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We present a nonperturbative calculation of the strangeness of the nucleon yN within the framework of
lattice QCD. This observable is known to be an important cornerstone to interpret results from direct dark
matter detection experiments. We perform a lattice computation for yN with an analysis of systematic
effects originating from discretization, finite size, chiral extrapolation and excited state effects leading to
the value of yN ¼ 0.173ð50Þ. The rather large uncertainty of this value of yN is dominated by systematic
uncertainties which we are able to quantify in this work.
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I. INTRODUCTION

The question of the exact composition of the nucleon, i.e.
what are the different quark contents of the proton and
neutron, is a long-standing problem (see for instance [1])
which can be addressed only through nonperturbative
methods. In this paper, we will resort to lattice QCD
techniques to address the calculation of the strange quark
content of the nucleon which is important to know not only
for addressing the fundamental question of the nucleon
composition, but also because it plays a most important role
in the search for dark matter, as will be discussed in more
detail below.
Avery useful measure for the strange quark content is the

yN parameter,

yN ≡ 2hNjs̄sjNi
hNjūuþ d̄djNi ; ð1Þ

where u; d and s denote respectively the up, down and
strange quark fields. We will refer to yN as the strangeness
of the nucleon in the following.
As mentioned above, the yN parameter plays an impor-

tant role in the context of dark matter searches.
Experiments which aim at a direct detection of dark matter
[2–6] are based on measuring the recoil energy of a nucleon
hit by a dark matter candidate. Even if in these processes a
dark matter particle would not be detected directly, such
experiments allow us to provide bounds on the nucleon
dark matter cross section which can in turn be translated
into constraints on models of new physics. In many
supersymmetric scenarios [7] and in some Kaluza-Klein

extensions of the standard model [8,9] the dark matter
nucleon interaction is mediated through a Higgs boson. In
such a case the theoretical expression of the spin indepen-
dent scattering amplitude at zero momentum transfer
involves the yN parameter. In fact, even rather small
changes of the poorly known value of yN can be responsible
for a variation of 1 order of magnitude of the nucleon dark
matter cross section. Having a better determination of the
yN parameter would thus provide better estimates on the
size of the cross section or more reliable constraints on dark
matter models.
The yN parameter is related to the ratio of the pion-

nucleon (σπN) and the flavor nonsinglet (σ0) σ terms,
defined as

σπN ≡mlhNjūuþ d̄djNi; σs ≡mshNjs̄sjNi ð2Þ

σ0 ≡mlhNjūuþ d̄d − 2s̄sjNi ð3Þ

whereml denotes the average up and down quark mass, and
ms the strange quark mass and where we also introduced to
the strange σ term σs. The σ terms σπN and σ0 can be
estimated within the framework of chiral effective field
theories and using the relation

yN ¼ 1 −
σ0
σπN

ð4Þ

estimates of yN can also be provided.
To be more specific, the value of σπN can be extracted

from the pion-nucleon cross section data at an unphysical
kinematics, known as the Cheng-Dashen point. Values for
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σπN extracted in this way read σπN ¼ 45� 8 MeV from
Ref. [10] (GLS) and σπN ¼ 64� 7 MeV from Ref. [11]
(GWU). A more recent result has been obtained in Ref. [12]
(AMO) which gives σπN ¼ 59� 7 MeV [12]. The value of
σ0 can be computed analyzing the breaking of SUð3Þ in the
spectrum of the octet of baryons. Following this strategy an
estimate for this quantity is given e.g. in [13] and reads
σI0 ¼ 36� 7 MeV. A more recent calculation using an
improved method based on Lorentz covariant chiral per-
turbation theory with explicit decuplet-baryon resonance
fields suggests σII0 ¼ 58� 8 MeV [14].
Using the aforementioned values for σπN and σI0 we

obtain the following phenomenological estimates of the yN
parameter:

yI;GLSN ¼ 0.20ð21Þ; yI;GWU
N ¼ 0.44ð13Þ;

yI;AMO
N ¼ 0.39ð14Þ: ð5Þ

Using σII0 we obtain

yII;GLSN ¼ −0.29ð29Þ; yII;GWU
N ¼ 0.09ð16Þ;

yII;AMO
N ¼ 0.02ð17Þ: ð6Þ

Note that these values from effective field theory (EFT)
and phenomenology are affected by substantial errors
leading to correspondingly large uncertainties for the cross
section for dark matter detection [15].
In this paper, we present a first principle computation of

