
 Open access  Journal Article  DOI:10.1007/S11047-010-9236-7

Strand algebras for DNA computing — Source link 

Luca Cardelli

Institutions: Microsoft

Published on: 01 Mar 2011 - Natural Computing (Springer Netherlands)

Topics: DNA computing and Nest algebra

Related papers:

 DNA as a universal substrate for chemical kinetics

 Programmable chemical controllers made from DNA

 Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades

 Exact Stochastic Simulation of Coupled Chemical Reactions

 Enzyme-Free Nucleic Acid Logic Circuits

Share this paper:    

View more about this paper here: https://typeset.io/papers/strand-algebras-for-dna-computing-
6ur0vybpzf

https://typeset.io/
https://www.doi.org/10.1007/S11047-010-9236-7
https://typeset.io/papers/strand-algebras-for-dna-computing-6ur0vybpzf
https://typeset.io/authors/luca-cardelli-2at94gk0uo
https://typeset.io/institutions/microsoft-2lvqci8u
https://typeset.io/journals/natural-computing-3i037zb8
https://typeset.io/topics/dna-computing-3i9xj4sm
https://typeset.io/topics/nest-algebra-2zsia0hx
https://typeset.io/papers/dna-as-a-universal-substrate-for-chemical-kinetics-3fqqu2wmb9
https://typeset.io/papers/programmable-chemical-controllers-made-from-dna-2u5cq3iiqs
https://typeset.io/papers/scaling-up-digital-circuit-computation-with-dna-strand-52iy4on901
https://typeset.io/papers/exact-stochastic-simulation-of-coupled-chemical-reactions-17bn57uauc
https://typeset.io/papers/enzyme-free-nucleic-acid-logic-circuits-4pwe22vlgh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/strand-algebras-for-dna-computing-6ur0vybpzf
https://twitter.com/intent/tweet?text=Strand%20algebras%20for%20DNA%20computing&url=https://typeset.io/papers/strand-algebras-for-dna-computing-6ur0vybpzf
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/strand-algebras-for-dna-computing-6ur0vybpzf
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/strand-algebras-for-dna-computing-6ur0vybpzf
https://typeset.io/papers/strand-algebras-for-dna-computing-6ur0vybpzf


2009-07-03 17:07:57 1

Strand Algebras for DNA Computing  
 

Luca Cardelli 

Microsoft Research 
 

Abstract 

We present a process algebra for DNA computing, discussing compilation of other formal systems into the 

algebra, and compilation of the algebra into DNA structures. 
 

1  Introduction 

DNA technology is reaching the point where one can envision automatically compiling high-level formalisms to 

DNA computational structures [18]. Examples so far include the ‘manual compilation’ of automata and Boolean 

networks, where some impressive demonstrations have been carried out [1][8][15][16]. Typically one considers 

sequential or functional computations, realized by massive numbers of molecules; we should strive, however, to 

take more direct advantage of massive concurrency at the molecular level. To that end it should be useful to 

consider concurrent high-level formalism, in addition to sequential ones. In this paper we describe three compi-

lation processes for concurrent languages. First, we compile a low-level combinatorial algebra to a certain class 

of composable DNA structures [17]: this is intended to be a direct (but not quite trivial) mapping, which pro-

vides an algebraic notation for writing concurrent molecular programs. Second, we compile a higher-level ex-

pression-based algebra to the low-level combinatorial algebra, as a paradigm for compiling expressions of arbi-

trary complexity to ‘assembly language’ DNA combinators. 

Third is our original motivation: translating heterogeneous collections of interacting automata [4] to mole-

cular structures. How to do that was initially unclear, because one must choose some suitable ‘programmable 

matter’ (such as DNA) as a substrate, but must also come up with compositional protocols for interaction of the 

components that obey the high-level semantics of the language. We show a solution to this problem in Section 

5.1.4, based on the combinatorial DNA algebra. The general issue there is how to realize the external choice 

primitive of interacting automata (also present in most process algebras and operating systems), for which there 

is currently no direct DNA implementation. In DNA we can instead implement a join primitive, based on [17]: 

this is a powerful operator, widely studied in concurrency theory [7][13], which can indirectly provide an im-

plementation of external choice. The DNA algebra supporting the translation is built around the join operator.  

We begin with an introduction to process algebras, which are formal languages designed to describe and 

analyze the concurrent activities of multiple processes. The standard technical presentation of process algebras 

was initially inspired by a chemical metaphor [2], and it is therefore natural, as a tutorial, to see how the chemi-

stry of diluted well-mixed solutions can itself be presented as a process algebra. Having chemistry in this form 

also facilitates relating it to other process algebras. Take a set C of chemical solutions denoted by P,Q,R. We 

define two binary relations on this set. The first relation, mixing, P ≡ Q is an equivalence relation: its purpose is 

to describe reversible events that amount to ‘chemical mixing’; that is, to bringing components close to each 

other (syntactically) so that they can conveniently react by the second relation. Its basic algebraic laws are the 

commutative monoid laws of + and 0, where + is the chemical combination symbol and 0 represents the empty 

solution. The second relation, reaction, P → Q, describes how a (sub-)solution P becomes a different solution Q. 

