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Abstract. Four strains of the coccolithophore E. huxleyi

(RCC1212, RCC1216, RCC1238, RCC1256) were grown

in dilute batch culture at four CO2 levels ranging from

∼200 µatm to ∼1200 µatm. Growth rate, particulate or-

ganic carbon content, and particulate inorganic carbon con-

tent were measured, and organic and inorganic carbon pro-

duction calculated. The four strains did not show a uniform

response to carbonate chemistry changes in any of the anal-

ysed parameters and none of the four strains displayed a re-

sponse pattern previously described for this species. We con-

clude that the sensitivity of different strains of E. huxleyi to

acidification differs substantially and that this likely has a

genetic basis. We propose that this can explain apparently

contradictory results reported in the literature.

1 Introduction

Anthropogenic CO2 emissions cause a decrease of surface

seawater pH, a process termed ocean acidification (Royal

Society, 2005). Among the adverse effects of ocean acid-

ification on marine organisms, reduction in the capacity of

calcifiers to build shells has received special attention be-

cause calcium carbonate precipitation in surface waters and

its subsequent export to the sediments play important roles

in the global carbon cycle (Van Cappellen, 2003). In terms

of calcite export to sediments, the coccolithophores, unicel-

lular haptophyte algae that cover the cell surface with minute

intracellularly-produced calcite platelets (the coccoliths), are

one of the most important groups of calcifiers in today’s

oceans (Baumann et al., 2004).

The question of how coccolithophores will respond to

ocean acidification has attracted increasing attention over

the last decade. To date, the majority of evidence stems
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from laboratory culture experiments. Following the semi-

nal study by Riebesell et al. (2000), the first widely adopted

notion was that coccolithophores decrease their calcifica-

tion rate with increasing CO2 concentration (decreasing

pH) in a linear fashion (see also Zondervan et al., 2001).

These studies were conducted on one culture strain of each

of two closely related species, E. huxleyi and Gephyro-

capsa oceanica, both gephyrocapsid coccolithophores that

are relatively small (≤ 8 µm), but numerically dominant in

coccolithophore assemblages in modern oceans. A subse-

quent study showed that one culture strain of each of the two

larger, heavily calcifying coccolithophores Calcidiscus lep-

toporus and Coccolithus braarudii, did not follow the re-

sponse pattern previously reported for E. huxleyi (Langer et

al., 2006). While C. leptoporus displayed an optimum curve,

C. braarudii was insensitive over the CO2(pH) range tested.

This clearly demonstrated that there is no uniform response

of coccolithophores to acidification.

For E. huxleyi, apparently conflicting results have been

reported. In direct contrast to the results of Riebesell et

al. (2000), a recent study reported that E. huxleyi increases

its calcification rate in response to increasing CO2 concentra-

tion under light saturation (Iglesias-Rodriguez et al., 2008a).

Despite an active debate on the subject (Riebesell et al.,

2008; Iglesias-Rodriguez et al., 2008b), it is presently un-

known why apparently contradictory results have been ob-

tained in different studies on E. huxleyi. One striking fact is

that in every study a different culture strain of this species

has been used. Bearing in mind that different species of coc-

colithophore have been shown to exhibit different responses

to carbonate chemistry changes, it can be hypothesized that

intra-specific responses also exist. To test this, we cultured

four strains of E. huxleyi under light saturation and four dif-

ferent CO2 concentrations, and measured, inter alia, calcifi-

cation rate.
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Table 1. Information on culture strains used in this and previous studies. Max. annual SST was taken from the World Ocean Atlas

(www.nodc.noaa.gov).

Strain Code Isolation Date Location of sample

from which culture

isolated

Seawater

temperature at

time of sampling

Max. annual

SST at sampling

location

Experimental

temperature

Morphotype Study

RCC1212 9/2000 34◦28′ S 17◦18′ E

(South Atlantic,

off South Africa)

15◦C 21◦C 20◦C B This study

RCC1216 9/1998 42◦18′ S 169◦50′ E

(Tasman Sea,

off New Zealand)

11◦C 18◦C 17◦C R This study

RCC1238 11/2005 34◦01′ N

139◦50′ E

(North Pacific,

off Japan)

