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STransFuse: Fusing Swin Transformer and
Convolutional Neural Network for Remote Sensing

Image Semantic Segmentation
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Abstract—The convolutional neural network (CNN) bolstered
the application study of remote sensing images. However, the fixed
size of the receptive field limits CNN’s ability in semantic mod-
elling. Although the Transformer model based on self-attention
may model global semantic information, it remains a challenge
to work effectively in the remote sensing field with limited data.
Leveraging the benefits of both Transformer and CNN, a new
model is proposed in this article as a semantic segmentation
method for remote sensing images which is constructed by fusing
Swin Transformer and CNN and is thus named as STransFuse
model. On the one hand, the STransFuse model makes use of the
capability of the transformer network to model global semantic
information in remote sensing images. On the other hand, it
utilized the capability of the CNN with pre-training weights
to solve the problem of low performance of the Transformer
network when the amount of remote sensing image data is small
and to provide the contextual location information of the image.
An Adaptive Fusion Module (AFM) is created to adaptively fuse
the feature maps produced by the Transformer network and CNN
to improve the model’s feature representation capacity. The OA
(Overall Accuracy) of the STransFuse model is 1.36% higher
than the baseline on the Vaihingen dataset, and 1.27% higher
than baseline on the Potsdam dataset. When compared with
other state-of-the-art models, the STransFuse model performed
competitively.

Index Terms—Transformer, remote sensing, self-attention, se-
mantic segmentation.

I. INTRODUCTION

CNN has performed admirably in the realm of computer
vision. Fully convolutional networks (FCNs) [1] based

on CNN have become the most popular image segmenta-
tion architecture. However, the scale of features contained
in remote sensing images varies greatly, and large features
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of huge ground objects (e.g., buildings) in an image will
occupy a large proportion of the image, and FCNs cannot
acquire the contextual information of the image well due to
the limitation of the fixed perceptual field of the convolution
kernel. To address this issue, a CNN-based model will employ
the pooling method to reduce the resolution of the feature
map to obtain a global representation of feature information.
However, the global pooling method will cause the model to
lose information about small targets of the image.

Some researchers [2]–[4] have attempted to tackle the
above challenges by fusing multi-scale contextual data. By
merging atrous convolutions to gather multi-scale contextual
information, Chen et al. [3] improved the Atrous Spatial
Pyramid Pooling (ASPP) module. To improve the expression
of feature map information, U-Net [5] uses an encoder-decoder
structure to retrieve feature map information at different levels
via skip connections. To mine the ability of global contextual
information, the Pyramid Scene Parsing Network (PSPNet)
[4] gathers contextual information based on different regions
through the pyramid pooling module.

Furthermore, several researchers [6], [7] attempted to tackle
the problem of a lack of network perceptual fields by utilizing
self-attention [8]. To model semantic significance from spatial
and channel dimensions, Fu et al. [6] proposed Compact
Position Attention Module and Compact Channel Attention
Module based on the self-attentive process. In the field of
computer vision, the Transformer technique [9]–[13] based
on sequence-to-sequence prediction has demonstrated excep-
tional performance. The transformer’s structure foregoes the
convolution operation in favor of a pure attention mechanism.
Unlike CNN to obtain features, Transformer can obtain global
context information through self-attention. An experiment [9]
demonstrated that the Transformer network can achieve high
performance in image tasks like image classification, image
recognition, and semantic segmentation when a large-scale
pre-training was conducted. In this article, we explored the
application potential of Transformer for semantic segmentation
in the context of remote sensing images. We tried various
Transformer networks that had produced excellent results on
public datasets by using remote sensing images and discovered
surprisingly that they couldn’t deliver sufficient results. This
is because when an image is supplied to the Transformer
network, the image patch gets compressed into a 1D sequence.
Through self-attention, the Transformer network concentrates
on the image’s semantic global contextual information, and
the network lost the image’s spatial contextual information
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(location information) during computation. The spatial context
information cannot be retrieved well by up-sampling in the
encoder stage of the Transformer network, resulting in poor
picture segmentation. We merged the feature maps of distinct
stages to acquire the semantic context information and spatial
context information of the image, inspired by the Unet [5].

To this end, we propose a new model for semantic segmen-
tation of remote sensing images, named STransFuse, which is
constructed by combining the Swin Transformer’s architecture
with CNN. Swin Transformer acquires features in the form
of shifted windows to establish self-attention and uses CNN
to acquire spatial context information. Transformer’s success
is predicated on extensive data training. However, the image
dataset obtained in the field of remote sensing is limited,
which severely limits Transformer’s application in this field.
Resnet34 with training weights is employed as the network
backbone of the CNN branch and paired with Swin Trans-
former to acquire rich feature information of remote sensing
images, as inspired by the article [9]. Our main contributions
are as follows:

1) A model combining Swin Transformer and Resnet34
is intended to incorporate global semantic information
retrieved by the Transformer network with the spatial
contextual information extracted via Resnet34 from the
images. The problem of degraded Transformer perfor-
mance owing to tiny remote sensing datasets can be
solved by using Resnet34 with pre-trained weights.

2) An AFM is created to adaptively fuse feature maps using
the self-attention mechanism to improve the model’s
ability in expressing features.

3) On the Vaihingen and Potsdam datasets, the proposed
STransFuse model performs better.