A reaction P → Q operates under a dilution assumption; namely, that adding some R to P does not make it then 

impossible for P to become Q (although R may enable additional reactions that overall quantitatively repress P 

→ Q by interfering with P). The two relations of mixing and reaction, are connected by a rule that says that the 

solution is well mixed. It is also useful to consider the symmetric and transitive closure, →*, representing se-

quences of reactions. In first instance, the reaction relation does not have chemical rates. However, from the 

initial solution, from the rates of the base reactions, and from the relation → describing whole-system transi-



2009-07-03 17:07:57 2

tions, one can generate a continuous-time Markov chain representing the kinetics of the system. 

As a process algebra, chemistry obeys the following general laws: 

1.1–1  Chemistry as a Process Algebra 
 

 

 P ≡ P;      P ≡ Q  �  Q ≡ P;      P ≡ Q, Q ≡ R  �  P ≡ R  equivalence 

 P ≡ Q    �    P + R ≡ Q + R           in context 

 P + Q  ≡  Q + P;      P + (Q + R)  ≡  (P + Q) + R;      P + 0  ≡  P diffusion 

 P  →  Q    �    P + R  →  Q + R     dilution 

 P ≡ P’,  P’ → Q’,  Q’ ≡ Q    �     P → Q       well mixing 
in  

 

 

In addition to these general rules, any given chemical system has a specific set of reaction rules. For exam-

ple, consider a chemical process algebra with species: H, O, OH, H2, H2O. The set of solutions is given by those 

basic species, plus the empty solution 0 and any solution P+Q obtained by combining two solutions. The mixing 

relation is exactly the one above. The reaction relation is given, for example, by the following specific reactions, 

plus dilution and well-mixing: H + H → H2; H + O → OH; H2 + O → H2O; H + OH → H2O. The mixing and 

reaction relations are defined inductively; that is, we consider the smallest binary relations that satisfy all the 

given rules. We can then deduce, for example, that H + O + H →→ H2O, that is we can produce water mole-

cules in two steps (and by two different paths), and that H+H+H+H+O+O →* H2O + H2O. Chemical evolution 

is therefore encoded in the two relations of mixing and reaction: a solution P can evolve to a solution Q iff �P,Q� 

∈ →*. Algebra is about equations, but instead of axiomatizing a set of equations, we can use the reaction rela-

tion to study the equations that hold in a given algebra, meaning that P = Q holds if P and Q produce the same 

reactions [11]. The complexity of these derived equational theories varies with the algebra. A simple instance 

here is the equation P + 0 = P, which requires verifying that in our definition of → there is no reaction for 0, nor 

for 0 combined with something else. 

This way, chemistry can be presented as a process algebra. But the algebra of chemical ‘+’ is one among 

many: there are other process algebras that can suit biochemistry more directly [6][14] or, as in this paper, that 

can suit DNA computing.  

2  Strand Algebras 

By a strand algebra we mean a process algebra [11] where the main components represent DNA strands, DNA 

gates, and their interactions. We begin with a nondeterministic algebra, and we discuss a stochastic variant in 

Section 4. Our strand algebras may look very similar to either chemical reactions, or Petri nets, or multiset-

rewriting systems. The difference is that the equivalent of, respectively, reactions, transitions, and rewrites, do 

not live outside the system, but rather are part of the system itself and are consumed by their own activity, re-

flecting their DNA implementation. A process algebra formulation is particularly appropriate for such an inter-

nal representation of active elements. 

2.1  The Combinatorial Strand Algebra, ����    

Our basic strand algebra has some atomic elements (signals and gates), and only two combinators: parallel 

(concurrent) composition P | Q, and populations P*. An inexhaustible population P* has the property that P* = 

P | P*; that is, there is always one more P that can be taken from the population. 

The set � is formally the set of finite trees P generated by the syntax below; we freely use parentheses 

when representing these trees linearly as strings. Up to the algebraic equations described below, each P is a mul-

tiset, i.e., a solution. The signals x are taken from a countable set.  

2.1–1  Syntax 
 

 

 P   ::=   x  ⋮  [x1,..,xn].[x’1,..,x’m]  ⋮  0  ⋮  P1 | P2  ⋮  P*                        n�1, m�0  
 

 

 



2009-07-03 17:07:57 3

A gate is an operator from signals to signals: [x1,..,xn].[x’1,..,x’m] is a gate that binds signals x1..xn, produces 

signals x’1,..,x’m, and is consumed in the process. We say that this gate joins n signals and then forks m signals; 

see some special cases below. An inert component is indicated by 0. Signals and gates can be combined into a 

‘soup’ by parallel composition P1 | P2 (a commutative and associative operator, similar to chemical ‘+’), and can 

also be assembled into inexhaustible populations, P*. 

2.1–2  Explanation of the Syntax and Abbreviations 
 

 

 x          is a signal    0 is inert  

 x1.x2    ≝ [x1].[x2]   is a transducer gate P1 | P2 is parallel composition 

 x.[x1,..,xm]  ≝ [x].[x1,..,xm]  is a fork gate   P* is an unbounded population  

 [x1,..,xn].x  ≝ [x1,..,xn].[x]  is a join gate  
 

 

 

The relation ≡ ⊆ �x�, called mixing, is the smallest relation satisfying the following properties; it is a 

substitutive equivalence relation axiomatizing a well-mixed solution [2]: 

2.1–3  Mixing 
 

 

 P ≡ P       equivalence     P ≡ Q  �  P | R ≡ Q | R in context 

 P ≡ Q  �  Q ≡ P           P ≡ Q  �  P* ≡ Q* 

 P ≡ Q, Q ≡ R  �  P ≡ R 

                P*  ≡  P* | P population 

 P | 0  ≡  P      diffusion     0*  ≡  0 

 P | Q  ≡  Q | P           (P | Q)*  ≡  P* | Q* 

 P | (Q | R)  ≡  (P | Q) | R         P**  ≡  P* 
 

 

 

The relation → ⊆ �x�, called reaction, is the smallest relations satisfying the following properties. In ad-

dition, →*, reaction sequence, is the symmetric and transitive closure of →. 

