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Strain rate dependency of dislocation plasticity
Haidong Fan 1,2✉, Qingyuan Wang 1✉, Jaafar A. El-Awady 3, Dierk Raabe2 & Michael Zaiser4

Dislocation glide is a general deformation mode, governing the strength of metals. Via dis-

crete dislocation dynamics and molecular dynamics simulations, we investigate the strain

rate and dislocation density dependence of the strength of bulk copper and aluminum single

crystals. An analytical relationship between material strength, dislocation density, strain rate

and dislocation mobility is proposed, which agrees well with current simulations and pub-

lished experiments. Results show that material strength displays a decreasing regime (strain

rate hardening) and then increasing regime (classical forest hardening) as the dislocation

density increases. Accordingly, the strength displays universally, as the strain rate increases,

a strain rate-independent regime followed by a strain rate hardening regime. All results are

captured by a single scaling function, which relates the scaled strength to a coupling para-

meter between dislocation density and strain rate. Such coupling parameter also controls the

localization of plasticity, fluctuations of dislocation flow and distribution of dislocation

velocity.
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M
etals are mostly used for their excellent load-bearing
capacity, enabled by their mechanical strength and
damage tolerance. Serving in practically all engineering

fields such as transportation, energy, health, construction, and
safety, they create an annual global market above 3000 billion
Euros1. In many safety-relevant loading scenarios, the in-service
mechanical response of metals depends significantly on loading
rate, for instance, during vehicle crash, metal forming, medical
implants or bird strike impact on jet engines. A strain rate
hardening response is generic for metallic materials deforming
by dislocation slip2, with exception of a limited regime of
deformation conditions in solution-hardened alloys where
dislocation-solute interactions may lead to strain rate softening3,4.
Nevertheless, the relationship between the strain rate and
microscale deformation mechanisms is still poorly understood,
and most dynamic constitutive models (e.g., Johnson-Cook,
Zerilli-Armstrong) were formulated in a phenomenological or
semi-phenomenological manner with several empirical para-
meters that do not reflect microscale deformation mechanisms
and need to be fitted to specific experiments with loss of
generality5. Therefore, it is essential to develop a general under-
standing of the microscopic mechanisms that control strain rate
effects, in order to develop physics-based models that are able to
reflect and predict the strain rate dependence of the mechanical
properties of metals. In BCC (body-centered cubic) metals, such
as many steels, strain rate effects are often related to dislocation
core properties (the relatively high atomic-scale Peierls barriers
and the associated kink-pair mechanism), which control screw
dislocation motion. The resulting temperature and stress depen-
dent mobility of screw dislocations has been incorporated into
numerous physics-based plasticity models (see refs. 6,7). In FCC
(face-centered cubic) metals, such as Al and Cu, where disloca-
tion motion is controlled by phonon drag, the situation becomes
more complicated because dislocation motion is strongly affected
by various collective phenomena related to the mutual elastic
interactions among the dislocations. Investigating these phe-
nomena and establishing their strain rate dependence is the aim
of the present study.

Experimental studies on single-crystalline Cu8, Al9, and LiF10

as well as on polycrystalline Cu11,12, Al5 spanning many orders of
magnitude in strain rate showed that the flow stress exhibits a
weakly strain rate-dependent response at low strain rates followed
by a strain rate hardening response at high strain rates. It has
been argued that the strain rate-independent regime is dominated
by dislocation forest interactions and/or dislocation interactions
with grain boundaries or precipitates. On the other hand, the
strain rate hardening regime was attributed to viscous drag forces
acting on dislocations5. In this case, the stress acting on dis-
locations was related to the dislocation velocity through the dis-
location drag coefficient, and the dislocation velocity to the strain
rate through the Orowan relationship. Accordingly, the direct
relationship between stress and strain rate depends on the ratio
between the drag coefficient and the density of ‘mobile’ disloca-
tions. This poses serious problems: drag coefficients predicted
from strain rate-dependent stress–strain curves, under the
assumption that all dislocations are mobile, are always sig-
nificantly higher than theoretical estimates, and also higher than
drag coefficients deduced from direct velocity measurements13,14.
Such discrepancy persists even if additional scattering mechan-
isms beyond viscous phonon drag are considered15–17. Kumar
et al. conversely used measurements of strain rate-dependent
stress–strain curves in conjunction with directly measured drag
coefficients to determine mobile dislocation densities, leading to a
very low fraction of mobile dislocations, ~10−5 18. The problem
in all these studies resides in the fact that the mobile dislocation
density is not a directly observable quantity. Also, it may be

argued that the attribute ‘mobile’ is somewhat ill-defined since,
depending on the loading conditions, any dislocation (including
those were temporarily rendered immobile) can become mobile
again. This is particularly important when load path or strain rate
changes are imposed. As a consequence of the conceptual diffi-
culties engendered by introducing the distinct categories of
‘mobile’ and ‘immobile’ dislocations, many fundamental ques-
tions regarding the relationship between the externally imposed
strain rate and the internal collective dynamics of dislocations
have never been properly answered. These questions concern not
only the relationship between strain rate and average dislocation
velocity and its dependence on dislocation density, but also the
relationship between individual and collective dislocation beha-
viors. To settle these questions, a systematic investigation is
required that focuses on the problem: how dislocations move.

