Strand Spaces: Proving Security Protocols
Correct™

F'. Javier Thayer Fabrega Jonathan C. Herzog
Joshua D. Guttman
The MITRE Corporation
202 Burlington Rd., MS A150

Bedford, MA 01730 USA
{jt, jherzog, guttman}@mitre.org

Abstract

A strand is a sequence of events; it represents either an execution by
a legitimate party in a security protocol or else a sequence of actions by
a penetrator. A strand space is a collection of strands, equipped with
a graph structure generated by causal interaction. In this framework,
protocol correctness claims may be expressed in terms of the connections
between strands of different kinds.

Preparing for a first example, the Needham-Schroeder-Lowe protocol,
we prove a lemma that gives a bound on the abilities of the penetrator
in any protocol. Our analysis of the example gives a detailed view of the
conditions under which it achieves authentication and protects the secrecy
of the values exchanged. We also use our proof methods to explain why
the original Needham-Schroeder protocol fails.

Before turning to a second example, we introduce ideals as a method
to prove additional bounds on the abilities of the penetrator. We can then
prove a number of correctness properties of the Otway-Rees protocol, and
we clarify its limitations.

We believe that our approach is distinguished from other work by the
simplicity of the model, the precision of the results it produces, and the
ease of developing intelligible and reliable proofs even without automated
support.

*Appears in Journal of Computer Security, 7 (1999), pages 191-230.
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1 Introduction

A security protocol is an exchange of messages between two or more parties
in which encryption is used to provide authentication or to distribute crypto-
graphic keys for new conversations [20]. Even when security protocols have
been developed carefully by experts and reviewed carefully by other experts,
they are often found later to have flaws that make them unusable (see, for ex-
ample, [6, 12]). In many cases, the attacks do not presuppose any weakness in
the cryptosystem being used, and would be just as harmful with an ideal cryp-
tosystem. In other cases, characteristics of the cryptosystem and characteristics
of the protocol combine to cause protocol failure [19, 5, 21].

Analyzing security protocols consists mainly of two complementary activi-
ties. The first is to find flaws in those protocols that are not correct, and the
second is to establish convincingly the correctness of those that are. These ac-
tivities are interrelated, because the discovery of a flaw may suggest an altered
protocol that we may wish to prove correct, and because a failure to prove the
correctness of a protocol may suggest a particular flaw.

In this paper, however, we focus on the second activity, proving the correct-
ness of protocols when they are in fact correct. Moreover, at this stage, we will
study protocol correctness assuming ideal cryptography.

Much work both recently (for instance, [1, 25, 31]) and of an earlier vintage
(such as [7, 3]) has proposed techniques for proving protocols correct. We believe
that the approach presented here has several advantages.

e Our approach gives a clear semantics to the assumption that certain data
items, such as nonces and session keys, are fresh, and never arise in more
than one protocol run.

e We work with an explicit model of the possible behaviors of a system
penetrator; this allows us to develop general theorems that bound the
abilities of the penetrator, independent of the protocol under study. (A
simple example is presented below in Section 3.2; a more powerful method
is introduced in Section 6.)

e Our method allows various notions of correctness, involving both secrecy
and authentication, to be stated and proved.

e In our opinion, the approach leads to detailed insight into the reasons why
the protocol is correct, and the assumptions required. Proofs are simple
and informative: they are easily developed by hand, and they help to
identify more exact conditions under which we can rely on the protocol.

Our basic contribution is the strand space. A strand space is a set of strands,
and a strand is a sequence of events that a single principal may engage in. Each
individual strand is a sequence of message transmissions and receptions, with
specific values of all data such as keys and nonces. It is thus a sequential process
that exhibits neither internal nor external choice [11].



For a legitimate principal, a strand represents the actions of that party (but
of that party only, not its presumed interlocutor) in one particular run of the
protocol. If that party may be involved in more than one run of the protocol
during a period of time, they are represented by other strands. The activities
of different parties are represented by different strands.

A strand for a penetrator is a sequence of message transmissions and recep-
tions that model a basic capability a penetrator should be assumed to possess.
Examples of penetrator strands include such activities as:

e receiving a symmetric key and a message encrypted using that key, and
then sending the result of decrypting the message;

e receiving two messages and sending the result of concatenating them;

e sending out a data item such as a name that the penetrator may know.

Useful penetrator actions may be modeled by connecting a number of penetrator
strands.

A strand space is a set of strands, consisting of strands for the various legit-
imate protocol parties, together with penetrator strands. One may think of a
strand space as containing all the legitimate executions of the protocol expected
within its useful lifetime, together with all the actions that a penetrator might
apply to the messages contained in those executions.

A bundle is a portion of a strand space. It consists of a number of strands—
legitimate or otherwise—hooked together where one strand sends a message
and another strand receives that same message. Typically, for a protocol to
be correct, each such bundle must contain one strand for each of the legitimate
principals apparently participating in this session, all agreeing on the principals,
nonces, and session keys [15, 26, 32]. Penetrator strands or stray legitimate
strands may also be entangled in a bundle, even in a correct protocol, but they
should not prevent the legitimate parties from agreeing on the data values, or
from maintaining the secrecy of the values chosen.

One may think of a bundle as collecting all of the activities that were relevant
to one run of a protocol, although the definition that we give allows a bundle
to contain additional events that need not have been strictly relevant.

A strand is a linear structure, a sequence of one principal’s message trans-
missions and receptions. A bundle is a graph-structured entity, representing the
communication among a number of strands.

Protocol correctness typically depends essentially on the freshness of data
items such as nonces and session keys. For this reason, the strand spaces that
concern us are not full, in the sense that they do not contain all the strands that
would arise if all possible data items were used. Presumably, the useful lifetime
of a protocol is much shorter than the length of time that would be needed for
the principals to use every possible session key or random value, and indeed we
may reasonably assume that values of these kinds will be invented only once
during the lifetime of the protocol.

A strand space models the assumption that some values occur only freshly
by including only one strand originating that data item by initially sending a



message containing it. Many strands, by contrast, may stand ready to combine
with the originating strand by receiving the message and processing its contents
further. A strand space will also model the assumption that some values are
impossible for a penetrator to guess; in essence, the space simply lacks any
penetrator strand in which this value is sent without having first been received.

In this paper, we will develop the basic machinery of strand spaces (Sec-
tion 2). This machinery includes a partial order that models causal contribution,
and justifies an induction-like proof method (Section 2.2). We then develop our
model of the penetrator (Section 3), including a simple but useful theorem that
gives a general bound on what the penetrator can do, regardless of the protocol
being modeled (Section 3.2). Section 4 describes notions of correctness that
may be easily expressed.

In Section 5, we study the Needham-Schroeder-Lowe public key protocol [20,
12, 13] as an example, proving both authentication results (Sections 5.2 and 5.5)
and secrecy results (Section 5.4).

In Section 6 we develop some more sophisticated machinery for reasoning
about protocols, based on a notion of ideal. We use this concept (in Section 6.3)
to state more powerful bounds on the penetrator than the straightforward the-
orem of Section 3.2. We then turn to the Otway-Rees protocol as a case study
to show the utility of these results. In contrast to the Needham-Schroeder-Lowe
protocol, the Otway-Rees protocol uses secret-key cryptography; the results of
Section 6 are particularly useful for secret-key protocols.

In each case study, we discover detailed (and unexpected) information on
the exact conditions under which the protocol is correct.

2 Strand Spaces

In this section, we will introduce strand spaces and related notions (Section 2.1).
A bundle (Section 2.2) is a portion of a strand space large enough to represent
at least a full protocol exchange; it has a natural causal precedence relation
relative to which inductive arguments may be carried out. The set of messages
that we will consider in the present paper are described in Section 2.3. In
[27], we develop a less restrictive treatment that supports all of the reasoning
we develop in this paper; however, the details presented there would merely
distract from the main points in this exposition.

2.1 Basic Notions

Consider a set A, the elements of which are the possible messages that can be
exchanged between principals in a protocol. We will refer to the elements of A
as terms. We will later (Section 2.3) impose more algebraic structure on the set
A, but in this section we assume only that a subterm relation is defined on A.
to C t1 means tg is a subterm of ¢5.

In a protocol, principals can either send or receive terms. We will represent
transmission of a term as the occurrence of that term with positive sign, and



reception of a term as its occurrence with a negative sign.

Definition 2.1 A signed term is a pair (o,a) with a € A and o one of the
symbols +,—. We will write a signed term as +t or —t. (£A)* is the set of
finite sequences of signed terms. We will denote a typical element of (£A)* by
< <O‘1, a1>, ey <0’n, an> >

By abuse of language, we will still treat signed terms as ordinary terms. For
instance, we shall refer to subterms of signed terms.

Definition 2.2 A strand space over A is a set ¥ together with a trace mapping
tr: X — (£A)*.

We will usually represent a strand space by its underlying set of strands 3. In
particular applications of the theory, the trace mapping need not be injective.
We may want to distinguish between various instances of the same trace; for
example, we may need to distinguish identical traces occurring at different times
to model replay attacks.

Definition 2.3 Fix a strand space X

1. A node is a pair (s,i), with s € 3 and ¢ an integer satisying 1 < i <
length(tr(s)). The set of nodes is denoted by . We will say the node
(s,1) belongs to the strand s. Clearly, every node belongs to a unique
strand.

2. If n = (s,i) € N then index(n) =i and strand(n) = s. Define term(n) to
be (tr(s)),, i.e. the ith signed term in the trace of s. Similarly, uns_term(n)
s ((tr(s)),)2, i.e. the unsigned part of the ith signed term in the trace of
s.

3. There is an edge ny — ny if and only if term(n;) = 4+a and term(ns) = —a
for some a € A. Intuitively, the edge means that node n; sends the message
a, which is received by ng, recording a potential causal link between those
strands.

