−06 1.80e−01
7 Arruda–Boyce 2 2.15e−02 6.16e+02 1.23e+03 2.57e+00 3.51e+01
8 Gent 2 2.35e−02 1.37e+04 2.73e+04 1.22e+01 1.65e+02
9 Yeoh–Fleming 4 1.11e−02 1.55e+04 6.22e+04 1.59e+00 2.49e+02
10 Carroll 3 1.43e−02 3.20e+00 9.60e+00 1.77e−05 2.78e+00
11 Ogden (K=2) 4 1.14e−02 5.23e+02 2.08e+03 1.91e−01 4.42e+01
12 Three chain 2 2.13e−02 1.44e+03 2.87e+03 3.91e+00 5.36e+01
13 Eight chain 2 2.14e−02 6.43e+02 1.29e+03 2.62e+00 3.59e+01

Table 4 Verification and stability investigations for all hyperelastic models on Treloar’s PS-data: Least-squares functional

f [d̄PS, κPS] Eq. (54), I-criteria ϕI [κPS] Eq. (55)

Model np f [κPS] ϕA[κPS] ϕE [κPS] ϕD[κPS] ϕM [κPS]
1 Neo-Hooke 1 1.44e−02 8.89e−03 8.89e−03 8.89e−03 9.43e−02
2 Mooney–Rivlin 2 1.33e−02 5.00e+11 1.00e+12 3.33e+04 7.07e+05
3 Isihara 3 5.93e−03 3.33e+11 1.00e+12 9.19e+01 7.67e+05
4 Gent–Thomas 2 1.96e−02 4.43e−01 8.85e−01 4.42e−02 9.38e−01
5 Swanson 4 3.99e−04 3.73e+02 1.49e+03 2.83e−01 3.83e+01
6 Yeoh 3 8.63e−04 1.26e−02 3.78e−02 1.66e−05 1.94e−01
7 Arruda–Boyce 2 8.36e−03 8.57e+04 1.71e+05 3.60e+01 4.14e+02
8 Gent 2 8.53e−03 2.46e+06 4.92e+06 1.95e+02 2.22e+03
9 Yeoh–Fleming 4 4.80e−04 2.33e+05 9.30e+05 4.09e+00 9.64e+02
10 Carroll 3 4.35e−04 1.30e+00 3.88e+00 3.22e−05 1.94e+00
11 Ogden (K=2) 4 4.25e−04 1.51e+03 6.02e+03 3.52e−01 7.65e+01
12 Three chain 2 8.39e−03 9.71e+05 1.94e+06 1.22e+02 1.39e+03
13 Eight chain 2 8.40e−03 1.08e+05 2.16e+05 4.04e+01 4.65e+02

Table 5 Validation and stability investigations for all hyperelastic models on Treloar’s complete data: Least-squares functional
F[κ̂UT] Eq. (56), I-criteria 
I [κ̂UT] Eq. (57)

Model np F[κ̂UT] 
A[κ̂UT] 
E [κ̂UT] 
D[κ̂UT] 
M [κ̂UT]
1 Neo-Hooke 1 5.72e+00 1.77e−03 1.77e−03 1.77e−03 4.20e−02
2 Mooney–Rivlin 2 5.66e+00 5.10e−02 1.02e−01 6.61e−03 3.14e−01
3 Isihara 3 6.52e−01 1.09e+10 3.28e+10 4.44e+00 1.39e+05
4 Gent–Thomas 2 5.72e+00 5.74e−01 1.15e+00 2.25e−02 1.07e+00
5 Swanson 4 2.02e−02 6.09e+00 2.35e+01 1.76e−03 4.67e+00
6 Yeoh 3 4.55e−02 3.90e−03 1.17e−02 7.14e−07 1.08e−01
7 Arruda–Boyce 2 6.77e−02 1.08e+01 2.16e+01 8.49e−02 4.64e+00
8 Gent 2 4.33e−02 8.66e+01 1.73e+02 2.49e−01 1.32e+01
9 Yeoh–Fleming 4 1.52e−02 4.99e+01 1.96e+02 2.30e−01 1.40e+01
10 Carroll 3 2.44e−02 6.29e−01 1.89e+00 1.89e−06 1.37e+00
11 Ogden (K=2) 4 3.41e−02 2.10e+01 8.27e+01 5.12e−04 8.96e+00
12 Three chain 2 3.15e−02 4.49e+01 8.98e+01 1.92e−01 9.48e+00
13 Eight chain 2 3.13e−02 4.98e+00 9.95e+00 6.36e−02 3.15e+00
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Table 6 Validation and stability investigations for all hyperelastic models on Treloar’s complete data: Least-squares functional
F[κ̂ET] Eq. (56), I-criteria 
I [κ̂ET] Eq. (57)