2.1–4  Reaction 
 

 

 x1 | .. | xn | [x1,..,xn].[x’1,..,x’m]   →   x’1 | .. | x’m    gate     (n�1, m�0) 
 

 P  →  Q    �    P | R  →  Q | R         dilution 
 

 P ≡ P’,  P’ → Q’,  Q’ ≡ Q    �     P → Q      well mixing 
 

 

 

The first reaction (gate) forms the core of the semantics: the other rules allow reactions to happen in context. 

Note that the special case of the gate rule for m=0 is  x1 | .. | xn | [x1,..,xn].[]  →  0. And, in particular, x.[] annihi-

lates an x signal. We can choose any association of operators in the formal gate rule: because of the associativity 

of parallel composition under ≡ the exact choice is not important. Since → is a relation, reactions are in general 

nondeterministic. Some examples are: 
 

 x1 | x1.x2   →   x2 

 x1 | x1.x2 | x2.x3   →*   x3 

 x1 | x2 | [x1,x2].x3   →   x3 

 x1 | x1.x2 | x1.x3   →   x2 | x1.x3     and     →   x3 | x1.x2 

 X | ([X,x1].[x2,X])*   a catalytic system ready to transform  

        multiple x1 to x2, with catalyst X 
 

There is a duality between signals and gates: signals can interact with gates but signals cannot interact with sig-

nals, nor gates with gates. As we shall see, in the DNA implementation the input part of a gate is the Watson-

Crick dual of the corresponding signal strand. This duality need not be exposed in the syntax: it is implicit in the 

separation between signals and gates, so we use the same x1 both for the ‘positive’ signal strand and for the 

complementary ‘negative’ gate input in a reaction like x1 | x1.x2 → x2. 
 

 
 Fig. 1: Signal Strand 

 
 Fig. 2: Hybridization 



2009-07-03 17:07:57 4

3  DNA Semantics 

In this section we provide a DNA implementation of the 

combinatorial strand algebra. Given a representation of 

signals and gates, it is then a simple matter to represent any strand algebra expres-

sion as a DNA system, since 0, P1 | P2, and P* are assemblies of signals and gates. 

There are many possible ways of representing signals and gates as DNA 

structures. First one must choose an overall architecture, which is largely dictated 

by a representation of signals, and then one must implement the gates, which can 

take many forms with various qualitative 

and quantitative trade-offs. We follow the 

general principles of [17], where DNA 

computation is based on strand displace-

ment on loop-free structures. Other archi-

tectures are possible, like computation 

with hairpins [18], but have not been fully 

worked out. The four-segment signal 

structure in [17] yields a full implementation of the combinatorial strand algebra (not shown, but largely implied 

by that paper). Here we use a novel, simpler, signal structure.  

We represent a signal x as a DNA signal strand with three segments xh,xt,xb (Figure 1): xh = history, xt = 

toehold, xb = binding. A toehold is a segment that can reversibly interact with a gate: the interaction can then 

propagate to the adjacent binding segment. The history is accumulated during previous interactions (it might 

even be hybridized) and is not part of signal identity. That is, x denotes the equivalence class of signal strands 

with any history, and a gate is a structure that operates uniformly on such equivalence classes. We generally use 

arbitrary letters to indicate DNA segments (which are single-stranded sequences of bases).  

A strand like b,c,d has a Watson-Crick complement (b,c,d)⊥ = d⊥,c⊥,b⊥ that, as in Figure 2, can partially 

hybridize with a,b,c along the complementary segments. For two signals x,y, if x�y then neither x and y nor x 

and y⊥ are supposed to hybridize, and this is ensured by appropriate DNA coding of the segments [9][10]. We 

assume that all signals are made of ‘positive’ strands, with ‘negative’ strands occurring only in gates, and in 

particular in their input segments; this separation enables the use of 3-letter codes, that helps design independent 

sequences [10][20].  

The basic computational 

step of strand displacement [17] 

is shown in Figure 3 for match-

ing single and double strands. 

This reaction starts with the re-

versible hybridization of the 

toehold t with the complementa-

ry t⊥ of a structure that is otherwise double-stranded. The hybridization can then extend to the binding segment 

b by a neutral series of reactions between base pairs (branch migration [19]) each going randomly left or right 

through small exergy hills, and eventually ejecting the b strand when the branch migration randomly reaches the 

right end. The free b strand can in principle reattach to the double-stranded structure, but it has no toehold to do 

so easily, so the last step is considered irreversible. The simple-minded interpretation of strand displacement is 

then that the strand a,b is removed, and the strand b is released irreversibly. The double-stranded structure is 

consumed during this process, leaving an inert residual (defined as one containing no single-stranded toeholds). 

Figure 4 shows the same structure, but seen as a gate G absorbing a signal x and producing nothing (0). 

