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ABSTRACT 

The three-dimensional x-ray diffraction (3DXRD) nondestructive technique was used to 

measure lattice strains within individual sand particles subjected to compressive loading. Three 

experiments were conducted on similar single columns of silica sand particles with particle sizes 

between 0.595 mm and 0.841 mm. In each experiment, three sand particles were placed inside an 

acrylic mold with an inner diameter of 1 mm. Multiple in situ 3DXRD scans were acquired for 

each sand column as compressive load was increased. The volume-averaged lattice strain tensor 

was calculated for each sand particle. In addition, particle orientation and volumetric strain were 

calculated for individual sand particles. The axial normal strain zz exhibited a linear response in 

the range of 0 to 10-3 when the applied compressive axial load (F) increased from 0 to ~30 N 

when one particle in the sand column fractured. Stress tensor of individual particles was 

calculated from the acquired lattice strain measurements and elastic constants of silica sand that 

were reported in the literature. To the best of our knowledge, there have been no reported 

experimental measurements of the lattice strain tensor measurements within individual silica 

sand particles. The quantitative measurements reported in this paper at the particle level are very 

valuable for developing, validating or calibrating micromechanics-based finite element and 

discrete element models to predict the constitutive behavior of granular materials. 3DXRD 

represents an exciting new non-destructive technique to directly measure constitutive behavior at 

the scale of individual particles.  



 3 

INTRODUCTION 

The constitutive behavior and deformation characteristics of uncemented granular 

materials are to a large extent derived from the fabric or geometry of the particle structure and 

inter-particle friction resulting from normal forces acting on particles or particle groups. 

Granular materials consist of discrete particles with fabric (microstructure) that changes under 

loading. Microstructure (or fabric) is defined as the arrangement of particles, particle groups, and 

the associated pore space. Extensive research has been conducted to describe the constitutive 

behavior and deformation characteristics of granular materials using the theory of plasticity [1,2], 

micro-polar theory [3-5], discrete element method (DEM) [6-8], and coupled continuum-DEM 

models [9]. Some of these models provide excellent predictions of the strength behavior and 

deformation mode of granular materials; however, despite recent technological advances, 

calibration of such models using representative material parameters has always been a challenge.  

In the last few decades, several experimental techniques were utilized to capture the 

particle-to-particle interaction under shear/uniaxial loading. Most of these efforts were limited to 

shearing relatively large cylindrical rods or circular/oval discs under simple shear or plane 

stress/strain loading configurations and used optical methods to track deformations [10-12]. 

Some investigations involved stabilizing the specimen with epoxy, cutting thin sections, and 

using two-dimensional (2D) microscopy to study the internal fabric of granular materials. 

Photoelastic materials were also used to visualize stress distribution and force chains in granular 

materials [13-16]; however, it is very difficult to extract force values from these images. 

Furthermore, all research using photoelasticity was applied to 2D loading conditions.  

X-ray computed tomography (CT) has emerged as a powerful non-destructive 3D scanning 

technique to study geomaterials. Alshibli and Reed [17] compiled papers that report the latest 
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advances in research on applying CT to characterize properties of geomaterials. Synchrotron 

micro-computed tomography (SMT) offers a significant enhancement to 3D imaging when 

compared to industrial CT systems by producing images with a higher resolution (in the order of 

5 micron/voxel). For example, Hasan and Alshibli [18] acquired excellent measurements of 

particle translation and rotation and the change of fabric during shearing of silica sand. Although 

CT and SMT can produce a 3D density map of the scanned specimen that can be used to identify 

particle position, morphology, and void space, they cannot provide measurements of contact 

stresses and strain measurement at particle contacts.  

Neutron diffraction tomography, which can also yield 3D images of scanned objects, is 

more sensitive to hydrogen content and has better penetration power through metal containers 

surrounding the specimen. It is ideal for applications that involve detection of water within the 

scanned specimen. Neutrons are seldom absorbed by the sample as assumed in the radon 

transformation, but are more often scattered by elastic and inelastic collisions with nuclei and 

phonons [19]. Still, the transformation yields very useful 3D images. Most of the neutron 

diffraction images in the literature are blurred with a resolution an order of magnitude lower than 

CT images. For example, Penumadu et al. [20] used neutron diffraction to measure lattice strains 

in the bulk of silica sand and found a significant difference between the global and lattice strain-

stress relationship. Frischbutter et al. [21] used the same technique to measure lattice strain in 

geological samples and found a significant difference between lattice strain and strain measured 

by strain gauges. Darling et al. [22] reported similar measurements and reached similar 

conclusions.  

