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Shear zones are zones of localized high strain accommodating differential motion in the lithosphere and impacting the crustal
rheology and deformational history of orogenic belts. Although terrane bounding shear zones are widely studied, intraterrane
shear zones and their tectonic significance, especially in association with supercontinent assembly, is a largely unexplored
topic. The Ribeira Belt (SE Brazil), a Neoproterozoic-Cambrian orogenic belt from West Gondwana, is dissected by a crustal-
scale NE-trending transcurrent shear zone system that juxtaposes composite terranes. Despite its extensive coverage and
complexity, this shear zone system remains poorly investigated. In this paper, we explore the thermal and deformational
regimes, and timing of ductile shearing using a multiscale approach combining structural analysis derived from remote sensing
and field-based structural data, microstructures, quantitative structural analysis, and multimineral U–Pb geochronology
(zircon, titanite, monazite, and xenotime). Our data, combined with previously published data, indicate a transitional
northeastward increase in metamorphic conditions from lower greenschist to granulite facies conditions (from 250–300 to
750–800°C), reflecting the different crustal levels that are exposed. Vorticity and finite strain data indicate a complex strain
regime with varied contributions of pure and simple shear and oblate-shape ellipsoids in strike-slip shear zones and prolate-
shaped ellipsoids in dip-slip reverse shear zones. The strain set suggests that all shear zones were developed under subsimple
shear deformational regimes involving thrusting and folding followed by wrench tectonics. The pure shear component of
deformation was accommodated in folded domains between shear zones. Geochronological data suggest intermittent ductile
shear zone activations from ca. 900–830 to 530Ma, partially coeval with at least two major episodes of terrane accretion at
850–760Ma and 610–585Ma. The spatial and temporal record of shear zones within the Ribeira Belt indicates that some relate
to assembly of the belt and represent either terrane bounding structures (e.g., Itapirapuã shear zone) or intraterrane structures
(e.g., Ribeira, Figueira, and Agudos Grandes shear zones), whereas others are terrane bounding, postcollisional shear zones
(e.g., Taxaquara shear zone) reactivated in an intracontinental setting (560–535Ma).
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1. Introduction

Shear zones are zones of localized high strain that accommo-
date differential motion in the Earth’s crust and mantle,
exerting a fundamental control on crustal rheology and
deformational evolution of orogenic belts [1–3]. They local-
ize deformation and accommodate movement from the
microscale to the orogen scale and include first-order struc-
tures at tectonic plate boundaries; for example, the Alpine
Fault, New Zealand [4], and the San Andreas Fault, United
States of America and Mexico [5]. Shear zone systems are
key features in accretionary-to-collisional orogens, material-
izing sutures and terrane boundaries in regions of orogenic
assembly, as well as in postorogenic terrane dispersal [6].
Due to their major tectonic importance, studies of suture
and terrane bounding shear zones are common in the liter-
ature (e.g., [7, 8]), whereas analysis of intraterrane shear
zones and their tectonic significance, especially in associa-
tion with supercontinent assembly, is a largely unexplored
topic.

The Ribeira Belt is a Neoproterozoic-Cambrian NE-
trending orogen that occupies a central position in West
Gondwana reconstructions (Figure 1(a)), associated with
the convergence between Archean-Paleoproterozoic rock
assemblages from the São Francisco, Paranapanema, Luís
Alves, and Congo cratons (Figures 1(a) and 1(b); [9]). It
has been traditionally interpreted as recording a history
evolving from accretionary to collisional with its current
architecture controlled by a late-collisional, crustal-scale,
transcurrent shear zone system that resulted in the juxtapo-
sition of fault-bounded composite terranes in the Ediacaran-
Cambrian (e.g., [10–15]). Alternative models have proposed
an intracontinental setting for the orogen [16–19], although
without taking into account the role of terrane bounding
shear zones from the southern and central Ribeira Belt.

The Ribeira Belt presents an anastomosing network of
transcurrent shear zones with a first-order structure defined
by the combined Lancinha, Cubatão, and Além Paraíba-
Pádua shear zones (Figure 1(b)), which can be traced over
a total along strike distance of some 2100 km (800 km exposed
and 1300 km covered by the Paraná Basin; [20]). Second-
order shear zones, including the Ribeira, Morro Agudo,
Agudos Grandes, and Caucaia shear zones (Figure 1(c)), fur-
ther divide the Ribeira Belt into a series of lenticular-shaped
blocks of discrete lithotectonic units (terranes) that are them-
selves further segmented by third-order intraterrane shear
zones. Previous research on the shear zones has focused on
aspects of individual structures, including textural analyses
and grain-scale deformation mechanisms [21–26], fluid flow
and vein development [27–29], and field-based structural
analysis, strain quantification, and thermobarometry [15, 25,
30, 31]. Geochronological studies are scarce and performed
only in a few individual terrane bounding shear zones [14,
30, 32–37]. The available data indicate a long-lived and poorly
understood evolution for the shear zone system extending
from610 to 530Ma, with a few data indicating brittle activities
during the Paleozoic [38]. Geochronology, structural analysis,
and strain quantifications of intraterrane shear zones are
scarce, and their relationships with terrane boundary shear

zones have received only limited investigation. Recent pub-
lished geochronological data indicate that some geological
units from the southern Ribeira Belt record evidence for a
compressional metamorphic event at 850–760Ma [39, 40],
raising the possibility that some deformational structures
and shear zones could have been formed during the Tonian.

This paper investigates the role of the terrane boundaries
and intraterrane shear zones in the southern Ribeira Belt
through a multiscale structural analysis derived from remote
sensing and field-based structural analysis, coupled to
microstructures, quantitative structural data (finite strain
and kinematic vorticity), and multimineral U–Pb geochro-
nology. These data allow us to discuss the microstructural,
thermal, and deformational regimes of this shear zone sys-
tem and also the timing of ductile shearing. When combined
to existing data from the literature, these shear zones record
a complex long-lived strain regime.

2. Tectonic Framework

The Ribeira Belt comprises a complex assemblage of tecto-
nostratigraphic terranes of contrasting lithological character,
ages, and tectonic settings bounded by shear zones with
reported ages largely in the range of Ediacaran to Cambrian
(610–530Ma; Figure 1(c); [10, 12–15, 33, 34, 37, 39–44]).
Contacts between the Ribeira Belt and the bounding Parana-
panema, Luís Alves, and Congo cratons are largely con-
cealed, while the southern margin of the São Francisco
Craton is in contact with the Passos, Socorro, and Guaxupé
nappes from the southern Brasília Belt (Figures 1(a) and
1(b)). This lack of exposed contacts with enclosing cratons
has hindered the unravelling of the tectonic evolution of
the belt. The southern Brasília Belt extends for c. 800 km
along the southwestern margin of the São Francisco Craton,
being segmented into west-verging nappes related to the con-
vergence with the Paranapanema Craton [45]. Collisional
tectonics (650–630Ma), exhumation of high-pressure
nappes and eclogites (610–605Ma), and final cooling (600–
580Ma) took place relatively early when compared to the
Ribeira Belt [45]. The contact with the Paranapanema Cra-
ton, the main cratonic reference to the southern and central
portions of the Ribeira belt, is concealed by Paleozoic sedi-
mentary rock units from the Paraná Basin (Figures 1(b)
and 1(c)), with its position delineated by geophysical studies
and deep borehole data [46]. The Congo craton is preserved
in present-day Africa, and its eastern boundary is covered by
Phanerozoic sedimentary rocks, precluding direct compari-
son with the Brazilian counterpart. The Luís Alves Terrane
(Figures 1(b) and 1(c)) is a small cratonic remnant composed
of Archean-Paleoproterozoic granulitic gneisses (2.7–2.0Ga.;
[47, 48]), with K–Ar hornblende and biotite ages between
2100 and 1700Ma, indicating that it was not reworked dur-
ing the Brasiliano/Pan-African Orogeny [49].

The Lancinha-Cubatão-Além Paraíba-Pádua strike-slip
shear zone represents the main tectonic boundary within
the orogen (Figure 1(c)). In the southern Ribeira Belt, this
composite shear zone separates terranes with metasedimen-
tary rock assemblages of Mesoproterozoic to early Tonian
depositional ages to the north (Apiaí and Embu terranes;
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Figure 1: (a) Simplified West Gondwana reconstruction. (b) Regional geological context of south-southeastern Brazil with the location of
the Ribeira Belt indicated by the red rectangle (adapted from Faleiros et al. [15]). (c) Simplified geotectonic map of the southern and central
portions of the Ribeira Belt with the location of the study area and of the samples CA29 and P33 (modified from Ricardo et al. [41]).
Geological units: Itaiacoca Group (Ic), Água Clara Formation (Ac), Lajeado Group (L), Votuverava Group (V), São Roque Group (Sr),
Serra do Itaberaba Group (It), Iporanga Formation (Ip), Socorro-Guaxupé Nappe (Sg), Capiru Formation (C), Turvo-Cajati Formation
(TCF), Itapeúna Suite (Ita), Piên Mafic-Ultramafic Suite (Pi), Rio das Cobras Formation (Rc), and Atuba Complex (At). The maps use
geographical coordinates in degrees (WGS-84 datum).
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Figure 1(b)) from terranes with Ediacaran depositional ages
(Curitiba and Costeiro-Oriental terranes; Figure 1(b)) to the
south [16, 41, 43, 44]. Ediacaran granites associated with
accretionary to postcollisional settings (ca. 630–560Ma)
are emplaced across the belt, cutting all terranes
(Figure 1(c)) (e.g., [50–54]).

