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Abstract—We consider the dynamics of an unbalanced rubber ball rolling on a rough plane.
The term rubber means that the vertical spinning of the ball is impossible. The roughness of
the plane means that the ball moves without slipping. The motions of the ball are described by
a nonholonomic system reversible with respect to several involutions whose number depends on
the type of displacement of the center of mass. This system admits a set of first integrals, which
helps to reduce its dimension. Thus, the use of an appropriate two-dimensional Poincaré map is
enough to describe the dynamics of our system. We demonstrate for this system the existence of
complex chaotic dynamics such as strange attractors and mixed dynamics. The type of chaotic
behavior depends on the type of reversibility. In this paper we describe the development of a
strange attractor and then its basic properties. After that we show the existence of another
interesting type of chaos — the so-called mixed dynamics. In numerical experiments, a set of
criteria by which the mixed dynamics may be distinguished from other types of dynamical chaos
in two-dimensional maps is given.
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1. INTRODUCTION

This paper complements a series of works devoted to the study of a new, poorly known
type of motion — rubber rolling and describes the motions of a dynamically asymmetric ball
with a displaced center of mass on a plane. The term rubber was first proposed with respect
to motions in [1, 2], but this type of motions had been considered more than a century ago by
J. Hadamard [3]. For more information see the recently published paper [4], which presents the
results of investigations of the integrability of a system governing the motion of a rubber body (a
ball or an ellipsoid) on a plane or a sphere. These problems are also dealt with in [5], where special
cases of integrability of the problem of the motion of a rubber ellipsoid on a plane and a sphere are
considered by combining analytical and numerical approaches.

There are two reasons for the increased interest in rubber body dynamics. On the one hand,
such motions are to investigate numerically than the motions with spinning. Systems with rubber
rolling admit an additional integral, which helps to reduce the analysis of such problems to the
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investigation of the two-dimensional Poincaré map. On the other hand, such an idealization can be
achieved in real experiments. To do this, the body should have a rubber surface.

However, even the dynamics in such systems turns out to be very rich and complex. An integrable
case was pointed out only in [6], when two principal moments of inertia are equal and the center
of mass of the ball is displaced only along one principal axis of inertia. Moreover, in [7] it is proved
that a system governing the motion of an unbalanced rubber ball (with one non-zero component of
displacement) on a plane has no an invariant measure even in the case of a full set of first integrals
(when the acceleration of gravity is zero). If the acceleration of gravity is non-zero, the additional
integral disappears and the absence of an invariant measure becomes obvious from the analysis of
the Poincaré map.

The main goal of the paper is to demonstrate the richness and complexity of the dynamics of
an unbalanced rubber ball on a plane rather than investigating all dynamical properties in detail.

2. EQUATIONS OF A MOTION AND FIRST INTEGRALS

Fig. 1. An unbalanced ball
on a plane.

Consider the motion of an unbalanced rubber ball on a plane.
There is no slipping and spinning at the contact point of the ball with
the plane. These conditions are governed by nonholonomic constraints
represented as:

v + ω × r = 0, (ω, γ) = 0, (2.1)

where r is the radius vector connecting the center of mass with the
contact point P , v and ω are the velocity of the center of mass and
the angular velocity of the ball, respectively, and γ is the normal unit
vector of the plane at the contact point (see Fig. 1). Note that r, v,
ω and n are projected onto the moving axes Cx, Cy and Cz attached
to the ball.

The equations governing the evolution of ω and γ in the gravity
field can be represented as:

{

Ĩω̇ = (̃Iω) × ω − mr × (ω × ṙ) + mag(γ × a) + λ0(ag)γ

γ̇ = γ × ω,
(2.2)

where Ĩ = I + m(r, r) · E − mr · rT is the tensor of inertia relative to the point of contact, m is
the mass of the ball and ag is the acceleration of gravity, I = diag(I1, I2, I3), where I1, I2, I3 are the
principal moments of inertia relative to the moving axes Cx, Cy and Cz.

For the unbalanced ball the vectors r and γ are related by r = −Rγ − a, where a is the
displacement of the center of mass with the components (a1, a2, a3).