4. When ny = (s,4) and ny = (s,7 + 1) are members of A/, there is an edge
n; = ng. Intuitively, the edge expresses that n; is an immediate causal
predecessor of no, on the strand s. We write n’ =T n to mean that n’
precedes n (not necessarily immediately) on the same strand.

5. An unsigned term ¢ occurs in n € N iff t C term(n).

6. Suppose I is a set of unsigned terms. The node n € A is an entry point for
I iff term(n) = +t for some t € I, and whenever n’ =1 n, term(n’) & I.

7. An unsigned term t originates on n € N iff n is an entry point for the set
I={t:tct}.
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Figure 1: A Bundle

8. An unsigned term t is uniquely originating iff ¢ originates on a unique

neN.

If a term ¢ originates uniquely in a particular strand space, then it can play the
role of a nonce or session key in that structure.
N together with both sets of edges n; — ns and n; = ns is a directed graph

<N, (—> U :>)>
2.2 Bundles and Causal Precedence

A bundle is a finite subgraph of this graph, for which we can regard the edges as
expressing the causal dependencies of the nodes. Figure 1 illustrates a particular
bundle.

Definition 2.4 Suppose —¢ C —; suppose =¢ C =; and suppose C = (N, (—¢
U =s¢)) is a subgraph of (N,(— U =)). C is a bundle if:

1. C is finite.

2. If ng € N¢ and term(ns) is negative, then there is a unique ny such that
ny —¢ Na.

3. If ng € Ng and ny = ng then nqy =¢ ns.
4. C is acyclic.

In conditions 2 and 3, it follows that n; € Ng, because C is a graph.

For our purposes, it does not matter whether communication is regarded as
a synchronizing event or as an asynchronous activity. This definition formalizes
a process communication model with three properties:



e A strand (process) may send or receive a message, but not both at the
same time;

e When a strand receives a message m, there is a unique node transmitting
m from which the message was immediately received;

e When a strand transmits a message m, many strands may immediately
receive m.

Notational Convention 2.5 A noden isin a bundle C = (N¢, —c¢, =>c), writ-
tenn € C, if n € N¢; a strand s is in C if all of its nodes are in Ne.

If C is a bundle, then the C-height of a strand s is the largest i such that
(s,1) € C. C-trace(s) = (tr(s)(1),. .., tr(s)(m)), where m = C-heighi(s).

Definition 2.6 IfS is a set of edges, i.e. S C— U =, then <s is the transitive
closure of S, and =<s is the reflexive, transitive closure of S.

The relations <s and =g are each subsets of Ns x N, where N5 is the set of
nodes incident with any edge in S.

Lemma 2.7 Suppose C is a bundle. Then <¢ is a partial order, i.e. a reflexive,
antisymmetric, transitive relation. FEvery non-empty subset of the nodes in C
has =<¢-minimal members.

We regard <¢ as expressing causal precedence, because n <s n' holds only when
n’s occurrence causally contributes to the occurrence of n’. When a bundle C is
understood, we will simply write <. Similarly, “minimal” will mean <¢c-minimal.

The existence of minimal members in non-empty sets serves as an induction
principle, an observation that clarifies the relation of our approach to Paulson’s
and Schneider’s [25, 31].

Most of our arguments turn on the <¢-minimal elements in some set of
nodes. These arguments are motivated by the question, “What did he know,
and when did he know it?”

Lemma 2.8 Suppose C is a bundle, and S C C is a set of nodes such that
Vm,m’ . uns_term(m) = uns_term(m’) implies (m €S iff m' €9)
If n is a <¢-minimal member of S, then the sign of n is positive.

PRrROOF. If term(n) were negative, then by the bundle property, n’ — n for
some n' € C and uns_term(n) = uns_term(n’). Hence, n’ € S, violating the
minimality property of n. B

Lemma 2.9 Suppose C is a bundle, t € A and n € C is a <¢-minimal element
of {m € C:tC term(m)}. The node n is an originating occurrence for t.

PROOF. Because n is a member, ¢ C term(n). By Lemma 2.8, the sign of n is
positive. If n’ =1 n, then applying Definition 2.4, Clause 3 as many times as
necessary, n’ € C. Hence by the minimality property of n, ¢ Z term(n’). Thus
n is originating for ¢t. M



Sy

A
{Na A}KB

l} {Na Np} i,

eL—eoeLt—eo

ﬂ {Nb}KB

Figure 2: Needham-Schroeder

2.3 Terms and Encryption

We will now specialize the set of terms A. In particular we will assume given:
e A set T C A of texts (representing the atomic messages).

e A set K C A of cryptographic keys disjoint from T, equipped with a unary
operator inv : K — K.

We assume that inv is injective; that it maps each member of a key pair for
an asymmetric cryptosystem to the other; and that it maps a symmetric
key to itself.

e Two binary operators
encr : K xA— A

join: AxA— A

We will follow custom and write inv(K) as K, encr(K,m) as {m}x, and
join(a,b) as ab. If k is a set of keys, k=1 denotes the set of inverses of elements
of k.

We illustrate this notation in Figure 2, which shows the bundle contain-
ing the intended behavior of the Needham-Schroeder public key protocol [20].
The column below A represents the strand consisting of the initiator’s activity
during the exchange, while the column below B represents the strand of the
respondent’s activity. In the form we discuss it here, the protocol assumes that
each participant has somehow acquired the other’s public key. One party, the
initiator A, generates a number randomly (a “nonce”); he joins this to his name
and encrypts it with the intended respondent’s public key. The latter generates
a nonce of his own, sending it and the initiator’s nonce back, encrypted with
the initiator’s public key. He has thus answered the initiator’s challenge by
showing that he could read the first message. Finally, the initiator returns the
respondent’s nonce encrypted with the respondent’s public key.

The intended result of this protocol is that the two participants should come
to share access to the values N, and N, each associating these values with the
other participant, and no other party should be in possession of them. The
protocol might be used in a context where the two values are hashed together
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to yield a shared symmetric key for an encrypted session, for instance. In
fact, it does not achieve this goal [12]; Figure 3 displays a bundle that serves
a counterexample and illustrates what can go wrong in this protocol. In this
figure, the penetrator P has two periods of activity, each represented here by a
short strand. The initiator A intends to have a session with P or some principal
whose key P controls; P exploits this opportunity to impersonate A to B.
Figure 4 will show in more detail how this behavior could be achieved.

2.4 Freeness Assumptions

The proofs in this paper use an assumption we will call the assumption of free
encryption; many other authors (e.g. [14, 18, 24]) have made similar assump-
tions, dating back to Dolev and Yao [7], although not all have [8]. It stipulates
that a ciphertext can be regarded as a ciphertext in just one way:

Axiom 1 Form,m' € A and K, K' € K,
{mig ={m'tx = m=m'AK=K'

For clarity of exposition we make a stronger assumption in this paper, namely
that A is the algebra freely generated from T and K by the two operators encr
and join, as embodied in Axiom 2.

Axiom 2 For mg,mgy, my,m) € A and K, K’ € K,
1. moymq = mym) = mo = m{ Ami =m}
/
2. momy # {m{} i

3. momngUT

10



4. {mo}[{ Q/KUT

This is more than is needed for our method but it leads to the simplest expo-
sition of the main points. In [27] we showed how to weaken this assumption
considerably, accounting for the possibility that the join operator is associative,
for instance.

Given Axiom 2, we may define the width of terms:

Definition 2.10 If m € KUT or if m = {mo}k, then width(m) = 1. If
m = momy, then width(m) = width(mg) + width(m).

Attacks that might exist if there are terms that may be “read” as having
more than one form are referred to as type flaw attacks [4]. Some type flaw
attacks seem implausible—in the sense that most implementations would not
be vulnerable to them—while others are more troublesome.

Type flaw attacks are an example of a more general issue in protocol anal-
ysis. In real protocols, the algebra of messages has many more relations—that
is, identities holding among terms—than we allow in our model. For instance,
message composition is usually an associative operator as implemented. More
seriously, contrary to Axiom 1, in real cryptosystems there are non-trivial iden-
tities of the form {m}x = {m'}x/. In what sense then can we say that our
techniques provide useful information about protocols which use real cryptog-
raphy?

For any encryption algebra A there is a free encryption algebra A’ and a
surjective algebra morphism 7 : A’ — A. Moreover, 7 and A’ are unique to
within isomorphism, this being effectively the definition of free algebra in the
theory of universal algebras. In this paper we have shown protocol correctness
results for strand spaces over the free algebra A’. Now it is easy to see that if
a protocol property fails for strands over A’, then the same protocol property
fails for A. However, the converse is not true, since protocol failures may exploit
relations in the algebra A that cannot be lifted to A’. Nevertheless, much useful
information can be obtained by considering the free message algebra, since we
are thereby excluding vulnerabilities based on the structure of the protocol itself,
rather than on particular properties of the message algebra.

The problem remains to determine which relations among the elements of the
free algebra A’ will preserve a protocol correctness result. This is a hard problem,
which will doubtless require much future work exploring different approaches;
Maneki has considered one aspect of this problem [16].

Since we have assumed that our message algebra A is freely generated, we
can use a simple inductive definition of the subterm relation.

Definition 2.11 The subterm relation C is defined inductively, as the smallest
relation such that:

e a a;

i aE{g}K ifaEgy.

ealCghifaC goralCh.

11



We should emphasize that, for K € K, K C {g}k only if K C g already. Re-
stricting subterms in this way reflects an assumption about the penetrator’s
capabilities: that keys can be obtained from ciphertext only if they are embed-
ded in the text that was encrypted. This might not always be the case—for
instance, if a dictionary attack is possible—but it is the assumption we will
make here.