Discrete dislocation dynamics (DDD) simulations allow in situ
observations of collective dislocation behavior during plastic flow
and can therefore provide fundamental insights into the
mechanisms controlling strain rate effects of dislocation-mediated
plasticity without the need of relying on ad hoc assumptions. In
DDD simulations19–23, dislocations are coarse-grained as discrete
elastic lines and most relevant dislocation mechanisms are
accounted for in a physics-based fashion (dislocation glide, cross-
slip, multiplication, annihilation, long-range interaction, junction
formation, etc.). Over the past two decades, DDD has been
extensively employed to investigate various aspects of dislocation-
mediated plasticity. The two dimensional (2D) DDD approach
was previously employed to study dislocation mobility at high
strain rates24, and showed that dislocation inertia effects may be
important for the accurate prediction of the dynamical properties
of dislocations at high strain rates above 105 s−1 25. Using three-
dimensional (3D) DDD simulations combined with finite element
method, Liu et al. observed that dislocation patterns change from
nonuniform to uniform under high strain rates26. Wang et al.
performed 3D-DDD simulations and found that while almost all
dislocations are mobile at high strain rates27, a very small per-
centage of the dislocations move at a speed approaching the
shear wave velocity28. Under shock loading at super high strain
rates, dislocation homogeneous nucleation plays an important
role in dynamical plasticity29,30. 3D-DDD simulations were also
employed to study shock deformation in silicon crystals under
laser shock peening, and the dislocation density and dislocation
multiplication rate are strongly dependent on the laser processing
conditions31. While DDD simulations were applied to a wide
range of problems in dislocation plasticity, the aforementioned
fundamental questions pertaining to strain rate dependency have
not been systematically investigated. Especially, essential quan-
tities such as the mean dislocation velocity and distribution of
dislocation velocity, which are difficult to be determined experi-
mentally, were rarely studied, although they can be naturally
obtained from 3D-DDD simulations.

In this work, we perform a total of 194 simulations using 3D-
DDD and MD (molecular dynamics) methods to analyze the
strain rate dependence of collective dislocation plasticity. In these
simulations, the effects of dislocation density (varied over 9
orders of magnitude) and strain rate (varied over 10 orders of
magnitude) on the plastic deformation behavior of bulk copper
and aluminum single crystals are studied. The mean dislocation
velocity and velocity distribution are analyzed in detail and uni-
versal characteristics of collective dislocation behavior are
revealed. Based on this comprehensive database, we derive a
universal analytical relationship between dislocation density,
strain rate, material strength, and dislocation mobility, which
predicts strain rate and dislocation density effects on the plastic
properties of metals in terms of a single parameter that combines
dislocation density and strain rate.
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Results
In this work, we performed a total of 194 DDD/MD simulations
to study the material strength at different initial dislocation
densities and strain rates. The initial dislocation density ρ0 was
varied from 2.3 × 107m−2 to 2.2 × 1016m−2 and strain rate _ε

from 0.1 s−1 to 2.5 × 108 s−1. In the DDD/MD simulations, we
simultaneously record stress, dislocation density, plastic strain,
and mean dislocation velocity as functions of the loading strain
_εt. The corresponding datasets are provided in the Supplementary
Data 1. For convenience of the readers, a compilation of all stress-
stain curves is shown in Supplementary Fig. 4. Representative
dislocation configurations are displayed in Supplementary Fig. 5
and Fig. 6.

Material strength. We first analyze the dependency of the yield
stress on dislocation density and strain rate. By default we define
the axial yield stress σy as the axial stress at a plastic strain of

ε
p
y ¼ 0:2%. Lower offset plastic strains of 0.001%, 0.01%, 0.05%
are used for strain rates of 10−1s−1, 100s−1, 101s−1, respectively.
The rationale for this procedure is discussed in Supplementary
Note 1. The resolved shear stress at yield (short: yield stress) is τy
=mσy, where m ¼ 1=

ffiffiffi

6
p

is the Schmidt factor for the geometry
used in our simulations. The dislocation density at yield is
denoted as ρy. It is worth noting that the dislocation density at
yield is not exactly the same as the initial dislocation density ρ0

because the dislocation configuration changes both in the initial
relaxation step and during loading. As a consequence, different
initial configurations with the same initial density ρ0 lead to slight
variations in yield density ρy.

Figure 1 shows the yield stress τy as a function of dislocation
density at yield, ρy, and imposed strain rate, _ε, in a double-
logarithmic manner. In Fig. 1a, it is clearly seen that for a given
strain rate the yield stress displays two distinct regimes above and
below a critical dislocation density, ρc. When ρy < ρc, the yield
stress decreases with increasing dislocation density, while for ρy >
ρc, the yield stress increases with increasing density. It is also
interesting to note that ρc increases with increasing strain rate. In
addition, the curves for ρy > ρc for all simulated strain rates
collapse onto a single line, which coincides with the classical
forest hardening model (τy ¼ αGb

ffiffiffiffiffi

ρy
p

, with α � 0:3 for FCC

metals), indicating a strain rate-independent response above this
critical dislocation density and the dominance of forest hardening

in this regime. On the other hand, while the slopes of the curves
for ρy < ρc are almost equal, τy increases significantly with
increasing strain rate for a given ρy, suggesting that in this
regime the material is prone to strain rate hardening. In the limit
of infinitesimally low strain rate (quasi-static loading), only the
second regime remains, indicating that the classical forest
hardening mechanism is obtained without the consideration of
strain rate effects. Clearly, a competition exists between strain rate
hardening and forest hardening. As a result, the material strength
is controlled jointly by an internal variable (dislocation density)
and an external variable (strain rate). As demonstrated by the
purple data points in Fig. 1a, these two regimes are equally
observed in DDD and MD simulations, suggesting that the
current predictions are not sensitive to the specific simulation
method.

