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Abstract

A novel methodology to quantify displacements and strain in musculoskeletal ultra-

sound sequences is presented. We extend the principles of 2D interframe displace-

ments produced by our earlier work using hierarchical variable block size matching,

to quantify displacement trajectories. We provide novel solutions for probe motion,

quantification of objects moving in the 3D volume traversing the 2D plane, and im-

proving the temporal coherence of displacements for longer image sequences than the

frame pairs traditionally applied in ultrasound. We also present trajectory strain that

yields a novel strain history for musculoskeletal tendon tissue samples.

1 Introduction

Observing the dynamic responses of soft tissues permits the inference of physical prop-

erties of tissues, such as elasticity and strain, as well as aiding in diagnosis. This is the

principle of sonoelastography, which derives the biomechanical properties of tissue from

measurements of motion resulting from an applied perturbation, by estimating local axial

strain using cross correlation analysis on RF A-lines [10]. This approach is very depen-

dent upon the hardware of the imager and requires direct access to the RF signal. Hence

current research has favoured towards intrinsic (image-based) methods over extrinsic (in-

vasive) techniques to quantify displacements; more specifically traditional ultrasound mo-

tion analysis research has concentrated on analysing specific frame pairs using a variety

of methods including optical flow [4], spectral integrals [2] and block differentials [5][1].

We present a novel extension to interframe displacements by quantifying motion tra-

jectories in longer ultrasound sequences (typically 30 frames - limit imposed by acquisi-

tion device). Our contributions include, encapsulating increased temporal displacement

correlation, probe motion registration and quantifying objects in the 3D volume travers-

ing in and out of the 2D plane. This is achieved by extending a multiresolution block

matching algorithm defined in [7] to compute a trajectory field of tendon tissue matter

using normalised cross correlations in the Fourier domain. Trajectory benefits include

extending interframe displacements to sequences to produce temporal displacements and

consequently quantify gradual incremental and total 3D spatiotemporal strain. Although

it has been stated that displacement knowledge yields axial strain maps we have found lit-

tle research illustrating such results [11]. We illustrate novel temporal strain results from

motion trajectories that quantify the strain for a given sample through a sequence. We are

not aware of any existing research that attempts to quantify a strain history for regions

of soft tissue. These potentially enable clinicians to uniquely visualise and analytically

compare soft tissue, incremental strain history and applied loading simultaneously in a
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non invasive system. Throughout, we examine the performance of our proposed speckle

tracking system on in vitro and in vivo B-scan data.

During any clinical freehand ultrasound sequence acquisition, both probe and subject

are kept stationary to ensure a reproducible imaging plane. Sonographer fatigue, probe

decoupling, subject and feature movement can produce observable effects in imaging. Im-

age registration prior to displacement quantification is necessary for invariance to image

acquisition-specific artifacts, including fluctuating probe motion (including pressure) that

occur in freehand scanning. Variations of probe pressure on the skin can cause local de-

formations of the anatomy on a large scale compared to pixel size. Global displacements

can be derived locally [12] and globally [8] using both intrinsic and extrinsic measures.

Without extrinsic probe position measurements and global displacement registration lim-

itations, we have used local measurements in the skin-to-transducer surface region to

register our displacement trajectory fields since from our previous work [7] we observed

that this region takes on probe motion characteristics.

After briefly outlining our in vitro groundtruth and in vivo datasets in Section 2, we

detail our proposed method in Section 3, explaining the logical extension of trajectories

from interframe displacements, tracking, trajectory updating, probe motion and aperture

correction and temporal strain history. Results from in vitro groundtruth and in vivo mus-

culoskeletal sequences of the patella and achilles tendons are illustrated in Sections 4

and 5. Finally, we discuss the important benefits of trajectories, use of the normalised

correlation coefficients as a confidence measure, strain volumetric data and future work.

2 Datasets: in vitro Groundtruth and in vivo Sequences

Synthetic images have been commonly used in the past for testing, e.g. [9]. However, we

reduce in vivo result ambiguity [2] by using real in vitro groundtruth data that also facili-

tate better performance evaluation of the proposed method. The first in vitro dataset is an

equine tendon with inserted landmarks pulled under controlled loads whilst continuously

scanning. The second is a section of cut muscle, and again pulled at various controlled

rates. All sequences consist of 30 frames, the maximum acquisition length from existing

ultrasound machines, with dynamic capture functionality increasingly being demanded.