Three-dimensional x-ray diffraction (3DXRD) microscopy is a promising technique that 

has the potential to measure lattice strains and crystallographic orientation of crystalline 
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materials. It is based on transmission geometry that can be applied in both layered and bulk 

materials [23-27]. It allows nondestructive 3D mapping of polycrystalline materials and monitors 

in situ dynamic processes of the bulk specimens. It also permits structural characterization of 

individual grains embedded in polycrystals. The volume, strain, phase, and orientation of 

hundreds of grains/particles can be monitored simultaneously [28]. 3DXRD represents a new 

opportunity to directly acquire information about the interaction of individual particles. Current 

applications of 3DXRD focus primarily on polycrystalline metals. Poulsen [25] introduced 

3DXRD technique and its potential applications in materials science. Martins et al. [29] 

measured the elastic strains of individual aluminum grains as a function of tensile load. Jensen et 

al. [28] demonstrated that 3DXRD could be used to monitor recrystallization in metallurgical 

processes, grain migration during recrystallization, solid-state nucleation, and grain growth 

during phase transformations. Hall et al. [30] presented preliminary results of 3DXRD scanning 

on Ottawa sand specimens that were subjected to 1D loading. However, their analysis did not 

include extracting lattice strain tensor measurements from the data. 

The main objective of this paper is to determine volume-averaged lattice strain tensor 

components of individual silica sand particles under axial loading condition using the 3DXRD 

microscopy. Beamline 1-ID of the Advanced Photon Source (APS), Argonne National 

Laboratory, USA, was used to acquire the scans for three sand specimens. Analyzing 3DXRD 

data is typically a challenging task. The authors have developed evaluation codes in MATLAB 

augmented by open source scientific programs called Fable [31] and DIGIgrain developed by  

Kenesei [32] to analyze the data to extract lattice strain tensor values. To the best of our 

knowledge, there have been no reported experimental measurements of the lattice strain tensor 

measurements within individual silica sand particles. 
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PRINCIPLE OF 3DXRD MICROSCOPY 

The incident monochromatic synchrotron x-ray beam is scattered on the orderly arranged 

atoms of a crystalline material. The diffracted x-ray beams obey Bragg’s law: 

                  (1)  

where λ is the wavelength of the incident beam, θhkl is the angle of the incident beam to the 

lattice planes with distance of dhkl. The subscript hkl denotes the lattice planes (hkl) with Miller 

indices of h, k, and l. Accordingly, the diffracted beams can be observed only in the directions 

that fulfill the Bragg condition (Eq. 1) and constructive interference can be obtained as defined 

by selection rules on Miller indices according to the crystal symmetries and atomic form factors. 

A simple visual interpretation of the diffraction geometry is shown in Figure 1, where the 

incident x-ray beams are reflected on the set of lattice planes (hkl) like on a mirror, and the angle 

of the diffracted beam to the incident beam is 2θhkl. Thus, the diffracted peak positions from a 

powder-like sample are located on the Debye-Scherrer rings. The knowledge of wavelength λ, 

and the measurement of the diffraction angle 2θhkl provide information about the lattice spacing 

dhkl, which is in direct correspondence with the lattice strain projected to the normal of the given 

lattice planes. A family of parallel lattice planes with spacing dhkl is described by a reciprocal 

lattice vector, later referred to as g-vector. As the applied compressive stress increases, the 

crystal gets distorted, and the lattice spacings (g-vectors) change according to the constitutive 

response of the material. More detailed information about the 3DXRD geometry can be found in 

the literature [25]. 
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In the high-energy 3DXRD measurements (typically 50–100 keV x-ray), since the 

diffraction angles are usually less than 15o, several diffraction rings can be measured 

simultaneously using a large area detector. An additional benefit of applying high-energy x-rays 

is the high penetration through the sample, which enables investigation of millimeter-sized 

samples. Rotating the polycrystalline sample around the loading axis permits the detection of 

diffraction peaks from several sets of lattice planes of each crystallite, which fulfills the Bragg 

condition and provides information about several projections of the lattice strain to determine the 

volume-averaged strain tensor of individual particles. 