The undetermined multiplier λ0 is responsible for the rubber constraints (ω, γ) = 0 and can be
represented as

λ0(ag) = −

(

Ĩ
−1γ, (̃Iω) × ω − mr × (ω × ṙ) + mag(γ × a)

)

(γ, Ĩ−1γ)
. (2.3)

Equations (2.2) admit three first integrals:

E =
1

2
(ω, Ĩω) − mag(r, γ), (γ, γ) = 1, (ω, γ) = 0. (2.4)

The energy and geometric integrals are common for all nonholonomic problems. The third integral
is specified by rubber constraints (in what follows we will call it rubber integral). Thus, by
the Euler–Jacobi theorem for integrability of the system (2.2) the existence of an invariant
measure and an additional fourth integral is necessary. Such additional invariants exist in the
case I1 = I2, a1 = a2 = 0. Moreover, in [6] it is proved that this system can be represented in a
conformally Hamiltonian form.

An additional integral also exists in the case of arbitrary parameters I, a, when ag = 0. But in
this case the system (2.2) is not integrable due to the absence of an invariant measure (see [7]).

For arbitrary values of the parameters the system (2.2) admits neither an additional integral
nor an invariant measure. Due to these facts the dynamics of the system turns out to be very rich
and complex.
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3. THE POINCARÉ MAP
As in most problems of nonholonomic mechanics, it is very convenient to use the Poincaré cross-

sections for numerical investigation of the system under consideration. On the common level set of
three integrals (2.4) our system can be restricted to the three-dimensional manifold

M3 = {(ω, γ) : (γ, γ) = 1, (ω, γ) = 0, E(ω, γ) = const}. (3.1)

For parametrization of this manifold we use special variables (L, G, l, g), which can be represented
as:

ω1 =
√

G2 − L2 sin l,

ω2 =
√

G2 − L2 cos l,

ω3 = L,

γ1 =
L

G
cos g sin l + sin g cos l,

γ2 =
L

G
cos g cos l − sin g sin l,

γ3 = −

√

1 −
(L

G

)2
cos g.

(3.2)

Remark 1. Similar variables are used for many problems of nonholonomic and rigid body
dynamics (see, for example, [8]), where they are called the Andoyer–Deprit variables.

Note that in the new variables the geometric and rubber integrals are conserved automatically.
Hence, Eqs. (3.2) specify one-to-one transformations everywhere except for L/G = ±1. As a secant
for this flow we choose a manifold given by

g = g0 = const.

The cross-section of the three-dimensional manifold M3 formed by the intersection with the
secant g = g0 forms the two-dimensional Poincaré map

Fg0 : M2
g0

→ M2
g0

,

M2
g0

= {x ∈ M3|g(x) = g0},
(3.3)

which is defined on S
2. For parametrization of M2

g0
we use the variables l mod 2π and L

G
∈ [−1, 1].

Thus, the pair (l, L
G

) defines a point in S2 on which the Poincaré map Fg0 is applied.

Remark 2. In the problems of “classical” rolling with spinning the Poincaré cross-section is three-
dimensional [9, 10] and hence more difficult to analyze.

4. REVERSIBILITY OF THE FLOW AND THE MAP
Our investigation shows that the dynamics of the system under consideration significantly

depends on the type of reversibility. We represent the equations of motion (2.2) as Ẋ = v(X),
where X = (ω1, ω2, ω3, γ1, γ2, γ3). Recall that the map of the phase space R(X) : X → X is called
involution for the flow v(X) if

dR(X)

dt
= −v(R(X)), R ◦ R = id. (4.1)

In this case the flow v(X) is called reversible with respect to the involution R(X).
In the system (2.2) there exists the trivial involution

R0 : ω → −ω, γ → γ, t → −t, (4.2)

which reverses the angular velocities of the system. The set of fixed points of this involution is
the subspace of zero angular velocities (ω1 = ω2 = ω3 = 0). In addition to the trivial involution,
the system admits additional involutions, whose number is defined by the number of non-zero
components of the displacement of the center of mass.When the ball is balanced (a1 = a2 = a3 = 0),
the system has the maximal number of involutions. Depending on the type of transformation of
the evolution variables (ω, γ), all additional involutions can be divided into two classes:
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• involutions corresponding to the rotation of the ball by the angle π about one of three axes
attached to this ball