This notion of subterm does not always mesh perfectly with the definition
of origination and unique origination, which refers to the subterm relation (Def-
inition 2.3, Clauses 7 and 8). In some cases, it might be more natural to use
a notion of origination referring to a larger relation C’; that relation would be
defined so that

aC' {9}k W aC'gVa=KVa={gtx

Definition 7.1, Clause 3, for instance, contains a condition on what key a server
may choose that would be unnecessary with the alternative notion ’. In this
paper, however, we will make do with .

An immediate consequence of the freeness assumption and the inductive
definition of subterm is:

Proposition 2.12 Suppose K # K' and {h'}x C {h} k. Then {h'} k' C h.

3 The Penetrator

The penetrator’s powers are characterized by two ingredients, namely a set of
keys known initially to the penetrator and a set of penetrator strands that allow
the penetrator to generate new messages from messages he intercepts.

A penetrator set consists of a set of keys Kp. It contains the keys initially
known to the penetrator. Typically it would contain: all public keys; all private
keys held by the penetrator or his accomplices; and all symmetric keys K, Kp
initially shared between the penetrator and principals playing by the protocol
rules. It may also contain “lost keys” that became known to the penetrator
previously, perhaps because he succeeded in some cryptanalysis.

3.1 Penetrator Strands

The atomic actions available to the penetrator are encoded in a set of penetrator
traces. They summarize his ability to discard messages, generate well known
messages, piece messages together, and apply cryptographic operations using
keys that become available to him. A protocol attack typically requires hooking
together several of these atomic actions.

Definition 3.1 A penetrator trace is one of the following:
M. Text message: (+t) wheret € T
F. Flushing: {—g)

12
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T. Tee: (—g, +g, +9)

C. Concatenation: {(—g, —h, +gh)

S. Separation into components: {(—gh, +g, +h)
K. Key: (+K) where K € Kp.

E. Encryption: (—K, —h, +{h}k).

D. Decryption: (—K—1, —{h}g, +h).

This set of penetrator traces gives the penetrator powers similar to those in other
approaches, e.g. [14, 24]. They ensure that the values that may be emitted by
the penetrator are closed under joining, encryption, and the relevant “inverses.”
Figure 4 shows an example, illustrating how these penetrator strands can be
hooked together to provide the behavior assumed in Figure 3. The open circles
(o) here show the two points at which this diagram meshes with the first nodes
of A and B’s strands at the top of Figure 3. The label above each of the four
strands shows which kind of strand it is, following Definition 3.1.

It is also possible to extend the set of penetrator traces given here if it
is desired to model some special ability of the penetrator. That requires no
essential change to our overall framework, although the proofs in this paper
would then need to be modified to take account of the additional penetrator
traces. Our theorems characterize a penetrator with just the powers we have
described; a penetrator with additional computational or cryptanalytic abilities
may not be subject to the same limitations.

13



One example of an extended penetrator would be a penetrator who can
cryptanalyze old session keys, and thus benefit from some kinds of replay at-
tacks [6]; the penetrator we formalize here does not have this ability.

Definition 3.2 An infiltrated strand space is a pair (X,P) with ¥ a strand
space and P C % such that tr(p) is a penetrator trace for all p € P.

A strand s € ¥ is a penetrator strand if it belongs to P, and a node is a
penetrator node if the strand it lies on is a penetrator strand. Otherwise we will
call it a non-penetrator or regular strand or node.

A node n is an M, F, etc. node if n lies on a penetrator strand with a trace
of kind M, F, etc.

We would not expect an infiltrated strand space to realize all of the penetrator
traces of type M. In that case, the space could not model unguessable nonces.
It is usually assumed that the space X lacks M-strands for many text values,
which regular participants can use for fresh nonces.

In the remainder of this paper, we will examine infiltrated strand spaces in
which the regular strands all belong to a single protocol. In [30], we examine
the case in which the regular strands may belong to more than one protocol.

3.2 A Bound on the Penetrator

Because the powers of the penetrator are defined by the penetrator keys and the
penetrator strands, they are independent of the choice of a particular protocol to
be proved correct. We can accordingly prove general facts about the penetrator’s
powers, re-using them whenever we become interested in a new protocol. In
Section 6.3, we develop several powerful theorems about the penetrator, which
are used to prove results about various protocols. Here, we will prove a simple
theorem that is useful in the example we will turn to next, namely the Needham-
Schroeder-Lowe protocol.

The proof of this theorem is typical of how we use Lemma 2.7. By “S\ T”
we mean the set difference of S and T'.

Proposition 3.3 Let C be a bundle, and let K € K\ Kp.
If K never originates on a regular node, then K [ term(n) for any node
n € C. In particular, for any penetrator node p € C, K i term(p).

ProoF. Consider the set S = {n € C : K T term(n)}. Suppose (to derive
a contradiction) that S is non-empty. Then S has members that are minimal
relative to <¢ (Lemma 2.7). By Lemma 2.9, any <¢-minimal members of S are
originating occurrences of K. Hence, by the assumption, they are all penetrator
nodes. By Lemma 2.8, they are all positive nodes. We will now examine the
possible cases for positive penetrator nodes.

M. The strand has the form (+t) where t € T, but K [Z t.

F. The strand has the form (—g), and thus lacks any positive nodes.

14



T. The strand has the form (—g, +g, +¢), so no value originates on the positive
nodes.

C. The strand has the form (—g, —h, +gh); by the freeness of the algebra no
key is a subterm of the positive node unless it was a subterm of a previous
node.

S. The strand has the form (—gh, +g, +h), so no value originates on the
positive nodes.

K. The strand has the form (+Kj) where Ky € Kp. But K C K iff K = K,
contrary to the assumption that K € K\ Kp.

E. The strand has the form (—Ky, —h, +{h}k,). By the definition of [,
a C {h}k, iff a T h or a = {h}k,. But because our algebra is freely
generated, K # {h}k,. Hence, no key can occur in the positive node
without having occurred in a previous node.

D. The strand has the form (—Ko_l, —{h}k,, +h). By the definition of L,
a T honlyifaC {h}xk,, so no key can occur in the positive node without
having occurred in a previous node.

Hence S is in fact empty. But if S is empty, then K [ term(n) for any n € C,
hence certainly K [Z term(p) for penetrator nodes p € C. B

This proof method is characteristic: it successively considers the minimal
elements in a set, considers whether they are regular nodes or penetrator nodes,
and finally takes cases on the different forms of penetrator strands. Proposi-
tion 3.3 is an instance of a fact we will establish later as Corollary 6.12. We
have proved it separately here because it is useful in Section 5 and because we
wanted to illustrate a straightforward use of this characteristic proof method.

4 Notions of Correctness

Gavin Lowe studies a range of authentication properties in [15]; strand spaces
are a natural model for stating and proving his agreement properties, which are
akin to the correspondence properties of Woo and Lam [32].

A protocol guarantees agreement to a participant B (say, as the responder)
for certain data items 7 if:

each time a principal B completes a run of the protocol as responder
using &, which to B appears to be a run with A, then there is a
unique run of the protocol with the principal A as initiator using &,
which to A appears to be a run with B.

For a regular strand in an authentication protocol, the principal engaging in that
strand, as well as the apparent interlocutor, can be inferred from the contents
of the terms occurring in the strand.

A weaker non-injective agreement does not ensure uniqueness, but requires
only:
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each time a principal B completes a run of the protocol as responder
using &, apparently with A, then there is a run of the protocol with
the principal A as initiator using Z, apparently with B.

Non-injective agreement is weaker because it does not prevent the other party
A from being duped into executing multiple runs matching a single run by B.

We can prove non-injective agreement by establishing that, whenever a bun-
dle C contains a strand representing a responder run using Z, then C also contains
a strand representing an initiator run that corresponds in the sense that it also
uses ©. We can establish agreement by showing that C contains a unique ini-
tiator strand using £. We will illustrate these properties in Propositions 5.2
and 5.8, and also in Propositions 7.8 and 7.9.

We will also state a simple notion of secrecy for a data value x, which will
be sufficient for our purposes here. A value x is secret in a bundle C if for every
n € C, term(n) # z. Propositions 5.10 and 7.4 illustrate this property.

This notion of secrecy concerns only what is “said on the wire.” In this
sense, a value is secret if the regular strands never emit it, and the penetrator
can never emit it. Regular protocol participants may “know” a secret value
in the sense of carrying out computations that depend on it, so long as their
behavior in the protocol does not include disclosing it in public.

Moreover, if we prove that the penetrator never emits a value, it follows
that he can never derive it from values he receives: for if he derived it, then he
would be capable of emitting it. The penetrator strands defined in Definition 3.1
correspond to the ways that a penetrator would derive new values from those
he already possesses. For instance, if the penetrator received a value gz, then
an S-strand would lead to the penetrator emitting the supposed secret x.

More stringent notions of secrecy are also possible, as for instance informa-
tion flow security properties, and may be fruitfully applied to security proto-
cols [9].

5 The Needham-Schroeder-Lowe Protocol

The Needham-Schroeder-Lowe protocol was proposed by Gavin Lowe [13] as a
way to fix the public-key protocol proposed by Needham and Schroeder [20],
which he had discovered to be flawed [12]. In the form Lowe considers, the pro-
tocol assumes that each participant has somehow discovered the other’s public
key.

1. A— B: {N, A}k,
2. B— A: {NaNbB}KA
3. A— B: {Ny}rey

This protocol differs from the original Needham-Schroeder public key protocol
only in message 2; in the original protocol, B’s name is not included.
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In [13], Lowe proves the correctness of the revised protocol, showing that any
attack against the revised protocol could be realized using just two runs of the
protocol. The FDR model checker discloses that no attack exists on such a small
system; this result is confirmed by examining the possible forms of an attack.
In this section we will give a different proof using the strand space approach.