 
EXPERIMENTS 

The sand used in the experiments is natural uniform silica sand known as ASTM 20-30 

Ottawa sand with particle size between 0.595 mm (Sieve No. 30) and 0.841 mm (Sieve No. 20). 

It was mined from Ottawa, Illinois, USA. To investigate the crystallographic structure of the 

sand particles, laboratory-based powder diffraction x-ray analysis was performed on a sample of 

the sand. Diffraction patterns of the sample showed that α-quartz (SiO2, Space group P3221) is 

the only detectable mineral in the sample, confirming the chemical composition as 99.8% SiO2 as 

provided by the manufacturer, U.S. Silica Company. Lattice parameters of crystalline materials 

are usually determined using conventional XRD. Lattices are typically expressed using three 

lattice constants known as a, b, and c, and three angles (α, β, γ) between the lattice vectors in the 

3D lattice space. We used XRD to measure the lattice constants of the sand powder as follows: a 

= 4.916 Å, b = 4.916 Å, c = 5.4054 Å and the angles are α = 90o, β = 90o, γ = 120o. These values 

are very close to lattice constants of α-quartz that were reported by Levien et al. [33]. 
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Crystallographic orientation spread within individual sand particles was also investigated 

using polarized light microscopy. A sample of the sand was illuminated with the polarized light 

and rotated, and the change in the transmitted light was observed to determine the 

crystallographic perfection of the sand particles. During the rotation, the intensity of transmitted 

light seems to be uniform throughout the surface in most of the sand particles and only a few 

exhibited anisotropic optical behavior. These observations demonstrated that most of the 

particles had a nearly single crystal particle structure, which is in agreement with the findings of 

Hall et al. [30]. 

A special test cell was fabricated to conduct the experiments. Three sand particles were 

placed inside a 1 mm cylindrical hole at the center of a 15 mm acrylic cylindrical mold (Figure 

2). The load was measured at the top and the bottom end plates using two load cells. The bottom 

load cell was attached to the aluminum base plate of the cell. An acrylic spacer was used to hold 

the cylindrical mold that contained the sand particles. The load of particles on the bottom load 

plate was transmitted through tungsten carbide rod with a diameter of 0.8 mm and a height of 

12.7 mm. The acrylic mold was placed on the top of the bottom loading plate extension without 

any friction between them. Then, three particles were placed inside the mold using a special 

aluminum funnel with 1 mm diameter. To prevent possible plugging or jamming of particles 

inside the 1 mm hole, only three particles were used in the experiments. The height of the sand 

column ranged from 1.7 mm to 2.4 mm. Finally, the top loading plate was set in place and the 

test cell was assembled. This experimental setup permits the loads to be measured at the top and 

bottom of the sand column to quantify the influence of friction between sand particles and mold 

walls.  
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The test cell was mounted on the sample stage of beamline 1-ID at APS. The specimen 

was subjected to axial loading at a constant displacement rate using a computerized stepper 

motor. The sand particles were illuminated by a high-energy x-ray beam with a size of 0.8 mm × 

1.0 mm and an energy of 80.725 keV that corresponds to wavelength of 0.15358 Å. Diffraction 

data were detected by an area detector that was positioned at a horizontal distance of 1593 mm 

(L in Figure 1b) from the specimen. The beam was centered on each particle in the sand column, 

and a rotation scan was acquired for a beam height of 0.8 mm. In the case of the middle particle, 

for example, the beam height partially included the two adjacent sand particles. The sand column 

was scanned before the axial load was applied; it was then loaded until the desired compressive 

load was reached and the scan was performed while the stepper motor position was held. 

Multiple 3DXRD scans were acquired at the load levels shown in Figure 3a. Compression forces, 

displacement, stress, and strain are taken to be positive throughout this paper according to the 

sign convention in the field of geotechnical engineering. Figure 3b shows an example SMT 

image series of a similar specimen in a similar loading test. The SMT images were acquired 

using Sector 13 beamline at APS and have proved very helpful in the selection of the load steps 

for the diffraction measurements.  