The Apiaí Terrane (Figures 1(c) and 2), the focus of this
paper, is primarily composed of metasedimentary rock
assemblages, with restricted basement rocks dominated by
orthogneiss with zircon U–Pb ages between ca. 1780 and
1740Ma that outcrop in the cores of broad antiforms, with
subordinate Rhyacian rocks (ca. 2200Ma) [55].

The metasedimentary rock assemblages are grouped into
five major fault-bounded units of distinct ages and tectonic
settings (Figure 1(c)): Água Clara Formation (1590–
1470Ma), Votuverava Group (1490–1470Ma), Lajeado
Group (1200–880Ma), Itaiacoca Group (1030–910Ma),
and Iporanga Formation (590–580Ma) (Figure 1(c);
[42–44, 56–59]). Metamorphic conditions vary from lower
greenschist (chlorite zone) to amphibolite facies (kyanite
zone) with medium pressure (6–9 kbar) regime [22, 29,
58]. Ediacaran (630–560Ma) granites intruded all units from
the Apiaí Terrane (e.g., [50–54]).

3. Analytical Methods

3.1. Isogon Patterns. The isogon method generates lines join-
ing points of equal orientation of a foliation within a litho-
tectonic unit (Ramsay, 1967). For a heterogeneous simple
shear zone, the isogons should be subparallel to the shear
zone walls, as the foliation initially develops at an angle of
45° in relation to the zone, which decreases progressively
towards the shear zone interior (higher strain), although the-
oretically never reaching 0° [1, 60]. In transpressional zones,
the initial angles of the mylonitic foliation in relation to the
shear zone should be lower than 45°, and higher values are
predicted for transtensional zones (e.g., [61–64]). Distinct
angular relationships are possible for shear zones affecting
a preexisting fabric. We traced the foliation trajectories from
1 : 60,000 scale aerial photographs and satellite images, and
an isogon map was elaborated taking as reference the mean
orientation of the Ribeira shear zone (N80°E).

3.2. Finite Strain Quantification. Shape-preferred orientation
(SPO) determinations were carried out in eight oriented
samples including five samples of fine-grained metasedi-
mentary rocks and three metaconglomerate rock samples.
SPO results can be associated with the finite strain tensor if
the initial shape of the deformed objects was approximately
equidimensional, and there was no viscosity contrast
between the measured objects and their enveloping matrix.
For three metaconglomerate samples, clasts of three mutually
orthogonal sections were manually traced and then captured
in raster format by a scanner. In the case of fine-grained
mylonitic rock samples, thin section photomicrographs were
captured by a CCD camera coupled to a petrography micro-
scope. Thus, the fine-grained clasts were digitized using
CorelDraw® software. The images were converted in raster
format, whereby 2D shape quadratic tensors [65] of

deformed objects were calculated and the corresponding
strain ellipses with their respective long and short axes were
deduced by the inertia tensor method [65] using the SPO
software [66, 67].

The calculated sectional subsets (ellipses) were inte-
grated with the ELLIPSOID software [66] to calculate the
3D ellipsoid, the orientation of its principal axes (X, Y ,
and Z), and the shape parameters. The software calculates
an “incompatibility index” (√F%), which measures the
compatibility or misfit between the sectional ellipses (2D)
and the calculated 3D ellipsoid [68]. This parameter also
establishes if the sectional ellipses lead to a 3D hyperboloid
rather than an ellipsoid [67]. The fit is considered good if
√F < 10% and, it is ideal when values are √F = 0% [67].
The ellipsoid shape is described by the T parameter, when
T ~0 (X/Y = Y/Z) the shape is planar-linear (plane strain),
T < 0, (X > Y = Z) it is linear or prolate and T > 0
(X = Y > Z) the shape is planar or oblate. The anisotropy
intensity can be represented by the X/Z ratio or the anisot-
ropy degree parameter, P′, which ranges from 1 upwards
(sphere to ellipsoid; 1 to ∞) [69].

3.3. Kinematic Vorticity Analysis. The noncoaxiality of
deformation for a total of 15 tectonite samples cut in the
XZ section of the strain ellipsoid (perpendicular to the
foliation and parallel to the stretching lineation) was esti-
mated using the mean vorticity number (Wm; [70])
through two well-known methods: rigid porphyroclast
rotation (RP; [71, 72]) and the δ/β-method [72] using
the quartz crystallographic-preferred orientation previously
published in [22].

For the RP method, porphyroclasts were digitized using
the CorelDraw® software with at least 300 grains per sample
to ensure a sound statistical representation. These images
were processed using the SPO software [66] to calculate
the shape ratio and the angle between the major axis and
the foliation for each porphyroclast to construct a Wallis
plot [72]. This graphic representation allows the determina-
tion of the values of critical shape ratio (Rc), below which the
objects rotate continuously, and is essential to calculate the
mean vorticity number (Wm) using

Wm = R2
c − 1

R2
c + 1

: ð1Þ

The δ/β-method [72] correlates two geometrical data
from quartz crystallographic-preferred orientation (CPO)
and its oblique shape-preferred orientation (SPO). These
features provide the angle (β) between the shear plane and
the principal foliation in quartz [c]-axis CPO and the maxi-
mum angle (δ) between quartz oblique fabric and main foli-
ation in the thin section. The mean vorticity number is then
calculated using Equation (2) [72].

Wm = sin 2 δ + βð Þ: ð2Þ

The values of β and δ angles were measured from quartz
CPO data using MTEX codes developed in MATLAB
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environment [73] and statistically preferred orientation of
digitized recrystallized quartz grains analyzed in the SPO
software [66].

3.4. U–Pb Geochronology. U–Pb isotopic and trace element
data of zircon, monazite, xenotime, and titanite were col-
lected at the Isotopia Facility, Monash University (Australia),
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performed via laser ablation split stream inductively coupled
plasma mass spectrometer (LASS-ICP-MS) using an ASI
RESOLution 192nm laser ablation system coupled to a
Thermo Fisher iCAP TQ ICP-MS for measurement of U
and Pb isotopes and to a Thermo Fisher iCAP-Q ICP-MS
for measurement trace element concentrations. A detailed
description of the U–Pb–trace element analytical methods
is described elsewhere [33, 34]. Zircon 91500 [74], monazite
Madel [75], and titanite BLR [76] were employed as primary
standards to calibrate the U–Pb isotopic data. Zircons GJ1
[77], Plešovice [78], OG1 [79], and QGNG [80] were
employed as secondary standards and treated as unknowns
during zircon U–Pb analyses. Monazite 44069 [81] and tita-
nite OLT [82] were employed as secondary standards and
treated as unknowns during monazite/xenotime and titanite
U–Pb analyses. All the secondary standards yielded similar
results to those from reference values as presented in the sup-
plementary material (available here). The international glass
NIST610 was employed as primary standard for trace ele-
ment analyses, and Si, Ce, and Y were employed as internal
standards for titanite, monazite, and xenotime, respectively,
considering the stoichiometric molar proportion. NIST612,
BCR2, and ATHOwere employed as secondary trace element
standards and treated as unknowns to evaluate the data
reproducibility and accuracy. All standard results agree with
recommended values, yielding an accuracy of 1–5% com-
pared to the reference values (see supplementary material
(available here)).

Data reduction was performed with Iolite 4 [83, 84]
using the in-built U–Pb and trace element data reduction
schemes by modelling the down-hole fractionation with a
smoothed cubic spline. U–Pb diagrams and final ages were
calculated using IsoplotR [85]. Ages and uncertainties are
presented with 2 σ level of confidence with final ages pre-
sented as x ± ∣y ∣ , with x and ∣y ∣ representing the age
(Ma) and the studentized error stated at 95% confidence,
respectively. Common-Pb correction was solely applied for
titanite U–Pb data from sample CA29 following procedures
described elsewhere [34, 86, 87]. This procedure involves
calculating the natural inverse isochron with all reliable data
in the Tera-Wasserburg diagram. The lower intercept age is
used to calculate the initial 207Pb/206Pb from the Pb evolu-
tion model of Stacey and Kramers [88] with multiple inter-
actions until no further significant change. In this case, the
initial 207Pb/206Pb was established after three interactions.
Rare-earth element concentrations were normalized to

chondrite following the reference values from McDonough
and Sun [89].