The annotation ‘xh generic’ means that the gate works for all input histories xh, as it should. In Figure 5 we im-

plement a gate x.y that transduces a signal x into a signal y. The gate is made of two separate structures Gb (gate 

backbone) and Gt (gate trigger). The forward Gb reaction can cause y to detach because the binding of a toehold 

(yt) is reversible. That whole Gb reaction is reversible via strand displacement from right to left, but the Gt reac-

 
 Fig. 5: Transducer 

 
 Fig. 3: Strand Displacement 

 
 Fig. 4: Annihilator 

 
 Fig. 6: 2-way Fork 



2009-07-03 17:07:57 5

tion eventually ‘locks’ the gate in the state where x is consumed and y is produced. The annotation ‘a fresh’ 

means that the segment ‘a’ is not shared by any other gate in the system to prevent interference (while of course 

the gate is implemented as a population of identical copies that share that segment). In general, we take all gate 

segments to be fresh unless they are non-history segments of input or output signals. Abstractly, an x to y trans-

duction is seen as a single step but the 

implementation of x.y takes at least two 

steps, and hence has a different kinet-

ics. This is a common issue in DNA 

encodings, but its impact can be mini-

mized [17], e.g. in this case by using a 

large Gt population. In Figure 6 (cf. 

Figure 2 in [17]), we generalize the 

transducer to a 2-way fork gate, x.[y,z], 

producing two output signals; this can 

be extended to n-way fork, via longer 

trigger strands.  

Many designs have been investigated for join gates [5]. The solution shown in Figure 7 admits the coexis-

tence of joins with the same inputs, [x,y].z | [x,y].z’, without disruptive crosstalk or preprocessing of the system 

(not all join gates have this property). It is crucial for join to fire when both its inputs are available, but not to 

absorb a first input while waiting for the second input, because the second input may never come, and the first 

input may be needed by another gate (e.g., another join with a third input). The solution is to reversibly bind the 

first input, taking advantage of chemical reversibility. Given two inputs x,y, a ‘reversible-AND’ Gb backbone 

releases two strands r1,r2, with r1 providing reversibility while waiting for y (cf. Figure 3 in [17]); the trigger Gt 

finally irreversibly releases the output z (or outputs). In a cleanup phase (Figure 7B), off the critical path, we use 

a similar reversible-AND C1 structure (working from right to left) to remove r1 and r2 from the system, so that 

they do not accumulate to slow down further join operations. This phase is initiated by the release of r2, so we 

know by construction that both r1 and r2 are available. Therefore, the r3 and r4 reversibility strands released by 

C1 can be cleaned up immediately by C3,C4, ending a possible infinite regression of reversible-ANDs. (Note that 

without the extra c,d segments, a strand yt,yb = y would be released.) This gate structure can be easily genera-

lized to 3-way and higher 

join gates by cascading 

more inputs on the Gb 

backbone. Alternatively, 

we can implement a 3-

way join from 2-way 

joins and an extra signal 

x0, but this encoding 

‘costs’ a population: [x1,x2,x3].x4
 
≝

 
([x1,x2].x0 | x0.[x1,x2])* | [x0,x3].x4. 

This completes the implementation of strand algebra in DNA. For the purposes of the next section, howev-

er, it is useful to consider also curried gates (gates that produce gates). Figure 8 shows a gate x.H(y) that accepts 

a signal x and activates the backbone Hb of a gate H(y), where H(y) can be any gate with initial toehold yt
⊥, in-

cluding another curried gate. For example, if H(y) is a transducer y.z as in Figure 5, we obtain a curried gate 

 
 Fig. 7B: 2-way Join - cleanup 

 
 Fig. 7A: 2-way Join - core function 

 
 Fig. 8: Curried Gates 



2009-07-03 17:07:57 6

x.y.z such that x | x.y.z → y.z. (The extra a,b segments prevent the release of a strand xb,yt that would interfere 

with r1 of [x,y].z; see Figure 7A.) This implies that there is an extension of strand algebra with gates of the form 

G ::= [x1,..,xn].[x’1,..,x’m] ⋮ [x1,..,xn].G; this extension can be translated back to the basic strand algebra, e.g. by 

setting x.y.z = x.w | [w,y].z for a fresh w, but a direct implementation of curried gates is also available. 

4  Stochastic Strand Algebra 

Stochastic strand algebra is obtained by assigning stochastic rates to gates, and by dropping the unbounded pop-

ulations, P*. Since the binding strengths of toeholds of the same length are comparable [18], we assume that all 

gates with the same number n of inputs have the same stochastic rate gn, collapsing all the gate parameters into a 

single effective parameter. Although gate rates are fixed, we can vary population sizes in order to achieve de-

sired macroscopic rates. Moreover, as we describe below, it is possible to maintain stable population sizes, and 

hence to achieve desired stable rate ratios. 