We specialize the term algebra somewhat, equipping it with:

e A set of names Tpame € T. We will use variables such as A, B to range
over Tpame-

e A mapping K : Tpame — K. This is the mapping that associates a public
key with each principal. We will follow tradition by writing K(A) in
the form K,4. We will assume that this function is injective, so that if
K4 = Kpg, then A= B.

The protocol does not achieve its authentication goals unless the mapping K is
injective.

5.1 NSL Strand Spaces

Definition 5.1 An infiltrated strand space %, P is an NSL space if ¥ is the
union of three kinds of strands:

1. Penetrator strands s € P;
2. “Initiator strands” s € Init[A, B, Ny, Np] with trace:
(H{Na A}k, —{NaNyBlr,, +{Nolxp)

where A, B € Tpame, Nay Np € T but Ny € Tpame. Init[A, B, Ny, Np] will
denote the set of all strands with the trace shown. The principal associated
with this strand is A.

3. Complementary “responder strands” s € Resp[A, B, N, Np| with trace:
<_{N¢1A}KB7 +{NaNbB}KA) _{Nb}KB>

where A, B € Tpame, Na, Ny € T but Ny & Trame. Resp[4, B, No, Np| will
denote the set of all strands with the trace shown. The principal associated
with this strand is B.

If s € Init[A, B, N,, Np] or s € Resp[A, B, N,, Np] is a regular strand, then we
refer to A and B as the initiator and the responder of s (respectively), and to
N, and N, as the initiator’s value and responder’s value (respectively). The
intention is that these values should be nonces, in the sense of texts uniquely
originating in ¥. Although all the initiator and responder strands in the strand
space are complete, in the sense that they contain all three nodes, particular
bundles may contain only the first one or two nodes on some strand.

Given any strand s in X, we can uniquely classify it as a penetrator strand,
an initiator’s strand, or a respondent’s strand just by the form of its trace. In
particular, given an NSL space ¥, we can read off which strands are penetrator
strands, so that (3, P) is uniquely determined. Hence we can omit P safely.
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5.2 Agreement: The Responder’s Guarantee
Proposition 5.2 Suppose:

1. ¥ is an NSL space, C is a bundle in X, and s is a responder strand in
Resp[A, B, Ng, Np| with C-height 3;

2. K;' ¢ Kp; and
8. Ng # Ny and Ny is uniquely originating in .
Then C contains an initiator’s strand t € Init[A, B, N,, Ny| with C-height 3.

We will prove this using a sequence of lemmas. Throughout the remainder of
this section, we will fix an arbitrary X, C, s, A, B, N,, and N, satisfying the
hypotheses of Proposition 5.2. The node (s, 2) outputs the value {N, Ny B}k, ;
for convenience we will refer to this node as ng, and to its term as vg. The node
(s,3) receives the value {Np}x,; we will refer to this node as ng and its term
as vz. We will identify two additional nodes n, and ns during the course of the
proof, such that ng < n; < ns < ns.

Lemma 5.3 N, originates at ng.

PrOOF. By the assumptions, N, C v, and the sign of ng is positive. Thus,
we need only check that N, Z n’, where n’ is the node (s, 1) preceding ng on
the same strand. Since term(n’) = {N, A}k, we need to check that Ny # N,
which is a hypothesis, and N, # A, which follows from the stipulation—in
Definition 5.1 Clause 3—that the responder’s value not be in Tpame. W

Next comes the main lemma, which establishes that the crucial step is taken
by a regular strand and not a penetrator strand. As usual, it considers the
<-minimal members of a set of nodes. The content of the lemma is represented
in Figure 5.

Lemma 5.4 The set S = {n € C : Ny C term(n) Avy IZ term(n)} has a
=<-minimal node no. The node ns is reqular, and the sign of no is positive.
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PROOF. Because n3g € C, and ng contains N, but not vg, S is non-empty. Hence
S has at least one =<-minimal element ns by Lemma 2.7. The sign of ny is
positive by Lemma 2.8.

Can ng lie on a penetrator strand p? Let us examine the possible cases
for positive penetrator nodes, according to the form of the trace of p. We will
consider case S last.

M. The trace tr(p) has the form (+t) where t € T; so we must have t = N,
In this case IV, originates on this strand. But that is impossible, as Ny
originates uniquely on the regular node ng (Lemma 5.3).

F. The trace tr(p) has the form (—g), and thus lacks any positive nodes.

T. The trace tr(p) has the form (—g, +g, +¢), so the positive nodes are not
minimal occurrences.

C. The trace tr(p) has the form (—g, —h, +gh), so the positive node is not a
minimal occurrence.

K. The trace tr(p) has the form (+Ky) where Ky € Kp. But N, I Ky, so this
case does not apply.

E. The trace tr(p) has the form (—Ko, —h, +{h}K,). Suppose Ny C {h}x, A
vo Z {h}Kk,. Since Ny # {h}K,, Ny C h. Moreover, vg Z h, so the positive
node is not minimal in S.

D. The trace tr(p) has the form (—K; ', —{h}r,, +h). If the positive node is
minimal in S, then vy IZ h but vg C {h}x,. Hence (using the assumption
of free encryption) h = N, Ny B and Ky = K 4. Thus, there exists a node
m (the first on this strand) with term(m) = K*. Since by assumption,
Kgl ¢ Kp, we may apply Proposition 3.3 to infer that Kgl originates on a
regular node. However, no initiator strand or responder strand originates
Ki'

S. The trace tr(p) has the form (—gh, +g, +h). Assume term(ns) = g; there
is a symmetrical case if term(ng) = h.

Because no € S, Ny, C g and vy Z g. Observe that vg C h in this
situation: by the minimality of ns, we know vy C g h. However, vg # g h,
hence vy C h.

Let T={m € C:m <n2AghC term(m)}. Every member of T is a
penetrator node, because no regular node contains a subterm g h where h
contains any encrypted subterm.

T is non-empty because (p,1) € T. Hence T has a minimal member m by
Lemma 2.7, which is of positive sign by Lemma 2.8. Let us consider what
kind of strand m can lie on.

M, F, T, K. Clearly a minimal member of T' cannot lie on these strands.
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S. If gh C term(m), where m is a positive node on a strand p’ of kind
S, then gh C term({p’, 1)). Moreover, (p’,1) < m, contradicting the
minimality of m in T.

E. If gh C term(m), where m is a positive node on a strand p’ of kind

E, then gh C term({p’,2)). Moreover, (p’,2) < m, contradicting the
minimality of m in T.

D. If gh C term(m), where m is a positive node on a strand p’ of kind
D, then g h C term({p’, 2)). Moreover, (p’,2) < m, contradicting the
minimality of m in T'.

C. Suppose g h C term(m), where m is a positive node on a strand p’ of
kind C, and m is minimal in 7. Then g h = term(m), and p’ has trace
(=g, —h, +gh). Hence, term({p’,1)) = term(nz) and (p’,1) < na,
contradicting the minimality of ng in S.

Therefore ny does not lie on a penetrator strand, but must lie on a regular
strand instead. W

Definition 5.5 Fiz some ng that is <-minimal in S = {n € C : Ny C term(n)A
vo I term(n)}, and is therefore regular and of positive sign.

Let t be the strand on which ny lies. We show next that t also has a node in
which vy (= {N, Ny B}k ,) occurs. This lemma is illustrated in Figure 6.

Lemma 5.6 A node ny precedes ny on t, and term(ny) = {Ny Ny B}k, -

PROOF. N, originates at ng (Lemma 5.3), and originates uniquely in ¥ (As-
sumption 3). Moreover, na # ng, because vy C term(ng) while vy IZ term(ng).
Hence, N, does not originate at mo. So there is a node ny preceding no on
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the same strand such that N, C term(n;). By the minimality property of
na, Vo = {Na Ny B}k, C term(ny). However, as no regular node contains an
encrypted term as a proper subterm, {N, N, B}k, = term(n;). B

Lemma 5.7 The regular strand t containing ny and ns is an initiator strand,
and is contained in C.

ProOOF. Node ny is a positive regular node and comes after a node (namely
n1) of the form {zyz}x. Hence t is an initiator strand; if it were a responder
strand, it would contain only a negative node after one of that form. Thus, n;
and ny are the second and third nodes of ¢ respectively. Since the last node of
t is contained in C, it must have C-height of 3. W

PROOF OF PROPOSITION 5.2. Proposition 5.2 now follows immediately from
Lemmas 5.6 and 5.7.

We have now proved the non-injective agreement property for the NSL re-
sponder. Injectivity follows easily on the assumption that the initiator chooses
his value N, so that it uniquely originates. If N, is not uniquely originating,
then the injectivity property is clearly false.

Proposition 5.8 If ¥ is an NSL space, and N, is uniquely originating in 3,
then there is at most one strand t € Init[A, B, Ny, Ny for any A, B, and Ny.

PRrROOF. If t € Init[A, B, N,, Np] for any A, B, and Ny, then (¢,1) is positive,
N, C term(t, 1), and N, cannot possibly occur earlier on t. So N, originates
at node (t,1). Hence, if N, originates uniquely in ¥, there can be at most one
such ¢. W

The requirement in Proposition 5.2 that N, and N, be distinct is a pecu-
liarity of our approach. Without this assumption, the proposition is false. The
responder strand

<*{Na A}st JF{Na Nq B}KA’ *{Na}KB>

can be embedded in a bundle C in which N, and A originate on M-nodes, and
the final term {N, } i is generated by the penetrator on the “off chance” that B
will reuse the given nonce N,. The responder’s nonce N, (= N,) does originate
uniquely then; however, not on the responder’s strand, but on an M-strand.