Π1 : ω → (ω1, ω2,−ω3), γ → (−γ1,−γ2, γ3), t → −t

Π2 : ω → (ω1,−ω2, ω3), γ → (−γ1, γ2,−γ3), t → −t (4.3)

Π3 : ω → (−ω1, ω2, ω3), γ → (γ1,−γ2,−γ3), t → −t

• involutions corresponding to the reflection of the ball with respect to one of three planes
passing through a pair of the axes attached to the ball

Σ1 : ω → (ω1, ω2,−ω3), γ → (γ1, γ2,−γ3), t → −t

Σ2 : ω → (ω1,−ω2, ω3), γ → (γ1,−γ2, γ3), t → −t (4.4)

Σ3 : ω → (−ω1, ω2, ω3), γ → (−γ1, γ2, γ3), t → −t

If the center of mass of the ball is displaced only along one axis, then the system (2.2) admits
three involutions (in addition to R0): the involution corresponding to the rotation of the ball by the
angle π along the axis of displacement (one of Πi, i = 1, . . . , 3) and two involutions corresponding
to the reflection of the ball with respect to the planes passing through the axis of displacement and
another axis (two from Σi, i = 1, . . . , 3). If the center of mass of the ball is displaced along two axes,
then the system (2.2) admits only one additional involution corresponding to the reflection of the
ball with respect to the plane passing through these axes. In the case of arbitrary displacement of
the center of mass (when all components a1, a2 and a3 are non-zero) the system under consideration
does not admit additional involutions.

We now recall the definitions of reversibility and involution for maps. The transformation
r(x) : x → x is called involution for the map (3.3) if

Fg0 ◦ r = r ◦ F−1
g0

. (4.5)

The map Fg0(x) is called reversible with respect to the involution r(x).

It is clear that every involution for a flow system can be reduced to the involution of its Poincaré
map if a manifold invariant under this involution is chosen as a secant.

In what follows, such involutions reduced from the flow system to the Poincaré cross-section (3.3)
will be called reduced involutions. For the Poincaré map (3.3) the reduced involutions can be
represented as

• Reduced R0:

r0 :
L

G
→ −

L

G
, l → l + π, g → −g (4.6)

• Reduced Π1, Π2 and Π3

π1 :
L

G
→ −

L

G
, l → l, g → −g

π2 :
L

G
→

L

G
, l → π − l, g → π − g (4.7)

π3 :
L

G
→

L

G
, l → −l, g → π − g

• Reduced Σ1, Σ2 and Σ3

σ1 :
L

G
→ −

L

G
, l → l, g → π − g

σ2 :
L

G
→

L

G
, l → π − l, g → −g (4.8)

σ3 :
L

G
→

L

G
, l → −l, g → −g
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For each involution (except for r0) the set of fixed points is represented as lines in the variables
(L, G, l, g). Hereafter we will call such lines the lines of fixed points or fixed lines. For the involution
r0 the set of fixed points is undefined because of uncertainty of the variables (L, G, l, g), when
the angular velocities are zero. Due to the involution r0 the phase portraits in the Poincaré map
preserve an obvious symmetry, according to which each trajectory in the map has a symmetrical
analog. Thus, for each stable trajectory the system under consideration has a symmetrical unstable
trajectory.

It is well known from [11, 12] that the behavior of reversible systems in a neighborhood of the
intersection of the images of the Poincaré map for fixed lines (hereafter images of fixed lines) is
close to a conservative, i.e, area-preserving behavior. This property helps to search for regions with
possible dissipation by analyzing the behavior of images of fixed lines.

The intersections of various images of fixed lines contain conservative periodic points (elliptic
or saddle points with unit saddle values). Hence, the system near such points is mostly area-
preserving [13]. The regions without such points can contain sinks and sources such as fixed or
periodic points, invariant curves and even strange attractors.

When the Poincaré map is reversible with respect to several involutions with fixed lines, the
network of the images of fixed lines can be very dense. Thus, the dynamical behavior in the
system (2.2) becomes more complex from the case of the maximal number of involutions (balanced
ball) to the case with only trivial involution r0 (completely unbalanced ball, when the displacement
of the center of mass has three non-zero components).

In this paper we consider two cases in detail.

• The case of a completely unbalanced ball: the system (Poincaré map) reversible with respect
to only one involution R0 (r0).