In this section [x1,..,xn].[y1,..,ym] is a stochastic gate of rate gn, and we write Pk for k parallel copies of P. In 

a global system state P, the propensity of a gate reaction is (P choose (x1 | .. | xn | [x1,..,xn].[y1,..,ym]))×gn; that is, 

the gate rate gn multiplied by the number of ways of choosing out of P a multiset consisting of a gate and its n 

inputs. For example, if P = xn | ym | ([x,y].z)p with x≠y, then the propensity of the first reaction in P is 

n×m×p×g2. A global transition from a global state P to a next global state, labeled with its propensity, has then 

the following form, where \ is multiset difference: 
 

  P    →(P choose (x1 | .. | xn | [x1,..,xn].[y1,..,ym]))×gn
    

P\(x1 | .. | xn |  [x1,..,xn].[y1,..,ym]) | y1 | ... | ym 
 

The collection of all global transitions from P and from its successive global states forms a labeled transition 

graph, from which one can extract the Continuous Time Markov Chain of the system [4]. We shall soon use also 

a curried gate of the form x.G, whose DNA structure is discussed in Section 3, and whose global transitions are: 
 

  P    →(P choose (x | x.G))×g1    P\(x | x.G) | G 
 

In a stochastic system, an unbounded population like P* has little meaning because its rates are unbounded 

as well. In stochastic strand algebra we simply drop the P* construct. In doing so, however, we eliminate the 

main mechanism for iteration and recursion, and we need to find an alternative mechanism. Rather than P*, we 

should instead consider finite populations Pk exerting a stochastic pressure given by the size k. It is also interest-

ing to consider finite populations that remain at constant size k: let’s indicate them by P=k. In particular, P=1 

represents a single catalyst molecule. 

We now show that we can model populations of constant size k by using a bigger buffer population to keep 

a smaller population at a constant level. Take, for example, P = [x,y].z, and define: 
 

 P=k   ≝  ([x,y].[z,X])k | (X.[x,y].[z,X])f(k)       for a fresh (otherwise unused) signal X 
 

Here f(k) is the size of a large-enough buffer population. A global transition of P=k in context Q (with Q not con-

taining other copies of those gates) is (Q | P=k) →((Q | P=k) choose (x|y|[x,y].[z,X]))×g2
 
(Q\(x | y) | ([x,y].[z,X])k-1 | z | X | 

(X.[x,y].[z,X])f(k)). For a large enough f(k), the propensity of a next reaction on gate X.[x,y].[z,X] can be made 

arbitrarily large, so that the two global transitions combined approximate (Q | P=k) →((Q | P=k) choose (x|y|[x,y].[z,X]))×g2
 

(Q\(x | y) | ([x,y].[z,X])k | z | (X.[x,y].[z,X])f(k)-1), where the gate population is restored at level k, and the buffer 

population decreases by 1. We have shown that the reaction propensity in (Q | P=k) can be made arbitrarily close 

to the reaction propensity in (Q | Pk), but with the gate population being restored to size k. Moreover, it is possi-

ble to periodically replenish the buffer by external intervention without disturbing the system (except for the 

arbitrarily fast reaction speed on X). This provides a practical way of implementing recursion and unbounded 

computation, by ‘topping-up’ the buffer populations, without a notion of unbounded population. The construc-

tion of a stable population ([x,y].z)=k can be carried out also in the basic stochastic algebra without curried gates, 

but it then requires balancing the rate of a ternary gate against the desired rate of a binary gate. 

We should note that the stochastic strand algebra is a convenient abstraction, but the correspondence with 

the DNA semantics of Section 3 is not direct. More precisely, it is possible to formulate a formal translation 

from the stochastic strand algebra to the chemical algebra of Introduction, by following the figures of Section 3 



2009-07-03 17:07:57 7

(considering strand displacement as a single reaction). Such a chemical semantics does not exactly match the 

global transition semantics given above, because for example a single reaction x | x.y → y is modeled by two 

chemical reactions. It is possible to define a chemical semantics that approximates the global transition seman-

tics, by using the techniques discussed in [17], but this topic requires more attention that we can provide here. 

5  Compiling to Strand Algebra 

We give examples of translating other formal languages to strand algebra, in particular translating interacting 

automata. The interesting point is that by these translations we can map all those formal languages to DNA, by 

the methods in Section 3. 

5.1.1  Finite Stochastic Reaction Networks 

We summarize the idea of [17], which shows how to encode with approximate dynamics a stochastic chemical 

system as a set of DNA signals and gates. A unary reaction A→C1+..+Cn is represented as (A.[C1,..,Cn])*. A 

binary reaction A+B→C1+..+Cn is represented as ([A,B].[C1,..,Cn])*. The initial solution, e.g. A+A+B, is 

represented as A | A | B and composed with the populations representing the reactions. For stochastic chemistry, 

one must replace the unbounded populations with large but finite populations whose sizes and rates are cali-

brated to provide the desired chemical rates. Because of technical constraints on realizing the rates, one may 

have to preprocess the system of reactions [17].  

5.1.2  Petri Nets 

Consider a place-transition Petri Net [13] with places xi; then, a transition with incoming arcs from places x1..xn 

and outgoing arcs to places x’1..x’m is represented as ([x1,..,xn].[x’1..x’m])*. The initial marking {x1, .., xk} is 

represented as x1 | .. | xk. The idea is similar to the translation of chemical networks: those can be represented as 

(stochastic) Petri nets. Conversely (thanks to Cosimo Laneve for pointing this out), a signal can be represented 

as a marked place in a Petri net, and a gate [x1,..,xn].[x’1..x’m] as a transition with an additional marked ‘trigger’ 

place on the input that makes it fire only once; then, P* can be represented by connecting the transitions of P to 

refresh the trigger places. Therefore, strand algebra is equivalent to Petri nets. Still, the algebra provides a com-

positional language for describing such nets, where the gates/transitions are consumed resources. 