Additional in situ monazite dating from sample M214C
(garnet-biotite mylonitic schist) was performed at the
Geochronological Research Center of the Institute of Geos-
ciences, University of São Paulo, Brazil, using a Photon-
Machines Analyte G2 193nm excimer laser ablation system
coupled with a Thermo Scientific Neptune ICP-MS. The
experiments were performed with 7 J.cm-2

fluency, 6Hz rep-
etition rate, 19μm spot-size, and 40 s ablation. Monazite
44069 was employed as primary standard [81, 90]. U–Pb
diagrams and final ages were calculated using IsoplotR
[85]. Ages and uncertainties are presented with 2 σ level of
confidence with final ages presented as x ± ∣y ∣ , with x and
∣y ∣ representing the age (Ma) the studentized error stated
at 95% confidence, respectively.

4. Results

4.1. Macroscopic to Microscopic Structures. The regional
shear zones from the southern Ribeira Belt can be divided
into five groups based on their orientation and kinematics:
NE-trending dextral strike-slip, NE-trending dip-slip, ENE-
trending strike-slip, NNE-trending strike-slip shear zones,
and NE-trending sinistral strike-slip (Table 1; Figures 2–4).
These shear zone groups are classified in types 1 to 5
(Table 1; Figure 3), without chronological implications.
The NE-trending strike-slip shear zones are orogen-parallel
structures, including the first-order Lancinha and Cubatão
shear zones, terrane bounding structures such as the Taxa-
quara, Serra do Azeite, and Itapirapuã shear zones, and
intraterrane structures like the Caucaia, Carumbé, and
Putunã shear zones (Figure 1(c)). The other three groups
of shear zones are well-developed in the Apiaí Terrane,
where the geometrical relationships between the NE-
trending dip-slip and ENE-trending dextral strike-slip shear
zones develop a dextral S-C′-type shear band macrostruc-
ture (Figure 1(c)). Although interconnected, these shear
zones present complex structural patterns of interactions
and variation in the metamorphic conditions. Type 5 shear
zones exclusively occur south of the Lancinha and Cubatão
shear zones and will not be considered in this work.

4.1.1. NE-Trending Strike-Slip Shear Zones (Type 1). Type 1
shear zones occur north of the Lancinha and Cubatão shear
zones and affect the Apiaí, Embu, and São Rock terranes,

Table 1: Shear zone groups present in the southern Ribeira Belt based on geometry and kinematics.

Type Shear zone group Sense of shear Orientation Examples

1 NE-trending strike-slip Dextral N60E Lancinha, Cubatão, Caucaia, Itapirapuã

2 NE-trending dip-slip Top to SE N35E Figueira, Agudos Grandes, Piririca, Batatal

2 NE-trending dip-slip Top to NW N35E Ivaporunduva

3 ENE-trending strike-slip Dextral N80E Ribeira

4 NNE-trending strike-slip Sinistral N10E Morro Agudo

5 NE-trending strike-slip Sinistral N60E Serra do Azeite, Putunã
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and their boundaries. They have a preferential N60°E orien-
tation and cut most other structures including types 2 and 3
shear zones. The Lancinha shear zone has a NW-steep-
dipping mylonitic foliation and a SW plugging subhorizon-
tal stretching lineation (Figures 3 and 4). In its northeastern
domain, macroscopic (regional pattern of foliation inflec-
tion; Figure 2) and microscopic kinematic indicators such
as S-C structures, rotated porphyroclasts, and porphyro-
blasts consistently indicate dextral shear sense (Figures 5(a)
and 5(b)). Similarly, dextral shear sense has been reported
in the southwestern domain of the Lancinha shear zone on
the basis of macroscopic and hand-sample scale structures
[91, 92]. Conversely, Conte et al. [26] describe hand-
sample and microscopic sinistral indicators in a few out-
crops from the central and southwestern domains of the
Lancinha shear zone.

Microstructures and grain-scale deformation mecha-
nisms recorded in quartz mylonites suggest variable thermal
regimes along the Lancinha shear zone [26]. Deformation in
quartz mylonites from the southwestern and central
domains of the shear zone was accommodated by disloca-
tion creep, achieving bulging recrystallization and combined
subgrain rotation and grain boundary migration recrystalli-
zation, respectively [26].

The Itapirapuã shear zone presents an average N40E/sub-
vertical orientation over an along strike distance of ~166km
(Figure 1(c)). It is dominated by a subvertical NE-trending
mylonitic foliation with a subhorizontal NE-trending stretch-
ing lineation, but its northern termination splays in a set of
NNE-trending sinistral and NE-trending and ENE-trending
dextral transcurrent shear zones [31]. Domains between shear
zones present regional normal-horizontal folds outlined by
metalimestone and quartzite bodies [31].

Deformation microstructures in quartz and feldspar
aggregates from mylonite rocks from the Itapirapuã shear
zone indicate dominance of distinct deformation mecha-
nisms in individual samples of metasedimentary and orthog-

neiss rocks of contrasting metamorphic grades [31].
Deformation in quartz aggregates from phyllite samples
was accommodated by intracrystalline deformation and
dissolution-precipitation creep in low-temperature samples,
combined subgrain rotation and grain boundary migration
recrystallization in medium temperature samples and grain
boundary migration in high-temperature paragneiss samples
[31]. Feldspar porphyroclasts of all sheared lithotypes pres-
ent evidence of intracrystalline deformation (undulose
extinction, deformation lamellae, deformation twinning,
and twin boundary migration recrystallization), with σ
-type and δ-type kinematic indicators [31].

Quartz mylonites occurring at northeastern portion of
the Lancinha shear zone, at its junction with the Ribeira
shear zone, present rare millimeter-sized, moderately elon-
gated ribbon quartz grains with an aspect ratio ranging from
2 : 1 to 5 : 1 set in a matrix of coarse-grained recrystallized
grains. Ribbon and recrystallized quartz grains show undu-
lose extinction. Recrystallized grains represent ~80% volume
of the rock, being very irregular in shape and size (average
grain sizes of 139 ± 52μm), commonly presenting lobate
boundaries (Figure 5(c)). Quartz-ribbons locally show rela-
tively small subgrain structures developed towards grain
boundaries, being commonly associated with polygonal,
recrystallized grains of the same grain size, suggesting a sub-
grain rotation contribution or overprint. New grains formed
by bulging recrystallization locally occur (Figure 5(c)).

Mylonitic granites present saussuritized feldspar por-
phyroclasts in a recrystallized matrix segregated in an anas-
tomosing net of interconnected quartz and biotite-rich
domains (Figure 5(d)). Feldspar grains are fragmented to
rounded, reach up to 3mm in size, and present intra- and
intergranular microfractures and common undulose extinc-
tion (Figure 5(d)). The matrix is dominated by biotite-rich
aggregates, forming lepidoblastic shear bands. Quartz aggre-
gates occur in restricted monomineralic lenses in the matrix
and present interlobate granoblastic microstructure.
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−48−49
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0

Figure 3: Simplified structural map showing the main groups of shear zones. The map uses geographical coordinates in degrees (WGS-84
datum).
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4.1.2. NE-Trending Dip-Slip Shear Zones (Type 2). Type 2
shear zones are essentially intraterrane structures with vari-
able orientation between N10 and 60°E with an average of
N35°E. The Figueira, Agudos Grandes, Piririca, Ivaporun-
duva, and Batatal shear zones are the main examples of this
group (Figures 3 and 4), which also include third-order
thrust faults along the contacts between the formations of
the Lajeado Group (Figures 2–4).

Geometrical relationships and orientation patterns sug-
gest that type 2 shear zones are coeval with horizontal-
normal folds with NE-trending traces present in the Lajeado
and Votuverava groups (Figures 2–4). The Lajeado Group
macrostructure consists of large-scale open synclines and
anticlines with NE-trending subhorizontal axes and associ-
ated NW-steep-dipping axial-plane foliation (Figure 2). This
foliation in metapelitic rocks is a continuous cleavage (Sc)
defined by oriented sericite, chlorite, and elongated quartz
(Figure 6(a)). Chloritoid porphyroblasts are late-kinematic

in relation to the Sc foliation (Figure 6(a)). The metamorphic
mineral assemblage indicates lower greenschist facies meta-
morphic conditions for the Lajeado Group rocks. The Votu-
verava Group comprises isoclinal folds (Figure 6(b)) with
NE-trending axes and axial-plane continuous schistosity
(Sc) dipping steeply northwestwards (Figure 4). The Sc schis-
tosity in metapelites to the north of the Ribeira shear zone is
primarily defined by sericite, chlorite, biotite, and elongated
quartz, which is parallel to subparallel to the sedimentary
bedding (Figure 6(b)). Mineral assemblages indicate lower
greenschist facies metamorphic conditions varying from
chlorite to biotite zones for rocks to the north of the Ribeira
shear zone (Figure 4). To the south of the Ribeira shear zone,
higher-grade metamorphic zones are represented by garnet,
staurolite, and kyanite zones (Figure 4).