Longitudinal sections of normal tendons (in vivo data) were captured with an 8-15

MHz probe using a Diasus Dynamic Imaging machine. Each sequence captures a dy-

namic flexion to extension of the muscle giving rise to tendon displacement. The tendon’s

anisotropic fibrillar texture [3] means that any slight obliquity of the angle of incidence

or curvilinearity, can obscure or mimic texture details and create aperture problems. Here

we present results on the patella and achilles tendons, areas of high clinical interest due to

the demand for improved understanding of tendinopathy typically from athletic injuries.

More dynamic (including synthetic groundtruth) results can be found online1.

3 Proposed Method

In [7] we defined a multiscale block matching pyramid initialised by a regular lattice R,

sampled by P×Q (typically 8× 8 or 4× 4) on an initial ultrasound frame ft . Blocks of

1http://www.cs.bris.ac.uk/home/revell/flow.html



M×N, where M,N = {64,32,16,8,4} were used to increasingly improve displacement

accuracy for R until M = P and N = Q. Using spatial convolution we minimised the

mean-squared error (MSE) between candidate blocks I in a search region I′ from ft and

ft+1 respectively, to find the optimum displacement.

3.1 Motion Trajectories

Here, instead of the MSE, we determine the local disparity between I and I′ by identifying

the maximum correlation coefficient cmax using normalised cross correlation (NCC). I and

I′ are defined as candidate and reference blocks respectively where I, I′ = M×N, enabling

the NCC to be performed in the frequency domain using the FFT for efficiency:

c =
F−1{Î∗ Î′}

√

∫ ∫

|Î|2 ·
∫ ∫

|Î′|2
leading to {0 ≤ c ≤ 1} (1)

where Î and Î′ denote the Fourier transform of blocks I and I′ respectively, F−1 the inverse

Fourier transform and ∗ the complex conjugate. By multiplying the spectral components,

the DC element is filtered out removing any global B-mode illumination and high fre-

quency noise. Furthermore, by normalising the correlation, invariance to mean intensity

fluctuations is achieved. The spatial displacement vector d = (dx,dy) is then estimated in

the x and y directions after locating cmax. For each block in R the NCC is performed at

multiple block scales, using the previous d as I and I′ offsets, allowing a varying smooth-

ness constraint across each I for all scales.

Trajectories represent the temporal tracking of features sequentially through a se-

quence using the NCC for feature location. NCC tracking is sensitive to imaging scale, ro-

tation and perspective distortions. In this context minimal perspective and rotation distor-

tions potentially exist, however, the NCC does enable equal sized patterns to be detected

by a rotation distortion of 5◦ to 10◦ [6]. Image scale distortions are more prominent, and

by using the multiscale NCC we achieve scale invariance and improved accuracy from

local reflectance variations.

At this stage we have quantified an optimal displacement d for each block in ft lattice

R yielding an interframe displacement field dR. For sequences, this process is repeated

for every frame pair in the sequence to give:

dt
R . . .dt+n

R = NCC{( ft , ft+1) . . .( ft+n, ft+n+1)} (2)

After quantifying interframe displacements using R, we redefine lattice R for the next

iteration, deformed by the prior displacement field dt
R. Consequent tracking results in a

displacement vector with temporal history h, a trajectory defined for each original block in

R over h steps, hence producing a trajectory field. A powerful benefit from the trajectory

definition is h which has a direct relationship with temporal displacement coherence.

Tracking, especially in long sequences, requires feature identification in each next

frame ft+1 for new objects entering and old objects exiting trajectory updating. Potential

causes of such trajectory updates are features traversing in the 2D plane, 3D volume,

at image boundaries and occlusion, producing potential trajectory clusters and voids. A

new trajectory is included by comparing each d to neighbours in R centred in the range

A×B, with an Euclidean distance > P×Q. Similarly, trajectories are flagged for removal



if any neighbouring final positions in A×B conflict, by a proximity threshold defined

empirically. Trajectories in Figs. 2, 3 and 4 are illustrated in black for R and red for

updates (for colour images please see online1).