Model np F[κ̂ET] 
A[κ̂ET] 
E [κ̂ET] 
D[κ̂ET] 
M [κ̂ET]
1 Neo-Hooke 1 2.91e−01 9.45e−03 9.45e−03 9.45e−03 9.72e−02
2 Mooney–Rivlin 2 3.19e−02 9.25e−03 1.85e−02 4.40e−04 1.36e−01
3 Isihara 3 1.21e−01 3.47e+09 1.04e+10 3.36e+00 7.71e+04
4 Gent–Thomas 2 2.91e−01 1.74e−01 3.46e−01 2.85e−02 5.85e−01
5 Swanson 4 1.10e−02 2.11e+01 8.36e+01 3.83e−02 8.89e+00
6 Yeoh 3 1.54e−02 1.09e−02 3.26e−02 6.41e−06 1.80e−01
7 Arruda–Boyce 2 2.15e−02 6.16e+02 1.23e+03 2.57e+00 3.51e+01
8 Gent 2 2.35e−02 1.37e+04 2.73e+04 1.22e+01 1.65e+02
9 Yeoh–Fleming 4 1.11e−02 1.55e+04 6.22e+04 1.59e+00 2.49e+02
10 Carroll 3 1.43e−02 3.20e+00 9.60e+00 1.77e−05 2.78e+00
11 Ogden (K=2) 4 1.14e−02 5.23e+02 2.08e+03 1.91e−01 4.42e+01
12 Three chain 2 2.13e−02 1.44e+03 2.87e+03 3.91e+00 5.36e+01
13 Eight chain 2 2.14e−02 6.43e+02 1.29e+03 2.62e+00 3.59e+01

Table 7 Validation and stability investigations for all hyperelastic models on Treloar’s complete data: Least-squares functional
F[κ̂PS] Eq. (56), I-criteria 
I [κ̂PS] Eq. (57)

Model np F[κ̂PS] 
A[κ̂PS] 
E [κ̂PS] 
D[κ̂PS] 
M [κ̂PS]
1 Neo-Hooke 1 1.44e−02 8.89e−03 8.89e−03 8.89e−03 9.43e−02
2 Mooney–Rivlin 2 1.33e−02 5.00e+11 1.00e+12 3.33e+04 7.07e+05
3 Isihara 3 5.93e−03 3.33e+11 1.00e+12 9.19e+01 7.67e+05
4 Gent–Thomas 2 1.96e−02 4.43e−01 8.85e−01 4.42e−02 9.38e−01
5 Swanson 4 3.99e−04 3.73e+02 1.49e+03 2.83e−01 3.83e+01
6 Yeoh 3 8.63e−04 1.26e−02 3.78e−02 1.66e−05 1.94e−01
7 Arruda–Boyce 2 8.36e−03 8.57e+04 1.71e+05 3.60e+01 4.14e+02
8 Gent 2 8.53e−03 2.46e+06 4.92e+06 1.95e+02 2.22e+03
9 Yeoh–Fleming 4 4.80e−04 2.33e+05 9.30e+05 4.09e+00 9.64e+02
10 Carroll 3 4.35e−04 1.30e+00 3.88e+00 3.22e−05 1.94e+00
11 Ogden (K=2) 4 4.25e−04 1.51e+03 6.02e+03 3.52e−01 7.65e+01
12 Three chain 2 8.39e−03 9.71e+05 1.94e+06 1.22e+02 1.39e+03
13 Eight chain 2 8.40e−03 1.08e+05 2.16e+05 4.04e+01 4.65e+02

7 Summary and conclusions

This contribution presents a practical guide for model development accounting for the criteria of verification,
validation and stability. As a prerequisite, it requires a set of different data sets, which can be related to different
strain modes investigated experimentally in the laboratory.

In case, the validity check on non-conformity according to Definition 1 in this work is not satisfying, an
extension of hyperelastic material models is proposed by means of so-called strain mode-dependent weighting
functions, as a counterpart to the extension in [26] with stress mode-dependent weighting functions. To this
end, an additive decomposition of the strain energy function is assumed into a sum of weighted strain mode
related quantities. This approach can easily be combined with techniques of model reduction, in order to obtain
more stable material parameters.

In order to account for incompressibility and strain mode-dependent material behavior, the free energy
density for the isochoric part has been postulated in a mixed formulation as ψ[C, κ] = ∑S

i=1 wi [�̄a] ·
ψ

i [λa, κ i ] in terms of the eigenvalues �̄a and the principal isochoric stretches λa, a = 1, 2, 3, and alternatively

as ψ[C, κ] = ∑S
i=1 wi [�̄a] · ψ

i [ Ī1[C], Ī2[C], κ i ] in terms of the eigenvalues �̄a and the three invariants
ĪA, A = 1, 2, 3 of the isochoric right Cauchy–Green strain tensor. For convenient implementation, including
the corresponding tangent operators, a general framework has been presented, which only requires the partial

derivatives ∂ψ
i
/∂λb, ∂2ψ

i
/∂λa∂λb in the first case and respectively the coefficients ∂ψ

i
/∂ ĪA, ∂2ψ

i
/∂ ĪA∂ ĪB
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Table 8 Simultaneous fit for all hyperelastic models on Treloar’s data for UT, ET and PS: Least squares functionals and I-criteria.
For each model, the first line presents results with parameters κ∗ = κAL, n∗

p = dim |κAL| taken from [47], see also (B,•,4). The
second line corresponds to the proposed extended formulation (9) including weighting functions. Parameters κ∗ = {κ i }3i=1, i =
UT, ET, PS are taken from [47], see also (B,•,4). Note the relation n∗

p = dim |{κ i }3i=1| = 3 dim |κAL| before model reduction.