The NE-trending dip-slip shear zones and related struc-
tures are deflected along the ENE-trending strike-slip shear
zones indicating regional-scale dextral kinematics for the
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latter (Figure 2). This pattern is also observed in the myloni-
tic foliations of the Figueira and Agudos Grandes shear
zones that dip steeply to NW (relicts) and NNW (deflected)
as an effect of the interaction between the two groups of
shear zones (Figure 4). The stretching lineation is dominant
of a high-angle in the dip-slip shear zones, although subhor-
izontal lineation in zones of interference with strike-slip
faults also occurs (Figure 4; Figueira, Agudos Grandes, and
Ivaporunduva shear zones).

Field and microscopic S-C structures and rotated por-
phyroclasts observed in type 2 shear zones indicate reverse
movement, with upper block transport to SE (Figure 6(c)).
On the other hand, the Ivaporunduva shear zone dips pri-
marily to SE and presents top-to-the-NW shear sense indi-
cators observed on the XZ section of the strain ellipsoid
(Figure 6(e)) and dextral shear sense indicators observed
on the horizontal YZ section (Figure 6(f)).

Tectonites associated with the NE-trending dip-slip
shear zones present the same lower greenschist facies meta-
morphic conditions of the less deformed host rocks from the
Lajeado and Votuverava groups. Sheared metasedimentary
rock deformed along the Figueira shear zone presents
millimeter-thick layers of quartz-rich cataclasite interlayered
with thin sericite-rich shear bands (Figure 6(d)). Cataclasite
layers present angular grains of quartz and subordinate feld-
spars randomly oriented, with a seriate variation of grain
sizes. Some larger quartz grains present undulose extinction
and recrystallized grains with sizes of 5-10μm along grain
boundaries and forming the matrix. The sericite-rich shear
bands present lepidoblastic texture defined oriented sericite,
chlorite, and elongated quartz grains (Figure 6(d)).

Quartz mylonites from the Ivaporunduva shear zone
present moderately flattened quartz porphyroclasts with
irregular undulose extinction and restricted aggregates of
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Figure 5: Structures and microstructures of rocks from the northeastern portion of the Lancinha shear zone observed on XZ sections of the
strain ellipsoid. (a) Dextral S-C structures in a mylonitic biotite schist with strained quartz veins (outcrop M173). (b) Dextral C′-type shear
band cleavage and completely recrystallized quartz aggregates in a mylonitic biotite schist (sample M173A). (c) Recrystallized aggregate of
quartz with interlobate granoblastic microstructure generated by grain boundary migration in a quartz mylonite (sample F42B). Localized
bulges along grain boundaries indicate a bulging recrystallization superposition. (d) Mylonitic granite with fractured feldspar porphyroclasts
in an anastomosing network of recrystallized matrix segregated in biotite-rich and quartz-rich domains (sample F46A). (e) Detail of quartz
aggregate with interlobate granoblastic microstructure and restricted bulges formed by grain boundary migration and bulging
recrystallization, respectively (sample F46A).
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recrystallized grains (5-10μm) along grain boundaries
(Figure 6(g)).

4.1.3. ENE-Trending Strike-Slip Shear Zones (Type 3). The
Ribeira shear zone is the main example of the type 3 shear
zones, with N80°E mean orientation, subvertical mylonitic
foliation, and dominant subhorizontal stretching lineation
(R1 and R3 domains, Figures 3, 7(a), and 7(b)). Abundant
oblique to down-dip stretching lineations occurs at the inter-
ference zone between the Ribeira, Figueira, and Agudos
Grandes shear zones (Figure 4).

Type 3 shear zones show macroscopic, mesoscopic, and
microscopic dextral kinematic indicators observed in the hor-
izontal plane (XZ section of the strain ellipsoid). The regional
inflection of structures around the Ribeira shear zone shows a
major dextral horizontal movement (Figures 2–4), with a cal-
culated displacement of ~50 km (see Figure 1(c); [93]).
Rotated fragments and boudins and mesoscopic and micro-
scopic S-C structures also indicate a dextral shear sense
(Figures 7(b) and 7(c)). The R2 domain of the Ribeira shear
zone, where it superposes type 2 shear zone fabrics
(Figure 4), is dominated by high-angle stretching lineation
(Figure 4), which shows reverse shear sense criteria observed

in vertical YZ planes of both metasedimentary rocks of the
Votuverava Group (see Figure 4(d) of Salazar et al. [94]) and
granitic rocks from the Itaoca Granite, where the north block
ascended in relation to the south block.

The Ribeira shear zone controls the metamorphic zona-
tion of the Apiaí Terrane, limiting a lower greenschist facies
domain to the north (chlorite zone rocks), and a middle
greenschist to amphibolite facies domain to the south (bio-
tite, garnet, staurolite, and kyanite zone rocks) (Figure 4;
[22, 58]). Mylonites along the highest deformation domain
of the shear zone interior vary from chlorite to garnet zone
conditions southwards, indicating an increase in the defor-
mation temperature [22]. The variation in metamorphic
conditions is accompanied by changes in the dynamic
recrystallization regimes in quartz mylonites with dominant
bulging recrystallization in the chlorite zone mylonites
(Figure 7(d)), subgrain rotation in the biotite zone mylonites
(Figure 7(e)), and grain boundary migration in the garnet
zone mylonites (Figure 7(f)) [22].

4.1.4. NNE-Trending Strike-Slip Shear Zones (Type 4). The
Morro Agudo shear zone is the main example of type 4 shear
zones, with an approximateN10°Eorientation and subvertical
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Figure 6: (a) Slate from the Lajeado Group showing sedimentary bedding, cross lamination, a continuous cleavage (Sc), and millimetric
porphyroblasts of chloritoid (Cld). (b) Isoclinal fold of sedimentary bedding and parallel continuous cleavage (Sc) in a rhythmic
metapelite (phyllite) form the Votuverava Group to the north of the Ribeira shear zone. (c) Protomylonitic phyllite from the Figueira
shear zone showing a mylonitic foliation (Sm) and top-to-the-SE C′-type shear band cleavage (outcrop F196). (d) Alternating bands
of quartz-rich cataclasite and lepidoblastic sericite-rich mylonitic shear bands (Sm) in a protomylonitic phyllite from the Figueira
shear zone (sample F196). (e) Dextral S-C structure in a mylonitic phyllite from the Votuverava Group along the Ivaporunduva
shear zone. (f) C-type shear band cleavage indicating top-to-the-NW sense of shear in mylonitic biotite-sericite schist from the
Ivaporunduva shear zone (sample SZ85A). (g) Quartz mylonite from the Ivaporunduva shear zone showing elongated quartz
porphyroclasts with undulose extinction and aggregates of very fine-grained recrystallized grains along their boundaries, formed by
bulging recrystallization (BLG). Images (c) to (g) represent the XZ sections of the strain ellipsoid.
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foliation (Figures 2–4). The Morro Agudo shear zone shows
regional patterns of foliation deflection, and mesoscale S-C
structures and foliation geometry indicative of sinistral shear
sense (Figure 8(a)). Related rocks are dominated by breccia
and cataclasite, which are well-developed from granitic proto-
liths of the Três Córregos Suite (Figures 2 and 8(b)–8(d)). The
suite is cut by a breccia domain with angular fragments of the
host ultracataclasite set in a fluorite-rich matrix (Figure 8(d)).

4.2. Isogon Patterns. The isogon map was constructed using
the average orientation of the Ribeira shear zone (N80°E) as
reference (Figure 9). The angle between the major NE-
trending structures is up to 60° in domains distant from
the Ribeira shear zone and is progressively inflected down
to 10° towards its core (Figures 2 and 9). The isogons are dis-
turbed around type 2 shear zones, indicating an obliquity
between the associated mylonitic foliation and these shear
zones.

There is a strong parallelism between the Ribeira shear
zone and the 10° to 25° isogons, primarily in the domain to
the north of the shear zone. The 25° isogon remains parallel
to the Ribeira shear zone for a long distance, but it is
deflected anticlockwise to the NE-trend in the interference
zone with subsidiary type 2 shear zones (Figure 9). The iso-
gons show regular ENE-trending orientation in the domain

south of the Ribeira shear zone, maintaining the parallelism
with it and the Lancinha shear zone. Nevertheless, an anom-
alous pattern occurs in the Anta Gorda anticlinorium, where
the isogons show a NW-trending orientation (Figure 9).

4.3. Finite Strain Data. Finite strain results for eight samples
are presented in Figure 10 with their respective ellipsoid
shape classification according to Jelinek [95]. The calculated
finite strain ellipsoids show results with low values of √F
between 0.9 and 7.5%, indicating good elliptical adjustment
and data quality (Table 2).