18◦C 25◦C 20◦C A This study

RCC1256 7/1999 63◦24′ N 20◦20′ W

(North Atlantic,

off Iceland)

9◦C 14◦C 17◦C A This study

PLY B92/11A 4/1992 60◦16′ N 5◦14′ E

(Bergen, Norway;

mesocosm bag)

10◦C 16◦C 15◦C A Riebesell

et al., 2000

NZEH (COWPO6) South Pacific,

off New

Zealand

∼18◦C 19◦C R Iglesias-

Rodriguez

et al., 2008a

CCMP371 6/1987 32◦ N 62◦ W

(Sargasso Sea;

50 m depth)

? 25◦C 20 and 24◦C Feng et al.,

2008

2 Material and methods

Clonal cultures of E. huxleyi (strains RCC1212, RCC1216,

RCC1238, and RCC1256) were grown in aged, sterile-

filtered (0.2 µm pore-size cellulose-acetate filters) North Sea

seawater enriched with 100 µmol L−1 nitrate, 6.25 µmol L−1

phosphate, and trace metals and vitamins as in f/2 medium

(Guillard and Ryther, 1962). Information on the strains,

which were obtained from the Roscoff Culture Collection

(www.sb-roscoff.fr/Phyto/RCC), is given in Table 1. Cul-

tures were grown under a 16/8 hour light/dark cycle. Ex-

periments were carried out at a light intensity of 400 µmol

photons m−2 s−1 in an adjustable incubator (Rubarth Ap-

parate GmbH, Germany). The temperature used was 17◦C

for RCC1216 and RCC1256, and 20◦C for RCC1212 and

RCC1238. We chose different temperatures as opposed to

a standard temperature in order to grow each strain near its

optimum temperature for growth. Salinity, measured with

a conductivity meter (WTW Multi 340i) combined with a

TetraCon 325 sensor, was 32. Cells were pre-adapted to ex-

perimental conditions for approximately 12 generations and

grown in dilute batch cultures (Langer et al., 2007). Each

data point presented in the tables and figures is the mean

value of triplicate culture experiments. CO2 levels were ad-

justed by adding calculated amounts of HCl or NaOH to the

medium. Low cell densities (<50 000 cells ml−1) even at the

termination of the experiments resulted in the consumption

of less than 5% dissolved inorganic carbon (DIC), ensuring

a quasi-constant carbonate system over the course of the ex-

periment.

Samples for alkalinity measurements were filtered through

0.6 µm nominal pore-size glass fibre filters (Whatman GF/F),

poisoned with 1 ml 35g L−1 HgCl2, and stored in acid-

washed 300 ml borosilicate flasks at 0◦C. DIC samples were

sterile-filtered through 0.2 µm pore-size cellulose-acetate sy-

ringe filters and stored in acid-washed 13 ml borosilicate

flasks free of air bubbles at 0◦C. Total alkalinity (TA) was

calculated from linear Gran plots (Gran, 1952) after po-

tentiometric titration (in duplicate) (Bradshaw et al., 1981;

Brewer et al., 1986). DIC was measured photometrically

(Stoll et al., 2001) in triplicate. Precision of the TA measure-

ments was ∼3 µmol L−1 and accuracy ∼4 µmol L−1. For

DIC measurements, precision was ∼4 µmol L−1 and accu-

racy ∼5 µmol L−1. The carbonate system was calculated

from temperature, salinity, and the concentrations of DIC,

TA, and phosphate using the DOS program CO2 sys (Lewis

and Wallace, 1998). The equilibrium constants of Mehrbach

et al. (1973) refitted by Dickson and Millero (1987) were

used. Samples for determination of total particulate carbon

(TPC) and particulate organic carbon (POC) were filtered

onto pre-combusted (12 h, 500◦C) 0.6 µm nominal pore-size

glass fibre filters (Whatman GF/F) and stored at −20◦C.
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Prior to analysis, 230 µL of an HCl solution (5 mol/L) was

added on top of the POC filters in order to remove all inor-

ganic carbon. TPC and POC were subsequently measured

on a Euro EA Analyser (Euro Vector). Particulate inorganic

carbon (PIC) was calculated as the difference between TPC

and POC. For determination of cell density, samples were

taken at the beginning and the end of experiment and counted

immediately after sampling using a Coulter Multisizer III.