Three specimens were scanned using 3DXRD at multiple loads. Each specimen consisted 

of three sand particles, which were loaded at different displacement rates (0.0125 mm/min, 0.05 

mm/min, and 0.20 mm/min). 3DXRD data were acquired while the specimen was rotated at a 

constant angular velocity about an axis perpendicular to the beam direction. An intensity 

distribution image of the diffracted spots (called the -slice) was recorded at each rotation 

interval of Δ. The raw diffraction data consist of 180 stacked images recorded while the 
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specimen was rotated from -90° to 90° with Δ= 1° integration interval at each loading stage 

for each particle. 

 

DIFFRACTION DATA ANALYSIS 

The scanning dataset represents a map of the 3D reciprocal space distribution of the 

investigated particle. Figure 4 depicts an example image of the diffraction data. The discrete 

peaks appeared at the location predicted by the Bragg condition as expected, and no significant 

overlap of the measured spots was observed. Figure 4 clearly demonstrates the behavior of the 

spots under the effect of progressive loading. Reflections appear and disappear at specific η, , 

and 2θ positions as extended spots according to the imperfections and defects of the crystals. 

The deformation leads to displacement of spots on the detector according to the particle rotation 

and lattice distortion. Therefore, reflections may move through {η, , 2θ} space during the 

deformation process. Moreover, small particle fragments formed as a result of particle fracture 

and resulted in an increase in the number of spots.  

As an example, Figure 5 provides η-ω maps of the center layer of the sand column. The 

images represent the measured diffraction spots recorded in the first Debye-Scherrer ring with    

2θ{100} = 2.07° at selected load steps. Before particle fracture, a significant orientation change or 

particle rotation occurs, then the particle disintegrates into several small fragments. These images 

show that the deformation causes certain changes in the structure of sand particles. 

The analysis of the diffraction data consists of three primary stages: (i) preprocessing and 

peak search; (ii) g-vector calculation and indexing; and (iii) orientation; and strain computation 

and error analysis. The preprocessing and peak search steps were performed using the DIGIgrain 
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program. In the preprocessing stage, DIGIgrain applies dark current and background correction 

on the raw data. After data correction, it uses a sophisticated 3D searching algorithm for 

segmenting the extended, sometimes slightly overlapping diffraction spots and evaluates the 

peak positions (center of the spot profile) with high precision taking into account the spatial 

distortion of the detector. The peak search algorithm offers many options for identifying the 

peaks properly and can be efficiently customized for various datasets. During the peak search, 

the peaks can be filtered by size, position, intensity, and shape, and the slightly overlapping 

peaks can be separated based on the 3D intensity profile of the spots. The DIGIgrain algorithm 

successfully eliminated the spot overlapping and spatial distortion effects and provided the 

reduced dataset for further analysis. The 2D raw diffraction data was reduced into a simple text 

file for each scan that includes a compact list of peaks and their properties such as center 

position, integrated intensity, statistical descriptors, etc.; these files were used as input for the 

Fable program. 

Armed with the knowledge of the best possible peak positions, one can calculate the g-

vectors using the ImageD11 application of Fable [34], which considers the detector calibration 

parameters such as the detector tilt, distance, and pixel size determined from powder diffraction 

measurements on a calibrant (LaB6). Then, the GrainSpotter application of Fable [35] can be 

used to assign the measured g-vectors to individual particles. This process is called indexing. 

GrainSpotter identifies the particle orientations via searching in the orientation space based on 

the value of completeness, which is defined as the ratio of the number of the found and expected 

g-vectors belonging to a particle. In this paper, approximately 150 g-vectors were assigned to 

each particle per scan. The results were summarized in an output file that includes the center of 

mass position and orientation (in form of the U-matrix) of each detected particle, the angle 
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between the theoretical and the measured diffraction vector (called internal angle), and the list of 

the diffraction spots assigned to the particle. 

Silica sand particles rotate and translate significantly in real 3D space due to their discrete 

nature. Due to significant rotations of the investigated particles, assigning measured spots to a 

specific particle was challenging. Therefore, a visual validation process was implemented by 

comparing the spots identified by GrainSpotter and those measured during the diffraction scan. 

Figure 6 shows an example image of the spot matching for load step 2 and ring 2 =2.07o with a 

Miller index of {010}. GrainSpotter successfully indexed all spots that appeared in the η-ω 

maps. This visualization was repeated for consecutive load steps at different Debye-Scherrer 

rings. This evaluation process confirmed accurate indexing of particles and determined the 

sequence of particle identifiers in each loading step, resulting from the independent indexing 

procedure, to follow the orientation and strain history of the individual particles over the load 

steps. This visual matching method increased the confidence in the accuracy of the particle 

identification procedure. 