The new data show calculated NE-trending foliations
with poles (represented by the Z-axes) gently plunging to
SE and NW, which is very close to those measured in the
field (compare Figures 4 and 10). The maximum deforma-
tion ratios (RX/Z) are dominant of low to intermediate inten-
sity with RX/Z values between 1.3 and 2.8, with some high
values of 5.7 and 8.9 (Table 2).

These new data, when combined with published finite
strain data from Campanha and Sadowski [93], result in a
dataset with 22 quantified samples covering types 2 and 3
shear zones and internal folded domains (Table 2;
Figure 11). Samples from the Ribeira shear zone present
slightly to strongly oblate-shaped ellipsoids (M215, M183,
M206A, M51, and F198; Figures 10 and 11). Calculated X
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Figure 7: Images showing structures and microstructures of mylonitic rocks from the Ribeira shear zone observed on XZ sections of the
strain ellipsoid. (a) Dextral S-C′ structure in a mylonitic schist. (b) Anastomosing foliation in a mylonitic schist. (c) Dextral C-type shear
band cleavage and mica-fish in a mylonitic chlorite-biotite schist from the biotite zone. (d) Bulging recrystallization microstructures in a
mylonitic chlorite phyllite from the chlorite zone. (e) Recrystallized matrix of quartz formed by subgrain rotation recrystallization in a
quartz mylonite from the biotite zone. (f) Interlobate quartz aggregate formed by grain boundary migration in a quartz mylonite from
the garnet zone.
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-axes (stretching lineation) are subhorizontal, oblique, and
down-dip plunges, with a strong correlation with the field
structural domain R1 to R3 (Figure 10).

Samples from most of type 2 shear zones have slightly to
strongly prolate-shaped ellipsoids and down-dip X-axes
(stretching lineations) (Figure 11), corroborating field-
based structural data. Samples M193A and M193B (pro-
late-shaped) and IP538 (oblate-shaped) from the Piririca
shear zone have calculated subhorizontal stretching linea-
tions (Figures 10 and 11), indicating strike-slip movement.

Samples obtained from low-grade metasedimentary
rocks in the internal domain of the Lajeado Group show

low strain ratios (1, 28 < X/Z < 1:91), plane strain to
prolate-shaped strain geometry, and subhorizontal or
down-dip X-axes (Figure 11).

4.4. Kinematic Vorticity

4.4.1. δ/β-Method. Overall, there is a predominance of cross-
girdle quartz CPO with vorticity angle (β) from 15° to 25° in
the Ribeira shear zone samples (Figure 12), with one sample
being mostly symmetrical with β of ~0° (M160) and one
mostly monoclinic (single girdle) with β of ~18°. Samples

with clear orthorhombic fabric define a Wδ/β
m interval
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Figure 8: Structures and microstructures of cataclastic rocks from the Morro Agudo shear zone observed on XZ sections of the strain
ellipsoid. (a) Brecciated protomylonite showing sinistral S-C structures. (b) Brecciated tectonite derived from granite with angular
fragments of ultracataclasite in a fluorite-rich matrix (sample F1C). (c) Detail of ultracataclasite cut by a millimeter-thick breccia domain
with fluorite-rich matrix (sample F1C). (d) Detail of ultracataclasite composed of rare angular grains of quartz and saussuritized feldspar
(up to 0.1mm in size) in a cryptocrystalline matrix (sample F1C).
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spanning 0.41–67, whereas two samples (F34D and M214C)
with cross-girdles have Wδ/β

m spanning 0.93-99 due to the
higher δ angle (i.e., the maximum angle between quartz obli-
que fabric and main foliation defined in thin section)
(Table 3). Two samples with monoclinic fabric (M161H
and M23) have high Wδ/β

m yielding 0.93 and 0.99 with clear
dominance of simple shear contribution as expected (e.g.,
Hunter et al., 2018).

4.4.2. Rigid Porphyroclast Method. Mylonite samples related
to the Ribeira shear zone (type 3) generally define similar
WRP

m values (Figure 13; Table 3). For instance, five out of
seven samples are within a WRP

m range of 0.53–0.79, indi-
cating ~65–40% of pure shear contribution. The remaining
two samples (M215 and M193A) have comparatively higher
WRP

m of ~0.76–0.88 and~0.82–0.89, suggesting a greater
contribution of simple shear.

Vorticity results from types 1, 2, and 4 shear zones also
define a similar WRP

m range spanning 0.57–0.80
(Figure 14). These mean vorticity numbers are very similar
to those from the majority samples of the Ribeira shear zone,
indicating ~65–40% of pure shear contribution.

4.5. U–Pb Geochronology and Trace Element Concentrations.
To better constrain metamorphic events and the timing of
shearing of the southern Ribeira Belt, we applied U–Pb iso-
tope systematics to minerals from mylonitic rocks of varied
metamorphic grades from the Itapirapuã and Ribeira shear
zones (types 1 and 3 shear zones, respectively). Samples
P33 (mylonitic paragneiss) and CA29 (mylonitic phyllite)

from the Itapirapuã shear zone (Figure 1(c)) display con-
trasting metamorphic conditions (Table 4) and were chosen
to investigate if there is more than one deformational/meta-
morphic episode recorded along with this type 1 structure.
Samples M214C (mylonitic garnet-biotite schist) and
DC59A from the Ribeira shear zone (type 3 structure) were
collected along its main segment and at the interference
domain with the Lancinha shear zone (type 2 structure),
respectively (Figure 2). We analyzed monazite and xenotime
grains from sample P33, titanite from sample CA29, mona-
zite from sample M214C, and zircon from sample DC59A.
The geochronological results are summarized in Table 4,
and the complete dataset is presented in supplementary
material (available here).

Sample P33 is a mylonitic paragneiss with millimetric
granitic lenses (leucossome) molded by schistose domains
composed of biotite, quartz, muscovite, fibrolitic sillimanite,
and minor ilmenite. Monazite grains are generally smaller
than 50-60μm, often displaying fractures and sector zoning
in backscatter electron images (Figure 15(a), inset). A total
of 38 monazite U–Pb–REE data were collected from sample
P33, from which 37 pass the filtering criteria of maximum
±10% discordance. Monazite REE-chondrite normalized
profiles define a coherent chemical pattern with La deple-
tion, dominance of LREE, and negative Eu anomalies with
Eu/Eu∗ spanning 0.18-0.33 (Figure 15(b)). Most of these
monazite grains (N = 34) yield a concordia age of 675 ± 7
Ma (MSWD = 1:0, Figure 15(c)), with few U–Pb data from
darker domains of the sector zoning (see Figure 15(a), inset)
defining an average 206Pb/238U age of 825 ± 24Ma
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(MSWD = 0:6, N = 3) (Figure 15(c), inset). Xenotime is rare
in sample P33, generally presenting anhedral shapes, frac-
tures, and sector zoning in backscatter electron images
(Figure 15(d)). The dark zones generally present higher Mg
and La, but it is not consistent for all spots, possibly due to
mixing with other zones. The xenotime REE-chondrite nor-
malize profiles are similar to all analyzed spots, with negative
Eu anomaly (Eu/Eu∗ ranging from 0.30 to 0.38) and strong
HREE enrichment with (Gd/Yb)N spanning 0.04-0.08
(Figure 15(e)). Most of the xenotime U–Pb data (N = 8),
generally related to brighter zones, yield a concordia age of
829 ± 18Ma (MSWD = 0:4, Figure 15(f)). This age is very
similar to that recorded by a few of the sector zones in mon-
azite grains. However, three xenotime U–Pb data related to
darker sector zones yield an average 206Pb/238U age of 721
± 25Ma (Figure 15(f), inset).

Sample CA29 is a greenish grey mylonitic phyllite com-
posed of quartz, phengite, biotite, chlorite, titanite, ilmenite,
and minor rutile and epidote. The sample presents alternat-
ing quartz-rich and mica-chlorite-rich lenses parallel to an
anastomosing mylonitic foliation (Sm) defined by preferred
orientation of micas and chlorite. Porphyroblastic titanite
grains are euhedral to subhedral presenting asymmetric
strain shadows indicating dextral shear sense (Figure 16(a),

inset). We collected a total of 42 titanite U–Pb–REE data
from sample CA29, from which 13 data are spurious and
six are over discordant (greater than 2 σ) in relation to the
main trend defined in the Tera-Wasserburg diagram. The
remaining titanite grains (N = 23) have concave REE-
chondrite normalized profiles with dominance of MREE
(Figure 16(a)) and can be chemically classified into two
groups based on the (La/Sm)N and (Gd/Yb)N ratios and
the MREE content. One group (Figure 16(a), green lines)
has the higher MREE content between 326.6 and
926.6 ppm and steeper LREE and HREE trends with (La/
Sm)N and (Gd/Yb)N spanning 0.09–0.17 and 3.08–5.82,
respectively. The other group (Figure 16(a), red lines) has
comparatively lower MREE content between 188.9 and
370.8 ppm and shallower LREE and HREE trends with (La/
Sm)N and (Gd/Yb)N spanning 0.16–0.37 and 1.90–4.17,
respectively. Despite being chemically distinct, these titanite
grains define a single inverse isochron in the Tera-
Wasserburg diagram yielding a lower intercept age of 896
± 39Ma (MSWD= 1:8, Figure 16(b)) with an initial
207Pb/206Pb ratio of 0.902 calculated with Stacey and Kra-
mers [88].