Growth rate (µ) was calculated as :

µ = (lnc1 − lnc0)1t−1 (1)

where c0 and c1 are the cell concentrations at the beginning

and the end of experiment, respectively, and 1t is the dura-

tion of incubation in days.

Particulate inorganic carbon production, i.e. calcification

rate (PPIC, pg PIC cell−1 d−1) was calculated according to:

PPIC = µ∗(cellular inorganic carbon content) (2)

with cellular inorganic carbon content = pg PIC per cell.

Particulate organic carbon production (PPOC, pg POC

cell−1 d−1) was calculated according to:

PPOC = µ∗(cellular organic carbon content) (3)

with cellular organic carbon content = pg POC per cell.

3 Results and discussion

3.1 Summary of results

E. huxleyi RCC1212 and RCC1216 both slightly decreased

growth rate in response to increasing CO2 concentration (de-

creasing pH), while RCC1238 slightly increased growth rate

(Fig. 1, Tables 2 and 3). RCC1256 displayed a marked

decrease in growth rate with increasing CO2 concentration

(Fig. 1, Tables 2 and 3). Cellular PIC content decreased with

increasing CO2 concentration in RCC1212 and RCC1216,

while it increased in RCC1256 (Fig. 2, Tables 2 and 3).

RCC1238 exhibited no change in cellular PIC content over

the range of CO2 concentrations tested (Fig. 2, Tables 2 and

3). Cellular POC content increased slightly in RCC1216 with

increasing CO2 concentration, while cellular POC content

of RCC1212 did not change (Fig. 2, Tables 2 and 3). In

RCC1256 cellular POC content increased markedly with

increasing CO2 concentration and in RCC1238 cellu-

lar POC content remained unaltered up to ∼680 µatm CO2

and decreased at ∼930 µatm CO2 (Fig. 2, Tables 2 and 3).

RCC1212 and RCC1216 both slightly decreased their PIC

production, i.e. calcification rate, in response to increasing

CO2 (Fig. 3, Tables 2 and 3). RCC1256 showed an optimum

curve with highest calcification rate at ∼600 µatm CO2 and a

pronounced decrease of calcification rate at ∼900 µatm CO2

(Fig. 3, Tables 2 and 3). Calcification rate of RCC1238

did not change over the range of CO2 concentrations tested

(Fig. 3, Tables 2 and 3). POC production of RCC1212 and

Fig. 1. Growth rates of the four E. huxleyi strains versus CO2 con-

centration. (A) RCC1238, (B) RCC1216, (C) RCC1256, and (D)

RCC1212. Errorbars represent standard deviation of three culture

experiments.
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Table 2. The carbonate system.

experiment TA [µmol/kg] TC [µmol/kg] pH (NBS) CO2 [µatm] HCO−

3
[µmol/kg] CO2−

3
[µmol/kg] omega calcite

RCC1238 1 2522 2086 8.45 206 1768 311 7.6

RCC1238 2 2302 2050 8.19 395 1858 179 4.4

RCC1238 3 2184 2039 7.96 681 1907 110 2.7

RCC1238 4 2107 2013 7.83 929 1902 80 2.0

RCC1216 1 2487 2102 8.42 218 1821 273 6.7

RCC1216 2 2281 2067 8.16 422 1898 153 3.7

RCC1216 3 2177 2060 7.93 729 1941 93 2.3

RCC1216 4 2075 2029 7.71 1201 1930 56 1.4

RCC1256 1 2456 2049 8.46 193 1756 286 7.0

RCC1256 2 2240 2022 8.17 399 1853 155 3.8

RCC1256 3 2136 1993 8.00 587 1865 106 2.6

RCC1256 4 2051 1974 7.81 915 1872 69 1.7

RCC1212 1 2517 2067 8.47 194 1741 319 7.8

RCC1212 2 2313 2066 8.18 409 1877 176 4.3

RCC1212 3 2203 2071 7.93 752 1944 103 2.5

RCC1212 4 2128 2053 7.77 1096 1947 71 1.7

Table 3. Growth rate, cellular POC and PIC content, POC and PIC production of the four E. huxleyi strains used SD = standard deviation.