5.1.3  Finite State Automata 

We assume a single copy of the FSA and of the input string. An FSA state is represented as a signal X. The tran-

sition matrix is represented as a set of terms ([X,x].[X’,τ])* in parallel, where X is the current state, x is from the 

input alphabet, X’ is the next state, and τ is a fixed signal used to synchronize with the input string. For nonde-

terministic transitions there will be multiple occurrences of the same X and x. The initial state X0 | τ is placed in 

parallel with those terms. An input string x1,x2,x3... is then encoded as τ.[x1,y1] | [y1,τ].[x2,y2] | [y2,τ].[x3,y3] | ... 

for fresh y1,y2,y3... . 

5.1.4  Interacting Automata 

Interacting automata [4] (a stochastic subset of CCS [11]) are finite state automata that interact with each other 

over synchronous stochastic channels. An interaction can happen when two automata choose the same channel 

cr, with rate r, one as input (?cr) and the other as output (!cr). Intuitively, these automata ‘collide’ pairwise on 

complementary exposed surfaces (channels) and change states as a result of the collision. Figure 9 shows two 

such automata, where each diagram represents a population of identical automata interacting with each other 

and with other populations (see [3] for many examples). Interacting automata can be faithfully emulated in sto-

chastic strand algebra by generating a binary join gate for each possible collision, and by choosing stable popu-

lation sizes that produce the prescribed rates. The translation can cause an n2 expansion of the representation [4]. 

A system of interacting automata is given by a system E of equations of the form X = M, where X is a spe-

cies (an automaton state) and M is a molecule of the form π1;P1 ⊕ … ⊕ πn;Pn, where ⊕ is stochastic choice 



2009-07-03 17:07:57 8

among possible interactions, Pi are multisets of resulting species, and πi are ei-

ther delays τr, inputs ?cr, or outputs !cr on a channel c at rate r. For example, in 

an E1 population, an automaton in state A1 can collide by !ar with an automaton 

in state B1 by ?ar, resulting in two automata in state A1: 
 

  E1:  A1 = !ar.A1 ⊕ ?bs.B1    E2: A2 = !ar.A2 ⊕ ?ar.B2 

    B1 = !bs.B1 ⊕ ?ar.A1      B2 = !bs.B2 ⊕ ?bs.A2 
 

With initial conditions Ai
n | Bi

m (that is, n automata in state Ai and m in state Bi), the Continuous Time Markov 

Chain semantics of [4] prescribes the propensities of the interactions. On channel ar, in E1 the propensity is 

n×m×r, while in E2, with two symmetric ?/! ways for A2 to collide with A2, the propensity is 2×(n choose 2)×r = 

n×(n-1)×r: 
 

 A1
n | B1

m : (on ar) A1
n | B1

m →n×m×r A1
n+1 | B1

m-1 A2
n | B2

m :  (on ar) A2
n | B2

m →n×(n-1)×r A2
n-1 | B2

m+1 

  (on bs) A1
n | B1

m →n×m×s A1
n-1 | B1

m+1  (on bs) A2
n | B2

m →m×(m-1)×s A2
n+1 | B2

m-1  
 

Subsequent transitions are computed in the same way. One can also mix E1,E2 populations (not shown).  

The translation of interacting automata to strand algebra is as follows. E.X.i denotes the i-th summand of 

the molecule associated to X in E; ⟪...⟫ and ∪ denote multisets and multiset union to correctly account for mul-

tiplicity of interactions; and Parallel(S) is the parallel composition of the elements of multiset S. Strand(E) is 

then the translation of a system of equations E, using the stable buffered populations P=k described in Section 4, 

where gi are the gate rates of i-ary gates (we assume for simplicity that the round-off errors in r/gi are not signif-

icant and that r/gi≥1; otherwise one should appropriately scale the rates r of the original system): 
 

 Strand(E) = Parallel( ⟪ (X.[P])=r/g1 s.t. ∃i. E.X.i = τr;P ⟫ ∪  
        ⟪ ([X,Y].[P,Q])=r/g2  s.t. X≠Y and ∃i,j,c. E.X.i = ?cr;P and E.Y.j = !cr;Q ⟫ ∪   
        ⟪ ([X,X].[P,Q])=2r/g2  s.t. ∃i,j,c. E.X.i = ?cr;P and E.X.j = !cr;Q ⟫  ) 
 

The E1,E2 examples above, in particular, translate as follows: 
 

 P1 = Strand(E1) = ([B1,A1].[A1,A1])
=r/g2 |  P2 = Strand(E2) = ([A2,A2].[B2,A2])

=2r/g2 | 

  ([A1,B1].[B1,B1])
=s/g2   ([B2,B2].[A2,B2])

=2s/g2 

 

Initial automata states are translated identically into initial signals and placed in parallel. As described 

in Section 4, a strand algebra transition from global state An | Bm | ([A,B].[C,D])=p has propensity 

n×m×p×g2, and from An | ([A,A].[C,D])=p has propensity (n choose 2)×p×g2. From the same initial condi-

tions An | Bm as in the automata, we then obtain the global strand algebra transitions: 
 

 A1
n | B1

m | P1 →
n×m×r/g2×g2 A1

n+1 | B1
m-1 | P’1

   A2
n | B2

m | P2 →
(n×(n-1))/2×2r/g2×g2 A2

n-1 | B2
m+1 | P’2

  

 A1
n | B1

m | P1 →
n×m×s/g2×g2 A1

n-1 | B1
m+1 | P”1

   A2
n | B2

m | P2 →
(m×(m-1))/2×2s/g2×g2 A2

n+1 | B2
m-1 | P”2 

 

which have the same propensities as the interacting automata transitions. Here P’i,P”i are systems where a buffer 

has lost one element, but where the active gate populations that drive the transitions remain at the same level as 

in Pi. We have shown that the stochastic behavior of interacting automata is preserved by their translation to 

strand algebra, assuming that the buffers are not depleted. 