In a probabilistic model, we would assume that the choice of NV, is inde-
pendent of the value of N,. In this case, the penetrator’s strategy will succeed
sometimes, but no more frequently than randomly generating the bits to encrypt
to make up the last message. Hence, this strategy may be safely ignored.

Thus, our strand space model can be more stringent than a faithful proba-
bilistic model. An implementor can justify “cutting corners,” for instance by not
programming the check for N, = N, by showing in the probabilistic model that
an exploitation strategy has negligible probability of success, despite existing in
the strand space model.
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5.3 The Original Needham-Schroeder Protocol

This analysis also sheds light on why the original Needham-Schroeder protocol
would be vulnerable. The analysis is exactly parallel except that the Lemma
corresponding to Lemma 5.6 would read:

Lemma 5.9 In the original Needham-Schroeder protocol, a node ny precedes nsy
on the same regular strand t, and term(ny) = {Ng Np} K, -

With this weaker information, we can not conclude that ¢ € Init[A, B, N,, Ny,
because the responder’s identity is not determined by the term {N, Ny}k,,
which is all that we know s and ¢ agree on. We can only infer that t €
Init[A, C, N,, Np] for some C. This is exactly the weakness that Lowe’s attack
exploits.

5.4 Secrecy: The Responder’s Nonce

We may use the same methods to show that the responder’s nonce NN, remains
secret in the protocol. For this result, we also need to assume that the respon-
der’s private key is not compromised. If it were, the penetrator could read N,
directly from the last message of the exchange.

Proposition 5.10 Suppose:

1. ¥ is an NSL space, C is a bundle in X, and s a responder’s strand in
Resp[A4, B, N, Np|;

2. KZI ¢ Kp and Kgl ¢ Kp; and
8. Ny # Ny and Ny is uniquely originating in 2.

Then for all nodes m € C such that N, T term(m), either {No Ny B}k, C
term(m) or {Np} Kk, C term(m). In particular, Ny # term(m).

Proor. Let X, C, s, A, B, N,, and N, satisfy the hypotheses, and, as in
Proposition 5.2, we will again refer to (s, 2) as ng, and to its term {N, N, B}k,
as vg. The node (s, 3) receives the value { Ny} k,; we will refer to this node as
ns and its term as v3. Consider the set:

S={neC : N,LC term(n)
A vg IZ term(n) A vs IZ term(n)}

If S is non-empty, then it has at least one =<-minimal element. We show first
(Lemma 5.11) that such nodes are not regular. We next show (Lemma 5.12)
that they are not penetrator nodes. Therefore S is empty, and the theorem
holds.

Lemma 5.11 No minimal member of S is a reqular node.
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PRrROOF. Suppose instead that m € S is minimal and a regular node. The sign
of m is positive by Lemma 2.8.

Node m cannot lie on s: Only ng is positive, and vy = term(ng), so ng is
not in S.

Nor can m lie on a responder’s strand s’ # s. In that case, m = (s/,2), so
term(m) = {N,N',C}k,. Since Ny T term(m), either N, = N or N, = N'.

e If N, = N, N, C term((s’, 1)), because the first node (s’,1) is {N, D} k. =
{Np, D} k.. Moreover, vg I {Ny, D}k, and vz Z {Ny, D}k.. Hence
(s',1) € S. Since (s',1) < m, this contradicts the minimality of m.

e If N, # N and N, = N’, then N, originates at m, contradicting the
assumption that N, originates uniquely on nyg.

Suppose next that m lies on an initiator strand s’. It must be either the first
or third node.

o If m = (s',1), then since N, T term(m), N, originates at m, contradicting
the assumption that N, originates uniquely on ny.

o If m = (¢,3), then term(m) = {Np}x.. So the second node (s, 2) is of
the form {x N, C} k. However, C' # B, because otherwise vz = term(m).
Hence (s',2) < m is in S, contradicting the minimality of m. B

Lemma 5.12 No minimal member of S is a penetrator node.

PrROOF SKETCH. The proof is almost identical to the proof of Lemma 5.4.
The only significant difference is that when the penetrator strand is of type D,
we must consider two cases. In one case, h = N, Ny B and Ko = K 4, which
are the plaintext and key that produce vg. In the other case, h = N, and
Ky = Kp, which are the plaintext and key that produce vs. Hence, we must
apply Proposition 3.3 to each of the two private keys, which explains the need
to assume both uncompromised. W

5.5 The Initiator’s Guarantees: Secrecy and Agreement

The proof of the secrecy of the initiator’s nonce N, is very similar to the proof
we have just given.

Proposition 5.13 Suppose:

1. ¥ is an NSL space, C is a bundle in X, and s an initiator’s strand in
Init[A, B, N,, Ny| with C-height 3;

2. K;' ¢ Kp and K5' ¢ Kp; and
8. N, is uniquely originating in 3.
Then for all nodes m € C such that N, T term(m), either {N, A}k, T term(m)

or {N, Ny B}k, C term(m). In particular, N, # term(m).
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By contrast, the initiator’s guarantee of agreement is essentially different. In
particular, it requires a stronger hypothesis than Proposition 5.2, namely that
both private keys K Zl and K El are uncompromised. Not surprisingly, if K El €
Kp, then the penetrator can complete the entire exchange with no activity on
B’s part.

Somewhat more surprising is this: If Kgl € Kp, then the penetrator can
read B’s reply {N, N B}k ,, substituting a different reply {N, N’ B} ,. This
attack prevents us from proving agreement for the initiator assuming only that
the responder’s private key is uncompromised. Indeed, a proof approach based
on an analogy with Proposition 5.2 fails.

However, we can prove an agreement theorem using the secrecy of N, as a
lemma.

Proposition 5.14 Suppose:

1. ¥ is an NSL space, C is a bundle in X, and s an initiator’s strand in
Init[A, B, N,, Ny| with C-height 3;

2. K;l ¢ Kp and Kgl ¢ Kp; and
3. N, 1s uniquely originating in 3.

Then there exists a responder’s strand t € Resp[A, B, N, Np| where t has C-
height 2.

PrOOF SKETCH. Consider the set {m € C : {N, N, B}k, T term(m)}. It is
non-empty because it contains (s,2). So it contains a minimal member mg. If
mo lies on a regular strand ¢, then we can show that ¢ € Resp[A, B, Ny, Np],
and that ¢ has two nodes (at least) in C.

If instead mg lies on a penetrator strand ¢, then ¢ can be shown to be an
E-strand with trace

<_KA7 _NaNbB, +{NaNbB}KA>

But this contradicts Proposition 5.13, which implies that N, does not appear
in the form shown in node (¢,2). B

A uniqueness result corresponding to 5.8 is easy to establish; it requires the
assumption that N, # Np.

Propositions 5.2, 5.8, 5.10, 5.13, and 5.14 give a detailed insight into the
conditions under which the Needham-Schroeder-Lowe protocol achieves its au-
thentication and secrecy goals.

6 Ideals and Honesty

We now introduce the concept of ideal to formulate general facts about the
penetrator’s capabilities.
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6.1 Ideals

Definition 6.1 If k C K, a k-ideal of A is a subset I of A such that for all
hel, geAand K €k

1. hg,ghel.
2. {h}K el.
The smallest k-ideal containing h is denoted Iy[h].

It follows immediately from this definition and Definition 2.11 that g C h if and
only if h € Ik[g].

Definition 6.2 If S C A, Ik[S] is the smallest k-ideal containing S.

The ideal structure is very simple:
Proposition 6.3 If S C A, I[S] = U,cg I[z].

PROOF. The property of being a k-ideal is equivalent to closure under the
mappings & — za, £ — ax and & — {z}; for K € k. Thus the union of
k-ideals is a k-ideal. Thus (J,.g lk[z] is a k-ideal which contains S. Clearly
Uses Ilz] € L[S]. B

Lemma 6.4 Let So = S, Siy1 = {{9}x : g € Iy[Si], K € k}. Then I[S] =
Ui Lo[Si]-

PrOOF. By induction, S; C I[S], so |, Ip[Si] € I[S]. In the other direction,
U, 1o[Si] is clearly a k-ideal which contains S. W

Definition 6.5 A term is simple iff it is not of the form ab for a,b € A.

Alternatively, a term is simple iff it is either an element of T, an element of K
or is of the form {h}x.

Proposition 6.6 Suppose K € K; S C A; and for every s € S, s is simple and
is not of the form {g} k. If {h}x € I[S], then h € I[5].

Note that S may contain a term {g} ks where K’ # K and ¢ contains subterms
encrypted in K.

PrROOF. Assume K € K, {h}k € I[S] and h & Ik[S]. Let I’ be the set difference
LJ]S) \ {{h}K }. Clearly S C I, since S does not contain anything encrypted
with outermost key K. Moreover I’ is a k-ideal: Since Ik[S] is already an ideal
and {h}k is not of the form ab, I’ clearly satisfies the join closure condition
for ideals. If {h}x = {h1}k for hy € I’, then by Axiom 1 (free encryption),
h =hy € I' C Ik][S] a contradiction. Thus I’ is an ideal which contains S. This
contradicts the definition of I[S] as the smallest ideal which contains S. B

Proposition 6.7 Suppose K € K; S C A; and every s € S is simple and is not
of the form {g} k. If {h}k € I[S] for K € K, then K € k.
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The proof is similar to the proof of Proposition 6.6.

ProOOF. Assume K € K, {h}x € I[S] and K & k. As in the preceding
proposition, let I' = I[S] \ {{h}xk }. For the same reason as before, S C I’
and I’ satisfies the join closure condition for ideals. Moreover, by free encryption,
{h} K is not of the form {h'} i for any K’ € k. Thus I’ is an ideal which contains
S. This contradicts the definition of x[S]. W

Proposition 6.8 Suppose S C A, and every s € S is simple. If gh € I[S]
then either g € Ik[S] or h € I[S].