• The case of a partially unbalanced ball (two of three components of the displacement are
non-zero and the third component is zero): the system (Poincaré map) is reversible with
respect to two involutions R0 (r0) and one of Σi (σi), i = 1 . . . 3.

5. STRANGE ATTRACTORS

The problem of an unbalanced rubber ball rolling on a plane is not the first nonholonomic
problem where strange attractors were found. Not long ago strange attractors were found in the
nonholonomic model of a Celtic stone [14, 15]. The papers [16, 17] are also devoted to investigations
of strange attractors in this model. In [17] the spiral strange attractor of Shilnikov was discovered
in the nonholonomic model of a Celtic stone. The scenario of development of this strange attractor
was also presented in [18]. Some more strange attractors were found in the above-mentioned model
in [16], where they were investigated using numerical calculations. Quite recently the “famous”
strange attractor of Lorenz type has been discovered in the same model of the Celtic stone [18].
Remarkably, this model is the first model from applications where the Lorenz-like attractor was
found.

5.1. Development of a Strange Attractor

In the case of a completely unbalanced ball, strange attractors can exist in the system (2.2).
Fig. 2 shows one of such attractors for the following values of parameters:

E = 50, R = 3, m = 1,

I1 = 1, I2 = 2, I3 = 3,

a1 = 1, a2 = 1.5, a3 = 0.5,

g = 0.

(5.1)

Remark 3. Note that the triangle inequality for the principal moments of inertia I1, I2 and I3
does not hold strictly. But this does not matter in our case, since the main goal of this paper is to
demonstrate the richness and complexity of the dynamics of the system (2.2). Moreover, strange
attractors were also found for a wide range of parameters of the system (when the triangle inequality
holds strictly), but for the values (5.1) the attractor looks particularly clear.
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Fig. 2. The Poincaré map of a strange attractor and a strange repeller. The chaotic set on the left is a strange
attractor and its symmetric (with respect to the involution r0) analog is a strange repeller on the right. Almost
all trajectories starting from the repeller evolve onto the attractor with a small number of iterations.

Let us describe the development of the strange attractor from Fig. 2. We consider the acceleration
of gravity ag as a bifurcational parameter. Note that the energy parameter E can be used as a
bifuractional parameter instead of ag, since the increase in the value of ag is equal to the decrease
in the total energy of the system.

The development of the strange attractor is a rather complicated process and is associated with
a series of local and global bifurcations. By the local bifurcations we mean (as usual) bifurcations
of fixed and periodic points and bifurcations of invariant curves on the Poincaré map. Among the
global bifurcations we will take into account those resulting in qualitative changes of the regions
of attraction (repulsion) of invariant sets (fixed or periodic points or invariant curves), which are
related to evolutions of the invariant manifolds of saddle points.

The main stages of development of the strange attractor are described below (for more details
see [19]).

• When ag = 0, the phase portrait in the Poincaré map looks area-preserving. The invariant
curves surround the elliptic points Fl, Fr, Fd and Ft separated by two saddle points Sl and
Sr (see Fig. 3a). When the parameter ag becomes positive, the elliptic points become foci
and most of invariant curves are destroyed. When ag > 7.58, the region of attraction of the
focus Fl (hereafter referred as the region L) are bounded by the unstable invariant manifold
of the saddle Sr. Due to the involution r0 the region R = r0(L) is bounded by the stable
invariant manifold of the saddle Sl (see Fig. 3b).

(a) ag = 0 (b) ag = 8

Fig. 3. Poincaré maps. a) The phase portrait is foliated into invariant curves which surround the elliptic
points Fl, Fr, Fd and Ft separated by two saddle points Sl and Sr. b) Elliptic points become foci. Fl and Ft

are stable foci, while Fr and Ft are unstable foci. A stable invariant manifold of the saddle Sr is coiled around
the focus Fl, while an unstable invariant manifold of Sl is coiled around Fr.
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• When ag ≃ 8.65, saddle-node bifurcations occur. The stable node point Fn and the saddle
point Sn are born in L, and (due to the involution r0) an unstable node and a saddle are
born in R (see Fig. 4a). The node Fn very soon becomes a focus. When ag > 8.85, stable and
unstable manifolds of the saddle Sn form a homoclinic figure-eight [20]. Thus, both stable
manifolds of Sn are intersected by its unstable manifold, while the second unstable manifold
is coiled around the focus Fl (see Fig. 4c). Such intersections lead to the onset of chaos in a
neighborhoods of Sn.