Experiment codes are the same as in Table 2.

experiment growth cellular PIC cellular POC PIC POC PIC/

rate content content production production POC

no. µ SD [pg PIC/cell] SD [pg POC/cell] SD [pg PIC/cell *day] SD [pg POC/cell *day] SD SD

RCC1238 1 1.48 0.07 8.81 0.77 10.40 0.74 13.10 1.74 15.47 1.80 0.85 0.01

RCC1238 2 1.64 0.01 8.29 0.31 10.41 0.60 13.57 0.52 17.04 1.00 0.80 0.02

RCC1238 3 1.67 0.02 7.70 0.58 11.58 0.81 12.89 1.10 19.39 1.52 0.66 0.02

RCC1238 4 1.60 0.02 8.42 0.26 9.59 0.80 13.48 0.52 15.34 1.23 0.88 0.08

RCC1216 1 1.14 0.01 10.67 0.76 10.50 0.94 12.13 0.86 11.94 1.08 1.02 0.02

RCC1216 2 1.14 0.05 10.68 0.78 11.47 0.88 12.05 1.18 12.94 1.33 0.93 0.01

RCC1216 3 1.11 0.00 9.99 0.97 12.33 0.57 11.07 1.11 13.67 0.66 0.81 0.04

RCC1216 4 1.01 0.02 8.56 1.23 12.90 0.11 8.67 1.15 13.09 0.15 0.66 0.09

RCC1256 1 1.28 0.01 9.65 1.08 12.38 1.04 12.39 1.47 15.88 1.24 0.78 0.10

RCC1256 2 1.28 0.01 10.92 0.63 13.34 1.00 13.95 0.83 17.03 1.31 0.82 0.01

RCC1256 3 1.14 0.03 12.07 1.15 16.57 1.53 14.35 0.90 18.86 1.66 0.73 0.00

RCC1256 4 0.83 0.01 12.23 0.01 16.98 0.58 10.16 0.09 14.12 0.45 0.72 0.03

RCC1212 1 0.99 0.02 9.61 0.22 10.88 0.85 9.52 0.03 10.78 0.70 0.89 0.06

RCC1212 2 0.98 0.01 9.35 0.51 11.41 1.12 9.18 0.55 11.21 1.14 0.82 0.04

RCC1212 3 0.95 0.03 8.86 0.46 12.69 1.07 8.39 0.69 12.02 1.39 0.70 0.02

RCC1212 4 0.87 0.02 6.85 1.44 11.97 0.85 5.92 1.15 10.37 0.93 0.58 0.14

RCC1216 remained unaltered over the CO2 range tested,

while RCC1256 and RCC1238 both displayed an optimum

curve with the highest POC production at ∼590 µatm CO2

and ∼680 µatm CO2, respectively (Fig. 3, Tables 2 and 3).

Both strains (RCC1256 and RCC1238) showed a decrease in

POC production at approx. 920 µatm CO2 (Fig. 3, Tables 2

and 3). The PIC/POC ratio of RCC1216 and RCC1212 de-

creased by ca. 30% with increasing CO2, in a linear fash-

ion (Fig. 4). The PIC/POC ratio of RCC1256 varied little

over the CO2 range tested. Apart from a minimum at ca.

700 µatm CO2, the same trend was observed in RCC1238

(Fig. 4).

3.2 Varying responses of E. huxleyi to changing carbon-

ate chemistry

Under our experimental conditions, differences were found

in every measured variable (Tables 2 and 3) for the four

tested strains of E. huxleyi (RCC1212, RCC1216, RCC1238,

RCC1256). Based on our results (Table 3, Figs. 1–4), we

distinguish three types of responses represented by the fol-

lowing clones: (1) RCC1212 and RCC1216 (2) RCC1238

(3) RCC1256. Apart from the culture strain, the only other

variable in this set of experiments was temperature, with

two strains (RCC1216 and RCC1256) grown at 17◦C and
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Fig. 2. Cellular PIC and POC content of the four E. huxleyi

strains versus CO2 concentration. (A) RCC1238, (B) RCC1216,

(C) RCC1256, and (D) RCC1212. Open circles represent cellular

POC content and closed circles represent cellular PIC content. Er-

rorbars represent standard deviation of three culture experiments.