PRrROOF. In virtue of Lemma 6.4, gh € Iy[S;] for some i. By Proposition 6.3,
gh € Iy[x] for some = € S;. This x is simple, as either ¢ = 0, in which case
S; = S, or else i = j 4+ 1, in which case each z € S; is of the form {h}k, and
hence simple. We claim either g € Iy[z] or h € Iy[z]. Otherwise, consider the
set Ip|z] \ {gh}. By the freeness assumption, it is an @-ideal which contains =z,
contradicting minimality. l

6.2 Entry Points and Honesty

Recall from Definition 2.3, Clause 6, that a node n is an entry point for I C A if
and only if term(n) = +t for some t € I and for all nodes n’ such that n’ =7 n,
term(n’) & I, as shown in Figure 7.

Proposition 6.9 Suppose C is a bundle over A. If m is minimal in {m € C :
term(m) € I}, then m is an entry point for I.

ProOOF. If term(m) = —h, then by Definition 2.4 Clause 2, there is a node
m/ € C with term(m') = +h, violating minimality. If m’ =% m and term(m’) €
I, then using Definition 2.4 Clause 3 repeatedly, m’ € C, again contradicting
minimality. l

Definition 6.10 A set I C A is honest relative to a bundle C if and only if
whenever a penetrator node p is an entry point for I, p is an M node or a K
node.

Thus, I is honest relative to C if the penetrator can achieve entry into I only
by a lucky guess: either he utters the right nonce or other text in a lucky M
node, or he utters the right key in a lucky K node. He does not deduce it via
his abilities to decrypt and encrypt, or to concatenate and separate.

26



6.3 More Bounds on the Penetrator

Our main theorem interrelates the structure of ideals with the possible cases for
a penetrator strand.

Theorem 6.11 Suppose C is a bundle over A; S C TUK; k C K; and K C
SUk™t. Then I[S] is honest.

PRrROOF. Let I = I[S]. Because I N K = SNK, we may infer K\ I = K\ S C
k=1. Also, since S € T UK, the set S contains nothing encrypted and no
concatenations, so Propositions 6.8 and 6.6 can be applied.

Suppose m is a penetrator node and an entry point for 7. We now consider
the various kinds of strands on which a penetrator node can occur. By the
definition of entry point, m cannot be on a strand of kind F or kind T. Consider
now the remaining cases:

C. m is on a strand with trace (—g,—h,+hg). Since hg € I, by Proposi-
tion 6.8, one of g, h must be in I, contradicting the definition of entry point.

S. mison astrand with trace (— h g, +h, +g). Since term(m) must be positive,
m is either the second or third node of the strand, so either h € I or g € I. By
the ideal property, h g € I, contradicting the definition of entry point.

D. m belongs to a strand with trace (— Ky ', — {h}k,, +h). By the assumption
that m is an entry point for I, K, * ¢ I. Hence, K;* ¢ S. However, K C SUk™.
Therefore K;' € k™', so Ky € k. By the k-ideal property of I, {h}x, € I,
contradicting the definition of entry point.

E. m belongs to a strand with trace (— K',—h,+ {h}k/). By assumption
{h}k+ € I. By Proposition 6.6, h € I, contradicting the definition of entry
point.

The only remaining possibilities are that m is on a strand of kind M or of
kind K as asserted. B

In our analysis of Otway-Rees in Section 7, we use two corollaries of this
main result. The first allows us to conclude (in some situations) that if a key
that is not originally known to the penetrator is transmitted, then a regular
(i.e. non-penetrator) node has provided the entry point.

Corollary 6.12 Suppose C is a bundle, K= SUk™! and SNKp = 0. If there
exists a node m € C such that term(m) € Ik[S], then there exists a regular node
n € C such that n is an entry point for I[S].

PROOF. Assume that no regular node is an entry point for I[S]. By hypothesis,
{n € C : term(n) € I[S]} is non-empty and therefore contains a minimal
element m. By Proposition 6.9, m is an entry point for [x[S]. m cannot be
regular, and so must be a penetrator node. Theorem 6.11 implies m is either a
penetrator node of kind M or of kind K.
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However, since K = SUk™!, S C K. Hence I,[S]NT = (), so m is not of kind
M. Because SN Kp =0, m is not of kind K. B

Proposition 3.3 is a special case of this, in which {K} is chosen as S and K
is chosen as k.

The second corollary gives a condition under which encryption guarantees a
non-penetrator origin.

Corollary 6.13 Suppose C is a bundle; K = SUk™; SNKp = 0; and no
regular node € C is an entry point for Ik[S]. Then any term of the form {g}x
for K € S does not originate on a penetrator strand.

ProoF. By Corollary 6.12, for every node m € C, term(m) ¢ I = I[S]. Sup-
pose t; = {g}k for K € S originates on a penetrator strand m. By inspection,
m cannot occur on a penetrator strand of kind F, T, K, M, C or S. Consider
the remaining cases:

E. m occurs on a strand with trace (—Ko, —h, +{h}k,). Now Ky & I and so
Ky # K. Since {g}x C {h}x,, Proposition 2.12 implies {g} x C h, contradict-
ing the definition of entry point.

D. m belongs to a strand with trace (— Ko~ ', — {h} k,, +h). If {g}x T h, then
{9}k C {h}k,, contradicting the definition of entry point. H

Although, as we will illustrate in the next section, these theorems about
ideals are frequently quite useful, not all protocol correctness assertions fit this
particular mold. In fact, the Needham-Schroeder-Lowe protocol is a counterex-
ample. In Lemma 5.4, we proved that the minimal members of the set

S={ne€C: Ny, term(n) A {N, Ny B}, [ term(n)}

are regular nodes. This set S is not an ideal; instead, it is formed from the
difference of two ideals:

S ={neC:term(n) € Ix[Np) \ Ik[{Na Ny B}k ,]}

The crucial, authenticating step in which the initiator demonstrates his identity
to the respondent is this one; if his private key is uncompromised only he can
extract N and emit a term containing Nj, but not { N, Ny B}k, . Thus, in this
case, we need to be able to reason about the entry points into this difference of
ideals.

However, we have used these results about ideals to prove facts about the
Yahalom protocol and (in [30]) the Neuman-Stubblebine protocol. Maneki has
used corresponding results to prove a version of the TMN protocol [16]. Thus,
they seem to be quite widely useful, especially to reason about shared secrets.

7 The Otway-Rees Protocol

In this section, we will illustrate the machinery of ideals and honesty by applying
it to analyze the Otway-Rees protocol.
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My =M{NyKaB}K,s

Figure 8: Message Exchange in Otway-Rees

7.1 The Otway-Rees Protocol Itself

This protocol has three roles: initiator, responder, and server. The goal of the
protocol is to authenticate initiator and responder mutually and to distribute a
session key generated by a server. See Figure 8.

To provide a mathematical model of this protocol, we refine the algebra A
in ways similar to those in Section 5:

o A set Tname C T of names.

e A mapping K : Tpame — K. This is intended to denote the mapping
which associates to each principal the key it shares with the server. In
the literature on this protocol this mapping is usually written using sub-
scripts: K(A) = Kag. We assume the mapping A — K4g is injective.
We also assume Kag = Kgé, i.e. that the protocol is using symmetric

cryptography.
We will adopt some conventions on variables for the remainder of this section:
e Variables A, B range over Tpame;
e Variables K, K’ range over K;

e Variables N, M (or the same letters decorated with subscripts) range over
T\ Tname, i-e. those texts that are not names.

Other letters such as G and H range over all of A. We would emphasize that
N, is just a variable, having no reliable connection to A, whereas K 45 is the
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result of applying the function K to the argument A. Thus, the latter reliably
refers to the long term key shared between A and S.

Definition 7.1 1. Init[A4, B, N, M, K] is the set of strands s € ¥ whose trace
18
(+MAB{NMAB}k,o,—M{NK}k,s)

The principal associated with a strand s € Init[A, B, N, M, K] is A.
2. Resp[A, B, N, M, K, H, H'] is defined when N [ H; its value then is the
set of strands in X whose trace is
(- MABH,
+ MABH{N M AB}k,;,
— M H {N K}k,
+ MH)

The principal associated with a strand s € Resp[A, B, N, M, K, H, H'] is
B.

3. Serv[A, B, Ny, Ny, M, K] is defined if K ¢ Kp, K & {Kas : A € Tname}
and K = K~1; its value then is the set of strands in ¥ whose trace is:

<— MAB{NGMAB}KAS {NbMAB}KBS,
+ M{NGK}KAS {NbK}KBS>

The principal associated with a strand s € Serv[A, B, N,, Ny, M, K] is a
fixed server Sy.

In the definition of the responder traces, the condition N [Z H implies N
originates on each strand in Resp[A, B, N, M, K, H, H']. A protocol partici-
pant cannot inspect the contents of H to enforce this condition, since under
normal operation of the protocol, H is ciphertext inaccessible to the partici-
pant. Rather, we are assuming that this condition is enforced by a probabilistic
mechanism.

We sometimes find it convenient to use the * to indicate union over some
indices. Thus for instance Resp[A, B, Ny, M, K, *, %] =

U R‘esp[AaBuNb7M7K7H7HI}
H,H'

In the extreme case in which all the parameters are %, we omit them; for instance,
Init = Init[*, *, *, *, ].

Lemma 7.2 The sets Serv, Init, Resp are pairwise disjoint.

PRrROOF. It suffices to prove the sets of traces are disjoint. Originator traces
begin with a positive term. The second term of of a responder trace has width
(Definition 2.10) at least 4, whereas for a server trace the width is exactly 3.
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Definition 7.3 An Otway-Rees strand space is an infiltrated strand space %
such that ¥ = Serv U Init U Resp U P.

