
STRANGER: An Automata-Based String Analysis Tool
for PHP�

Fang Yu, Muath Alkhalaf, and Tevfik Bultan

Department of Computer Science
University of California, Santa Barbara, CA, USA

{yuf,muath,bultan}@cs.ucsb.edu

Abstract. STRANGER is an automata-based string analysis tool for finding and
eliminating string-related security vulnerabilities in PHP applications. STRANGER

uses symbolic forward and backward reachability analyses to compute the possible
values that the string expressions can take during program execution.
STRANGER can automatically (1) prove that an application is free from speci-
fied attacks or (2) generate vulnerability signatures that characterize all malicious
inputs that can be used to generate attacks.

1 Introduction

Web applications provide critical services over the Internet and frequently handle sen-
sitive data. Unfortunately, Web application development is error prone and results in
applications that are vulnerable to attacks by malicious users. The global accessibility
of critical Web applications make this an extremely serious problem. According to the
Open Web Application Security Project (OWASP)’s top ten list that identifies the most
serious web application vulnerabilities [6], the top three vulnerabilities are: 1) Cross
Site Scripting (XSS), 2) Injection Flaws (such as SQL Injection) and 3) Malicious File
Execution (MFE). A XSS vulnerability results from the application inserting part of
the user’s input in the next HTML page that it renders. Once the attacker convinces
a victim to click on a URL that contains malicious HTML/JavaScript code, the user’s
browser will then display HTML and execute JavaScript that can result in stealing of
browser cookies and other sensitive data. An SQL Injection vulnerability results from
the application’s use of user input in constructing database statements. The attacker can
invoke the application with a malicious input that is part of an SQL command that the
application executes. This permits the attacker to damage or get unauthorized access to
data stored in a database. MFE vulnerabilities occur if developers directly use or con-
catenate potentially hostile input with file or stream functions, or improperly trust input
files. All these vulnerabilities involve string manipulation operations and they occur due
to inadequate sanitization and inappropriate use of input strings provided by users.

We present a new tool called STRANGER (STRing AutomatoN GEneratoR) that can
be used to check the correctness of string manipulation operations in web applications.
STRANGER implements an automata-based approach [9, 8] for automatic verification of
string manipulating programs based on symbolic string analysis. String analysis is a

� This work is supported by NSF grants CCF-0916112 and CCF-0716095.

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 154–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



STRANGER: An Automata-Based String Analysis Tool for PHP 155

static analysis technique that determines the values that a string expression can take
during program execution at a given program point.

STRANGER encodes the set of string values that string variables can take as deter-
ministic finite automata (DFAs). STRANGER implements both the pre- and post-image
computations of common string functions on DFAs, including a novel algorithm for
language-based replacement [9]. This replacement function takes three DFAs as argu-
ments and outputs a DFA and can be used to model PHP replacement commands, e.g.,
preg replace() and str replace(), as well as many PHP sanitization routines,
e.g., addslashes(), htmlspecialchars() and mysql real escape string().
STRANGER implements all string manipulation functions using a symbolic automata rep-
resentation (MBDD representation from the MONA automata package [2]) and lever-
ages efficient manipulations on MBDDs such as determinization and minimization.
This symbolic encoding also enables STRANGER to deal with large alphabets.

STRANGER combines forward and backward reachability analyses [8] and is capable
of (1) checking the correctness of sanitization routines and proving that programs are
free from specified attacks, and (2) identifying vulnerable programs, as well as generat-
ing non-trivial vulnerability signatures. Using forward reachability analysis, STRANGER

computes an over-approximation of all possible values that string variables can take
at each program point. If this conservative approximation does not include any attack
pattern, STRANGER concludes that the program does not contain any vulnerabilities.
Otherwise, intersecting these with attack patterns yields the potential attack strings.
Using backward analysis STRANGER automatically generates string-based vulnerability
signatures, i.e., a characterization that includes all malicious inputs that can be used
to generate attack strings. In addition to identifying existing vulnerabilities and their
causes, these vulnerability signatures can be used to filter out malicious inputs.

2 Tool Description

STRANGER uses Pixy [4] as a front end and MONA [2] automata package for automata
manipulation. STRANGER takes a PHP program as input and automatically analyzes it
and outputs the possible XSS, SQL Injection, or MFE vulnerabilities in the program.
For each input that leads to a vulnerability, it also outputs the vulnerability signature,
i.e., an automaton (in a dot format) that characterizes all possible string values for this
input which may exploit the vulnerability. The architecture of STRANGER is shown in
Figure 1. The tool consists of the following parts.

Fig. 1. The Architecture of STRANGER



156 F. Yu, M. Alkhalaf, and T. Bultan

PHP Parser and Taint Analyzer. The first step in our analysis is to parse the PHP
program and construct the control flow graph (CFG). This is done by Pixy. PHP pro-
grams do not have a single entry point as in some other languages such as C and Java,
so we process each script by itself along with all files included by that script. The CFG
is passed to the taint analyzer in which alias and dependency analyses are performed
to generate dependency graphs. A dependency graph specifies how the inputs flow to
a sensitive sink with respect to string operations. The number of its nodes is linear to
the number of the string operations in the program under a static single assignment en-
vironment. Loop structures contribute cyclic dependency relations. If no tainted data
flow to the sink, taint analysis reports the dependency graph to be secure; otherwise, the
dependency graph is tainted and passed to the string analyzer for more inspection.