 
RESULTS 

Track particle orientation 

The rotations of particles were evaluated analytically. The misorientation angle of the 

particle with reference to an orientation before loading was calculated based on the indexing 

results for each load step. A particle could rotate such that only the rotation axis changes but not 

the misorientation angle with respect to the reference orientation. In order to detect this change, 

Δ orientation which compares the actual orientation relative to the previous one instead of a fixed 

reference was also determined. The particle with the minimum misorientation angle was 
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identified as the candidate for the reference particle in continuous loading. The result was also 

confirmed by comparing the detected spots of selected particles in each load step. An example 

development of the misorientation angle of a particle relative to the initial condition as a 

reference orientation and the variation of Δ orientation are depicted in Figure 7a, which confirms 

the assumed significant rotation of the particle as a rigid body.  

The rotation path of the middle particle of Test 3 is also illustrated in Figure 7b in 

Rodrigues space. Rodrigues vectors are an axis/angle representation of orientations, the direction 

of the vector is parallel to the rotation axis and the length is proportional to the rotation angle 

around the axis (e.g. Morawiec and Field [36]). Rodrigues representation is chosen since the 

crystal symmetry is easily represented by the fundamental zone consisting of a hexagonal prism 

for the trigonal symmetry of quartz. Also, distortions of the distances between orientations are 

rather small in Rodrigues representation. In the present case, the particle orientation is fully 

contained in one octant of the fundamental zone which is shown in Figure 7b together with 

projections onto the xyz planes of the sample coordinate system. It is seen that the z-component 

is small compared to the in-plane xy-components which means that the particle mainly rotated 

around axes that are perpendicular to the loading direction. Second, initially the rotation path was 

smooth around a fixed axis (mostly the length of the Rodrigues vector changes, not the 

direction).  Note that the diffraction approach provides an orientation resolution of about 0.1° 

which is far better than SMT imaging of particles. However, diffraction data are subjected to the 

ambiguity set by point group symmetry (trigonal). Large orientation changes, which are expected 

when particles fracture, can only be determined to the uncertainty of crystal symmetry 

operations. For example, referring to Figure 7b, the discontinuity occurring at the fracture 

(between points #8 and #9) may indicate that the rotation path actually extends outside of the 
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fundamental zone. However, the correct symmetry element could be identified from 

simultaneous SMT data since the external shape of the particle is observed rather than the 

orientation of the crystal lattice.  

As mentioned earlier granular particles translate and rotate when they are sheared. Particle 

rotation and the associated interlocking and moment contribute significantly to the shearing 

resistance of a bulk of granular materials. The results of this paper demonstrated that 3DXRD 

offers an excellent tool to accurately measure particle rotation with a high accuracy (about 0.1°), 

which provides valuable measurements to calibrate constitutive models to better capture the 

behavior of granular materials. 

 
Lattice strain tensor measurements 

The lattice-strain calculation using 3DXRD data is based on the evaluation of the 2 shifts 

of the peak positions, which is achieved by measuring the relative changes of reference-vector 

length to an unloaded lattice condition. The strain tensor components represent the average 

deformation of all unit cells within the particle as a function of the applied load. For each g-

vector (indexed by  , where      ) of a particle, the projected strain in a specific direction 

described by unit directional vectors             can be expressed as follows [37]: 

             ̂ (       )          (                           )  (       ) (2)  

where    is calculated using the length of the g-vectors in the unloaded (   ) and loaded (  ) 
cases as: 
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              (3)  

As mentioned earlier, the number of the experimentally evaluated projected strains   for one 

particle is on the order of 100, while the number of unknown strain tensor components is only 6. 