the strangeness of the nucleon using lattice QCD tech-
niques. The difficulty of such a computation for a long time
has been that, due to the appearance of disconnected,
singlet contributions, the error for yN has been very large.
Consequently, it has not been possible to obtain a precise
enough value which can be used for calculating the cross
section reliably, see later in this manuscript for a discussion
of various lattice computations.
In Ref. [16] we were able to make a significant step

forward by using a setup of maximally twisted mass
fermions which avoids any mixing in the renormalization
of the σ terms and hence yN does not need to be
renormalized. In addition, by employing special noise
reduction techniques, amenable for our setup, we could
achieve a significant improvement in the signal to noise
ratio for yN. The shortcoming of our result in Ref. [16] has
been that, being a feasibility study only, yN was obtained at
only one value of the lattice spacing, a single finite volume
and only one quark mass.
Here we want to extend the calculation of Ref. [16] by

using different lattice spacings, finite volumes and quark
masses such that we can probe the effects of the discre-
tization, the finite volume and nonphysical quark masses.
In addition, we now have available a high statistics analysis
of excited state effects which, as we will see below, are
potentially very dangerous for the computations of yN .

Being able to address the systematic uncertainties appear-
ing in a lattice calculation of yN , we believe that our
computation can provide a reasonable estimate of the yN
parameter based on QCD alone and not resorting to
effective field theories.

II. LATTICE QCD CALCULATION

In our computation of yN we use gluon field configura-
tionsgeneratedby theEuropeanTwistedMassCollaboration
(ETMC) [17] employing maximally twisted mass fermions.
In particular, the setup used here includes amass-degenerate
light up and down quark doublet as well as a strange-charm
quark pair, a situation which we refer to as the Nf ¼ 2þ
1þ 1 setup. In our analysis we have used two values of the
lattice spacing,a ¼ 0.082 fmanda ¼ 0.064 fm, to examine
lattice cutoff effects.Wehave a number of light quarkmasses
leading to pseudoscalar meson masses mPS covering the
range from 490MeV to 220MeV. Thismass range allows us
to perform the chiral limitwithmPS approaching the physical
pion massmπ . We finally remark that we use a mixed action
setup with Osterwalder-Seiler quarks in the heavy quark
sector which avoids any mixing due to the isospin violation
otherwise occurring in the twisted mass sea quark action.
This mixed action still enjoys the automatic OðaÞ improve-
ment of twisted mass fermions.
The basic quantity needed for the evaluation of yN is the

ratio of correlation functions

Rðt; tsÞ≡
P

xs;xhJ̄ðxsÞðOsðxÞ − hOsðxÞiÞJð0ÞiP
xs;xhJ̄ðxsÞðOl − hOlðxÞiÞJð0Þi

; ð7Þ

where J is an operator with quantum numbers of the
nucleon and Ol ¼ ūuþ d̄d and Os ¼ 2s̄s. The calculation
of the ratio of Eq. (7) is particularly challenging because of
very noisy contributions originating from disconnected
diagrams. In Eq. (7), x ¼ ðt;xÞ and xs ¼ ðts;xsÞ denote
the Euclidean time and space coordinates. We will refer to t
and ts as the source-operator separation and the source-sink
separation, respectively. We have shown in [16] that Rðt; tsÞ
does not need to be renormalized since no mixing in the
renormalization pattern appears. The ratio Rðt; tsÞ has the
following asymptotic behavior:

Rðt; tsÞ ¼ yN þOðe−ΔMtÞ þOðe−ΔMðts−tÞÞ ð8Þ
where we have denoted with ΔM the mass gap between the
ground state and the first excited state of the nucleon. Note
that the two additional contributions to yN are nonvanishing
as long as t and ts are finite. These two contributions are a
systematiceffect inherent toanylatticecalculationandwillbe
referred to as excited state contamination in the following.
More details on our setup and on the technique to

evaluate Eq. (7) can be found in [16,18] where we
discuss in particular the crucial points of our improved
variance reduction technique and of the nonperturbative
renormalization.
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III. CHIRAL EXTRAPOLATION

A crucial element in the determination of yN is the
extrapolation to the physical value of the pion mass. Ideally,
to this end chiral perturbation theory should be used. Let us
therefore briefly sketch how the leading order chiral
perturbation theory behavior of yN can be obtained.
Using the Feynman Hellman theorem, the sigma terms

can be related to the derivative of the nucleon mass with
respect to the light or strange quark masses:

σπN ¼ ml
∂mN

∂ml
; σs ¼ ms

∂mN

∂ms
; ð9Þ

and the yN parameter can be written as follows:

yN ¼ 2
∂mN

∂ms

�∂m2
PS

∂ml

∂mN

∂m2
PS

�−1
ð10Þ

where we have neglected the strange quark mass depend-
ence of m2

PS.
The nucleon mass dependence on the pion mass can be

described by the leading one-loop result in SUð2Þ heavy
baryon chiral perturbation theory HBχPT [19] which reads

mNðmPSÞ ¼ mð0Þ
N − 4cð1Þm2

PS −
3g2A

32πf2π
m3

PS þOðm4
PSÞ:
ð11Þ

Here gA is the axial coupling of the nucleon and fπ is the
pion decay constant. We take the physical value gA ¼
1.2695 and use the convention where the physical value of
fπ is 92.4 MeV. Note that the leading order expansion of
the light sigma term reads σπN ¼ −4cð1Þm2

PS and thus cð1Þ
has to be strictly negative to give a positive value for σπN.
For the dependence of the nucleon strange sigma terms

as a function of the pseudoscalar meson mass, we use the
following Ansatz:

hNjs̄sjNi ¼ d0 þ d1m2
PS þOðm3

PSÞ ð12Þ

with d0; d1 as fit coefficients. Similar expressions can be
derived also from EFT, see for instance [20].
Taking also the leading order chiral perturbation theory

expression of the pseudoscalar meson mass m2
PS ¼ 2Bml

into account, the leading expression for the yN parameter
reads

yN ¼ yð0ÞN þ yð1ÞN mPS þOðm2
PSÞ ð13Þ

where

yð0ÞN ¼ d0
−4Bcð1Þ

; yð1ÞN ¼ 9d0g2A
2Bπð4cð1ÞÞ232f2π

: ð14Þ

This simple leading order expression predicts that yN is
an increasing function of mPS. As we will see in the
following, this contradicts the behavior of our data for yN.
An interpretation of this mismatch is that higher orders of
chiral perturbation theory would be needed to describe our
results. However, since this implies further free fit param-
eters more data points than we have presently would be
necessary to be able to apply such higher order expressions.
In addition the validity of such a chiral expansion is
questionable for pion masses above 300 MeV (see e.g
[21]) and thus cannot be applied to describe most of the
lattice data presented here. This lack of being able to apply
chiral perturbation theory led us to use simple linear and
quadratic fit Ansätze in the pseudoscalar mass, as will be
discussed below.

IV. RESULTS AND SYSTEMATIC EFFECTS

Our results for yN are shown in Fig. 1 as a function of
mPS. The chiral behavior of the yN parameter is a difficult
issue and we are not aware of a direct computation for the
quark mass dependence of yN itself in the framework of
EFT. As discussed above, our set of data points is
insufficient to apply higher order chiral perturbation theory.
It turned out that the number of fit parameters is too large to
obtain reliable fits and, with our data set, it was not possible
to disentangle different orders of the chiral expansion.
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FIG. 1 (color online). Our results for yN as a function of mPS.
The values of the lattice spacing a, the linear extent of the box L
and the source-sink separation ts used here are given in the
legend. We extrapolate to the physical value of the pion mass
(marked by the vertical dotted line) using linear (solid line) and
quadratic (dashed line) fits in mPS. For the quadratic fit, we also
show the corresponding error band. Points represented by open
symbols are only taken to estimate systematic effects and are not
included in our final analysis.
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We therefore follow here the approach to use simple
polynomial fit Ansätze for the pion mass dependence of yN .
In the graph, we use different values of the lattice spacing

a, the physical linear extent of the box L and the source-
sink separation ts. We perform an extrapolation to the
physical pion mass employing a linear fit inmPS (solid line)
and a quadratic one (dashed line). Note that only the points
marked by filled symbols are included in the fits and that
only data for mPS < 400 MeV are included in the linear fit.
Open symbols are solely used to demonstrate systematic
effects which will be discussed in more detail below. The
vertical dotted line in Fig. 1 marks the physical value of the
pion mass.
In our Osterwalder-Seiler setup the value of the valence

strange quark mass has been tuned in order to match the
kaon mass obtained in the unitary setup. In principle, other
matching conditions could also be used leading to different
values of the valence strange quark mass. By computing yN
for valence strange quark masses varying them by about
40% we could not detect any significant change in yN
within our statistical error. Hence, below we will not
consider the tuning of the valence strange quark mass as
a source of systematic errors.
As mentioned above, the excited state’s contamination