String Analyzer. The string analyzer implements our vulnerability (forward and back-
ward) analysis [8] on the tainted dependency graphs found by taint analysis. The de-
pendency graphs are pre-processed to optimize the reachability analyses. First, a new
acyclic dependency graph is built where all the nodes in a cycle (identifying cyclic
dependency relations) are replaced by a single strongly connected component (SCC)
node. The vulnerability analysis is conducted on the acyclic graph so that the nodes that
are not in a cycle are processed only once. In the forward analysis, we propagate the
post images to nodes in the topological order, initializing input nodes to DFAs accepting
arbitrary strings. Upon termination, we intersect the language of the DFA of the sink
node with the attack pattern. If the intersection is empty, we conclude that the sink is not
vulnerable with respect to the attack pattern. Otherwise, we perform the backward anal-
ysis and propagate the pre images to nodes in the reverse topological order, initializing
the sink node to a DFA that accepts the intersection of the result of the forward analy-
sis and the attack pattern. Upon termination, the vulnerability signatures are the results
of the backward analysis for each input node. For both analyses, when we hit an SCC
node, we switch to a work queue fixpoint computation [8] on nodes that are part of the
SCC represented by the SCC node. During the fixpoint computation we apply automata
widening [1] on reachable states to accelerate the convergence of the fixpoint computa-
tion. We added the ability to choose when to apply the widening operator. This option
enables computation of the precise fixpoint in cases where the fixpoint computations
converges after a certain number of iterations without widening. We also incorporate a
coarse widening operator [1] that guarantees the convergence to avoid potential infinite
iterations of the fixpoint computation.

String Manipulation Library. String manipulation library (SML) handles all core
string and automata operations such as replacement, concatenation, prefix, suffix, inter-
section, union, and widen. During the vulnerability analysis, all string and automata
manipulation operations that are needed to decorate a node in a dependency graph
are sent to SML along with the string and/or automata parameters. SML, then, exe-
cutes the operation and returns back the result as an automaton. A Java class called
StrangerAutomaton has been used as the type of the parameters and results. The
class follows a well defined interface so that other automata packages can be plugged
in and used with the string analyzer instead of SML. SML is also decoupled from the
vulnerability analysis component so that it can be used with other string analysis tools.



STRANGER: An Automata-Based String Analysis Tool for PHP 157

StrangerAutomaton encapsulates libstranger.so shared library that has the actual
string manipulation code implemented in C to get a faster computation and a tight con-
trol on memory. We used JNA (Java Native Access) to bridge the two languages.

3 Experiments and Conclusions

We have experimented with STRANGER on several benchmarks extracted from known
vulnerable web applications [9]. For each vulnerable benchmark, we also generated a
modified version where string manipulation errors are fixed. STRANGER took less than
few seconds to analyze each benchmark. It successfully reported all known vulnera-
bilities, generated the vulnerability signatures, and verified that the modified version is
secure and free from the previously reported vulnerabilities. We have also conducted a
case study on SimpGB-1.49.0 - a PHP guestbook web application. SimpGB con-
sists of 153 php files containing 44000+ lines of code. Using a machine with Intel Core
2 Due 2.5 GHz with 4GB of memory running Linux Ubuntu 8.04, STRANGER took 231
minutes to check XSS vulnerabilities for all entries of executable PHP scripts and con-
cluded 304 possible vulnerabilities out of 15115 sinks. STRANGER took 175 minutes to
reveal 172 possible SQL Injection vulnerabilities from 1082 sinks, and 151 minutes to
reveal 26 possible MFE vulnerabilities from 236 sinks.

In sum, we presented a string analysis tool for verification of web applications, fo-
cusing on SQLI, XSS and MFE attacks. In addition to identifying vulnerabilities and
generating vulnerability signatures of vulnerable applications, STRANGER can also ver-
ify the absence of vulnerabilities in applications that use proper sanitization. Compared
to grammar-based string analysis tools [3, 5, 7], STRANGER features specific automata-
based techniques including automata widening [1], language-based replacement [9] and
symbolic automata encoding and manipulation [2]. STRANGER and several benchmarks
are available at http://www.cs.ucsb.edu/∼vlab/stranger.

References

1. Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 321–333. Springer, Heidelberg (2004)

2. BRICS. The MONA project, http://www.brics.dk/mona/
3. Christensen, A., Møller, A., Schwartzbach, M.: Precise analysis of string expressions. In:

Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidelberg (2003)
4. Jovanovic, N., Krügel, C., Kirda, E.: Pixy: A static analysis tool for detecting web application

vulnerabilities (short paper). In: S&P, pp. 258–263 (2006)
5. Minamide, Y.: Static approximation of dynamically generated web pages. In: WWW, pp. 432–

441 (2005)
6. OWASP. Top ten project (May 2007), http://www.owasp.org/
7. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injection vulner-

abilities. In: PLDI, pp. 32–41 (2007)
8. Yu, F., Alkhalaf, M., Bultan, T.: Generating vulnerability signatures for string manipulating

programs using automata-based forward and backward symbolic analyses. In: ASE (2009)
9. Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic string verification: An automata-based

approach. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008. LNCS, vol. 5156,
pp. 306–324. Springer, Heidelberg (2008)

http://www.brics.dk/mona/
http://www.owasp.org/

	STRANGER: An Automata-Based String Analysis Tool for PHP
	Introduction
	Tool Description
	Experiments and Conclusions
	References