(a) ag = 8.7 (b) ag = 8.8 (c) ag = 9.0

Fig. 4. Poincaré maps. a) Saddle-node bifurcation for ag ≃ 8.65. The stable focus Fn and the saddle Sn are
born in the region L. b-c) Behavior of stable (black) and unstable (gray) invariant manifolds of the saddle Sn.
The region containing Fl, Sn and Fn is bounded by the unstable invariant manifold of Sr.

• As ag increases, the saddle Sn approaches the focus Fl and, when ag ≃ 9.14, disappears due
to a saddle-node bifurcation. But the chaos in the region L exists as before, because the
saddle node with a transversal homoclinic vanishes [21]. Thereafter, the focus Fn is only one
fixed point in the region L. Starting with ag ≃ 8.94 Fn loses stability due to a cascade of
local bifurcations, after which only saddle points remain in the region L. This cascade seems
interesting and will be described in Section 5.1.1.

• When ag ≃ 9.77, the final evolution of the invariant manifolds of Sl and Sr occurs (see Fig. 5),
after which almost all trajectories evolve from the region R into the region L with positive
iterations of the Poincaré map. Thus, the attractive set in L is a strange attractor and the
symmetric repulsion set in R is a strange repeller.

Fig. 5. ag = 9.77. The final position of the invariant manifolds in the Poincaré map.

5.1.1. A Cascade of Local Bifurcations in a Neighborhood of Fn

When ag ≃ 9.14, the focus Fl vanishes due to saddle-node bifurcation, and the stability in
the region L becomes associated with bifurcations of the focus Fn. In a neighborhood of Fn a
transition to chaos is associated with a cascade of local bifurcations of the focus Fn. This process is
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rather complicated and interesting, therefore we describe it below in detail. By the cascade of local
bifurcations we mean an infinite sequence of local bifurcations for a fixed or periodic point of focus
type. In such cascades period-doubling bifurcations can generally alternate with the Neimark–Sacker
bifurcations.

When ag ≃ 8.94, Fn loses stability due to the Neimark–Sacker bifurcation and becomes an
unstable focus. After that the stable invariant curve Cn born from Fn attracts most trajectories in
the neighborhood of Fn (see Fig. 6a).

(a) ag = 8.94

(b) ag = 9.5

Fig. 6. The Poincaré maps in a neighborhood of Fn. a) The focus Fn loses stability due to the Neimark–Sacker
bifurcation. b) The birth of the unstable 1 : 3 resonance in a neighborhood of Fn.

When ag ≃ 9.375, a resonance of a large period occurs on Cn, and soon Cn disappears according
to the Afraimovich–Shilnikov scenario [22].

When ag = 9.49, the unstable orbit of period 3 is born in the neighborhood of the unstable Fn

(due to occurring of the strong resonance 1 : 3) (see Fig. 6b). After that Fn remains an unstable
focus. With further increase in the value of ag the unstable periodic focus of period 3 becomes a
stable periodic focus (due to the Neimark–Sacker bifurcation), and when ag ≃ 9.72, it loses stability
due to a cascade of local bifurcations.

The unstable focus Fn bifurcates as well. Since ag ≃ 9.634, two period-doubling bifurcations
occur, after which an unstable focus of period 4 is born in the neighborhood of Fn. With further
increase in ag, the last focus of period 4 becomes stable due to the Neimark–Sacker bifurcation.
Then the stable focus of period 4 bifurcates due to a cascade of local bifurcations, after which only
the focus of period 3 attracts the trajectories in the region L (see Fig. 7b).

When ag ≃ 9.7715, the cascade of local bifurcations for the stable focus of period 3 terminates,
and our numerical investigation shows that the region L does not contain stable fixed or periodic
(of not large period) points. This region is entirely filled with chaotic orbits.

Now we describe bifurcations of the focus Fn in more detail. It is well known that the transition
to chaos due to a cascade of period-doubling bifurcations (also known as the Feigenbaum scenario)
is typical of both conservative and dissipative two-dimensional maps continuously depending on a
parameter ([23, 24]). The sequence of bifurcational values of parameters converges in this case, and
the speed of such convergence (also called the Feigenbaum constant) is asymptotically constant
and universal for conservative and dissipative maps.