needs to be scrutinized carefully in order to obtain reliable
results. This is particularly delicate in the case of nucleon
matrix elements because the statistical error grows expo-
nentially when t or ts are increased. Determining the
asymptotic regime in t and ts where the two last terms
of Eq. (8) can be safely neglected and a clear plateau
behavior appears is thus often difficult given the typical
statistics of lattice calculations for nucleon observables. We
therefore performed a detailed analysis of this effect on a
single gauge ensemble increasing by more than 1 order of
magnitude the statistics used.
We computed the ratio Rðt; tsÞ for ts ∼ 1.0 fm (filled

triangle in Fig. 1) and ts ∼ 1.5 fm (open triangle in Fig. 1)
keeping the value of a ¼ 0.08 fm and L ¼ 2.6 fm fixed.
We then performed several constant fits of the ratio Rðt; tsÞ
varying the fit interval ½tmin=a; tmax=a�. We then chose the
longest plateau such that the fit on a restricted range
½tmin=a − 1; tmax=a − 1� change marginally compared to
the one obtained fitting on the range ½tmin=a; tmax�. Since
such a fitting window can be found we conclude that the
systematic error introduced by the choice of a particular
fitting range is negligible. We summarize the fitting range
dependence for various source-sink separations in Table I.
Note that the plateaus have a good quality because of a
large cancellation of the t dependence of the numerator and
denominator in the ratio Rðt; tsÞ. In particular, we find yN ¼
0.061ð4Þ for ts ¼ 1.0 fm and yN ¼ 0.080ð10Þ for ts ¼
1.5 fm which indicates a non-negligible excited state’s
contamination of about ∼32%. Note that we also performed
computations for intermediate source-sink separations of
1.14 and 1.31 fm. The results are summarized in Table I and

as can be seen the latter source-sink separation is compat-
ible with the result obtained for a source-sink separation of
∼1.5 fm. The effect of different source-sink separations on
our data is also exhibited in Fig. 2 where we show the ratio
Rðt; tsÞ for two source-sink separations of 0.98 fm and
1.31 fm. Note also that in [16] we obtained a result at
ts ¼ 1 fm with a much lower statistic [yN ¼ 0.082ð16Þ]
which is fully compatible with the results quoted here. We
thus consider as a conservative choice to use the difference
between the two values for yN obtained at ts ¼ 1.0 fm and
ts ¼ 1.5 fm as an estimate of our systematic error origi-
nating from the excited state’s contamination assuming that
this systematic effect does not depend strongly on the
pseudoscalar meson mass. As an additional check we
performed global fits of the ratio R as a function of t
and ts for all the source-sink separations included in
Table I. The asymptotic behavior of the ratio R can be
written as follows assuming that only one state contributes:

Rðt; tsÞ ¼ yN þ Zðe−δmt þ e−δmðts−tÞÞ ð15Þ

TABLE I. Dependence on the fitting window of yN for various
source-sink separations. The fitting range and the χ2=ndof are
indicated.

ts ½tmin=a; tmax=a� yN χ2=ndof

12a ≈ 0.98 fm [3, 9] 0.061(4) 1.3=6
12a ≈ 0.98 fm [4, 8] 0.061(4) 0.4=4
14a ≈ 1.15 fm [3, 11] 0.063(5) 2.33=8
14a ≈ 1.15 fm [4, 10] 0.064(5) 1.38=6
16a ≈ 1.31 fm [6, 10] 0.070(7) 0.72=4
16a ≈ 1.31 fm [7, 9] 0.071(7) 0.17=2
18a ≈ 1.48 fm [5, 13] 0.080(10) 2.2=8
18a ≈ 1.48 fm [6, 12] 0.082(10) 1.01=6
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FIG. 2 (color online). Rðt; tsÞ of Eq. (7) for two source-sink
separations as a function of t=a. The source-sink separations are
indicated by vertical dotted lines. The best plateau fits together
with their statistical error are represented by gray bands. The best
fit curves of the global fit of Rðt; tsÞ are shown by black dotted
curves.
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for a range of time parametrized by t≥ tcut and ts − t ≤ tcut
and where δm is the difference of the energy of the first
excited state and the nucleon mass. The three coefficients
ðyN; Z; δmÞ are treated as free parameters. The best fit
values for tcut=a ¼ 1 read

yN ¼ 0.091ð7Þ; Z ¼ 0.047ð5Þ and

δm ¼ 0.203ð30Þ ð16Þ

with χ2=ndof ¼ 23=53. The corresponding curves are
shown in Fig. 2 for ts=a ¼ 12 and ts=a ¼ 16.
Estimating yN in this way thus gives a result compatible
within statistical errors with the value obtained for ts ¼ 18a
quoted in Table I. The best fit value for δm ≈ 490ð70Þ MeV
is larger than the mass of the pion on this ensemble, as
expected for a nucleon-pion two particle state at nonzero
momentum. We conclude that the difference between the
results obtained at ts=a ¼ 18 and ts=a ¼ 12 gives a
reasonable estimate of the systematic error due to the
excited state contamination.
Note that for the other gauge ensembles used in Fig. 1,

we have used the same procedure to determine the fitting
range ½tmin=a; tmax=a� of the ratio Rðt; tsÞ and also found a
marginal dependence of the results though with larger
statistical errors.
We have computed yN also at two different volumes