Any third line corresponds to model reduction of the scheme (9). The new parameters κ∗ = {κ̂ i }3i=1, i = UT, ET, PS are

summarized in Eq. (B,•,5) in Appendix B, where n̂∗
p = dim |{κ̂ i }3i=1| ≤ 3 dim |κAL| holds

Model κ∗ n∗
p F[κ∗] 
A[κ∗] 
E [κ∗] 
D[κ∗] 
M [κ∗]

1 Neo-Hooke
–simult. fitting κAL 1 7.86e+00 8.89e−03 8.89e−03 8.89e−03 9.43e−02

–weighted model {κ i }3i=1 3 6.02e+00 6.70e−03 9.45e−03 5.29e−03 9.72e−02

2 Mooney-Rivlin

–simult. fitting κAL 2 7.80e+00 5.00e+11 1.00e+12 3.33e+04 7.07e+05

–weighted model {κ i }3i=1 6 5.71e+00 1.67e+11 1.00e+12 4.59e−01 7.07e+05

–model reduction {κ̂ i }3i=1 5 5.71e+00 2.46e−02 1.02e−01 1.80e−03 3.14e−01

3 Isihara

–simult. fitting κAL 3 7.86e+00 3.33e+11 1.00e+12 9.19e+01 7.67e+05

–weighted model {κ i }3i=1 9 7.79e−01 1.19e+11 1.00e+12 1.16e+01 7.66e+05

–model reduction {κ̂ i }3i=1 6 7.79e−01 2.90e−03 7.97e−03 7.76e−07 8.93e−02

4 Gent-Thomas

–simult. fitting κAL 2 7.86e+00 4.43e−01 8.85e−01 4.42e−02 9.38e−01

–weighted model {κ i }3i=1 6 6.03e+00 3.97e−01 1.15e+00 3.05e−02 1.07e+00

5 Swanson

– simult. fitting κAL 4 6.91e−01 3.73e+02 1.49e+03 2.83e−01 3.83e+01

–weighted model {κ i }3i=1 12 3.17e−02 1.33e+02 1.49e+03 2.67e−02 3.83e+01

–model reduction {κ̂ i }3i=1 9 4.45e−02 1.21e+01 8.36e+01 8.29e−03 8.89e+00

6 Yeoh

– simult. fitting κAL 3 3.78e−01 1.26e−02 3.78e−02 1.66e−05 1.94e−01

–weighted model {κ i }3i=1 9 6.18e−02 9.13e−03 3.78e−02 4.24e−06 1.94e−01

7 Arruda-Boyce

–simult. fitting κAL 2 4.46e−01 8.57e+04 1.71e+05 3.60e+01 4.14e+02

–weighted model {κ i }3i=1 6 9.75e−02 2.88e+04 1.71e+05 1.99e+00 4.14e+02

–model reduction {κ̂ i }3i=1 3 1.85e−01 3.17e−03 5.41e−03 1.88e−03 7.35e−02

8 Gent

–simult. fitting κAL 2 4.15e−01 2.46e+06 4.92e+06 1.95e+02 2.22e+03

–weighted model {κ i }3i=1 6 7.53e−02 8.24e+05 4.92e+06 8.41e+00 2.22e+03

–model reduction {κ̂ i }3i=1 4 1.43e−01 4.33e+01 1.73e+02 3.47e−02 1.32e+01

9 Yeoh-Fleming

–simult. fitting κAL 4 3.28e−01 2.33e+05 9.30e+05 4.09e+00 9.64e+02

–weighted model {κ i }3i=1 12 2.68e−02 8.27e+04 9.30e+05 1.14e+00 9.64e+02

10 Carroll

–simult. fitting κAL 3 5.91e−02 1.30e+00 3.88e+00 3.22e−05 1.94e+00

–weighted model {κ i }3i=1 9 3.91e−02 1.71e+00 9.60e+00 1.03e−05 2.78e+00

11 Ogden (K=2)
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Table 9 continued

Model κ∗ n∗
p F[κ∗] 
A[κ∗] 
E [κ∗] 
D[κ∗] 
M [κ∗]

–simult. fitting κAL 4 8.28e−01 1.51e+03 6.02e+03 3.52e−01 7.65e+01

–weighted model {κ i }3i=1 12 4.59e−02 6.84e+02 6.02e+03 3.26e−02 7.65e+01
12 Three chain

–simult. fitting κAL 2 1.06e+00 9.71e+05 1.94e+06 1.22e+02 1.39e+03

–weighted model {κ i }3i=1 6 6.11e−02 3.24e+05 1.94e+06 4.50e+00 1.39e+03

13 Eight chain

–simult. fitting κAL 2 3.49e−01 1.08e+05 2.16e+05 4.04e+01 4.65e+02

–weighted model {κ i }3i=1 6 6.11e−02 3.63e+04 2.16e+05 1.89e+00 4.65e+02

in the second case. The detailed results for these coefficients are provided for thirteen well-known material
models in Appendix B.

The approach is successfully applied for all 13 hyperelasticmodels with regard to the classical experimental
data on vulcanized rubber published by Treloar [48], showing quadratic convergence for the finite-element
equilibrium iteration as well as excellent fitting capabilties and stable material parameters.

We remark that in the field of optimal control problems, the indicator functionφI [C[κ]] is used to formulate
an optimization criterion, which apart frommaterial parameters may be dependent on further design variables,
cf e.g. [4] and [24]. Then, in summary, two requirements become essential: The solution vector

1. Should minimize the least-squares functional (representing a model error) according to (37)
2. Should minimize the confidence criterion according to (50).

In practice, the above two requirements on small model error and stable results might be contradictory and,
therefore, have to be carefully balanced. In this work, the generality of the methodology of optimal control
problems has not be exploited and therefore will constitute an aspect of future work.
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Appendix

A Derivatives of weighting functions

The general results (26) and (28) require the coefficients W
i
a in (26.5) for the stress like coefficients and the

coefficients W
i
ab in (28.5) for the corresponding tangent coefficients, which will be derived next. Exploiting

the relation (17) the derivative of the strain mode factor ξ with respect to the isochoric eigenvalues �̄A is
obtained from Eqs. (16.1) to (17.1–2) as

1.
∂ξ

∂�̄a
=

√
27

2

(
1

J 1.52

∂ J3
∂�̄a

− 1.5J3
J 2.52

∂ J2
∂�̄a

)
, where

2.
∂ J2
∂�̄a

= ln �̄a

�̄a
, 3.