Figure 10 shows another example: a 3-state automaton and a 

Gillespie simulation of 1500 such automata with r=1.0. The equation 

system and its translation to strand algebra are (take, e.g., r=g2=1.0): 
 

  A = !ar.A ⊕ ?br.B    ([A,B].[B,B])=r/g2 | 

  B = !br.B ⊕ ?cr.C     ([B,C].[C,C])=r/g2 | 

  C = !cr.C ⊕ ?ar.A     ([C,A].[A,A])=r/g2 | 

  A900 | B500 | C100     A900 | B500 | C100 
 

 
Fig. 9: Interacting Automata 

 
 Fig. 10: Oscillator 

0

200

400

600

800

1000

1200

0

0
.0
1

0
.0
2

0
.0
3

A()

B()

C()



2009-07-03 17:07:57 9

6  Nested Strand Algebra 

The purpose of this section is to allow nesting of join/fork operators in strand algebra, so that natural compound 

expressions can be written. We provide a uniform translation of this extended language back to �, as a para-

digm for the compilation of high(er) level languages to DNA strands. 

Consider a simple cascade of operations, ?x1.!x2.?x3, with the meaning of first taking an input (‘?’) x1, then 

producing an output (‘!’) x2, and then taking an input x3. This can be encoded as follows: 
 

   ?x1.!x2.?x3
  
   ≝     x1.[x2,x0] | [x0,x3].[] 

 

where the right hand side is a set of � combinators, and where x0 can be chosen fresh so that it does not inter-

fere with other structures (although it will be used by all copies of ?x1.!x2.?x3). 

The nested algebra n� admits such nesting of operators in general. The main change from the combina-

torial � algebra consists in allowing syntactic nesting after an input or output prefix. This has the consequence 

that populations can now be nested as well, as in ?x.(P*). The new syntax is:  
 

   P   ::=   x  ⋮  ?[x1,..,xn].P  ⋮  ![x1,..,xn].P  ⋮  0  ⋮  P1 | P2  ⋮  P*     n�1  
 

Here ![x1,..,xn].P spontaneously releases x1,..,xn into the solution and continues as P, while ?[x1,..,xn].P extracts 

x1,..,xn from the solution (whenever they are all available) and continues as P. The mixing relation is the same as 

in �. The reaction relation is modified only in the gate rule: 
 

   ?[x1,..,xn].P | x1 | .. | xn   →   P     input gate  (e.g.:  ?x.0 | x  →  0) 

   ![x1,..,xn].P   →   x1 | .. | xn | P     output gate  (e.g.:  !x.0  →  x | 0) 
 

We now show how to compile n� to �. Let 
 be an infinite lists of distinct signals, and � be the set of 

such 
’s. Let 
i be the i-th signal in the list, 
�i
 
be the list starting at the i-th position of 
, evn(
) be the even 

elements of 
, and odd(
) be the odd elements. Let �P be the set of those 
∈� that do not contain any signal 

that occurs in P. The unnest algorithm U(P)
, for P∈n� and 
∈�P, is shown in Table 6.1–1. The inner loop 

U(X,P)
 uses X as the trigger for the translation of P. 

6.1–1  Unnest Algorithm 
 

 U(P)
     ≝  
0 | U(
0,P)
�1 

 

 U(X, x)
    ≝  X.x 

 U(X, ?[x1,..,xn].P)
 ≝  [X,x1,..,xn].
0 | U(
0,P)
�1
 

 U(X, ![x1,..,xn].P)
 ≝  X.[x1,..,xn,
0] | U(
0,P)
�1
 

 U(X, 0)
     ≝  X.[] 

 U(X, P’ | P”)
  ≝  X.[
0,
1] | U(
0,P’)evn(
�2) | U(
1,P”)odd(
�2) 

 U(X, P*)
   ≝  (X.[
0,X] | U(
0,P)
�1
)* 

 

 

For example, the translations for ?x1.![x2,x3].?x4.0 and ?x1.(x2*) are: 
 

   U(?x1.![x2,x3].?x4.0)
 =   
0 | [
0,x1].
1 | 
1.[x2,x3,
2] | [
2,x4].
3 | 
3.[] 

   U(?x1.(x2*))
     =   
0 | [
0,x1].
1 | (
1.[
2,
1] | 
2.x2)* 
 

In ?x1.(x2*), activating x1 once causes a linear production of copies of x2. For an exponential growth of the 

population one should change U(X,P*)
 to produce (X.[
0,X,X] | U(
0,P’)
�1
)*. 

In the nested algebra we can also easily solve systems of recursive definitions; for example: ‘X = (?x1.X | 

!x2.Y) and Y = ?x3.(X | Y)’ can be written as: ‘(?X.(?x1.X | !x2.Y))* | (?Y.?x3.(X | Y))*’.  