Sample M214C is a mylonitic schist composed of garnet
and biotite porphyroblasts in a matrix segregated in quartz-

Table 2: Finite strain results for samples of dip-slip and strike-slip shear zones and internal domains of the Apiaí Terrane. Shear zone and
Group are abbreviated to “s.z.” and “G.,” respectively.

Sample Shear zone or unit XY plane
Axes values Axes orientations

X/Z X/Y Y/Z K (F)1/2 (%)
X Y Z X Y Z

This work

M183 Ribeira s.z. 260/69 0.84 1.39 2.87 062/40 280/42 170/21 1.85 1.29 1.44 0.65 6.3

M206 Ribeira s.z. 069/62 0.59 0.87 1.75 225/38 095/39 339/27 1.72 1.22 1.42 0.52 4.3

M51 Ribeira s.z. 227/65 0.61 0.98 2.88 352/60 235/15 137/25 2.17 1.27 1.71 0.37 7.5

F198 Ribeira s.z. 259/69 0.14 0.15 1.13 076/07 328/68 168/20 2.81 1.03 2.73 0.02 0.9

M215 Ribeira s.z. 246/60 0.30 0.64 1.46 044/34 277/41 156/30 2.21 1.46 1.51 0.89 3.8

M186 Ivaporunduva s.z. 257/85 0.97 1.62 2.50 308/84 076/03 167/04 1.60 1.29 1.24 1.20 4.5

M193A Piririca s.z. 063/23 0.63 1.12 1.43 216/11 122/20 333/66 1.50 1.33 1.13 2.60 4.6

M193B Piririca s.z. 024/30 0.46 1.15 1.34 029/03 121/30 294/59 1.71 1.58 1.08 7.41 4.9

Campanha and Sadowski [93]

AP001 Lajeado G. 179/71 1.46 1.00 0.64 258/32 114/52 359/19 2.30 1.46 1.56 0.81 —

AP065 Dip-slip s.z. 001/30 1.31 1.00 0.75 012/30 279/02 181/60 1.74 1.31 1.33 0.93 —

AP117 Lajeado G. 300/47 1.32 1.00 0.83 023/08 286/46 120/43 1.59 1.32 1.20 1.62 —

IP060 Lajeado G. 307/70 1.29 1.00 0.78 310/70 217/03 127/20 1.65 1.29 1.28 1.03 —

IP064 Lajeado G. 312/87 1.46 1.00 0.88 222/05 015/84 132/03 1.67 1.46 1.14 3.32 —

IP071 Lajeado G. 250/81 1.13 1.00 0.88 180/62 336/26 070/09 1.28 1.13 1.14 1.02 —

IP253 Dip-slip s.z. 312/22 1.12 1.00 0.83 284/20 017/10 132/68 1.35 1.12 1.20 0.62 —

IP538 Piririca s.z. 311/80 2.41 1.00 0.27 224/20 020/68 131/10 8.93 2.41 3.70 0.52 —

IP808 Lajeado G. 300/82 1.37 1.00 0.72 030/12 240/75 120/08 1.91 1.37 1.39 0.95 —

IP928 Lajeado G. 226/32 1.20 1.00 0.92 179/27 280/20 046/58 1.31 1.20 1.09 2.24 —

IP931 Dip-slip s.z. 349/63 1.35 1.00 0.93 042/50 275/28 169/27 1.45 1.35 1.08 5.07 —

IP939 Agudos Grandes s.z. 342/88 3.99 1.00 0.69 025/72 255/12 162/02 5.74 3.99 1.45 6.78 —

ME004 Lajeado G. 345/83 1.32 1.00 0.70 068/50 262/47 165/07 1.87 1.32 1.43 0.75 —

P26 Figueira s.z. 294/64 1.82 1.00 0.65 348/50 218/28 114/26 2.78 1.82 1.54 1.55 —
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rich layers with interlobate granoblastic microstructure and
lepidoblastic biotite-muscovite-rich layers. We collected a
total of 19 monazite U–Pb data from sample M214C, of
which 13 pass the filtering criteria of maximum ±10% dis-
cordance. In short, these monazite grains yield a concordia
age of 579 ± 3Ma (MSWD = 1:9) and a statistically sound
average 206Pb/238U age of 580 ± 4Ma (MSWD = 1:2,
Figure 16(c)).

Sample DC59A is a fine-grained mylonite composed of
quartz (95 vol. %), muscovite, and opaque oxide minerals.
Quartz grains are elongated, defining the lineation and have
irregular, lobate to serrated boundaries. Recrystallized grains
define an oblique foliation indicating dextral sense of shear,
and themicrostructures are compatible with a recrystallization
mechanism dominated by grain boundary migration. Zircon
grains from sample DC59A have dark grey internal structures
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in the cathodoluminescence images (Figure 16(d)), varying
from sector to oscillatory zoning. From the 47 zircon U–Pb
data collected, a total of 31 data pass the filtering criteria of
maximum ±10% discordance. A subset of 19 zircon data with
predominant Th/U around 0.1 defines a discordia trend in the
Wetherill diagram yielding an upper intercept age of 827 ± 14
Ma (MSWD= 1:2) with lower intercept anchored to zero
(Figure 16(d)).

5. Discussion

5.1. Thermal Regimes of Shear Zones from the Ribeira Belt.
Microstructures and inferred deformation mechanisms
recorded in shear zone-related rocks from the Ribeira Belt
indicate that individual shear zones operated across a range
of crustal levels. A transitional northeastward increase in
metamorphic conditions from lower greenschist (Lancinha
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segment) to granulite facies metamorphic conditions (Além
Paraíba-Pádua segment) is recorded in mylonitic rocks from
the first-order NE-trending dextral strike-slip structures.
The variation in metamorphic grade is accompanied by
changes in recrystallization mechanisms of quartz and feld-
spar aggregates ([15, 24, 26, 35, 37, 40], this work). Deforma-
tion in quartz aggregates was accommodated by dislocation
creep achieving bulging recrystallization (300–400°C) and
combined subgrain rotation and grain boundary migration
(~450–500°C) (Figures 5(b)–5(e)) in the southwest and
northeast portions of the Lancinha shear zone, respectively
([26], this work). However, feldspar aggregates were
deformed by cataclastic flow (Figure 5(d)) or were replaced
by chlorite-epidote-sericite-biotite hydrothermal products.
Deformation in quartz aggregates along the Cubatão seg-
ment was recrystallized by combined subgrain rotation
and grain boundary migration and feldspar aggregates by
dissolution-precipitation creep at deformation conditions
of 460–520°C and 4.5–9.5 kbar [37]. Quartz aggregates
along the Além Paraíba-Pádua segment were deformed
under high-temperature conditions achieving pervasive
grain boundary migration recrystallization while feldspar
aggregates underwent grain size reduction by dynamic
recrystallization at thermal conditions from 610 ± 20°C to
740 ± 20°C [24].

Quartz aggregate microstructures present in samples
from the Figueira and Ivaporunduva shear zones, represen-
tative of NE-trending dip-slip (type 2) structures, indicate
dominant bulging recrystallization (Figures 6(d) and 6(f)),
generally compatible with deformational conditions of
~300–400°C [96, 97]. This inferred thermal regime is cor-
roborated by syn-kinematic metamorphic mineral assem-
blages of sheared metasedimentary rocks, primarily
composed of sericite–quartz–chlorite (Figueira shear zone)
and sericite–quartz–chlorite–biotite (Ivaporunduva shear

zone), which are the same assemblages present in the less
deformed host rocks affected by regional metamorphism
(Figure 4).

Available geothermobarometric results from the Ribeira
shear zone, the main example of ENE-trending dextral
strike-slip (type 3) shear zones, indicate deformational con-
ditions ranging from ∼300°C (chlorite zone) in the northern
domain to ∼630°C and 5-7 kbar (garnet zone) in the south-
ern domain (Figure 4; [22]). The variation in metamorphic
conditions was accompanied by changes in the dominant
recrystallization mechanisms of quartz aggregates along the
mylonite zone: bulging recrystallization (Figure 7(d); chlo-
rite zone, 300-410°C), subgrain rotation recrystallization
(Figure 7(e); biotite zone, 410–520°C), and grain boundary
migration recrystallization (Figure 7(f); garnet zone,
>520°C) [22]. The available data indicate that the main
deformational episode along the Ribeira shear zone was coe-
val with the regional metamorphism recorded in less
deformed host rocks (Figure 4). The higher metamorphic
grade in the domain south of the shear zone is a result of a
subordinate component of vertical displacement associated
with a major horizontal displacement of 50 km along the
shear zone [22].