∂ J3
∂�̄a

= (ln �̄a)
2

λa
.

(A.1)

http://creativecommons.org/licenses/by/4.0/
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Consequently, from the relation (23) the first derivative of the weighting functions becomes

1. UT:
∂w(1)

∂�̄a
=

⎧
⎪⎨

⎪⎩

2ξ
∂ξ

∂�̄a
, if ξ ≥ 0

0, else

2. ET:
∂w(2)

∂�̄a
=

⎧
⎪⎨

⎪⎩

0, if ξ ≤ 0

2ξ
∂ξ

∂�̄a
, else

3. PS:
∂w(3)

∂�̄a
= −2ξ

∂ξ

∂�̄a

(A.2)

and respectively from (24)

1. UT:
∂w(1)

∂�̄a
= 1

2

∂ξ

∂�̄a
, 2. ET:

∂w(2)

∂�̄a
= −1

2

∂ξ

∂�̄a
. (A.3)

The relations (A.2) and (A.3), respectively, serve to compute the coefficients W
i
a = (1/�̄a)∂wi/∂�a in Eq.

(26).
Exploiting the relation (A.1) the second derivative of the strain mode factor ξ with respect to the isochoric
eigenvalues �A is obtained from Eq. (A.1.2–3) as

1.
∂2ξ

∂�̄a∂�̄b
=

√
27

2

(
1

J 1.52

∂2 J3
∂�̄a∂�̄b

+ 1.5 · 2.5J3
J 3.52

∂ J2
∂�̄a

∂ J2
∂�̄b

− 1.5

J 2.52

(
∂ J3
∂�̄a

∂ J2
∂�̄b

+ ∂ J2
∂�̄a

∂ J3
∂�̄b

)
− 1.5J3

J 2.52

∂2 J2
∂�̄a∂�̄b

)
,where

2.
∂2 J2

∂�̄a∂�̄b
=
⎧
⎨

⎩

1

�̄2
a

(
1 − ln �̄a

)
if a = b

0 else
,

3.
∂2 J3

∂�̄a∂�̄b
=
⎧
⎨

⎩

1

�̄2
a

(
2 ln �̄a − (ln �̄a)

2) if a = b

0 else
,

(A.4)

Consequently, from the relations (A.2) the second derivative of the weighting functions becomes

1. UT:
∂2w(1)

∂�̄a∂�̄b
=
{

ζaa ξ ≥ 0

0, else

2. ET:
∂2w(2)

∂�̄a∂�̄b
=
{
0, if ξ ≤ 0

ζaa else

3. PS:
∂2w(3)

∂�̄a∂�̄b
= −ζaa, where

4. ζaa = 2
∂ξ

∂�̄a

∂ξ

∂�̄b
+ 2ξ

∂2ξ

∂�̄a∂�̄b

(A.5)

and respectively from (A.3)

1. UT:
∂2w(1)

∂�̄a∂�̄b
= 1

2

∂2ξ

∂�̄a∂�̄b
, 2. ET:

∂2w(2)

∂�̄a∂�̄b
= −1

2

∂2ξ

∂�̄a∂�̄b
. (A.6)

The relations (A.5) and (A.6), respectively, serve to compute the coefficients W
i
ab in Eq. (28)
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B Survey on hyperelastic models

In this section we summarize basic relations needed for the comparative study in Sect. 6 for the isochoric free
energy density, the partial derivatives in (33) and material parameters related to the i-th strain mode: Moreover,

we summarize the coefficients ∂ψ
i
/∂λa and ∂2ψ

i
/∂λa∂λb for evaluation of the stress coefficients S

i
a in Eq.

(26.4) and the tangent coefficients C
i
ab in Eq. (28.4) for a stretch based formulation, as well as the coefficients

∂ψ
i
/∂ ĪA and ∂2ψ

i
/∂ ĪA∂ ĪB for evaluation of the stress coefficients S

i
a in Eq. (33) and the tangent coefficients

C
i
ab in Eq. (35) for an invariant based formulation. Any 5-th equation refers to parameters κ̂

i obtained from
"model reduction” according to Step 2.c.i in Table 1.

1. Neo-Hooke model (1943)

1. ψ
i = μi

2
( Ī1 − 3)

2.
∂ψ

i

∂ Ī1
= 1

2
μi ,

∂ψ
i

∂ Ī2
= 0

3.
∂2ψ

i

∂ ĪA∂ ĪB
= 0, A, B = 1, 2

4.
κ i UT ET PS AL

μi /MPa 0.5673 0.4104 0.3360 0.5250

(B.1)

2. Mooney-Rivlin model (1940)

1. ψ
i = ci10( Ī1 − 3) + ci01( Ī2 − 3)

2.
∂ψ

i

∂ Ī1
= ci10,

∂ψ
i

∂ Ī2
= ci01

3.
∂2ψ

i

∂ ĪA∂ ĪB
= 0, A, B = 1, 2

4.

κ i UT ET PS AL

ci10/MPa 0.2588 0.1713 0.2348 0.2659

ci01/MPa -0.0449 0.0047 -0.065 -0.0017

5.