This union is disjoint, by Lemma 7.2 and the observation that P contains
no strands of the same form as Serv U Init U Resp.
Fix an Otway-Rees strand space ¥ over A.

7.2 Otway-Rees: Secrecy

We first prove that session keys distributed by the server cannot be disclosed
unless the penetrator possesses one of the long-term keys used in the run. We
show that a session key can never occur in a form in which it is not encrypted
by the participants’ long-term keys.

Theorem 7.4 Suppose C is a bundle in ¥; A, B € Tpame; K is uniquely
originating; Kas,Kps & Kp; and ssery € Serv[A, B, Ny, Ny, M, K]. Let S =
{KASHKBSHK} and k = K\S

For every node m € C, term(m) & I[K].

PRrOOF. By Proposition 6.3, it suffices to prove the stronger statement that for
every node m, term(m) ¢ I[S]. Since SNKp =0, k=k ! and K=kU S, by
Corollary 6.12 it suffices to show that no regular node m is an entry point for
I]S].

We will argue by contradiction and assume m is a regular node which is an
entry point for I [S]. Since m is an entry point for I[S], by the definitions,
it follows that term(m) is an element of I}[S]. By 6.3, this implies that one of
the keys K, Kas, Kps is a subterm of term(m). Now no regular node contains
any key of the form Kxg as a subterm. In fact, the only keys which occur
as subterms of term(m) (for m regular) are the session keys emanating from a
server. But by the definition of server strands, the set of such keys is disjoint
from the set of keys of the form Kxg. It thus follows K must be a subterm of
term(m).

If m is a positive regular node on a strand s, then K C term(m) implies
either:

1. s € Serv and m = (s, 2), in which case K is the session key of s; or
2. s € Resp[*, x, *, %, %, H %], m = (s,2), and K C H.

In case 2, m is not an entry point for Ix[S], because H C (s,1), which is a
preceding negative node.

So consider case 1. By the unique origination of K, s = Sgery, S0 term(m) =
MA{N, K}k, {Ny K}k,s. By Proposition 6.8, either

1. M € L[S], or
2. {N,K}k,s € I[5], or
3. {NbK}KBs S Ik[S}

But the first is impossible by Definition 6.1; the second and third are impossible
by Proposition 6.7. B
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7.3 Otway-Rees: Authentication

In this subsection we will prove the authentication guarantees that Otway-Rees
provides to its initiator and responder. It is also possible to prove that the
protocol provides authentication guarantees to the server, but we will not do so
here. We first “import” the consequence of Corollary 6.13 that we will need.

Proposition 7.5 Consider a bundle C in X. Suppose X € Tpame 1S such that
Kxs & Kp. Then no term of the form {g} kg for X € Tpame can originate on
a penetrator node in C.

PROOF. Let S = {Kxgs} and k = K. To apply Corollary 6.13, we must check
that no regular node is an entry point for Ix[S], or equivalently, that Kxg does
not originate on any regular node.

A key K originates on a regular node only if it is a session key K originating
on a server strand s € Serv([x, *, , x, K, x, x|. However, by the definition of Serv,
the session key K is never a long term key Kxg.

Hence, we may apply Corollary 6.13 to Ik[S], so any term {g}x 4 can only
originate on a regular node. W

Proposition 7.6 If {H} k. originates on a regular strand s, then:
1. If s € Serv, then H =N K for N € A and K € K.
2. If seInit, then H=NMXC for Ne A, M €T and X,C € Tpame-
3. Ifs€Resp, then H=NMCX for Ne A, M €T and X,C € Tname.

PROOF. By the definition of originating (Definition 2.3, Clause 7), if the term
{H} Kk, originates on m, then m is positive.

If s € Init then m = (s,1). Thus term(m) is of the form M AB{N M AB}k 5.
The only encrypted subterm of this term, {N M A B}k, is of form 2.

If s € Resp, then the positive nodes of s are (s,2) and (s,4). The encrypted
subterms of (s,2) have plaintext of forms 2 and 3 respectively, while the en-
crypted subterm of (s,4) has form 1 which is not originating.

A similar argument holds if s € Serv. B

Corollary 7.7 Suppose s is a regular strand of 3.
1. If {N K}k, originates on s, then either

e s € Serv[A, X, NN, M, K|
e s € Serv[X,B,N,N' M, K|

for some A, B, N', M. In either case the term originates on the node (s, 2)
and K originates on s.

2. If {N M AB}g,, originates on s, with A # B then
o s € nit[A, B, N, M, K]
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for some K. The term originates on the node (s,1) and N originates on
S.

3. If {N M A B}k, originates on s, with A # B then
e s € Resp[lA,B,N,M,K,H, H']

for some K,H,H'. The term originates on the node (s,2) and N origi-
nates on s.

PRrROOF. Since s is regular, s € Serv U Init U Resp. Apply Proposition 7.6. B

7.3.1 Initiator’s Guarantee

The following theorem asserts that if a bundle contains a strand s € Init, then
under reasonable assumptions, there are regular strands syesp € Resp and sgerv €
Serv which agree on the initiator, responder, and M values.

Theorem 7.8 Suppose C is a bundle in 3; A # B; N, is uniquely originating
m C,’ and KAS7KBS ¢ Kp,

If s € Init[A, B, N,, M, K] has C-height 2, then for some N, € T there are
regular strands

® Sresp € ResplA, B, Ny, M, %, %, x| of C-height at least 2.
® Ssery € Serv[A, B, Ny, Ny, M, K| of C-height 2.
PRroOF. The assumption of the theorem means

(+ MAB{N,M AB}k,s,
- M{NGK}KAS>

is the C-trace of a strand s.

Since Kas ¢ Kp, by Proposition 7.5, {N, K}k, originates on a regular
node in C. By Corollary 7.7, this node belongs to a strand sgery which satisfies
one of the conditions:

1. sgerv € Serv[A, X, Ny, Ny, M1, K], or
2. Sgerv € Serv[X, A, Ny, N,, My, K|

where X € Tname, and Ny, M7 € T. Since (Sserv,2) € C, Sserv has C-height 2.

If condition 1 holds, {N, M1 AX}k,, T term({Sserv,1)). By Proposi-
tion 7.5, {N, My A X}k, originates on a regular strand s;, and by Corol-
lary 7.7, N, originates on the same strand s;. By the unique origination of N,
s =81. Thus M; = M and X = B, and sgerv € Serv[A, B, N,, Ny, M, K].

By Proposition 7.5, {Ny M A B}k, originates on a regular node in C. By
Corollary 7.7, this node is the second on a strand syesp € Resp[A, B, Ny, M, *, *, *|.
Since (Sresp, 2) € C, it follows sresp has C-height at least 2.
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Suppose that condition 2 holds instead. Then {N, M; X A}k, is a subterm
of term((Sserv, 1)). By Proposition 7.5, { N, M7 X A}k, originates on a regular
strand si, and by Corollary 7.7, N, originates on the same strand s;. By
the unique origination of N,, s = s;. Hence by Corollary 7.7, X = A = B,
contradicting an assumption. H

Remarks. Even though the intention of the protocol design is to have B re-
ceive H = {N, M AB}k,, from A there is no way to prevent a penetrator
from replacing {N, M A B}k ,. with garbage. Moreover a penetrator can pre-
vent the output of the server from reaching B. Thus, we cannot show that B
has C-height > 2.

7.3.2 Responder’s Guarantee

The responder can rest assured that if a bundle contains a strand s € Resp, then
under familiar assumptions there are regular strands sipjt € Init and sgery € Serv
which agree on the initiator, responder, and M values. Its proof is very similar
to the proof of Theorem 7.8.

Theorem 7.9 Suppose C is a bundle in X2; A # B; Ny is uniquely originating
m C,’ and KAS7KBS ¢ Kp,

If s € Resp|A, B, Ny, M, K, H, H'] has C-height at least 3, then there are
regular strands

o Sini € Init[A, B, %, M, %] of C-height at least 1.
® Ssery € Serv[A, B, *, Ny, M, K| of C-height 2.

PRrROOF. The assumption of the proposition means the C-trace of s contains at
least:
(- MABH,
+ MABH{N,M AB}k,,,

— MH'{Ny K} xp5)

Since Kps ¢ Kp, by Proposition 7.5, {N, K}k, originates on a regular
node in C. By Corollary 7.7, this node belongs to a strand sgery Which satisfies
one of the following two conditions:

1. sgerv € Serv[X, B, Ny, N, M1, K], or
2. Sgerv € Serv[B, X, N, Ny, My, K|

where X € Tpame, and N, My € T. Since (Sserv,2) € C, Sgerv has C-height 2.

If condition 1 holds, then {N, My X B}k s C (Sserv, 1). By Proposition 7.5,
{Ny My X B}k, originates on a regular strand s;, and by Corollary 7.7, N,
originates on the strand s;. By the unique origination of N, s = s;. Hence
X = B = A, contradicting an assumption.

Suppose that condition 2 holds instead. Again, {Ny M1 X B} k¢ T (Sserv, 1).
By Proposition 7.5, {N, My X B}k, originates on a regular strand s;, and by
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Corollary 7.7, N, originates on the strand s;. By the unique origination of Ny,
s =s1. Thus, M; = M and X = A, and sgerv € Serv[A, B, N, Ny, M, K].

By Proposition 7.5, {N M A B}k, originates on a regular node in C. By
Corollary 7.7, this node belongs to a strand sjnjt € Init[A, B, N, M, %|. sinjt has
C-height at least 1. B

Remarks. As in the previous theorem there are some penetrator behaviors
that cannot be prevented. For instance the penetrator could take the encrypted
session key that B is supposed to pass on to A and throw it away. Hence, we
can not show that the initiator’s strand has C-height > 1.