Fig. 3. PIC and POC production of the four E. huxleyi strains versus

CO2 concentration. (A) RCC1238, (B) RCC1216, (C) RCC1256,

and (D) RCC1212. Open circles represent POC production and

closed circles represent PIC production. Errorbars represent stan-

dard deviation of three culture experiments.

www.biogeosciences.net/6/2637/2009/ Biogeosciences, 6, 2637–2646, 2009
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Fig. 4. PIC/POC ratio of the four E. huxleyi strains versus CO2

concentration. (A) RCC1238, (B) RCC1216, (C) RCC1256, and

(D) RCC1212. Errorbars represent standard deviation of three cul-

ture experiments.

two (RCC 1212 and RCC1238) at 20◦C. The rationale for

this was to compare responses between strains that were in

a physiologically similar state in relation to their optimum

growth rate. Temperature can influence metabolic processes

at different rates and had a single temperature been used,

comparison of responses could potentially have been biased

by differing relative physiological condition of cells having

differing temperature optima for growth. Therefore we grew

every strain near its optimum temperature (Fig. 5). In fact,

for E. huxleyi grown in light-saturating conditions, tempera-

ture does not appear to strongly influence PIC and POC pro-

duction rates, at least over the range used in our experiment:

Feng et al. (2008) showed that for a given combination of

CO2 and light conditions, a temperature shift of 4◦C (from

20◦C to 24◦C) did not cause a significant quantitative or rel-

ative difference in PIC and POC responses in E. huxleyi strain

CCMP371 (originating from the Sargasso Sea). The observa-

tion that at each temperature in our experiment the responses

of the two strains differed leads us to conclude that tempera-

ture did not dictate the response pattern observed.

Presently, the scientific debate on the issue of differing re-

sponses of E. huxleyi in previous studies centres on experi-

mental protocols in general, and on the method of carbonate

chemistry manipulation in particular (Iglesias-Rodriguez et

al., 2008a; Iglesias-Rodriguez et al., 2008b; Riebesell et al.,

2008). In experimental studies on coccolithophores, the car-

bonate system has been manipulated either by changing TA

or by changing DIC. The former is achieved by adding acid

or base to the seawater, whereas the latter is achieved by bub-

bling a batch of seawater with CO2-enriched/CO2-depleted

air. In the case of a DIC change, every parameter of the car-

bonate system apart from TA is changed; in the case of a TA

change, every parameter of the carbonate system apart from

DIC is changed (in a closed system). In the first study on

E. huxleyi, the TA-manipulation method was employed and

a decrease of calcification rate with increasing CO2 concen-

tration reported (Riebesell et al., 2000). In the most recent

study, the DIC-manipulation method was employed and an

increase of calcification rate with increasing CO2 concentra-

tion was observed (Iglesias-Rodriguez et al., 2008a). The

latter authors argued that their results were unlikely to be

due to physiological traits of a particular strain of E. hux-

leyi, implying that the difference in response was due to the

difference in the method of carbonate chemistry manipula-

tion. If this were so, the results of Feng et al. (2008), who

found a decrease of calcification rate with increasing CO2

concentration even though they used the DIC-manipulation

method, could not be explained. Likewise, the response of

strains RCC1238 and RCC1256 in our study (Fig. 3, Table 3)

would be aberrant. A literature review, which can be found in

a paper by Ridgwell et al. (2009), provides more facts adding

to the point. It is therefore highly unlikely that the method

used to manipulate the carbonate system causes differences

in response patterns.
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Fig. 5. Growth rates of the four Emiliania huxleyi strains versus

temperature. (A) RCC1238, (B) RCC1216, (C) RCC1256, and (D)

RCC1212. Errorbars represent standard deviation of three culture

experiments.

In fact, it has recently been shown that the method of car-

bonate chemistry manipulation does not affect the response

pattern of another E. huxleyi clone (Shi et al., 2009).