κ̂
i UT ET PS

ci10/MPa 0.2588 0.1713 0.1706

ci01/MPa -0.0449 0.0047 0

(B.2)
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3. Isihara model (1951)

1. ψ
i = ci10( Ī1 − 3) + ci20( Ī1 − 3)2ci01( Ī2 − 3)

2.
∂ψ

i

∂ Ī1
= ci10 + 2ci20c

i
01( Ī1 − 3)( Ī2 − 3)

∂ψ
i

∂ Ī2
= ci20c

i
01( Ī1 − 3)2

3.
∂2ψ

i

∂ Ī1∂ Ī1
= 2ci20c

i
01( Ī2 − 3)

∂2ψ
i

∂ Ī2∂ Ī1
= 2ci20c

i
01,

∂2ψ
i

∂ Ī2∂ Ī2
= 0

4.

κ i UT ET PS AL

ci10/MPa 0.1161 0.1993 0.01601 0.2617

ci20/MPa 0.0136 0.0015 0.0037 0.0969

ci01/MPa 0.0114 0.0013 0.0031 2.47e-6

5.

κ̂
i UT ET PS

ci10/MPa 0.1161 0.1993 0.01601

ci20/MPa 1.5504e-4 1.95e-6 1.147e-5

(B.3)

4. Gent-Thomas model (1958)

1. ψ
i = ci1( Ī1 − 3) + ci2 ln

(
Ī2
3

)

)

2.
∂ψ

i

∂ Ī1
= ci1,

∂ψ
i

∂ Ī2
= ci2

Ī2

3.
∂2ψ

i

∂ Ī1∂ Ī1
= 0,

∂2ψ
i

∂ Ī1∂ Ī2
= 0,

∂2ψ
i

∂ Ī2∂ Ī2
= − ci2

Ī 22

4.

κ i UT ET PS AL

ci1/MPa 0.2837 0.2052 0.1629 0.2625

ci2/MPa 2.81e-11 2.22e-14 0.0376 2.22e-14

(B.4)
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5. Swanson model (1985)

1. ψ
i = 3

2

ni∑

j=1

Ai
j

1 + αi
j

(
Ī1
3

)1+αi
j

+ 3

2

ni∑

j=1

Bi
j

1 + β i
j

(
Ī2
3

)1+βi
j

2.
∂ψ

i

∂ Ī1
= 1

2

ni∑

i=1

Ai
j

(
Ī1
3

)αi
j

,
∂ψ

i

∂ Ī2
= 1

2

ni∑

j=1

Bi
j

(
Ī2
3

)βi
j

3.
∂2ψ

i

∂ Ī1∂ Ī1
= 1

6

ni∑

i=1

αi
j A

i
j

(
Ī1
3

)αi
j−1

,
∂2ψ

i

∂ Ī2∂ Ī2
= 1

6

ni∑

j=1

β i
j B

i
j

(
Ī2
3

)βi
j−1

∂2ψ
i

∂ Ī1∂ Ī2
= 0

4.

κ i UT ET PS AL

Ai
1 4.287e-5 0.4209 4.549e-3 0.0297

Bi
1 0.4159 1.270e-3 0.3702 0.4333

αi
1 3.128 -0.0936 1.529 1.0771

β i
1 1.085 0.4447 -0.202 -0.9259

5.

κ̂
i UT ET PS

Ai
1 4.287e-5 0.4209 0.34051

Bi
1 0.4159 1.270e-3 0

αi
1 3.128 -0.0936 0

β i
1 1.085 0.4447 0

(B.5)

6. Yeoh model (1990)

1. ψ
i = ψ

i = ci1( Ī1 − 3) + ci2( Ī1 − 3)2 + ci3( Ī1 − 3)3

2.
∂ψ

i

∂ Ī1
= ci1 + 2ci2( Ī1 − 3) + 3ci3( Ī1 − 3)2,

∂ψ
i

∂ Ī2
= 0

3.
∂2ψ

i

∂ Ī1∂ Ī1
= 2ci2 + 6ci3( Ī1 − 3),

∂2ψ
i

∂ Ī2∂ Ī2
= 0,

∂2ψ
i

∂ Ī1∂ Ī2
= 0

4.

κ i UT ET PS AL

ci1/MPa 0.1634 0.2059 0.1776 0.1834

ci3/MPa -1.198e-3 -7.124e-4 -1.62e-3 -1.432e-3

ci4/MPa 3.781e-5 3.078e-5 5.033e-5 3.951e-5

(B.6)
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7. Arruda-Boyce model (1993) (invariant form)

1. ψ
i = μi

K∑

k=1

Ck

Nk−1
i

(
Ī k1 − 3k

)
,

[C1,C2,C3,C4,C5] =
[
1

2
,
1

20
,

11

1050
,

19

7000
,

519

673750

]

2.
∂ψ

i

∂ Ī1
= μi

K∑

k=1

kCk

Nk−1
i

Ī k−1
1 ,

∂ψ
i

∂ Ī2
= 0

3.
∂2ψ

i

∂ Ī1∂ Ī1
= μi

K∑

k=1

k(k − 1)Ck

Nk−1
i

Ī k−2
1 ,

∂2ψ
i

∂ Ī2∂ Ī2
= 0,

∂2ψ
i

∂ Ī1∂ Ī2
= 0

4.

κ i UT ET PS AL

μi /MPa 0.2424 0.3591 0.3124 0.2698

Ni /[-] 20.25 27.73 50.33 21.49

5.