The yield stress as a function of strain rate is shown in Fig. 1b
for different initial dislocation densities. At first glance, we see a
quite complex picture: For the low initial dislocation density of
ρ0= 1.4 × 108 m−2, τy increases linearly with increasing strain
rate (the slope is unity in the double-logarithmic plot) over the
simulated strain rate range. At intermediate initial dislocation
densities, the stress level attained at a given strain rate in the
linear regime progressively decreases as the initial dislocation
density increases. At the same time, we observe a crossover
from a linear strain rate dependence at high strain rates towards
a low strain rate regime where the slope in the double-
logarithmic plot decreases with decreasing strain rate. This
crossover shifts to higher strain rates as initial dislocation
density increases. In the low strain rate regime, the curves
approach a horizontal asymptote (strain rate-independent yield
stress) with an asymptotic stress level that increases with
increasing initial dislocation density. At the highest initial
dislocation density shown in Fig. 1b, viz. ρ0= 8.5 × 1014m−2,
the yield stress is almost strain rate independent over the entire
range of simulated strain rates. In fact, as we shall demonstrate
below, the crossover from strain rate-independent behavior to a
linear strain rate dependence of the yield stress is a generic
feature of the competition between strain rate hardening and
forest hardening. Such crossover also agrees well with extensive
experimental observations8–10,32. That the crossover cannot be
observed for the lowest and highest initial dislocation densities
is a consequence of the limited range of attainable strain rates
in the current simulations.

Fig. 1 Yield stress as predicted from current DDD/MD simulations. a Scaled yield stress as a function of dislocation density at yield for different strain

rates. b Scaled yield stress as a function of strain rate for different initial dislocation densities. In Fig. b, no MD points are shown because the MD

simulations were conducted at only one strain rate. DDD is abbreviation of discrete dislocation dynamics and MD is molecular dynamics.
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To analyze the behavior observed in our simulations, we note
that the stress rate relates to the strain rate and plastic strain rate
through the simple equation

_σ ¼ Eð_ε� _ε
pÞ ð1Þ

We first consider the behavior at extremely high strain rates and/
or very low dislocation densities. Since the dislocation velocity
cannot exceed the maximum value vmax, for a given dislocation
density ρy, there exists an absolute upper limit of the plastic strain
rate that can be accommodated by dislocation glide. This limit is

given by _ε
p
max ¼ mρabvmax (Orowan) where ρa ¼ faρy ¼ 2ρy=3 is

the dislocation density on the active slip systems. If a strain rate _ε
above this limit is imposed, Eq. (1) has no stationary solution and,
hence, the stress is bound to increase indefinitely until, at an axial
stress around 10 GPa, homogeneous dislocation nucleation sets in
and the ensuing dramatic dislocation density increase allows
to accommodate the imposed strain rate. We denote this
scenario as the exhaustion regime of the strain rate dependent
response, where the existing dislocations are insufficient to
produce the imposed strain rate. Corresponding stress–strain
curves are depicted in Fig. 2a, where the imposed strain rate lies
above the plastic strain rate limit for the two lowest dislocation
densities (red and green curves in the inset of Fig. 2a). As shown
in the Supplementary Note 1, the yield stresses in this regime are
proportional to the ratio _ε=ρy.

Next, we move to lower strain rates or higher dislocation
densities. Once the imposed strain rate falls below the plastic

strain rate limit _ε
p
max ¼ mρabvmax, then Eq. (1) possesses a

dislocation density dependent quasi-stationary solution, where
the stress is implicitly related to the plastic strain rate via _ε ¼
_εp ¼ mρabvmðτÞ (vm is the mean velocity of dislocations on the
active slip systems). In Fig. 2a, all stress–strain curves with
dislocation densities above 4.8 × 1010m−2 fulfill this condition.
These curves are characterized by a sharp transition between an
elastic loading stage, and a plastic flow stage where the stress
fluctuates around a nearly constant level.

Within the plastic flow regime, we again first look at the limit
of low dislocation densities, where dislocation interactions can be
neglected in comparison with the external stress needed to drive
the dislocations against the lattice drag. This is referred to as the
drag controlled regime. Since all dislocation velocities are well
below the maximum velocity, the dislocation mobility law can be
linearized, i.e., vm ¼ ðb=BÞτ. Hence _ε ¼ famτρyb

2=B and

τ ¼ B_ε=ðfamρyb
2Þ, which suggests again a linear relationship

between the yield stress and the ratio _ε=ρy . We can see that both

the exhaustion regime and the drag controlled regime possess the
same dependence of stress on strain rate and dislocation density
(for further discussion of this point see Supplementary Note 1), so
they are henceforth jointly referred to as the strain rate hardening
regime. The simulation data of Fig. 1a follow this behavior for low
dislocation densities or high strain rates.

In the opposite limit of high dislocation density and/or low
strain rate, the stress needed to drive dislocations is fully
controlled by the mutual interactions of dislocations. In this
forest hardening regime, the yield stress of any dislocation
arrangement must follow the Taylor relationship, τy ¼ αGb

ffiffiffiffiffi

ρy
p

(see ref. 33 for a general argument regarding this point). This
relationship agrees well with the data in Fig. 1a in the regime of
high dislocation densities and/or low strain rates.

The next question is whether the three different regimes can be
unified into a consistent picture of the strain rate dependence of
dislocation plasticity. A straightforward idea is that the mean
driving stress for dislocation motion is given by an effective stress
that equals the resolved shear stress, diminished by the
dislocation resistance stress or Taylor stress: τe ¼ τ � αGb

ffiffiffi

ρ
p

.
We then expect that the mean dislocation velocity on the active
slip systems follows the dislocation mobility law (Eq. (9)), with
the local resolved shear stress replaced by the effective shear stress
τe. Figure 2b shows that the mean dislocation velocity follows well
this prediction for a wide range of initial dislocation densities, as
obtained from our DDD simulations. Outwith the exhaustion
regime, the dislocation mobility law can be linearized, as shown
in the inset of Fig. 2b. Accordingly,

vm ¼ τeb=B ¼ ðτy � αGb
ffiffiffiffiffi

ρy

p Þb=B ð2Þ
Using Eqs. (1) and (2) and Orowan’s formula, it can be shown

that

τy ¼
B_ε

mfaρyb
2
þ αGb

ffiffiffiffiffi

ρy

p

ð3AÞ

which can be alternatively expressed in terms of dimensionless
variables to obtain a representation independent of material
parameters:

T1 ¼
τyðmfaÞ1=3

G2=3ðB_εÞ1=3
¼ 1

P
þ α

ffiffiffi

P
p

; T2 ¼
τy

Gb
ffiffiffiffiffi

ρy
p ¼ Eþ α ð3BÞ

Fig. 2 Stress–strain curves and mean dislocation velocity predicted from current DDD simulations. a Stress–strain curves at applied strain rate of 104 s−1

and different initial dislocation densities. b Mean velocity of dislocations on active slip systems versus effective stress at applied strain rate of 104 s−1 and

different initial dislocation densities. DDD is abbreviation of discrete dislocation dynamics.
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where the scaled dislocation density and strain rate are, respectively,
given by

P ¼ mfaGb
3

B

� �2=3 ρy

_ε2=3
; E ¼ P�3=2 ¼ B

mfaGb
3

_ε

ρ
3=2
y

ð3CÞ

Equation (3A) defines a dislocation kinetics model that
provides a generic relationship between material strength,
dislocation density, strain rate, and the related material
parameters like dislocation mobility. This relationship can be
stated in the universal forms of Eqs. (3B) and (3C) that are
independent of material-specific parameters. As demonstrated in
Fig. 3a-b, these unified models not only allow to collapse all the
data in Fig. 1a, b onto two universal curves, but also help to
aggregate data obtained for different materials both experimen-
tally and by simulations into the same generic relationship. In
particular, experimental data from different materials and for a
wide range of deformation conditions follow the same generic
curve as the DDD simulation data for Cu, and the same is true for
MD simulation data obtained for Al. Technical aspects of the
comparison with experiments are discussed in the Supplementary
Note 3. In Supplementary Note 1, we also explain how, with the
presently used yield definition based on a 0.2% plastic strain
offset, Eq. (3) extend to the exhaustion regime.

In Eq. (3A-B), the second terms on the right-hand side control
the mechanical behavior in the forest hardening regime at low
strain rates (or high dislocation densities), and the first terms
control the behavior in the strain rate hardening regime at high
strain rates (or low dislocation densities). The transition between
the two regimes can be identified with the minimum of the stress

vs. dislocation density curve, which lies at P ¼ E�2=3 ¼ ð2=αÞ2=3
in scaled representation. At this minimum, the forest hardening
stress is exactly twice the strain rate hardening stress. The
absolute values of the critical dislocation density and the
minimum stress are given by

ρc ¼
2B_ε

αmfaGb
3

� �2=3

and τmin ¼
3

2
αGb

ffiffiffiffi

ρc

p ¼ 27α2G2B_ε

4mfa

� �1=3

ð4Þ
τmin is the minimum material strength mediated by dislocation

plasticity at a given strain rate, which is significant to the
community of mechanics and materials. Figure 3c shows excellent
agreement between the prediction of Eq. (4), the data from
current DDD/MD simulations and published experimental
results.

In many phenomenological plasticity models, the distinction
between strain rate hardening and forest hardening terms is
absent. Instead, the two-regime response is fitted over a limited

range of strain rates by a power law relationship in the form of
τ / _εn, where n is assumed to represent the strain rate sensitivity
of the material. From our analysis it is clear that such a procedure
does not adequately represent the intrinsic features of collective
dislocation motion and is bound to produce misleading results. If,
in Fig. 3b, one fits a linear relationship to the data over a limited
range (say, two decades) of strain rates, then the linear
approximation to the experimental and simulation data as well
as to the theoretical curve (dashed line in Fig. 3b) may have any
slope between 0 and 1 depending on the range of E values
covered. Fits in the low-E regime are bound to produce low
apparent strain rate sensitivities n, while fits in the regime of high
E produce n values close to unity. Moreover, the E parameter
depends systematically on dislocation density: lower dislocation
densities correspond to higher values of E and thus are more
likely to produce higher n. To establish the intrinsic material
parameters that control the strain rate dependency of plastic flow,
a different procedure is required: One needs first to subtract the
forest hardening term (which is strain rate independent) from the
measured stresses such as to produce a linear relationship
between strain rate and stress. From this relationship one can
determine the coefficient of the strain rate hardening term,

s ¼ B

mfaρb
2 ð5Þ

which we propose as an adequate physical measure of strain rate
sensitivity in plastic flow of FCC metals. From Eq. (5), the strain
rate sensitivity is seen to be mainly controlled by the damping
coefficient, B, and dislocation density, ρ, in a combination, which
can explain many corresponding experimental observations in
unified form. A higher dislocation density thus is expected to lead
to lower strain rate sensitivity. This is in good agreement with
experimental observations showing a decrease in strain rate
sensitivity with increasing prestrain10,34. Also the strain rate
sensitivity increases with increasing temperature for FCC
crystals34 since the dislocation damping coefficient is linearly
dependent on temperature35.

Strain localization and patterning. The dimensionless para-
meters, P and E, in Eq. (3C) not only govern the strain rate and
dislocation density dependence of the yield stress, but also control
the localization of plasticity. Contour plots of the local plastic
strain are shown in Fig. 4 for different initial dislocation densities
and strain rates. From Fig. 4, we can distinguish three regimes:
plastic strain contrasts are strong at high dislocation density/low
strain rate (high P > 10), also at low dislocation density/high
strain rate (low P < 0.1). For 0.1 < P < 10, where the transition
from the strain rate hardening regime to the forest hardening
regime occurs, plastic strain is most homogeneous.