As inferred in (1) correlation coefficients scale between 0 and 1 denoting a range of

weak to strong matches. To measure confidence strength of trajectory displacements we

derived a mean confidence measure from the final scale peak correlation coefficients for

all blocks in R for frame pairs. These results are discussed and illustrated later in Fig. 7.

3.2 Displacement Correction

To correct for the error induced by probe motion δxy we used local measurements in the

skin-to-transducer surface region (e.g. top most regions in Figs. 3(a)-3(c) and 4(a)-4(c)),

by assuming this region corresponded to signal only from the probe. This has been found

to be consistent with all data. Hence global displacement and trajectory field registration

is achieved by applying the mean displacement, δ µ
xy, in this region, and updating the fields

respectively resulting in:

d =
(

dx +δ µ
x ,dy +δ µ

y

)

(3)

Given the highly ordered structure of superimposed planes of callogen and septa, ten-

dons appear strongly anisotropic with fibrillar echoes only captured effectively when the

probe is perpendicular to them; however, this leads to large aperture problems from ten-

don movement. To reduce the aperture problem we calculate the anisotropy ratio to lo-

cate the initial peak correlation location in the peak region. This is achieved by adaptive

thresholding the correlation field cin produced from the NCC, to yield cout , a binary field:

cout (i, j) =

{

0 if cin (i, j) < cthresh

1 otherwise
(4)

The ratio of the major and minor axes of the largest flagged region in cout , quantifies

the extent of the aperture problem. By using the axes intercept coordinates the peaks’

optimal position is found. This is repeated for block scales M,N = {64,32,16,8} where

the threshold value adapts to the maximum correlation using cthresh = 0.9cmax.

3.3 Temporal Strain

Figure 1: Strain in X at P.

Tendons form an integral part of the musculotendinous unit

transmitting the tensions generated in muscle to bone. When

the tendon is under load, the deformation is expressed as a

strain ε , the change in linear dimension per unit length. Al-

though the strain tensor consists of many elements, we are

concerned with only translation, where positive or negative

nonzero strain (tensile or compressive respectively) is present

only if there is a discontinuous displacement in surrounding

tissue. Fig. 1 illustrates the strain at an arbitrary tensile point

P that shifts to P′ at coordinates x and x′ respectively so that

δx is deformed to δx′. Since the displacement u = x′− x at

P ∈ R, the local 1D strain is defined as:

ε =
δx′−δx

δx
=

δu

δx
(5)



Using (5) for only frame pairs restricts strain quantification to only single instances as

used in other works [1][2]. We use motion trajectories to quantify gradual incremental

strain for all blocks in R through any user-required h, repeating (5) at each P. The result

is a temporal history of strain for every position in ft through a sequence. To improve

visual understanding we have selected clinical regions of interest (ROI) to illustrate these

results, as will shortly be seen in Figs. 2, 5 and 6.

4 Experimental in vitro Results

Figs. 2(a) and 2(b) show sample frames of our in vitro groundtruth, a partially cut muscle

segment under x-axial linear load. Fig. 2(c) shows a typical trajectory displacement field

using a temporal history h = 4 sampling at P×Q = 4 using block scales M×N, where

M,N = {16,8}. Large linear displacements are located at the cut as the muscle is pulled

and highlights biased muscle movement to the right as the cut opens, resulting in new

trajectories in the region (shown in red) between the cut edges.

(a) Cut Muscle f6 (pre load) (b) Cut Muscle f10 (under load) (c) Trajectory Field with h = 4

(d) Superimposed ROI
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(e) Trajectories for ROI (f) Strain in X showing h = 10

Figure 2: (a)-(b) In-vitro groundtruth muscle segment, (c) trajectory Field with h = 4 for

f7 → f11, (d) superimposed ROI, (e) 3D Trajectory Field for f1 → f10, (f) strain in X.

Temporal strain calculation was performed on the whole image, while for clarity in

Fig. 2(d) we concentrate only on a ROI encapsulating the potential maximum tensile

strain concentration (base of the cut) and a sample of relevant frames. With each trajectory

marked in a different colour, Fig. 2(e) shows the spatiotemporal trajectory results for

frames f1 → f10 for the ROI. Stationary frames f1 → f6 were captured to initialise the

sequence, providing a temporal cue to when the load was applied. Results show perfectly

linear trajectories in this region. Fig. 2(f) is the final temporal strain result, with zero

strain for the initial stationary frames and a peak tensile strain about the cut base.