κ̂
i UT ET PS

μi /MPa 0.2392 0.2944 0.2652

Ni /[-] 20. 20. 20.

(B.7)

8. Gent model (1996)

1. ψ
i = −μi

2
J im ln

(
1 − Ī1 − 3

J im

)

2.
∂ψ

i

∂ Ī1
= μi

2

J im
J im − Ī1 + 3

,
∂ψ

i

∂ Ī2
= 0

3.
∂2ψ

i

∂ Ī1∂ Ī1
= μi

2

J im
(J im − Ī1 + 3)2

,
∂2ψ

i

∂ Ī2∂ Ī2
= 0,

∂2ψ
i

∂ Ī1∂ Ī2
= 0

4.

κ i UT ET PS AL

μi /MPa 0.2514 0.363 0.3166 0.2731

J im /[-] 81.16 111.9 237.7 84.57

(B.8)
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9. Yeoh-Fleming model (1997)

1. ψ
i = Ai

Bi

(
1 − exp(−Bi ( Ī1 − 3))

) − Ci (I
i
m − 3) ln

(
1 − Ī1 − 3

I im − 3

)
.

2.
∂ψ

i

∂ Ī1
= Ai

(
exp(−Bi ( Ī1 − 3)

) + Ci
I im − 3

I im − Ī1
,

∂ψ
i

∂ Ī2
= 0

3.
∂2ψ

i

∂ Ī1∂ Ī1
= −Bi Ai

(
exp(−Bi ( Ī1 − 3)

) + Ci
I im − 3

(I im − Ī1)2
,

∂2ψ
i

∂ Ī2∂ Ī2
= 0

∂2ψ
i

∂ Ī1∂ Ī2
= 0

4.

κ i UT ET PS AL

Ai /[-] 0.0517 0.0467 0.0512 0.0601

Bi /[-] 0.2362 0.1303 0.1976 0.0124

Ci /[-] 0.1235 0.1635 0.1350 0.1

I im /[-] 83.23 93.35 94.13 78.26

(B.9)

10. Carroll model (2011)

1. ψ
i = ai Ī1 + bi Ī 41 + ci

√
Ī2

2.
∂ψ

i

∂ Ī1
= ai + 4bi Ī 31 ,

∂ψ
i

∂ Ī2
= c

2
√
Ī2

3.
∂2ψ

i

∂ Ī1∂ Ī1
= 12bi Ī 21 ,

∂2ψ
i

∂ Ī2∂ Ī2
= − c

4
√
Ī 32

,
∂2ψ

i

∂ Ī1∂ Ī2
= 0

4.

κ i UT ET PS AL

ai /MPa 0.1481 0.1988 0.1297 0.1433

bi /MPa 3.024e–7 3.141e–7 4.91e–7 3.17e–7

ci /MPa 0.06623 2.2e–14 0.1876 0.1118

(B.10)
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11. Ogden model (1972)

1. ψ
i = ψ

i [λa, κ i ] =
K∑

k=1

μi,k

αi,k

(
λ

αi,k
1 + λ

αi,k
2 + λ

αi,k
3 − 1

)

2.
∂ψ

i

∂λa
=

K∑

k=1

μi,kλ
αi,k−1
a

3.
∂2ψ

i

∂λ
2
a

=
K∑

k=1

μi,k(αi,k − 1)λ
αi,k−2
a

4.

κ i UT ET PS AL

μ1/MPa 0.305 0.4856 0.4726 0.3528

μ2/MPa 2.31e-6 1.965e-3 1.256e-3 1.032e-9

α1/[-] 1.99 1.659 1.57 2.05

α2/[-] 8.022 5.268 4.869 11.771

(B.11)

12. Three chain model (1943)

1. ψ
i = μi Ni

3

3∑

a=1

(√
N−1
i β i

aλa + ln
β i
a

sinh β i
a

)
, where

β i
a = L−1[λa

√
N−1
i ] ≈ λa

√
N−1
i

3Ni − λ
2
a

Ni − λ
2
a

2.
∂ψ

i

∂λa
= μiλa

3

3Ni − λ
2
a

Ni − λ
2
a

3.
∂2ψ

i

∂λ
2
a

= μi

3

3Ni − λ
2
a

Ni − λ
2
a

+ 2μiλ
2
a

3

(
−1

Ni − λ
2
a

+ 3Ni − λ
2
a

(Ni − λ
2
a)

2

)

4.
κ i UT ET PS AL

μi /MPa 0.2681 0.3584 0.3137 0.3021
Ni /[-] 77.29 45.41 165.3 82.1

(B.12)
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13. Eight chain model (1993)

1. ψ
i = μi Ni

(√
N−1
i β i� + ln

β i

sinh β i

)
, where

β i = L−1[�
√
N−1
i ] ≈ �

√
N−1
i

3Ni − �2

Ni − �2 , � =
√

Ī1
3

2.
∂ψ

i

∂ Ī1
= μi

6

3Ni − �2

Ni − �2 = μi

6

9Ni − Ī1
3Ni − Ī1

,
∂ψ

i

∂ Ī2
= 0

3.
∂2ψ

i

∂ Ī1∂ Ī1
= μi

6

( −1

3Ni − Ī1
+ 9Ni − Ī1

(3Ni − Ī1)2

)
,

∂2ψ
i

∂ Ī2∂ Ī2
= 0,

∂2ψ
i

∂ Ī1∂ Ī2
= 0

4.