Sheared granitic rocks along the Morro Agudo shear
zone, the main example of NNE-trending sinistral strike-
slip (type 4) shear zones, are dominated by brittle products
(breccia, cataclasite, and ultracataclasite) with quartz and
feldspar deformed by cataclastic flow (Figures 8(a)–8(d)),
suggesting temperatures below ~250–280°C (e.g., [96–98]).
This thermal condition is recorded in Ediacaran granitic
rocks (Figure 2) and contrasts with that inferred for a host-
ing mylonitic paragneiss along the Itapirapuã shear zone
(sample P33, 680–690°C [31]; Table 4). These contrasting
metamorphic conditions suggest the existence of deforma-
tion episodes of distinct ages (see Section 5.3).

Table 3: Vorticity results from rigid porphyroclast and δ/β-methods for samples from types 1 to 4 shear zones.

Sample Shear zone
Rigid porphyroclast method δ/β-method
Rc
min

Rc
max

Wm
min

Wm
max

δ (°) β (°) Wδ/β
m Quartz CPO fabric Pure shear (%)

M160 Ribeira — — — — 1.2 0 0.41 Crossed girdle 72

M14C Ribeira — — — — 1.3 20 0.67 Crossed girdle 53

F34D Ribeira — — — — 9.3 25 0.93 Single girdle 24

M161H Ribeira — — — — 16.5 18 0.93 Single girdle 24

M23 Ribeira — — — — 29.9 13 0.99 Single girdle 09

M198A Ribeira — — — — 2.5 15 0.57 Crossed girdle 61

M214C Ribeira — — — — 23 20 0.99 Crossed girdle 09

M206 Ribeira 2.2 2.8 0.66 0.77 — — — — 54-44

M51 Ribeira 2.3 2.9 0.68 0.79 — — — — 52-42

F198 Ribeira 1.8 2.3 0.53 0.68 — — — — 64-52

M215 Ribeira 2.7 3.7 0.76 0.86 — — — — 45-34

F46A Lancinha 1.9 2.5 0.57 0.72 — — — — 61-49

F48 Lancinha 2.0 2.7 0.60 0.76 — — — — 58-45

F196 Figueira 2.0 3.0 0.60 0.80 — — — — 58-41

F01E Morro Agudo 2.0 2.7 0.60 0.76 — — — — 58-45
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In summary, available microstructural and metamorphic
data from individual shear zones of the southern Ribeira Belt
indicate distinct thermal conditions from subgreenschist to
amphibolite facies conditions (<250–280 to ~630°C), with
a general correlation with the regional metamorphic condi-
tions recorded in less deformed host rocks.

5.2. Deformational Regimes. At least two endmember models
can explain the regional shear zone and tectonic pattern
present in the Ribeira Belt: (a) the fabrics are formed during
at least two separate tectonic events; (b) the fabrics are the
result of a single (progressive) deformation event and are
related as S and C fabrics.

At a regional scale, the geometrical relationships between
the main groups of shear zones from the southern Ribeira
Belt approximate a dextral C′-type shear band macroscopic
structure with the C′ direction (type 3 dextral ENE-trending
strike-slip zones) inclined ~30° relative to the main shear
direction (type 1 orogen-parallel NE-trending strike-slip
zones) that is subparallel to the S direction (type 2 NE-
trending dip-slip zones) (Figure 1(c)). The Lancinha shear
zone, the main example of type 1 fabric, would accommo-
date movements controlled by an ancient plate boundary.
At first glance, this bulk kinematics suggests an overall dex-
tral transpressional setting [26, 99], which is corroborated by
available finite strain and kinematic vorticity data from indi-
vidual shear zones [15, 25, 31]. However, some geometrical
relationships between the groups of shear zones deviate from
theoretical predictions.

In a heterogeneous simple shear model, the angle
between the shear direction and the outermost foliation is
45°, which decreases towards the inner domain of the shear
zone [1]. In transpressional models, this angle is always
lower than 45°, while higher angles are predicted for trans-
tensional zones (e.g., [61, 62, 100–103]. For the Ribeira Belt,
the angle between type 3 shear zones (apparent C′ direction)
and type 2 shear zones (apparent S direction) reaches 60–65°

in the outermost portion of the Ribeira shear zone (Figures 2
and 9) deviating from all transpressional model predictions.
Transtensional deformation also does not fit the observed
geometry, as this model predicts exclusively horizontal
stretching lineation and a transition from vertical (simple
shear-dominated) to horizontal (pure shear-dominated)
mylonitic foliations [61, 62, 100–103] and type 2 zones pres-
ent subvertical foliation, down-dip stretching lineation, and
reverse sense of shear (Figure 4).

Considering these points, the only possible explanation
is that type 2 shear zones represent a former tectonic fabric
deformed and rotated by the NE and ENE dextral (types 1
and 3) shear zones. This is, for example, the model adopted
by Campanha and Sadowski [93] to quantify the shear
deformation and the slip along the Ribeira shear zone.
Regional and local geological evidence also corroborates this
alternative model. The NE and ENE dextral (types 1 and 3)
shear zones cut and deform the extensive late Cryogenian to
Ediacaran arc-related and postorogenic granites of the
Ribeira Belt, but the opposite occurs with the NE-trending
dip-slip (type 2) zones, which are interrupted by the granite
bodies. Type 2 shear zones in other areas of the Ribeira Belt
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also have a NNW trend, orthogonal to the types 1 and 3
shear zones, as in the Itaiacoca Group [104] and in the Votu-
verava Group in the vicinity of Pilar do Sul city (SW São
Paulo) [25, 33].

The quantified strain ellipsoids from all type 2 shear zones
are prolate-shaped (Figure 11). On the other hand, transpres-
sional zones with vertical foliation and down-dip stretching
lineation are predicted to be pure shear-dominated with
oblate-shaped ellipsoids (e.g., [61]), with many natural exam-
ples described in the literature; for example, the northern ter-
mination of the Itapirapuã shear zone [31], the Vermilion,
Rosy Finch-Gem Lake andWestern Idaho shear zones, United
States of America [105–107], the Pelagonian Fault, Greece
[108], the Alhama de Murcia Fault, Spain (Alonso-Henar
et al., 2020), and the Zagros Transpressional Zone, Iran
[109]. Samples from the internal domains of the Lajeado
Group present coexisting plane strain and prolate-shaped
ellipsoids of low to very low strain values, dominantly with
high-angle stretching lineations. In this scenario, the prolate-
shaped ellipsoids in type 2 shear zones can be explained by a
superposition of two approximately plane strain fabrics associ-
ated with progressive deformation: a first associated with fold-
ing (pure shear-dominated) followed by thrusting (simple
shear-dominated). Kinematic vorticity data for a representa-
tive sample from the Figueira shear zone (type 2) indicate

~41–58% pure shear component (Table 4; Figure 14, sample
F196).Most type 2 shear zones present NW-dippingmylonitic
foliation, top-to-the-SE kinematic indicators observed on ver-
tical XZ sections of the strain ellipsoid, and sinistral sense of
shear on horizontal YZ sections (e.g., Figueira and Agudos
Grandes shear zones). However, the Ivaporunduva shear zone
has a SE-dipping mylonitic foliation, top-to-the-NW kine-
matic indicators on XZ sections, and dextral indicators in Y
Z sections. Additionally, the domain limited by the Ivaporun-
duva and Piririca shear zones presents a higher metamorphic
grade than the surrounding rocks (Figure 4), suggesting this
domain underwent a vertical extrusion, a pattern expected
for pure shear-dominated transpression.

Measured strain ellipsoids are exclusively oblate-shaped
along the Ribeira shear zone (Figure 11), and kinematic vor-
ticity data from rigid grain rotation and δ/β methods indi-
cate a variable pure shear component ranging from ~9 to
72%, with a general dominance of a simple shear component
(Table 4). Combined with a dominance of subhorizontal
stretching lineation (Figure 3), and consistent dextral kine-
matic indicators observed at all scales (Figures 2, 4, and 7),
these data suggest a subsimple shear deformation [3, 25].

Other strain models are also possible to explain the pro-
late/oblate strain ellipsoids. Prolate to oblate strain ellipsoids
can be achieved by progressive deformation in low deformed
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metasedimentary rocks, as the case of Lajeado Group
domain, if a previous sedimentary oblate fabric is submitted
to a vertical plane strain [60]. Oblate strain fabric with obli-
que stretching lineations is also predicted in numerical
modelling of thrust, followed by wrench, shear zones [110],
which could be the case for the type 2 zones followed by
the NE and ENE (types 1 and 3) shear zones.