Fig. 3 Comparison of our models, simulation data with published experiments8–10,16,27,57–63. a Dimensionless yield stress versus dimensionless

dislocation density; b dimensionless yield stress versus dimensionless strain rate; c minimum yield stress and critical dislocation density at the transition

point between forest hardening and strain rate hardening regimes, as a function of strain rate. All DDD/MD and experimental data presented in this figure

are shown in Supplementary Data 2. DDD is abbreviation of discrete dislocation dynamics and MD is molecular dynamics.
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To explain the origin of the plastic strain patterns, the
stress–strain curves and dislocation configurations for initial
dislocation density of 6.8 × 1011m−2 are shown in Fig. 5 for
three typical strain rates. The simulation at the lowest strain rate
of 102 s−1 is in the forest hardening regime (Fig. 4e, P= 18.8,
with pattern), the strain rate of 104 s−1 is in the transition regime
(Fig. 4g, P= 0.9, no pattern), while the strain rate of 106 s−1 is in
the exhaustion regime (Fig. 4i, P= 0.04, with pattern). The
dislocation evolution processes in the three cases are shown in
Supplementary Movies 1-3.

In Fig. 5, the stress–strain curve of 106 s−1 is typical of the
exhaustion regime. In this regime, existing dislocations are
insufficient to produce the imposed strain rate, and the stress
increases rapidly. Under the high stress, almost all dislocation
junctions (red dislocations) formed during the initial relaxation
are broken. Therefore, in the early yield stage, all dislocations
move rapidly, as shown in Supplementary Movie 1, but their
number is nevertheless insufficient to accommodate the imposed
strain rate. The situation changes once dislocation sources are
formed. As shown in Fig. 5, this happens by a collinear
dislocation reaction, which leads to the formation of a single-
armed source. At the high stress level that has been reached at
that point, this process results in abundant dislocation multi-
plication on the source plane, as shown in Fig. 5 and movie 1. As
a consequence, plastic strain localizes on the source plane (more
generally: the source planes), leading to the observed, highly
heterogeneous plastic strain patterns in Fig. 4i. One may thus
conclude that, in the exhaustion regime, localization is driven by a
multiplication instability which is sooner or later bound to
happen because the stress increases dramatically, as the initially
present dislocations are insufficient to accommodate the imposed
strain rate. Once abundant dislocation multiplication sets in on a
few slip planes, these dislocations dominate the deformation
process, leading to the formation of pronounced slip bands as
seen in Fig. 4i.

At the strain rate of 104 s−1, which is at the transition between
the two regimes of strain rate hardening and forest hardening,
plastic flow is accommodated by continuous breaking and
reformation of dislocation junctions, which lead to a quite
homogeneous pattern of deformation. While the stress is high
enough to ensure that most dislocations remain in motion, it is
not high enough to enforce abundant dislocation multiplication
and therefore deformation activity is approximately equal on all
populated slip planes of the active slip systems. This is also seen
from the near-homogeneous dislocation pattern shown in Fig. 5
for this strain rate and the corresponding Supplementary Movie 2.

The picture changes again when we go to even lower strain
rates, i.e., 102 s−1. Here the stress is just sufficient to break the
weakest junctions, which are typically located in a region of
reduced dislocation density. Deformation then proceeds mainly
on the weakest slip planes, whose dislocations are sufficient to
accommodate the low imposed strain rate (see Supplementary
Movie 3). Again we observe localization (Fig. 4e), but it is driven
by weakest-link behavior rather than dislocation multiplication.
As dislocations move preferentially in dislocation depleted
regions and get then entangled in dislocation dense regions,
density fluctuations are enhanced. Further analysis of plastic
strain heterogeneity in terms of the statistical distribution of the
plastic strain is presented in Supplementary Note 4.

Statistics of dislocation motion. The dimensionless parameters,
P and E, also control the statistics of dislocation motion. Again,
we observe a clear distinction between forest hardening and strain
rate hardening regimes. This is seen in Fig. 6, which shows the
second moment v2

� �

of the dislocation velocity distribution
obtained from current DDD simulations, normalized by the
square of the mean velocity vh i of all dislocations. In the strain
rate hardening regime at low P values (P < 1), the mean square
velocity is of the order of the mean velocity squared, i.e., fluc-
tuations are small in absolute terms and the second moment of

ρ0=1.4 1010m-2

a. SR=100s-1(P=8.3)           b. SR=102s-1(P=0.39)       c. SR=103s-1(P=0.08)       d. SR=104s-1(P=0.02)

ρ0=6.8 1011m-2

e. SR =102s-1(P=18.8)         f. SR=103s-1(P=4.0)        g. SR=104s-1(P=0.9)          h. SR=105s-1(P=0.19)       i. SR=106s-1(P=0.04)

ρ0=4.1 1012m-2

j. SR=101s-1(P=525.5)       k. SR=102s-1(P=113.2)      l. SR=104s-1(P=5.26)       m. SR =105s-1(P=1.13)   

Fig. 4 Contours of plastic strain for different initial dislocation densities and strain rates. In a. SR= 100s−1, b SR= 102s−1, c SR= 103s−1 and d SR=

104s−1, ρ0= 1.4 × 1010m−2. In e SR= 102s−1, f SR= 103s−1, g SR= 104s−1, h SR= 105s−1 and i SR= 106s−1, ρ0= 6.8 × 1011m−2. In j SR= 101s−1, k SR=

102s−1, l SR= 104s−1 and m SR= 105s−1, ρ0= 4.1 × 1012m−2. Plastic strain is given in units of mean plastic strain. In each row, the initial dislocation

configuration is the same. The edge lengths of the depicted simulation boxes are 55.34 μm in the first row (a–d), 7.91 μm in the second row (e–i), 3.23 μm

in the third row (j–m). SR is abbreviation of strain rate.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21939-1