(a) Patella Tendon f10 (b) Patella Tendon f20 (c) Patella Tendon f30

(d) Trajectories f1 → f10 (e) Trajectories f11 → f20 (f) Trajectories f21 → f30

Figure 3: (a)-(c) In vivo patella tendon for ft=10,20,30, (d)-(f) displacement trajectory

fields, with h = 10, after probe registration (new object trajectories shown in red).

5 Experimental in vivo Results

Figs. 3(a)-3(c) are longitudinal sagittal sections of the patella tendon, traversing left to

right from extension to flexion in 1 second and captured at 30Hz. Trajectory fields in Figs.

3(d)-3(f) were produced by sampling at P×Q = 8 using multiple block scales M ×N,

where M,N = {64,32,16,8}, with h = 10. Using the same settings, Figs. 4(a)-4(c) are

longitudinal sections of the achilles tendon, with trajectory fields in Figs. 4(d)-4(f).

All trajectory fields are post probe motion registration using (3), resulting in approx-

imate stationarity in the upper skin region so that throughout the sequence this region is

constrained to d ≈ 0. All trajectories show high temporal correlation for all frames in the

sequence. New trajectories entering the frame (shown in red) appear at image boundaries

from the horizontal movement, and several appear in the central plane from minor 3D

movement. As expected, the trajectories have highly linear x-axial displacements in both

the patella and achilles tendons. Beneath the patella tendon (in the lower regions in Figs.

3(a)-3(c)) is well-defined acoustic speckle noise with movement that mimics the tendon

motion. Trajectories in this region show some temporal correlation that illustrates similar

displacements to the tendon. Beneath the achilles tendon (in the lower regions in Figs.

4(a)-4(c)) there is greater tissue structure that has some independent motion. Trajectories

again illustrate regions of strong correlation corresponding to the captured sequence.

In vivo tendon sequences were captured under a full extension to flexion motion,

where the maximum strain potentially exists at each limit. For the patella and achilles

tendons, frames f1 → f15 capture the tendon with approximate flexion motion, and f16

onwards, extension motion. Figs. 5(a) and 5(d) are clinically-relevant selected regions

encapsulating samples of the patella bone tendon interface and tendon respectively. Figs.



(a) Achilles Tendon f10 (b) Achilles Tendon f20 (c) Achilles Tendon f30

(d) Trajectories f1 → f10 (e) Trajectories f11 → f20 (f) Trajectories f21 → f30

Figure 4: (a)-(c) In vivo achilles tendon for ft=10,20,30, (d)-(f) displacement trajectory

fields, with h = 10, after probe registration (new object trajectories shown in red).

5(b) and 5(e) are their associated spatiotemporal trajectories with h = 30. Figs. 5(c) and

5(f) are the final temporal strain volumes. During extension, the patella bone tendon inter-

face in Fig. 5(a) created large discontinuous trajectories in Fig. 5(b) yielding a relatively

high strain concentration 0.5 < ε < 1 and is visible at f20 (Fig. 5(c)). However, the ROI

throughout the majority of the sequence produced very linear displacements correspond-

ing to negligible strain (Fig. 5(f)). The two regions taken along the longitudinal axis of

the tendon also show temporal correlation with each other due to the regions being of the

same material having corresponding similar forces imposed on them.

The ROI for the achilles tendon in Fig. 6(a) encapsulates a central region of the

tendon. Fig. 6(b) is the associated spatiotemporal trajectories with h = 20 and Fig. 6(c)

is the final temporal strain volume for frames f1 → f20. In this frame range a complete

extension to flexion movement was captured. As shown in Fig. 4, the trajectories in this

ROI and surroundings are continuous with only negligible vertical displacement. The

ROI strain history in Fig. 6(c) illustrates low strain through all 20 frames. Strain ranged

from an approximate tensile peak of ε = 0.1 about f5 and f13 and a compressive trough

of ε = −0.05 at f9 matching the underlying trajectories.