In our case the beginning of the bifurcations for Fn is the following: 2 period-doubling
bifurcations, a Neimark–Sacker bifurcation and a series of 5 period-doubling bifurcations (we could
not find bifurcations after the last period-doubling due to numerical miscalculations). We supposed
that the subsequence of bifurcations occurring after the Neimark–Sacker bifurcations is subject to
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(a) (b)

Fig. 7. The Poincaré maps in a neighborhood of Fn (a) before and (b) after the focus Fn bifurcates due to a
cascade of local bifurcations.

the Feigenbaum scenario and tried to evaluate the speed of convergence by the series of 5 period-
doubling bifurcations. However, we could not find a convergence to one of the universal Feigenbaum
constants. We assume that this phenomenon is associated with a complex alternating divergency
of the system (2.2), due to which period-doubling bifurcations compete with the Neimark–Sacker
bifurcations. Therefore, in addition to moving in a unit circle through −1, the multipliers of fixed
points can also leave this circle through eiφ. Due to this competition the Neimark–Sacker bifurcation
can occur after a series of period-doubling bifurcations, which will eventually affect the asymptotical
Feigenbaum constant.

5.2. Properties of the Strange Attractor

In this Section we will describe qualitative and quantitative characteristics of the chaotic set in
the region L.

The attractive region of the strange attractor is formed by uniting L and R. The location of the
stable invariant manifolds of saddle points helps to construct the boundary of the strange attractor.
On the left the attractor is bounded by the stable invariant manifold (light blue) of the saddle Sr,
and on the right the attractor is bounded by the stable invariant manifold (dark blue) of Sl (see
Fig. 5). In the upper and lower parts of the Poincaré map these manifolds approach each other as
if to close the region of the strange attractor. Thus, almost all trajectories starting from R evolve
into L and wander about in the strange attractor.

In what follows we analyze the Lyapunov exponents of the strange attractors for the flow
system (2.2). For our system, 3 of 6 Lyapunov exponents are zero due to the existence of 3 first
integrals (2.4). The fourth Lyapunov exponent is responsible for a shift in time and hence is zero,
too. Thus, the trajectories of the system generally admit two non-zero Lyapunov exponents. We
use the well-known Binettin algorithm [25] to calculate a full spectrum of the Lyapunov exponents.

To evaluate the numerical miscalculations, we compute the spectrum of the Lyaponov exponents
many times from different points of the attractor. Then we consider the calculated set as a
sampling of a random variable, for which we evaluate the expectation value and sample variance
of the Lyapunov exponents. The non-zero Lyapunov exponents with evaluation of the numerical
miscalculations and their sum are shown below:

Λ1 = 0.083368 ± 0.000422,

Λ2 = −0.084553 ± 0.000423,

Λ1 + Λ2 = −0.001184 ± 0.000011.

(5.2)
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The positive Lyapunov exponent proves the chaotic nature of the attractor, while the negative
sum of the Lyapunov exponents points to the compression of volume, which is characteristic of the
typical attractors. Note that this compression in our strange attractor is very weak due to small
values of the sum of the Lyapunov exponents.

Now we calculate the Kaplan–Yorke dimension [16] of the strange attractor:

D = 1 +
Λ1

|Λ2|
≃ 1.986. (5.3)

This formula shows that the Kaplan–Yorke dimension is close to 2, which explains why the area of
the attractor is comparable with the area of the phase space of (3.3).

The described properties imply that the discovered stable chaotic set in the region L is a genuine
strange attractor. However, this attractor is not related to one of the well-known attractors, such as
the attractors of Lorenz or Henon type. Due to the weak dissipation the attractor may be classified
as a weak strange attractor. The attractor of this type is presented in [26].

6. MIXED DYNAMICS

As was mentioned above, when the center of mass of the ball is displaced along two axes,
the system (2.2) admits an additional involution corresponding to the reflection of the ball with
respect to the plane passing through the axes of displacement. For the Poincaré map this involution
is reduced to one of three involutions of the set (4.8). In this case we have found another
interesting type of chaotic behavior — the so-called mixed dynamics [27, 28] (see also [18] where
this phenomenon is pointed out for the nonholonomic model of Celtic stone). Here we give this
definition only for two-dimensional reversible maps. In this case, mixed dynamics is a closed chaotic
set of orbits with the following properties:

• This set contains a countable set of asymptotically stable, asymptotically unstable, saddle
and symmetric elliptic orbits.