6 NATURE COMMUNICATIONS |         (2021) 12:1845 | https://doi.org/10.1038/s41467-021-21939-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the velocity distribution is approximately independent on dis-
location density. At high values (P » 1), the second moment of the
velocity distribution grows as P3/2. A theoretical expression
describing this behavior can be derived by analysing the micro-
scopic energy dissipation (the work expended in moving dis-
locations against the drag force) and equating this to the
macroscopic dissipated energy (the work expended macro-
scopically to create a plastic strain), as shown in the Supple-
mentary Note 2, and the result reads in scaled notation.

v2
� �

vh i2
¼ 1

fa
αP3=2 þ 1

� �

¼ 1

fa

α

E
þ 1

� �

ð6Þ

As shown in Fig. 6, this relationship gives a good description of
the increase of fluctuations in the regime of high dislocation
densities and/or low strain rates that we observe in DDD
simulations. Note that the left-hand side can be interpreted as a
dissipation ratio, where the numerator is proportional to the

Fig. 5 Dislocation configurations for same initial dislocation density but different strain rates. The shown simulation boxes have an edge length of 7.91

μm. The dislocation evolution processes in the three cases are shown in Supplementary Movies 1-3. SR is abbreviation of strain rate.

Fig. 6 Squared variation coefficient of the dislocation velocity

distribution in DDD simulations. Symbols are datasets for different strain

rates and full line is the theoretical prediction of Eq. (6). DDD is

abbreviation of discrete dislocation dynamics.
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actual dissipated energy, and the denominator is proportional to
the fictitious dissipation in a hypothetical system of noninteract-
ing dislocations of the same dislocation density and strain rate.

The dimensionless parameters P and E not only control the
magnitude of fluctuations but also govern the statistics of the
dislocation velocities: dislocation velocity distributions pertaining
to the same P/E values are identical if properly rescaled. This is
illustrated in Fig. 7 showing dislocation velocity distributions
from current DDD simulations. In the strain rate hardening
regime (Fig. 7a for a small value of P), we find bimodal
distributions with one peak at near zero velocity which represents
dislocations on inactive slip systems, and one peak at high
velocity comprising all dislocations on active slip systems. For the
second peak, the velocities of these dislocations are fairly uniform
and scatter around the peak velocity value that is required to
produce the imposed strain rate. From Eqs. (2) and (3A)

vpeak2 � vm ¼ vh i
fa

; so
vpeak2

vh i � 1

fa
ð7Þ

The unified picture that emerges in the strain rate hardening
regime is thus clear: we can distinguish immobile dislocations,
which are the dislocations on the inactive slip systems, from mobile
dislocations, which comprise all dislocations on the active slip
systems. These dislocations move at the velocity needed to produce
the imposed strain rate, with only minor velocity fluctuations.
The stress response is dictated by the drag on dislocations, and
dislocation–dislocation interactions are fairly unimportant.

As the dimensionless strain rate parameter E decreases or the
density parameter P increases towards unity, the high-velocity
peak of the velocity distribution shifts to lower values and
ultimately merges, for high P, with the low-velocity peak (see
Fig. 7b), leading to unimodal dislocation velocity distribution that
is typical and characteristic of the forest hardening regime. In the
strain rate-independent limit P ! 1 (see Fig. 7c), the velocity
distribution acquires scale free features as the probability density
p(v) decreases, for high velocity, in inverse proportion with v2,
leading to the diverging fluctuations shown in Fig. 6.

Discussion
In this work, the strain rate dependence of collective dislocation
dynamics was studied using a large set of 3D-DDD (discrete
dislocation dynamics) and MD (molecular dynamics) simulations,
spanning nine orders of magnitude in initial dislocation density
and ten orders of magnitude in strain rate. The performed
194 simulations indicate that the material strength displays two
regimes, a strain rate hardening regime where the yield stress
increases in proportion with strain rate and in inverse proportion

with dislocation density at yield, and a regime of classical forest
hardening where the yield stress is approximately strain rate
independent and follows the Taylor relationship. All results can be
described in terms of a scaled dislocation density P ðρy=_ε2=3Þ or

strain rate E (P�3=2), which combine dislocation density and strain
rate, in such a manner that the corresponding yield stress can be
expressed through a universal material independent relationship.
The analytical relationship describes not only our simulations over
the entire range of strain rates and dislocation densities, but also a
wide range of experimental data published in the literature. The
dimensionless parameters, P and E, also control the localization of
plasticity. Plastic strain is localized at high dislocation density/low
strain rate (high P > 10, forest hardening regime), and at low
dislocation density/high strain rate (low P < 0.1, strain rate hard-
ening regime). For 0.1 < P < 10, where the transition of both
regimes occurs, plastic strain is most homogeneous. The dimen-
sionless parameters, P and E, also govern the statistics of dis-
location velocities. In the strain rate hardening regime of high
strain rates/low dislocation densities, we find bimodal velocity
distributions, where dislocations on inactive slip systems remain
immobile whereas dislocations on active slip systems move with
small fluctuations in a quasi-laminar manner at the velocity
needed to match the imposed strain rate. In the forest hardening
regime, on the other hand, the velocity distributions have scale
free characteristics and decrease monotonically towards high
velocity according to a pðvÞ / v�2 power law.