Correlation coefficients measure confidence in trajectory accuracy. Using only a sin-

gle scale block matching approach we observed large coefficient variance for the displace-

ment fields in our musculoskeletal dataset. From using multiple scales we observed that

correlation coefficients increased as block scales refined with improving displacements

(Fig. 7). Both in vivo patella (blue diamond line) and achilles (black starred line) ten-

don sequences from final template candidate block matching were over 95% correlated.

For the in vitro groundtruth (red dotted crossed line) the first 6 frames illustrate 100%

correlation due to these having complete stationarity.



(a) Superimposed ROI f1
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(b) Trajectory Field (c) Strain in X

(d) Superimposed ROI f1
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(e) Trajectory Field (f) Strain in X

Figure 5: Two ROIs with varying strain history - (a) bone to tendon interface region, (b)

trajectory field (h = 30), (c) strain in X (h = 30), (d) patella tendon region, (e) trajectory

field (h = 30), (f) strain in X (h = 30).

(a) Superimposed ROI f1
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Figure 6: (a) Achilles tendon region, (b) trajectory field (h = 20), (c) strain in X (h = 20).

An example of probe motion correction showing significant probe movement was

demonstrated for the patella tendon was seen in Fig. 3(f), frames f21 → f30. Figs.

8(a) and 8(b) compare both probe translational displacement results and entering/exiting

trajectory updates (normalised), for both patella and achilles tendons. Note, these are

shown on the same graphs but are independent. Throughout, the patella tendon sequence



probe y-axial displacement was approximately zero, with any supported deviations po-

tentially due to probe pressure. After f20, x-axial displacement increased to about 3

pixels, with (3) used for trajectory correction, resetting approximate stationarity in the

skin region. By determining δ µ
xy at each frame pair we dynamically update the amount

of correction. The achilles tendon was captured with the probe stationary throughout
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Figure 7: Multiscale NCC Trajectory Con-

fidence h = 1.

acquisition (Fig. 8(b)). Both sequences il-

lustrate the high temporal trajectory update

correlation as new features appear as exist-

ing features move out of plane (Fig. 8), from

the applied extension flexion motion, with

peaks about the limits of the motion.

Probe movement from displacements

between skin and probe surface yielded high

accuracy once an optimum section was de-

fined. Poor region selection directly affects

the registration accuracy, but the mean dis-

placement was sufficient in smoothing spu-

rious values. Consequent registration re-

sults were encouraging especially without

any prior knowledge from transducer posi-

tion sensors or definite fixed landmarks.
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(a) Patella Tendon Statistics
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Figure 8: (a)-(b) Probe displacement and trajectory update.

This work will contribute significantly to soft tissue biomechanic understanding. Cur-

rently there is a considerable lack of both experimentally verified material properties for

these tissues and experimental validation of analytical and numerical models of the be-

haviour of organs such as tendons, muscles, intervertebral discs and brains. By quan-

tifying strain, tissue differentiation can be achieved between soft and hard tissue since

they react differently to external pressure. The two basic responses to applied pressure

are displacement and deformation. Soft tissue tends to deform (undergo nonuniform dis-

placement) while hard tissue displaces uniformly (translates with rigid body motion) in

response to the same external forces. With our strain history further work will aim to

segment strain to classify hard and soft tissues by exploiting the relative amount of dis-



placement deformation for the same applied pressure. Since we can now quantify internal

motions and deformations within intact structures, it is possible to make direct comparison

of model predictions and experimental results at any point within a specimen. Feedback

from biomechanic experts has been that this work represents a major step forward in their

field, that until now has relied solely on measurements of surface motion and strain.

6 Conclusion

We have presented a novel extension to interframe displacements by developing motion

trajectories that offer both improved displacement knowledge and yield unique strain his-

tory in ultrasound sequences. The trajectory fields proved invariant to a range of capture

rates and object movements, whereas interframe displacements only analyse user specific

frame pairs. Also regions of tissue can be tracked through typical ultrasound machine

aquisition length sequences, eliminating the notion of mere frame matching, and improv-

ing temporal coherence. By correcting for probe motion and updating the trajectory field

with new objects entering and exiting from the 3D scanned body, we demonstrated a ro-

bust 2D speckle tracking technique to understand dynamic musculoskeletal ultrasound by

quantifying both trajectories and strain histories.
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