The Morro Agudo shear zone is the only type 4 structure
present in the study area. At a first approximation, types 3
and 4 shear zones could be explained by a conjugate dex-
tral/sinistral shear system. However, the angle between the
two systems of the compressional dihedral is of 100-120°,
which is not compatible with the classical shear failure cri-
teria [60]. This could be explained by a conjugate set of shear
structures developed under plasticity conditions, initially

formed with a dihedral angle of 90° that would tend to
increase with the continuation of progressive ductile defor-
mation [60].

5.3. Timing of Deformation along the Shear Zones. Previously
published zircon, monazite, and apatite U–Pb, muscovite
40Ar/39Ar, and hornblende/biotite K–Ar geochronological
data for shear zone-related rocks from the Ribeira Belt
(Figure 17) suggest that main ductile episodes occurred
between 610 and 500Ma along the NE-trending orogen-
parallel transcurrent shear zones [14, 30, 32, 35–37,
111–115]. Geochronological data from the Cubatão and
Além Paraíba-Pádua shear zones indicate high-temperature
ductile deformation at 610–570Ma [35, 37]. The Taxaquara
shear zone presents a well-constrained medium-temperature
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evolution between 560 and 535Ma, recorded in apatite
U–Pb and syn-kinematic muscovite 40Ar/39Ar ages [33,
34]. Fine-fraction illite K–Ar data indicate brittle activities
at 402 ± 6Ma and 311 ± 8Ma in the Camburu shear zone,
an orogen-parallel transcurrent structure cutting the
Costeiro-Oriental Terrane [38]. These data indicate that
the shear zone system was active, probably intermittently,
over at least ca. 300Ma.

The new geochronological data obtained in this work
indicate a longer and more complex deformational history
beginning in early Tonian. Tonian U–Pb ages of 896 ± 39
Ma (titanite, CA29) and 829 ± 18Ma (monazite, P33) were
obtained from samples of the Itapirapuã shear zone (type 1
structure) (Figure 1(c)). Titanite in sample CA29 occurs as
euhedral porphyroblasts with asymmetric strain shadows
with dextral shear sense and wavy mineral inclusion trails in
continuity with the external matrix foliation (Figure 16(a),
inset), indicating a syn-kinematic metamorphic origin.
Mineral equilibria and thermodynamic models indicate that
sample CA29 attained peak metamorphic conditions of 490–
510°C and 11–12.5 kbar represented by the assemblage chlo-
rite–biotite–phengite–quartz–titanite–epidote–ilmenite [31].
These conditions indicate a transitional blueschist/low-tem-
perature eclogite facies condition. The monazite U–Pb age of
829 ± 18Ma is associated with cores of monazite from the
mylonitic paragneiss sample P33, whereas monazite rims
yielded a younger age of 675 ± 7Ma (Figures 15(c)–15(f)).
Considering that the Itapirapuã shear zone represents the
boundary between Calymmian rocks of the Água Clara For-
mation (ca. 1590–1470Ma; [56]) and the early Tonian rocks
of the Itaiacoca Group (1030–910Ma; [59]), the available
geochronological and petrological data suggest a suture zone
active between ca. 900 and 830Ma. Younger episodes of duc-
tile reactivation of the Itapirapuã shear zone are recorded in
the monazite rims from sample P33 (675 ± 7Ma) and in
mylonitization of granitic rocks from the Três Córregos
Suite (zircon U–Pb crystallization age of 600 ± 6Ma;
[116]). The zircon U–Pb age of 827 ± 14Ma obtained for
sample DC59A from the Ribeira shear zone belongs to a dis-
tinct geological context. This sample comes from an elon-
gated body of mylonitic quartzite from the Serra das
Andorinhas Formation (a unit of the Votuverava Group)
at the interference zone between the Ribeira and Lancinha
shear zones (Figure 2), thus representing an intraterrane
geological context. The metamorphic origin of dated zircon
is inferred from the dominance of Th/U below 0.1, its inter-
nal textures, and from the detrital zircon record of the same
outcrop, characterized by U–Pb ages spanning 1910–
2240Ma and 2550–2730Ma and the absence of ages younger
than Paleoproterozoic [117].

A partially coeval Tonian (850–760Ma) regional meta-
morphic event is recorded in rocks from the Embu Terrane,
which also affected Calymmian rocks from the Votuverava
Group (deposition at ca. 1450–1500Ma; [43]) along the con-
tact zone between the two units [39, 40]. This scenario sug-
gests the onset of terrane assembly in the early Tonian, with
nucleation of some orogen-parallel shear zones (e.g., Itapir-
apuã shear zone) and some intraterrane shear zones cutting
Calymmian rocks from the Apiaí Terrane (e.g., Ribeira shear

zone). Younger ductile deformation along the Ribeira shear
zone is recorded in the monazite U–Pb age of 580 ± 4Ma
for sample M214C (Figure 16(c)) and for mylonitization of
rocks from the Itaoca Granite (zircon U–Pb crystallization
age of 612 ± 3Ma; [116]; see Figures 2 and 4).

Field relationships indicate that the intraterrane type 2
shear zones within the Lajeado Group were active before
612 ± 3Ma, as they were cut by the Itaoca Granite
(Figures 2 and 4). On the other hand, the Figueira and Agu-
dos Grandes shear zones deformed metaconglomerates con-
taining granitic pebbles with a zircon U–Pb age of 593 ± 15
Ma and volcanic rocks with zircon U–Pb age of 579 ± 34
Ma from the Iporanga Formation [42]. Although the maxi-
mum deformation time is unconstrained, these data suggest
a long-lived history for the intraterrane reverse shear zones
within the Apiaí Terrane.

Data on anisotropy of magnetic susceptibility and zircon
U–Pb ages from granitic plutons emplaced in the Apiaí Ter-
rane suggest a coherent syntectonic context with individual
plutons developed during stages of folding and transpression
(615–600Ma) and transtension (597–588Ma, A-type exten-
sional granites) [116, 125]. These data were used to interpret
the onset of the ductile transpressional deformation at ca.
595Ma [125], but our data indicate a more complex defor-
mation history.

In summary, the combination of our new and published
geochronological data suggests intermittent ductile shear
zone activity from ca. 900–830Ma to 500Ma. During this
period, shearing deformation was coeval to at least two
major episodes of terrane accretion at 850–760Ma (meta-
morphism recorded in the Embu Complex and Votuver-
ava Group, northward of the Lancinha-Cubatão shear
zone; [39, 40]) and 610–585Ma (high-pressure metamor-
phism recorded in the Turvo-Cajati Formation, southward
of the Lancinha-Cubatão shear zone; [14, 15, 41]). Geo-
chronological and petrological data suggest that suture
zones of Tonian ages occur along the contacts between
the Apiaí and Embu terranes (Votuverava Group and
Embu Complex, Figure 1(c)) and along the Itapirapuã
shear zone ([31, 39], this work). A main Ediacaran suture
zone is represented by the Lancinha-Cubatão shear zone that
separates the Curitiba and Costeiro terranes to the south and
the Apiaí and Embu terranes to the north ([37, 41]). In this
scenario, the ductile deformation between 560 and 535Ma
was recorded in the Taxaquara shear zone [33, 34], and
younger brittle reactivations [38] and postdate terrane
assembly are best inferred as late-stage, intracontinental
reactivations of the shear zone system.

6. Conclusions

This work presents a comprehensive multiscale analysis of
the complex shear zone system from the Ribeira Belt, SE
Brazil, unravelling the thermal and deformation regimes
and the timing of deformation based on the character of,
and interplay between, multiple shear zones. The combina-
tion of microstructural data with mineral assemblages and
thermobarometric conditions indicates a transitional north-
eastward increase in metamorphic conditions from lower
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greenschist to granulite facies conditions (up to ~750°C),
reflecting the different crustal levels in which each shear
zones developed. Strain data suggest that the shear zone sys-
tem was not developed in a single transpressional stage, but
by a major episode of thrusting followed by the development
of strike-slip shear zones dominated by a subsimple shear
strain regime.

This study reveals that the shear zone system of the
Ribeira Belt underwent a long-lived development, which is
in contrary to previous suggestions (e.g., [26]). The new geo-
chronological data presented here and those available in the
literature suggest intermittent ductile shear zone activations
from ca. 900–830Ma to 500Ma, coeval with at least two
major episodes of terrane accretion at 850–760Ma and
610–585Ma, the last associated with the main stage of
Gondwana assembly. The anastomosing shear zone system
was probably active at 610–585Ma. Additionally, the combi-
nation of geochronological data with thermobarometric esti-
mates indicates that some of the shear zones represent
suture zones (e.g., Itapirapuã shear zone), whereas others
represent intraterrane shear zones (e.g., Ribeira, Figueira,
and Agudos Grandes shear zones) and postcollisional shear
zones (e.g., Taxaquara shear zone) reactivated in an intra-
continental setting (560–535Ma).
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