We therefore conclude that the sensitivity of different

strains of E. huxleyi to changes in carbonate chemistry differs

substantially. This becomes especially obvious when com-

paring the response patterns in detail, i.e. looking not only at

calcification rate. In addition to calcification rate, the POC

production, PIC and POC content, and growth rates of the

different strains also showed different trends over the range

of carbonate chemistry tested. We propose that these strain-

specific differences can explain the apparent contradictions

in the literature, because in every previous study a different

strain was used (Feng et al., 2008; Iglesias-Rodriguez et al.,

2008a; Riebesell et al., 2000, this study; see Table 1).

3.3 The origin of strain-specific responses

Considerable phenotypic variation is known between isolates

classified as E. huxleyi. In this respect, focus has centred

on morphological variation of coccoliths, reflecting the mor-

phological tradition in coccolithophore taxonomy. E. hux-

leyi is currently separated into five morphotypes, where types

A and B are the best characterized and most widely rec-

ognized (Young and Westbroek, 1991; Young et al., 2003).

In the search for a genetic basis for this phenotypic vari-

ation, studies involving multiple E. huxleyi culture clones

using molecular techniques such as RAPD and microsatel-

lites have shown ample evidence of interclonal genotypic

variation within the E. huxleyi morpho-species (Medlin et

al., 1996, Iglesias-Rodriguez et al., 2006). One study has

correlated phenotypic and genotypic variation, identifying a

putative genetic marker for distinguishing E. huxleyi mor-

photypes (Schroeder et al., 2005). Pseudo-cryptic species

have been documented in several coccolithophore taxa, with

molecular data supporting earlier morphological and geolog-

ical evidence (Sáez et al., 2003), but for E. huxleyi the ques-

tion of whether different phenotypes or genotypes represent

reproductively isolated species or interbreeding populations

within a species complex remains to be resolved.

In contrast to studies on morphology and genetics, the ma-

jority of information on the physiology of E. huxleyi results

from studies on single culture clones (see review of Paasche,

2002), in some cases demonstrating phenotypic plasticity,

i.e. a phenotypic change in response to change in an envi-

ronmental parameter. Multi-clone surveys of, for example,

alkenone content (Conte et al., 1998) in E. huxleyi have been

conducted, demonstrating variation between clones, which

presumably has a genetic basis. Studies demonstrating phe-

notypic plasticity within clones, phenotypic variation be-

tween clones, and variability in phenotypic plasticity be-

tween clones (i.e. variable response patterns), as revealed in

our study, are rarer.

www.biogeosciences.net/6/2637/2009/ Biogeosciences, 6, 2637–2646, 2009
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Strain-specific responses in growth rate of E. huxleyi to

temperature and salinity changes were described more than

two decades ago, when it was found that strains isolated from

geographically separated water masses within the western

North Atlantic exhibited different responses (Brand, 1982;

Brand, 1984). Coastal strains generally differed physiologi-

cally from oceanic strains (Brand, 1982, 1984). On the one

hand, the two “coastal” (i.e. from within 10 km of the shore)

strains used here (RCC1256 and RCC1238) indeed differed

from the two ‘oceanic’ strains (RCC1212 and RCC1216).

On the other hand, the two coastal strains (RCC1256 and

RCC1238) did not behave similarly at all. Therefore, the

distinction coastal / oceanic is not sufficient to explain strain-

specific responses.

Surface seawater CO2 concentrations at the locations of

sampling for strain isolation do not provide a hint as to a

reason for the differences in response pattern. The CO2

concentration in the Tasman Sea (RCC1216), off Japan

(RCC1238), and off South Africa (RCC1212) is approxi-

mately 320 µatm and does not vary greatly over the course

of the year (Takahashi et al., 2002). South of Iceland

(RCC1256), CO2 concentration ranges from ca. 270 µatm in

August to ca. 360 µatm in February (Takahashi et al., 2002).

If ambient CO2 concentration was the parameter determin-

ing the response pattern, all strains except RCC1256 would

have been expected to have responded similarly, which was

not the case.

The morphotype seems to have no influence on the re-

sponse pattern. The two strains that exhibited similar re-

sponses belong to two different morphotypes, RCC1216 be-

ing a type R and RCC1212 being a type B, and the two

coastal strains (RCC1238 and RCC1256), which differed in

response from each other as well as from the oceanic strains,

belong to the same morphotype, namely type A. Interest-

ingly the two type A strains (RCC1238 and RCC1256) ex-

hibit the weakest (RCC1238) and the strongest (RCC1256)

responses. The intermediate responses are displayed by the

type R (RCC1216) and type B (RCC1212). The type B mor-

photype is described as the more delicate form (compared to

type A and type R) which is often assumed to be more vulner-

able to acidification. Our data show that this is not the case.