• The closure of the sets of orbits of different types has a non-empty intersection.

The latter property means that attractors and repellers can intersect each other. Moreover, in the
numerical experiments an attractor and a repeller can form a single whole.

Following [29], by an attractor we will mean a set of images of a fixed line of the involution
iterated in forward time and, accordingly, by a repeller we will mean a set of such images iterated
in backward time.

The experimental evidence of the fact that a closed chaotic set has a mixed nature is that an
attractor and a repeller differ due to the asymmetry of the asymptotically stable orbits belonging
to the attractor and the asymptotically unstable orbits belonging to the repeller.

Since we iterate a fixed line of an involution, symmetric periodic (elliptic and saddle) orbits
also belong to this intersection [11]. Moreover, asymptotically stable and unstable periodic orbits
should generically present in any neighborhood of this intersection. However, it is impossible to
find all these orbits in numerical investigations. Hence, instead orbits of large period we tried to
find periodic orbits of any period. In addition, we have replaced the requirement of an intersection
of the closures of stable and unstable orbits with the requirement of vicinity of these orbits.

Figures 8a and 8b show, respectively, the attractor and the repeller obtained by iterating the
fixed line forward and backward 1) for the following values of parameters:

E = 50, ag = 9.7715,

R = 3, m = 1,

I1 = 1, I2 = 2, I3 = 3,

a1 = 1, a2 = 1.5, a3 = 0, g = π/2.

(6.1)

For convenience, we divide each of the figures (8a and 8b) into two parts. Two large “white”
regions belong to the first part. These “white” regions are associated with dissipative dynamics.

1)Figures 8a and 8b show, respectively, 100 forward and backward iterations for points of the line L/G = 0 with
the step 0.001.
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(a) (b)

(c)

(d)

(e)

Fig. 8. The Poincaré maps. a) An attractor with 100 forward iterations of the Poincaré map for points of the
line L/G = 0 with the step 0.001. b) A repeller with 100 backward iterations of the Poincaré map for points of
the line L/G = 0 with the step 0.001. c) A zoomed region (indicated with a rectangle from Figs. (a) and (b))
containing orbits of both the attractor and the repeller. d) A zoomed region of the unstable points of period
19 (in the center of the figure) and 133 (surrounding the foci of period 19). e) A zoomed region of the stable
points of period 19 (in the center of the figure) and 133 (surrounding the foci of period 19).

Trajectories starting from the lower part of these regions (from the neighborhood of unstable foci)
pass to the stable foci of the upper part of these regions. Moreover, these two regions are invariant
in the sense that the orbits cannot leave them and cannot evolve into them from outside.

The second part contains a region with chaotic dynamics.It can be seen that the chaos in the
second part of Fig. 8a differs from the chaos in the second part of Fig. 8b. However, these two parts
have a non-empty intersection. In addition, we find stable and unstable periodic points of period
19 and 133 inside this chaos. Moreover, the stable periodic points are close to the unstable ones
(see Figs. 8c-e). Figure 8c shows a zoomed region (indicated with a rectangle in Figs. 8a and 8b)
containing orbits of both the attractor and the repeller. Figures 8d and 8e show a zoomed region,
respectively, of the unstable and stable points of period 19 (in the center of the figures) and 133
(surrounding the foci of period 19).

Remark 4. Small “white” regions in Figs. 8a–b and large “white” regions in Fig. 8c contain
periodic elliptic orbits. Why do the images of fixed lines not evolve into these regions? We suppose
that the answer is quite simple. We iterate only the fixed line of the involution σ1 from the set (4.8).
But it is well known [11] that if a map (or a system) is reversible with respect to the involution σ,
then this map is also reversible with respect to the involution F−1

g0
σ. But it is difficult to find

and iterate the fixed line of this involution, so we have not dealt with it. Thus, we assume that
the above-mentioned “white” regions will be filled with such iterations of the fixed line of the
involution F−1

g0
σ.

All these facts confirm that the chaotic dynamics under consideration is mixed dynamics.
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