As an example, consider a coffee vending machine controller, Vend, that accepts two coins for coffee. An 

ok is given after the first coin and then either a second coin (for coffee) or an abort (for refund) is accepted: 
 

   Vend = ?coin. ![ok,mutex]. (Coffee | Refund) 

   Coffee = ?[mutex,coin]. !coffee. (Coffee | Vend) 

   Refund = ?[mutex,abort]. !refund. (Refund | Vend) 
 



2009-07-03 17:07:57 10 

Each Vend iteration spawns two branches, Coffee and Refund, waiting for either coin or abort. The branch not 

taken in the mutual exclusion is left behind; this could skew the system towards one population of branches. 

Therefore, when the Coffee branch is chosen and the system is reset to Vend, we also spawn another Coffee 

branch to dynamically balance the Refund branch that was not chosen; conversely for Refund. 

7  Contributions and Conclusions 

We have introduced strand algebra, a formal language based on a simple relational semantics that is equivalent 

to place-transition Petri nets (in the current formulation), but allows for compositional descriptions where each 

component maps directly to DNA structures. Strand algebra connects a simple but powerful class of DNA sys-

tem to a rich set of techniques from process algebra for studying concurrent systems. Within this framework, it 

is easy to add operators for new DNA structures, or to map existing operators to alternative DNA implementa-

tions. We show how to use strand algebra as an intermediate compilation language, by giving a translation from 

a more convenient syntax. We also describe a stochastic variant, and a technique for maintaining stable buffered 

populations to support indefinite and unperturbed stochastic computation.  

Using strand algebra as a stepping stone, we describe a DNA implementation of interacting automata that 

preserves stochastic behavior. Interacting automata are one of the simplest process algebras in the literature. 

Hopefully, more advanced process algebra operators will eventually be implemented as DNA structures, and 

conversely more complex DNA structures will be captured at the algebraic level, leading to more expressive 

concurrent languages for programming molecular systems.  

I would like to acknowledge the Molecular Programming groups at Caltech for invaluable discussions and 

corrections. In particular, join and curried gate designs were extensively discussed with Lulu Qian, David Solo-

veichik and Erik Winfree. 

References 

[1] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, E. Shapiro. Programmable and Autonomous Computing 

Machine made of Biomolecules. Nature, 414(22), November 2001. 

[2] G. Berry, G. Boudol. The Chemical Abstract Machine. Proc. 17th POPL, ACM, 81-94, 1989. 

[3] L. Cardelli: Artificial Biochemistry. In: A. Condon, D. Harel, J.N. Kok, A. Salomaa, E.Winfree (Eds.). Algorithmic 

Bioprocesses. Springer, 2009.  

[4] L. Cardelli: On Process Rate Semantics. Theoretical Computer Science 391(3) 190-215, 2008.  

[5] L. Cardelli, L. Qian, D. Soloveichik, E. Winfree. Personal communications. 

[6] V. Danos, C. Laneve. Formal molecular biology. Theoretical Computer Science 325(1) 69-110. 2004. 

[7] C. Fournet, G. Gonthier. The Join Calculus: a Language for Distributed Mobile Programming. In Proceedings of the 

Applied Semantics Summer School (APPSEM), Caminha, 9-15 September 2000. 

[8] M. Hagiya. Towards Molecular Programming. In G. Ciobanu, G. Rozenberg, (Eds.) Modelling in Molecular Biology. 

Springer, 2004. 

[9] L. Kari, S. Konstantinidis, P. Sosík. On Properties of Bond-free DNA Languages. Theoretical Computer Science 

334(1-3) 131-159, 2005. 

[10] A. Marathe, A.E. Condon, R.M. Corn. On Combinatorial DNA Word Design.  J. Comp. Biology 8(3) 201–219, 2001. 

[11] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, 1999. 

[12] L. Qian, E. Winfree. A Simple DNA Gate Motif for Synthesizing Large-scale Circuits. Proc. 14th International Meet-

ing on DNA Computing. 2008. 

[13] W. Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985. 

[14] A. Regev, E.M. Panina, W. Silverman, L. Cardelli, E. Shapiro. BioAmbients: An Abstraction for Biological Compart-

ments. Theoretical Computer Science 325(1) 141-167, 2004. 

[15] K. Sakamoto, D. Kiga, K. Komiya, H.Gouzu, S. Yokoyama, S. Ikeda, H. Sugiyama, M.Hagiya: State Transitions by 

Molecules. Biosystems 52, 81–91, 1999. 

[16] G. Seelig, D. Soloveichik, D.Y. Zhang, E. Winfree. Enzyme-Free Nucleic Acid Logic Circuits. Science, 314(8), 2006. 

[17] D. Soloveichik, G. Seelig, E. Winfree. DNA as a Universal Substrate for Chemical Kinetics Proc. DNA14.  

[18] P. Yin, H.M.T. Choi, C.R. Calvert, N.A. Pierce. Programming Biomolecular Self-assembly Pathways. Nature, 

451:318-322, 2008. 

[19] B. Yurke, A.P. Mills Jr. Using DNA to Power Nanostructures, Genetic Programming and Evolvable Machines archive 

4(2), 111 - 122, Kluwer, 2003. 

[20] D. Y. Zhang, A. J. Turberfield, B. Yurke, E. Winfree. Engineering Entropy-driven Reactions and Networks Catalyzed 

by DNA. Science, 318:1121-1125, 2007. 