The current results have far-reaching consequences both
regarding the interpretation of experiments and the constitutive
modeling of crystal plasticity. The interpretation of experiments
that try to probe the strain rate dependence of dislocation motion
and to establish drag coefficients has hinged on the idea that it is
possible to distinguish a mobile dislocation density, which moves
at a velocity that is dictated by the externally applied stress, and
an immobile dislocation density that consists of dislocations
remaining essentially stationary. Our investigation demonstrates
that such a distinction makes sense only in the strain rate hard-
ening regime of high strain rates and/or low dislocation densities.
Only experiments conducted in this regime can yield results that
are amenable to direct interpretation. However, most actual
experiments have been conducted at low strain rates and/or high
dislocation densities, i.e., in the forest hardening regime (see
Fig. 3a). In these cases, identifying the mobile dislocation density
is bound to systematically overestimate drag effects, and the
introduction of a mobile fraction of the dislocation density is
tantamount to introducing a variable that cannot easily be
determined independently either by experiments or, as our study
demonstrates, in simulations. At the same time, our results offer a
way out of this dilemma, as we provide a universal yield stress

Fig. 7 Probability distributions of dislocation velocities as observed in DDD simulations. a Distributions in the strain rate hardening regime, P < 0.1.

b Distributions in the intermediate regime 0.1 < P < 10. c Distributions in the forest hardening regime, P ~ 1000, in double-logarithmic representation, where

the full line indicates a slope of −2. σv is the standard deviation of dislocation velocity distribution, and vh iis the mean velocity of all dislocations. DDD is

abbreviation of discrete dislocation dynamics.
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relationship, which contains only the total dislocation density and
strain rate (both measurable quantities) together with material
parameters. One of these parameters is the poorly documented
drag coefficient (as discussed in the introduction), whereas the
remaining parameters (shear modulus, Burgers vector) are
accurately known. Thus, by rescaling experimental data obtained
from samples at different strain rates to fall on the master curve
provided by our Eq. (3) and depicted in Fig. 3, it is possible to
determine the drag coefficient B without having to assume a value
for the mobile dislocation density.

Regarding constitutive modeling, we note that, starting from
the Kubin-Estrin model36, many dislocation based crystal plas-
ticity models contain a ‘mobile dislocation density’ as a con-
stitutive variable (for recent examples, see ref. 37). Our analysis
demonstrates that, in the forest hardening regime, the distribu-
tion of dislocation segment velocities alone, which is scale free
and not bimodal, offers no obvious means to define such a
quantity, even though definitions based on dislocation core
properties or simply by appropriate thresholding of the velocity
might be possible. In the strain rate hardening regime, by con-
trast, the mobile dislocation density simply encompasses almost
all dislocations on active slip systems.

We finally note that the transition between the forest hard-
ening and strain rate hardening regimes of dislocation plasticity
not only affects the manner in which the flow stress depends on
dislocation density and strain rate, and the magnitude of dis-
location velocity fluctuations, but has important consequences
regarding the formation of spatially inhomogeneous strain and
dislocation patterns, which occur both in the exhaustion regime
and the forest hardening regime, but not in the intermediate
regime. As noted by several authors38,39, homogeneous flow of
dislocations is unstable with respect to formation of localized
strain and dislocation density patterns in the forest hardening
regime of low strain rates and/or high dislocation densities. In
this regime the strain rate is a decreasing function of dislocation
density, which is equivalent to the flow stress at constant strain
rate being an increasing function of dislocation density. Wu and
Zaiser (202040) show explicitly that the critical condition for the
formation of heterogeneous dislocation patterns during defor-
mation in symmetrical double slip is identical with the condition
for the transition from the strain rate hardening regime to the
forest hardening regime established in Eq. (3) of the present work.
At the same time, in the exhaustion regime of very low disloca-
tion densities and high strain rates, deformation is characterized
by a multiplication instability where dislocation exhaustion leads
to very high stresses, which ultimately trigger abundant disloca-
tion multiplication and strain localization on planes where dis-
location sources are formed.

In summary, our investigation provides a unifying picture of
the strain rate and dislocation density dependence of collective
dislocation dynamics over a so far unprecedented range of scales.
In the regime of comparatively low strain rates or high dislocation
densities, in which most laboratory experiments are conducted,
collective dynamics of dislocations appears as a highly turbulent
flow process. Once a sufficiently high applied stress causes the
dislocation arrangement to lose metastability, complex relaxation
processes lead to highly irregular dynamics with a scale free
dislocation velocity spectrum and a strong propensity to the
formation of heterogeneous strain and dislocation patterns.

Methods
3D-DDD simulations in this work were performed using the open source code,
ParaDiS (v2.5.1), developed at Lawrence Livermore National Laboratory20. In
ParaDiS, dislocations are discretized into sequences of individual interconnected
dislocation segments, each of which carries elastic distortion and associated stress
field. Under external applied load σex, each dislocation segment experiences a force

per unit length

F ¼ b � σex þ σdisð Þ ´ ξþ F0 þ Fself ð8Þ
where ξ is the dislocation line direction, b is the Burgers vector of the dislocation
segment, σdis is the long-range interaction stress between the current dislocation
and others, Fself is the dislocation self-force, and F0 is the lattice friction force.
Under this total force, each dislocation segment glides on its slip plane. During
dislocation glide, short-range dislocation interactions are taken into account,
including junction formation and breaking, cross-slip, dislocation annihilation and
multiplication. The total plastic strain inside the simulation cell is calculated from
the area A swept by the dislocation segments, εp ¼ ∑ A

2V
ðn� bþ b� nÞ, where n is

the unit normal to the slip plane, V is the volume of the simulation cell. Then the
response in stress can be obtained by σex ¼ Eðε� ε

pÞ. In recent years, ParaDiS was
employed frequently to model crystal plasticity in various situations, such as bulk
strain hardening, grain boundary strengthening, precipitation hardening and
deformation twinning41–44.