We think it more plausible to assume that the susceptibility

to acidification related effects is connected with some phys-

iological process, for instance a transmembrane transport of

ions.

Since the strains used in the present study were iso-

lated from samples from locations separated by at least

a few thousand kilometers (Table 1), it appears reason-

able to regard them at least as different populations with

specific genetic features and potentially as genetically iso-

lated cryptic or pseudo-cryptic species. RCC1256 (Iceland)

and RCC1238 (Japan) showed two types of responses, nei-

ther of which resembled the response of RCC1212 (South

Africa) and RCC1216 (New Zealand). The two southern-

hemisphere strains, RCC1212 (South Africa) and RCC1216

(New Zealand) displayed very similar responses (see Table 3

for overview) and they might be regarded as being connected

by the Antarctic circumpolar current, which could possibly

allow for genetic exchange between the populations. As

a general caveat, we note that experiments on many more

strains would be needed to consolidate the conclusion that

variability in the response of E. huxleyi to changing carbon-

ate chemistry does not clearly correlate with biogeographic

origin or morphotype of the strain.

We propose that the observed differences in response of

E. huxleyi isolates to changing carbonate chemistry have a

genetic basis. At present, it is impossible to speculate as to

whether this could be due to, for example, gene differenti-

ation, allelic sensitivity, or gene regulation effects (see Via

et al., 1995). Relatively little is known about the physio-

logical mechanisms, let alone the genetic basis, of carbon

acquisition and processes involved in calcification in coccol-

ithophores. A better understanding of these aspects would

undoubtedly shed light on the variability in the response of

coccolithophores (and other calcifiers) to ocean acidification.

3.4 Implications for model studies and the fate of

coccolithophores

Calcification shifts the carbonate system towards higher

CO2 concentrations. Diminished calcification, and a de-

creased PIC/POC ratio, in the future would, therefore, lead

to a negative feedback on atmospheric CO2 concentration

(Zondervan et al., 2001). Prediction of the strength of the

CO2-calcification feedback is impaired by species-specific

responses to acidification in combination with the unresolved

question of which calcifier is the most prolific (Ridgwell et

al., 2007). If our results for E. huxleyi are representative

for coccolithophores in general, or even for other calcifying

groups such as the foraminifera, it would be unrealistic to de-

fine a representative response as an input for an Earth system

model. Since this is an important and widely discussed issue,

further studies addressing strain-specific effects are clearly

warranted.

Such studies are also desirable for shedding light on the

questions of if and how coccolithophores could cope with

a future acidified ocean. Judging from culture studies only,

it can be inferred that some strains will suffer from reduced

calcification, e.g. Gephyrocapsa oceanica PC71 (Riebesell

et al., 2000), some E. huxleyi strains (Table 3), and Calcidis-

cus leptoporus AC365 (=RCC1135) (Langer et al., 2006),

while some will be unaffected, e.g. E. huxleyi RCC1238

(Table 3) and Coccolithus braarudii AC400 (=RCC1200)

(Langer et al., 2006). Given that calcification actually is ben-

eficial for coccolithophores (the function of calcification is

still unknown), shifts in dominance between species and/or

between clones within a species might therefore be expected.

However, short-term culture studies alone are not a suf-

ficient basis from which conclusions regarding the fate of

coccolithophores in the future can be drawn, because the
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possibility of adaptation is not taken into account. Com-

bining results from culture experiments with data from the

sedimentary archive, it was hypothesized that C. leptoporus

is in principle able to adapt to changing carbonate chem-

istry of seawater (Langer et al., 2006). The authors spec-

ulated that the population might be genetically diverse and

that strain-specific responses to carbonate chemistry changes

would lead to a high degree of adaptive potential of the

species. The results for E. huxleyi presented here point to

the possibility that this morphospecies is heterogeneous with

regard to responses to changing carbonate chemistry. This

highlights the need to consider adaptation when trying to pre-

dict the performance of coccolithophores in the future.
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