Therefore, we can build an over-determined equation system to determine the unknown strain 

tensors, which can be solved for   ̂  using the least-squares approach. For simplicity, we change 

to a contracted 6-component vector notation for the symmetric tensors at this point, as: 

  ̂ →   ̃                             (4)  

The projected strains after simplifying the right side of Equation (2) are: 

                                                     (5)  

by which the linear equation system to be solved can be written in short form as: 

 {  }  [ ] ̃ (6)  

where {  } denotes the  -element vector constructed from the projected strains and [ ] is an       component matrix constructed as: 

 [ ]  {                        } (7)  

where the components are calculated from lattice g-vectors as: 

             |  | (8)  

Since the scans were acquired by rotating the specimen from -90° to 90°, the set of planes 

that satisfy the Bragg condition gave rise to diffraction spot on the detector twice—belonging to 

both (h,k,l) and (-h,-k,-l) indices—during this rotation. These symmetrical spots are called 
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Friedel pairs, an example of which can be identified clearly in the  map shown in Figure 6. 

Symmetrical spots appear in the η ranges [-90°, 270°] and [270°, 90°]. The g-vectors of the 

Friedel pair spots are anti-parallel and originate from the same lattice planes [38]. Averaging 

Friedel pairs reduces errors in experimental lengths of g-vectors. In this paper, including Friedel 

pairs in the analysis resulted in negligible differences in the strain tensor calculations due to the 

large number of measured g-vectors; therefore, we decided not to include them in the analysis.  

Strain calculations were performed using a MATLAB script developed by the authors. 

The ideal g-vectors before loading were determined as the reference condition based on the 

lattice constants obtained from the powder diffraction. The change in the diffraction vectors in 

each load increment was determined by normalizing measurements with respect to the initial, 

supposedly strain-free, condition. The error that stems from the particle position relative to the 

rotation center was also considered in the analysis, and offsets of the particle position were also 

included. The number of g-vectors used in strain tensor computation ranged between 125 and 

156 after filtering out the mistakenly indexed g-vectors.  

3DXRD data were collected for three similar uniaxial compression experiments and were 

used to calculate the lattice strain tensors of individual sand particles. The experimental 

configuration and parameters were kept the same in the three tests with exception of the loading 

rate. The results of the three experiments are similar to each other. For brevity, only the results of 

Test 3 are presented in detail; the results of Tests 1 and 2 are only summarized in Table 1. Figure 

8 presents the load-versus-lattice-strain relationships of the three sand particles of Test 3, which 

displays the lattice strain components that were determined based on the global coordinate 

system (i.e., experiment coordinate system shown in Figure 1b). 
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The top and bottom load cells were used to record the compressive loads at both ends of 

the sand column and therefore to determine the load transmitted by the sand column. The 

difference between the two load measurements represents the friction force between the particles 

and the walls of the acrylic tube. The difference in loads was less than 0.5 N in the three tests. 

Referring to Figure 8, zz represents the normal strain along the loading direction. It increased in 

a nearly linear fashion as the compressive load increased until one of the sand particles fractured 

(middle particle in Test 3). Once a sand particle fractures, the small fragments of the particle will 

have a relatively large translation and rotation and will produce multiple diffraction spots 

causing unreliable strain measurements for the fractured particle. Furthermore, one particle 

fracture leads to instant load drop and rearrangement of other particles in the system. These two 

complex mechanisms caused the drastic shift of the strain measurements after middle particle 

fracture. xx and yy represent normal strains in the lateral directions, which should exhibit similar 

trends if the sand particles exhibit isotropic behavior, centered in the mold and spherical (i.e., 

each sand particle will have continuous contact with the mold wall). However, as depicted in 

Figure 3b, the non-spherical shape of the particles and the small space between the mold walls 

and the particles, allowed the particles to establish contact with one side of the mold, and the 

increase in axial load resulted in compression strain (positive values) in one of the lateral 

directions (e.g., xx in Figure 8) and expansion strain (negative values) in the other lateral 

direction (yy in Figure 8). In some cases, xx and yy changed trend direction (i.e., switched from 

compression to tension or vice versa) as the test proceeded because some sand particles 

translated and rotated as the load increased, which changed the stress at the particle-mold wall 

contact. Also, silica sand exhibits anisotropic elastic behavior as will be discussed in the 
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following sub-section which contributes to observing different xx and yy values. In all cases, xx 

and yy values were very small (less than 0.03% for Test 3 before particle fracture).  

Figure 8 also shows the normal and shear strain components for the three sand particles of 

Test 3. The shear strain values sometimes exhibited inconsistent trend as the load increased or if 

there was a continuous increase or decrease in a particular direction up to the fracture point. All 

shear strain values for the top particle fluctuated throughout the test. On the other hand, a 

nonlinear continuous xz and yz were observed in the middle and bottom particles with the 

exception of a few data points. The xy curve varied in compression close to the zero strain line. 