(filled triangles and filled square in Fig. 1). However, we
could not detect any significant finite volume effects within
the statistical errors and thus finite volume effects can be
safely neglected. We also show in Fig. 1 results for yN for
two different lattice spacings (filled triangle and empty
circle in Fig. 1). The two points are clearly compatible,
indicating that lattice discretization effects are small. We
took the difference between the values of these two data
points as an estimate of the discretization errors.
In summary our final result reads

yN ¼ 0.173ð29Þð36Þð19Þð9Þ ð17Þ
where the central value is given by the quadratic fit, the first
error is statistical, and the last three errors are our estimates
of systematic uncertainties, namely the chiral extrapolation,
the excited state’s contamination and the discretization
error, respectively. Note that the systematic errors are
substantially larger than the statistical one and therefore
dominate the total error. Adding all errors in quadrature, we
find yN ¼ 0.173ð50Þ.

V. DISCUSSION

There are a number of lattice works that concentrate on
the determination of σs using direct and/or indirect com-
putation (see for instance [22–25] for Nf ¼ 2þ 1 results).
Other lattice works for Nf ¼ 2þ 1 provide indirect deter-
minations of yN [26–29] and our result for yN is in
agreement with these works. We stress, however, that in

our work we were able to perform a comprehensive
analysis of systematic uncertainties covering lattice spacing
and finite volume effects and, in particular, a careful
investigation of excited state contamination. Furthermore
computing directly the ratio of the matrix element yN
allows us to avoid any assumptions on the domain of the
validity of EFT relations which is based on SUð2Þ or SUð3Þ
HBχPT expansion and sometimes known only at leading
order accuracy.
As in [30], we show in Fig. 3 the ðσπN; σsÞ plane together

with vertical colored bands that represent the phenomeno-
logical determinations and the corresponding uncertainties
of σπN mentioned in the Introduction. In order to put further
constraints on σs, we use the following relations,
σs ¼ 1

2
ms
ml
ðσπN − σ0Þ ¼ yN

1
2
ms
ml
σπN , together with the ratio

of the quark masses taken from the FLAG group [31]. A
first constraint derives from using the phenomenological
determination of σ0 (indicated by σ0 in Fig. 3). The work
performed here provides a constraint through our direct
computation of yN (gray contour) which includes the
estimate of both statistical and systematic errors. As can
be seen the result constrains the strange σ term and suggests
an upper bound of ≈250 MeV for σs.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have performed a direct computation of
the strangeness of the nucleon yN , including light, strange
and charm sea quarks with an emphasis on the study of

σπ N [MeV]

σ s
 [M

eV
]

0 20 40 60 80 100

0

100

200

300

400

500

FIG. 3 (color online). Constraints on σs obtained from our
determination of yN . The phenomenological determination of σπN
are represented by colored band as obtained from [10] (GLS),
[11] (GWU) and [12] (AMO). We also show the constraint
provided by the estimates σI0 [13] and σ

II
0 [14]. As can be seen the

value of yN can constrain the value of σs to be smaller than about
250 MeV.
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systematic effects. Using maximally twisted mass fermions
which allow for an efficient noise reduction technique and
which avoids mixing under renormalization we have
obtained yN ¼ 0.173ð50Þ. Our result for yN is compatible
with previous determinations [26–29,32] but includes an
analysis of systematic errors originating from discretiza-
tion, chiral extrapolation and excited states’ uncertainties. It
is worth pointing out that we find a rather low value of the
strange σ term with corresponding consequences for the
nucleon—dark matter cross section.
One important conclusion of our work is that the error

we obtain for yN is dominated by systematic uncertainties,
in particular the chiral extrapolation and excited state
contamination which cannot be neglected. While the error
from the chiral extrapolation can be avoided in future
calculations which are performed at or very close to the
physical value of the pion mass, the excited state contami-
nation must be carefully assessed. Thus, future lattice
evaluations of the yN parameter using the physical value

of the light quark mass will avoid the systematic error due
to the chiral extrapolation, but they will still have to address
excited state contamination, as this study has demonstrated.
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