κ i UT ET PS AL

μi /MPa 0.2673 0.3586 0.3124 0.2853

Ni /[-] 25.84 30.32 55.55 26.54

(B.13)

C Detailed results on verification, validation and stability

C.1 Neo-Hooke model (1943)

The Neo-Hooke model constitutes the simplest specification of the Mooney-Rivlin-Saunders model series
since it only considers ci10 �= 0 in Eq. (31), that is, the summation is up to k = 1, l = 0 and the additive
constant ci00 related to the i-th strain mode is set to zero. The free energy function related to the i-th strain
mode with nip = 1, i = UT, ET, PS, material parameters is given in Eq. (B.1.1) and the partial derivatives in
(33) are given in Eq. (B.1.2). Each of the first three sets of material parameters in Eq. (B.1.4) is used to predict
the two complementary deformation modes, and results are plotted in Fig. 5. In the following, we will discuss
on the three aspects of 1. verification, 2. validation and 3. stability.

• Verification:Comparing the results or f [κ i ], i = UT, ET, PS in Tables 2, 3 and 4, and as already discussed
in [47], fitting the PS-data with one curvature renders an acceptable result. However, the characteristic S-
shape of ET and PS with two curvatures cannot be captured with the simple model structure. If small
small deformations with λ < 1.5 are of interest, the Neo-Hooke model provides reasonable results for the
nonlinear stress-stretch regime, see also [8]. To summarize, the verification capability of the Neo-Hooke
model is only acceptable for small deformations with λ < 1.5. For larger stretches a model extension is
indispensable

• Validation: Failing the requirements of verification, the Neo-Hooke model cannot predict Treloars data.
The visualization in Fig. 5 of this deficiency is confirmed by the relatively large values for F[κ i ], i =
UT, ET, PS according to Eq. (56) in Tables 5, 6 and 7, respectively.

• Stability: Due to the simple model structure with only nip = 1, i = UT, ET, PS material parameters,
very stable results for the inverse problem can be expected. This is confirmed by the comparative small
values for the I-criteria ϕI [κ i ], I = A, E, D, M of Eq. (55) and listed in Tables 2, 3 and 4, as well as of

I [κ i ], I = A, E, D, M of Eq. (57) and listed in Tables 5, 6 and 7, Observe, that indeed all values for
ϕI [κ i ], I = A, E, D are identical, which by means of np = 1 can be verified from Eq. (52) and Eq. (53),
respectively. To summarize: The model simple structure of the Neo-Hooke model with only one parameter
leads to a relatively high stability of the material parameter.

C.2 Isihara model (1951)

Isihara et al. [20] proposed amodel incorporating a non-Gaussian chain theory. It can be derived by linearization
of the Mooney-Rivlin/Saunders model in Eq. (31), thus resulting into a simple model with three material
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Fig. 5 Performance of the Neo-Hooke model on Treloar’s data. The minimum least squares fits to UT (left) and ET (middle) yield
unacceptable results due to the incapability of the model to reproduce the S-shape. The S-shape does not occur for PS (right),
which renders an acceptable fit quality in this case. Overall, the verification capability is unacceptable, which excludes validated
results for prediction

parameters and a term, which couples the two invariants Ī1 and Ī2 in a nonlinear manner. Based in the
formulation in [30] the free energy function related to the i-th strain mode is given in Eq. (B.3.1). Each of
the first three sets of material parameters in Eq. (B.3.4) is used to predict the two complementary deformation
modes, and results are plotted in Fig. 6. In the following, we will discuss on the three aspects of 1. verification,
2. validation and 3. stability.

• Verification:As already discussed in [47], the fit quality is very high for all deformationmodes. In particular
forETandPS almost perfect results are obtained.RegardingUT-data, the high initial stiffness is not properly
reflected, however (in contrast to the Neo-Hooke model and the Mooney Rivlin model) Isihara’s model
can capture the characteristic S-shape at large stretches. Related results for f [κ i ], i = UT, ET, PS are
given in Tables 2, 3 and 4. To summarize, the fit capability of Isihara model [20] for Treloa’s data is very
good.

• Validation: Regarding the prediction capability, the results are rather disappointing for all three cases. In
particular, the material parameters κET obtained from ET-data in the middle graph of Fig. 6 are not able
to capture the S-shape curve of UT in the left graph. The same holds e.g. for the material parameters κUT

obtained from UT-data in the left graph, applied to ET-data in the middle graph. These illustrative results
are confirmed by the comparative large values for the least-squares functionals F[κ i ], i = UT, ET, PS
defined in Eq. (56) and summarized in Tables 5, 6 and 7. As a consequence, with reference to Definition 1
in the introduction of work we summarize: The conformity between the Treloar data [48] and the Isihara
model [20] is very poor.

• Stability: A closer look on Eq. (B.3) reveals the product ci20 and ci01 within the formulation. Obviously,
an infinite number of combinations can be constructed to obtain a certain value for any product ci20 · ci01.
This property leads to non-uniqueness of the inverse problem (65), and according to Sect. 4.1 is certainly a
deficiency of the material model - rather than of the experimental data. These effects are confirmed by the
comparative large values for the I-criteria ϕI [κ i ], I = A, E, D, M of Eq. (55) and listed in Tables 2, 3 and
4, as well as of 
I [κ i ], I = A, E, D, M of Eq. (57) and listed in Tables 5, 6 and 7. To summarize: The
stability of the Isihara model [20] is rather poor. A modification of experimental information, in whatever
way, cannot account for this undesired property. A model reduction is indispensable.
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Fig. 6 Performance of the Isihara model on Treloar’s data. The fit quality is acceptable (UT) to perfect (ET, PS) which renders
high verification quality. Contrary, the validation quality is very poor, in particular in the middle graph where unrealistic high
stresses are predicted for ET for parameters κUT and κPS, respectively