More significantly, the above argument makes vividly clear why the BAN
modification to Otway-Rees [3, Section 4] might fail, as was shown by Mao and
Boyd [17]. In that modification the nonce Ny, is outside the encryption. Though
it is still true, when condition 2 holds, that the term {M; X B}k, originates
on a regular strand si, this term does not contain V. Hence, s; may not be an
origination point for N, and we can no longer conclude that s; = s.

Indeed, the BAN modification also requires a weakening of Theorem 7.8, as
we can no longer infer that the responder and the server strands will agree on
the responder’s nonce Ny.

7.3.3 A Missing Guarantee

The authentication theorems do not establish something that we had expected
they would, namely that if a bundle C contains complete initiator and responder
strands, then they agree on the session key distributed.

That is, one cannot strengthen Theorem 7.8 by replacing the asterisk by K to
obtain sresp € Resp[A, B, Ny, M, K, *,*]. Nor can one strengthen Theorem 7.9
by replacing an asterisk by K to obtain sji; € Init[A, B, x, M, K]. The reason
is that there is a counterexample, a bundle C (illustrated in Figure 9) in which
each player has a complete strand in C, and they agree on A, B, and M, but
they do not agree on K.

Although this protocol has been studied very carefully in the past (e.g. [3,
17, 24)), this weakness appears not to be explicit in the literature. For instance,
the BAN authors [3, Section 4] suggest the contrary, that the two participants
at the end each believe of a (single) key K 4p that it is a good shared key for
A and B. The authors comment that neither principal can know whether the
key is known to the other, but this is presumably because neither principal
knows whether the other has completed his strand. Paulson [24], despite his
very detailed argument, does not comment on this point.

Presumably this protocol weakness is not serious, as no shared keys are
disclosed. However, it serves to illustrate the subtleties that remain poorly
understood even in very familiar protocols.
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Figure 9: An Otway-Rees Weakness: Mismatched Keys
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8 Conclusion

8.1 Discussion

In this paper, we have developed the idea of strand spaces for proving the
correctness of cryptographic protocols. We have also developed some algebraic
machinery—the notion of ideal—to supplement the strand space idea, and to
prove general, re-usable bounds on the penetrator (Section 6). Our methods
exploit two partial orderings, namely the subterm relation  between terms
and the =< relation between nodes. Inductive characteristics of these orderings
are formulated via the notion of an ideal in the case of C, and via a least element
principle in the case of <.

Our work is closely related to Paulson’s inductive approach [24, 23, 25]. Paul-
son models a protocol as a set of rules for extending a sequence of events; some
of these rules represent actions by legitimate participants, while others represent
actions by the penetrator. A sequence of events generated by these rules corre-
sponds roughly to a bundle. Paulson expresses authentication goals and secrecy
goals as properties of these sequences, which he can then prove by induction on
the way that the sequence is generated. The general-purpose theorem-proving
system Isabelle [22] provides mechanical support for the reasoning.

By contrast, our approach uses a partially ordered structure, the bundle.
As we mentioned, Lemma 2.7 is in effect an induction principle on the partial
order =¢. The nodes in the bundle are organized into strands. Naturally, every
bundle may be linearized into an event sequence in at least one way, while any
event sequence determines a bundle.

However, we think there are two advantages to our approach.

e The bundle contains exactly the causally relevant information. There is
no ordering relation between two nodes unless the causality determined
by the basic relations — and = requires one, and this simplifies inductive
arguments.

e The strand captures a great deal of information. A particular strand
may be known to have nodes in a bundle (e.g. because a value originates
uniquely on it). From this we can identify the whole sequence of relevant
actions for that participant, which aids in isolating the exact agreement
properties the protocol satisfies. We believe this is why our results are
somewhat sharper than others in the literature.

The strand space framework can also be used in other ways, apart from
being used simply to prove a protocol correct. For instance, it could be used to
give an alternate semantics for belief logics, whether applied to cryptographic
protocols [3, 2] or distributed systems more broadly [10], in contrast to the
more usual semantical approaches based on sequences of events or states. The
localization that the notion of strand offers should help to refine and sharpen
such models. Alternatively, results about authentication protocols proved in
a strand space context can be imported into the more usual linear models by
linearizing the bundles.
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The specific algebraic properties we have considered are still elementary.
They are applied under assumptions (such as “free encryption”) that are still
restrictive. However, as recent work suggests [16], it is likely that the approach
can be used in the case of message algebras with less restrictive assumptions.

8.2 The Goals of Protocols

We have proved a variety of specific results about protocols; each of them for-
malizes a protocol goal. They include:

e Secrecy results for both protocols (Theorems 5.10, 5.13, and 7.4);

e Agreement properties for Needham-Schroeder-Lowe (Theorems 5.2 and 5.14)
and Otway-Rees (Theorems 7.8 and 7.9);

e A uniqueness (“injectiveness”) result for Needham-Schroeder-Lowe (The-
orem 5.8), but not for Otway-Rees (Figure 9 gives a counterexample).

However, each of these results is a little different. Theorems 5.2 and 5.14 differ
in which keys must be uncompromised and in the C-height of the corresponding
strand. Theorem 5.2 has the additional assumption that the initiator and the
respondent use different nonces.

Thus, despite the fact that our proof methods are fairly tightly organized
around induction (Lemma 2.7) and the bounds on the penetrator (Theorems 3.3
and 6.11, along with the corollaries of the latter), the protocol goals to be proved
are hand-crafted so as to fit each specific protocol and to express optimally what
it achieves. To what extent is this variability a real fact of life, and to what
extent is it a drawback of our method?

In the following paragraphs we will argue that each of secrecy and authen-
tication should not be thought of as a single property, dictating a rigidly for-
mulated theorem to be proved about protocols. Rather, each is a logical form
that suggests a kind of theorem to be considered. One of the main things to be
learnt from protocol analysis is exactly which theorems of these kinds are true
of a protocol.

What is Secrecy? One kind of correctness property for protocols is secrecy.
This means that some value, usually a key, never falls into the wrong hands.
Exactly what this means for a particular protocol may vary, although there is
a logical form common to all.

A secrecy theorem, stating that none of the values in the set S can be
disclosed, takes the form of a sentence S(¢, 5):

VCVsV¥n.¢(s) A neC = term(n) & I[5]

in which we write k for (K\:S)™!, and we let C range over bundles, s over strands,
and n over nodes. The hypothesis ¢(s) frequently contains assumptions about
keys used in s being uncompromised; it frequently contains assumptions that
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values sent or received are uniquely originating; and it frequently stipulates
what kind of strand s is, such as an initiator strand or a responder strand.

To see that S(¢, S) really expresses secrecy, first suppose that K € Kp N S.
Then there exist bundles C containing penetrator K-nodes emitting K. So
unless the antecedent of the conditional is always false, S(¢,.S) cannot be true.

Moreover, for a value in S to be disclosed, it is necessary that it occur either
unencrypted or else encrypted only using keys whose inverse the penetrator
could obtain. The set k includes all keys whose inverse the penetrator can
obtain before obtaining any value in S. Hence, so long as term(n) ¢ I[S] for
all n € C, the penetrator cannot derive any term containing a value in .S in a
form that he can decrypt.

This form of secrecy for a set of data values is formally different than the
corresponding notion discussed in section 4. The notion proposed there states
that a set S is secret if nothing in S is ever received or transmitted in the
clear by anybody. The formally stronger notion proposed here says that S is
secret if nothing in I[S] is ever received or transmitted by anybody. However,
if for some node n € C, term(n) € I[S], then by adding penetrator strands,
we can construct a bundle C’ such that that for some penetrator node n € C’,
term(n) € S.

We prefer the form we have given here, as an explication of secrecy, because
it matches the strong methods we have developed in Section 6 for proving se-
crecy results. Although for expository reasons Theorems 5.10 and 5.13 were
not stated in the form S(¢,S), they amount to theorems of this form taking
S ={Ka,Kp,N} where N = N, or N = N, respectively.

What is Authentication? According to one view, an authentication goal is
one that establishes the identity of one principal (“entity”) to another principal.
Unfortunately, this concept of authentication seems vague and naive: It does
not say which actions may be traced back to that principal, or during what
period of time its identity remains unchanged.

The authentication properties we have proved above are motivated by the
desire—shared with other authors [15, 26, 32]—to replace this naive view of
authentication by a more meaningful concept. When we prove an authenti-
cation property, we prove that a bundle contains a regular strand of a given
C-height (subject to some assumptions). Thus we have shown that a well de-
fined sequence of events has been performed by the principal associated with
that regular strand. A result of this form seems to us to extract a core of precise
meaning from the traditional notion of entity authentication.

All of our authentication results have a logical form in common. They all
take the form of a sentence A(i, j, ¢, ¥):

VC Vs 3s’ . C-height(s) =i A ¢(s) = C-height(s’) =7 A ¥(s,s")
The hypothesis ¢(s) typically says what type of strand s is, such as an initiator

strand or a responder strand. It typically contains assumptions that certain
values are uniquely originating and that certain keys are uncompromised. It
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may also assume that values are distinct (e.g. N, # N in Theorem 5.2, and
A # B in Theorem 7.8). The conclusion (s, s’) typically says what type of
strand s’ is, such as a responder strand or an initiator strand, and always entails
that s’ is regular. It will also say which data values must be shared between
s and s’. It may also impose uniqueness by asserting that if s” is any strand
satisfying the previous conditions, then s” = s’.

Analyzing the authentication guarantee offered by a protocol means in effect
determining which values of %, j, ¢, and ¢ yield true instances of A(i, , ¢, ©).

What actually happens in a specific authentication protocol may be complex.
It is a good question to ask, of a given protocol, “What kind of authentication
are we talking about?” That way we can decide whether the protocol is capable
of achieving some goal with a real-world significance. And this, we think, is the
purpose of protocol analysis.
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