Moreover, the shear strain values were about 15 folds smaller than the normal strain tensor 

components in all cases. Since shear strain is primarily influenced by the contact point 

orientation, loading mode, particle shape, and fabric, we did not expect a well-defined trend in 

shear strains as particles translated and rotated as the loading progressed, which caused particles 

to establish or lose contact with the mold walls. Elastic anisotropy might have contributed to 

such behavior. 

Volumetric lattice strain (v) of individual sand particles under the influence of 

compressive loading is depicted in Figure 9. v was calculated as the summation of the three 

normal strains (i.e., v = xx + yy + zz ). Figure 9 shows that the volume of silica sand particles 

decreased (i.e., particle volume decreased) in a nearly linear fashion as the compressive load 

increased up to particle fracture. This was expected since it represented the elastic volumetric 

strain.  

The lattice axial strains (zz) of all tracked particles of the three tests are plotted in Figure 

10, which shows the results up to fracture of one of the particles in the sand column. All particles 
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exhibited linear load versus strain responses with a small increase of the curve slope as the 

loading rate increased from 0.0125 mm/min to 0.20 mm/min. The change of the slope with 

loading rate is in agreement with global load versus displacement measurements shown in Figure 

3a, where higher loading rate caused an increase in the overall stiffness of the sand column. 

Strain calculations for Tests 1 and 2 are summarized in Table 1. Compressive load (F) 

versus zz  measurements follow an almost perfect linear-elastic behavior up to fracture point 

with the exception of one particle (bottom particle of Test 1, see Table 1 and Figure 10) where 

we suspect that a partial fracture, which caused erratic behavior for loads higher than 14.75 N, 

took place before complete disintegration. A linear regression fit function of F versus zz  is also 

listed in the last column of Table 1. A high correlation coefficient (R2     0.993) was found 

between F and zz  for all particles except the bottom particle of Test 1, which demonstrates the 

accuracy of the measurements. 

 
Lattice strain-stress relationship 

The lattice strain and stress tensors are linearly related through the elastic constants 

which form a fourth-rank tensor. Because strain and stress tensors are symmetric, the full 

equation can be contracted to [39]: 

                           (9)  

Here, the Voigt contraction was used.     is the elastic stiffness tensor. The components      are 

given in contracted notation and refer to a crystal frame orthonormal coordinate system{ ̂  ̂  ̂}. 
The values of     were obtained by expanding the      to a fourth-rank tensor, transforming it to 

the sample frame (the change of basis matrix given by U*R as described below), and back 

contracting.  
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For the trigonal crystal system,  ̂ and   ̂ are parallel to the a- and c-axis, respectively. It is 

important to note that the U-matrix in the Fable convention is defined as the change of basis 

matrix from an orthonormal coordinate system {  ̂   ̂   ̂}  attached to the reciprocal crystal 

frame (  ̂   ̂ parallel to a* and c*, respectively) to the sample frame. Therefore, the change of 

basis matrix from the { ̂  ̂  ̂} system to the sample system is given by U*R where R is the 

change of coordinate matrix from the real { ̂  ̂  ̂} to the reciprocal {  ̂   ̂   ̂} crystal coordinate 

systems (a 30° rotation around the c-axis). The stress tensors were then expanded from the 

contracted forms obtained using Equation 9 for which the experimental strain tensors were 

contracted to Voigt notation. 

Figure 11a shows the evolution of the stress tensor components for the first seven applied 

load steps of the middle particle of Test 3. We note first that quartz has a significant elastic 

anisotropy, as indicated by Young’s moduli of 79.4 GPa and 103 GPa in the a- and c-axis 

directions, respectively, and a much larger directional variation of the Poisson ratio [39]. Thus 

anisotropic elasticity should be applied when converting lattice strains into stresses. The stress 

components showed a remarkably linear load dependence and uniaxial loading state over the first 

four applied loading steps. σzz component exhibits a linear variation in stress-strain plot under 

uniaxial loading as expected. On the other hand, σxx and σyy components show compressional and 

tensional behavior under the effect of several factors including rotation, translation, boundary 

effect, and contact points. We concluded that the interactions of particles with the wall of the 

mold were initially small and that the experimental uncertainty on the stress components was on 

the order of a few MPa. Significant changes of the loading state observed during loading step 

five were attributed to a rearrangement of the particles. One now can easily generate the stress-

strain plot for any particle using lattice strain measurements as input to calculate stress tensor. 
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Figure 11b shows an illustrative example for the stress-strain relationships for the normal strain 

components for the middle particle of Test 3.  Shear stress-strain components were not plotted in 

Figure 11b since they are very small when compared to normal stress-strain components. 