Here, ParaDiS is used to quantify the strain rate effects on collective dislocation
behavior in plastically deforming bulk copper (Cu) single crystals. All DDD
simulations were conducted for cubic cells with periodic boundary conditions in
three directions. The cube edges were aligned with the three orthogonal crystal
directions X= [100], Y= [010], and Z= [001], respectively. To ensure bulk-like
behavior and minimize artifacts induced by the periodic boundary conditions, the
simulation cell size L must be several times larger than the characteristic wave-
length of the microstructure (here the dislocation spacing which is estimated as the
inverse square root of the initial dislocation density ρ0)45. Accordingly, the simu-
lation cell size is adjusted to keep the ratio of simulation cell size to initial dis-
location spacing Lρ

1=2
0 > 4, which leads to physical sizes, depending on ρ0, ranging

from 1mm for the lowest dislocation density of 2.3 × 107m−2 to 100 nm for the
highest dislocation density of 1.4 × 1016m−2. Increasing this ratio has no sig-
nificant effects on the results as discussed in the Supplementary Note 1. The
material parameters used in all DDD simulations are those of FCC Cu: shear
modulus, G= 54.6 GPa; Poisson ratio, υ= 0.324; magnitude of Burgers vector,
b= 0.25 nm.

In many previous DDD simulations, the initial dislocation configurations con-
sisted of Frank-Read dislocation sources (a dislocation ending at two pinning
nodes)46. Such initial conditions are not only inconsistent with Burgers vector
conservation, since the dislocation ends within the crystal, but might also cause
artifacts in the dynamics, as the artificially introduced pinning nodes are much
stronger than naturally formed ones. Therefore, here we introduced infinite-length
dislocations spanning two periodic cells, which are equi-distributed over the 12
possible slip systems. A typical example of initial configuration is shown in Fig. 8a.
The initial dislocation density, ρ0, was varied over nine orders of magnitude (2.3 ×
107m−2

∼1.4 × 1016m−2). The initial dislocation configuration was first relaxed
under zero stress until the incremental plastic strain is less than 10−7 in 10 ns.
During the relaxation, the dislocation density decreases due to dislocation reactions
driven by dislocation-related internal stresses. Figure 8a shows that the plastic
strain is approaching saturation, indicating that the dislocation configuration
approaches a stable state. A representative relaxed dislocation network shown in
the inset of Fig. 8a exhibits a large number of naturally forming dislocation
junctions with a very wide spectrum of junction lengths. It should be noted that the
accumulated plastic strain produced during the relaxation is significant (up to
0.12% in simulations with a high initial dislocation density). If the relaxation would
be omitted, this accumulative plastic strain would show as a prestrain occurring
during the elastic loading stage. Thus, the initial relaxation is important to accu-
rately represent a crystal in equilibrium. Then, a constant strain rate _ε is imposed
parallel to the simulation cell edge along the Z direction. The imposed strain rate
was varied by 7 orders of magnitude from 0.1 s−1 to 106 s−1. To account for the
effect of variations in the initial dislocation network, each simulation was run at
least three times (except the case of 0.1 s−1) with the same initial dislocation
density but different random distributions of the initial dislocations. A total of
189 simulations were thus performed.

In high strain rate experiments, the stress is believed to be closely related to the
mobility of dislocations13,14. Thus, to accurately predict dislocation kinetics in high
strain rate simulations, a realistic dislocation mobility law is needed. Recent MD
simulations of edge dislocation velocity versus resolved shear stress in Cu47,
reproduced in Fig. 8b, show a nonlinear dislocation mobility relationship. Screw
dislocation mobility is comparable with edge dislocation mobility. In the current
DDD simulations, we utilize an exponential mobility rule of the form48

v ¼ vmaxð1� expð�kτÞÞ ð9Þ
where vmax= 1.5579 km/s is the upper limit of the dislocation velocity and k=
0.0146/MPa is a constant. This mobility law matches reasonably well the MD
predictions (see Fig. 8b). It is worth noting that the functional form of Eq. (9) also
provides a good fit for velocity-stress curves in other FCC metals (e.g., Ni, Al, and
Al/Mg alloys)35. We finally note that this mobility law reduces, in the regime of low
to intermediate velocity, to the often-used linear drag law, v= bτ/B, with linear
drag coefficient B= 1.6 × 10−5 Pa s. At the same time, the exponential saturation
avoids unphysical behavior that would otherwise occurs associated with disloca-
tions passing the sound velocity barrier. For validation purposes, we compare our
results with MD simulations, where effects of dislocation inertia and relativistic
effects49 (i.e., the effective mass of a dislocation diverges as the dislocation
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approaches the sound velocity) are naturally included. This comparison demon-
strates that Eq. (9) provides an adequate representation of collective dislocation
behavior even in the high-velocity regime.

To ensure that the current predictions are not contingent on simulation method,
large scale MD simulations were conducted using the MD simulation package
LAMMPS50, with the atomic potential for FCC Al51. The cubic simulation cell has
a size of 113.4 nm with periodic boundary conditions applied in three directions
and contains 88 million atoms. In the MD simulation cell, we initially introduced
dislocation loops with the same size as the simulation cell52. Five initial dislocation
densities were considered from 3.5 × 1014m−2 to 2.2 × 1016m−2. After a relaxation
achieved through a conjugate gradient algorithm, a dislocation network forms.
Then a strain rate of 2.5 × 108 s−1 was applied on the simulation cell to study the
dislocation dynamics during plastic flow.

In all DDD and MD simulations, only dislocation-mediated plasticity has been
considered since other deformation modes (e.g., twinning) are active at shock
loading stresses in excess of 35 GPa53,54 or strain rate in excess of 1.25 × 109 s−1 52,
a regime that is beyond the stresses and strain rates of interest in this study. For the
same reason, homogenous dislocation nucleation in the crystal was also neglected
since previous MD simulations55 indicate a homogenous nucleation stress of ~10
GPa in copper, which is higher than all the yield stresses reached in the current
simulations. Finally, we note that the specimen acceleration effect is less than 2% of
the dynamic stress for strain rate below 105 s−1 56, and was not considered in the
DDD simulations. Dislocation cross-slip is not included, which is important at high
strain levels.

Data availability
All the other raw data required to reproduce these findings are available from authors

upon request. The ParaDiS v2.5.1 was downloaded from http://paradis.stanford.edu.
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