Fig. 7 Performance of the Carroll model on Treloar’s data. The fit quality is perfect for UT, ET, PS. Also the predictive results
show a remarkable model performance

C.3 Carroll model (2011)

Carroll [9] proposed a phenomenological approach based on a successive extension of the free energy. Here the
additional terms are chosen such that they reduce the errors that remain in the stress response of the previous
terms, compared to measurements, see e.g. [9] on more details. The free energy function related to the i-th
strain mode is given in Eq. (B.10.1). Each of the first three sets of material parameters in Eq. (B.10.4) is used
to predict the two complementary deformation modes, and results are plotted in Fig. 7. In the following, we
will discuss on the three aspects of 1. verification, 2. validation and 3. stability.

• Verification: As already discussed in [47], the fit quality of the parameter sets are very good to perfect.
Related results for f [κ i ], i = UT, ET, PS are given in Tables 2, 3 and 4.

• Validation: The corresponding curves on prediction in Fig. 7 and reveal a remarkable model performance.
These illustrative results are confirmed by the comparative low values for the least-squares functionals
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Table 10 Isihara model: Correlation matrix between UT, ET and PS

UT ET PS

cUT
10 cUT

20 cET10 cET20 cPS10 cPS20

cUT
10 1.0 −0.9172
cUT
20 −0.9172 1.0
cET10 1. −0.803
cET20 −0.803 1.
cPS10 1. −0.849
cPS20 −0.849 1.

Table 11 Finite-element residual norms for all 13 models in the list of Sect. 6.1

Model 1 2 3 3 4

1. Neo Hooke 0.48E−01 0.45E−01 0.14E−03 0.82E−07 0.27E−13
2. Mooney Rivlin 0.49E−02 0.28E−02 0.10E−02 0.74E−06 0.13E−10
3. Isihara 0.49E−01 0.36E−01 0.16E−02 0.49E−05 0.40E−10
4. Gent Thomas 0.16E+02 0.11E+00 0.80E−05 0.71E−12
5. Swanson 0.18E+02 0.13E+00 0.91E−05 0.17E−11
6. Yeoh 0.49E−01 0.49E−02 0.13E−04 0.21E−10 0.20E−15
7. Arruda Boyce 0.49E−01 0.12E−01 0.24E−03 0.92E−07 0.13E−13
8. Gent 0.49E−01 0.11E−01 0.20E−03 0.65E−07 0.56E−14
9. Yeoh Fleming 0.49E−01 0.49E−02 0.32E−04 0.81E−09 0.68E−15
10. Carroll 0.70E+01 0.51E−01 0.36E−05 0.12E−11
11. Ogden 0.20E+02 0.14E+00 0.10E−04 0.34E−10 0.48E−11
12. Three Chain 0.38E+03 0.24E+01 0.12E−03 0.20E−09 0.42E−11
13. Eight Chain 0.29E+01 0.22E−01 0.15E−05 0.28E−12

F[κ i ], i = UT, ET, PS defined in Eq. (56) and summarized in Tables 5, 6 and 7. With reference to
Definition 1 in the introduction of work we summarize: The conformity between the Treloar data [48] and
the Carroll model [9] is very good.

• Stability: A comparative study of the I-criteria ϕI [κ i ], I = A, E, D, M of Eq. (55) and listed in Tables 2, 3
and 4, as well as of 
I [κ i ], I = A, E, D, M of Eq. (57) and listed in Tables 5, 6 and 7 reveals remarkable
stability properties.

D The correlation matrix of Isiharas model

This part of the Appendix provides results for the correlation matrix Ci j [κ∗] defined in Eq. (40). For briefness
of presentation, only results for the Isihara model after model reduction are shown.
The comparatively high correlations in Table 10 between some of the material parameters (e.g. within the UT
regime -0.9172 between cUT

10 and cUT
20 ) is an indicator for overparameterization, but, no attempt has been made

on further reduction. However, the results in Table 10 also demonstrate a clear independence between UT,
ET and PS related material parameters. This is regarded as a main advantage of the proposed weighted strain
energy in Eq. (9).

E Local check for quadratic convergence

This section intends to verify the results for the isochoric tangent operator in Eq. (28), consistent with the
isochoric second Piola-Kirchhoff stress tensor in Eq. (26). Thereby, we are only interested in the convergence
performance, such that the checks are performed as one-element tests (rather than for a complex finite element
geometry).
The coordinates of the element are {xi , yi }, i = 1, ..., 4 = {0., 0.}, {1.2, 0.}, {1., 1.}, {0., 1.}, such that an
inhomogeneous strain and stress state is generated. As (Dirichlet) boundary conditions we prescribe {uyi } =
{0}, {uxi , uyi } = {0, 0}, i = 2, ..., 3, and the Neumann boundary condition is { fxi } = {0.05}. The parameters
for simultaneous identification summarized in the vectors κ i in the survey on hyperelastic models in Sect. B
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are used. Solutions of the resulting equilibrium problems (not discussed in more detail here) are performed
with a Newton method, which iterates on the corresponding finite-element residual of the element.
Table 11 summarizes the final residual norms for all thirteen models in the list of Sect. 6.1. In almost all cases
the number of correct digits is doubled in every iteration, that is quadratic convergence is achieved, which
verifies correct derivation and implementation of the corresponding tangent operators.
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