 
SUMMARY AND CONCLUSIONS 

3DXRD technique was successfully used to collect diffraction data and use those data to 

calculate in situ elastic lattice strain measurements of individual silica sand particles and track 

particle orientation under the effect of 1D compressive loading. The axial normal strain zz 

exhibited a linear response in the range of 0 to 10-3 to the applied axial load between 0 and 30 N 

up to particle fracture. The relationship between F and zz fits a linear regression model with a 

very high correlation coefficient (R2    0.993), which represents the linear elastic deformation of 

the sand particles. The volumetric strain decreased linearly with applied load up to particle 

fracture. An increase in the loading rate caused an increase in the slope of the load versus zz 

relationships. The stress tensor was calculated using the elastic constants of quartz from literature 

and the lattice strain tensor. Experimental quantification of the evolution of particle orientation, 

lattice strain and stress tensors of silica sand provided valuable key measurements for the 

constitutive behavior of individual silica sand particles and can be used to develop, validate, or 

calibrate micromechanics-based finite element and discrete element methods to predict the 

constitutive behavior of granular materials.  
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Table 1. Elastic lattice strain values for Tests 1 and 2 and associated statistical fit function for zz 

Test Particle 
Load, F 

(N) 
xx


yy


zz  


xy  


xz  


yz  


Fit function for zz 

1 

Bottom* 

0 0 0 0 0 0 0 F = 820.290  zz 

14.75 -0.0021 -0.0036 0.0383 -0.0038 0.0028 -0.0018 R2= 0.800 
19.75 0.0074 0.0000 0.0160 0.0046 0.0035 0.0064 

 28.5 0.0155 -0.0004 0.0259 0.0093 0.0053 0.0102 
 

35.25 0.0080 0.0026 0.0277 0.0070 0.0052 0.0086 
 

Middle 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 F = 333.856  zz 

14.75 0.0059 0.0013 0.0383 0.0024 -0.0049 -0.0054 R2= 0.993 
19.75 0.0119 -0.0004 0.0510 0.0040 -0.0094 -0.0066 

 28.5 0.0113 -0.0037 0.0837 0.0087 -0.0103 -0.0056 
 35.25 0.0109 -0.0131 0.1125 0.0120 -0.0163 -0.0095   

Top 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 F = 416.469  zz 

14.75 0.0088 -0.0039 0.0370 -0.0090 -0.0167 -0.0033 R2= 0.999 
19.75 0.0106 -0.0069 0.0475 -0.0112 -0.0193 -0.0059 

 28.5 0.0098 -0.0125 0.0697 -0.0115 -0.0238 -0.0085 
 35.25 0.0075 -0.0099 0.0828 -0.0111 -0.0276 -0.0053   

2 

Bottom 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 F = 340.439  zz 

10.75 -0.0064 -0.0021 0.0308 -0.0057 -0.0023 0.0043 R2= 0.998 
18.75 -0.0123 -0.0068 0.0590 -0.0091 0.0049 0.0027 

 27.85 -0.0147 -0.0110 0.0792 -0.0122 0.0023 0.0039   

Middle 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 F = 357.058  zz 

10.75 -0.0044 0.0017 0.0263 -0.0017 0.0105 0.0032 R2= 0.995 
18.75 -0.0056 -0.0052 0.0483 -0.0011 0.0099 0.0045 

 27.85 -0.0160 -0.0071 0.0817 0.0053 0.0169 0.0066   

Top 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 F = 366.443  zz 

10.75 0.0021 -0.0012 0.0249 -0.0005 0.0006 -0.0052 R2= 0.997 
18.75 -0.0122 -0.0003 0.0496 0.0007 -0.0019 -0.0078 

 27.85 -0.0175 -0.0051 0.0784 0.0004 0.0005 -0.0095   

* Particle fractured at small load (14.75 N). 
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