The remainder of this article is structured in the following
manner. The related work on semantic segmentation of re-
mote sensing images is discussed in Section II and some
Transformer researches is also reviewed in this Section. In
Section III, the specifics of the STransFuse framework as
well as the AFM design is explored. The datasets used in the
studies, as well as the experimental parameters, are described
in Section IV. Section V presents a complete ablation research
and experimental comparison between the STransFuse model
and some state-of-the-art models to validate the proposed
module. The conclusion is given in Section VI.

II. RELATED WORKS

A. Semantic Segmentation of Remote Sensing Images

Remote sensing images are widely used in many application
fields, including crop yield estimation [14], military reconnais-
sance and natural disaster monitoring [15]. The accuracy of
these applications is largely determined by the segmentation
accuracy of remote sensing images. Traditional remote sensing
image semantic segmentation relies on the texture information
and spectral information of images, which requires a lot of
manpower and material resources. The introduction of deep
learning into remote sensing image segmentation has increased
the accuracy, resulting in a significant increase in image
segmentation efficiency. Lin et al. [16] created a scale-aware

module to let the network distinguish different features using
weighted feature maps. Chong et al. [17] proposed the Context
Union Edge Network for semantic segmentation of remote
sensing images, and a context-based feature augmentation
module to improve CNN’s capacity to differentiate small
targets as well as a dual-stream network to refine small target
edge information. Xiang et al. [18] created an adaptive feature
selection module that learns the weight contribution of each
feature block at different scales to improve the network’s
performance. Li et al. [19] introduced a semantic boundary
aware network to collect correct boundary information for
land cover categorization. The network is adaptable to obtain
image boundary information using a bottom-up method and
can reduce noise information from low-level characteristics.
AFNet [20] employed the scale-feature attention module and
scale-layer attention module to better tackle the difference
between intra-class and inter-class in remote sensing images,
and conducted adaptive feature improvement for targets of var-
ious sizes. Pan et al. [21] introduced a conditional generative
adversarial network that actively generates new sample images
while extracting advanced spatial information from previous
training images. The network achieved greater classification
accuracy using this strategy. To overcome the problem of
cloud segmentation in remote sensing images and increase the
network’s feature extraction ability, Yao et al. [22] presented
a multi-scale feature extraction and content-aware recombi-
nation network. The spatial relation module and the channel
relation module proposed by Mou et al. [23] could learn and
infer the relationship between any two geographical locations
or feature maps to produce effective contextual spatial relation
modeling.

B. Contextual Information

To increase the accuracy of image semantic segmentation,
it’s critical to understand how to properly extract the image’s
contextual information. FCNs [1] first widened the receptive
field by pooling to capture the image’s context information, but
multiple downsampling processes resulted in the feature map
losing certain details. Unet [5] created a network framework
with an encoder-decoder structure that allows detailed infor-
mation from low-level feature maps to be merged into high-
level feature maps by skipping network layers. The Feature
Pyramid Transformer (FPT) [11] is a completely active feature
interaction that extends the receptive field through the specified
Transformer. Chen et al. [24] developed a tensor generation
module to capture contextual data and offered a new way
to modeling 3D context representations. The spatial relation
module and the channel relation module were introduced by
Mou et al. [25] to learn and infer the global link between
any two spatial positions or feature maps, and then build
a feature representation with improved relationship. In this
article [26], an axial-attention model was presented to widen
the receptive field in the model and alleviate the problem of
losing remote context information in convolution. For remote
sensing images, context information indicates the relationship
between features. The difficulty of obtaining context informa-
tion is due to the high resolution and imbalanced proportion
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of various characteristics reflecting various ground objects if
compared with ordinary images. Generally it is difficult to
analyze remote sensing images directly and handling remote
sensing images frequently requires preprocessing (cropped,
normalized). Some methods based on self-attention mech-
anisms generate excessive waste of computer resources in
getting the context relationship when the processed images
patch only contains one category of ground object.

When the common model executes the convolution opera-
tion, the proportion of big scale features in the patch can be
substantially higher than that of small scale features, causing
small scale features to be heavily influenced by large scale
features. A hot issue in the research of remote sensing image
processing is how to efficiently resolve intra-class and inter-
class disparities in remote sensing images while balancing the
accuracy and efficiency of remote sensing image processing.

C. Transformer

The Transformer was originally used in the realm of Natural
Language Processing (NLP) [8]. It is a deep neural network
model that extracts intrinsic properties via the self-attention
approach. The good experimental performance Transformer
achieved in the field of NLP suggested that it may be applied
to the field of image processing. The first Transformer model
based on pure self-attention for image recognition, Vision
Transformer (ViT) [9], has achieved outstanding results in
image processing, but the model requires a large number of
datasets for training, and the results obtained by applying the
model directly to small or medium-sized datasets were not
promising. A great number of researchers tried many ways to
make the Transformer more successful in the field of computer
vision, inspired by the construction of the visual Transformer
model [27]–[32]. Semantic SEgmentation Transformer (SETR)
[33] is a model for semantic segmentation that used Trans-
former as an encoder. A sophisticated segmentation model
can be created by combining the pure Transformer encoder
with some simple decoders. DEtection Transformer (DETR)
[10] is a Transformer that was developed by Facebook AI
researchers and applied to a vision model. It’s the first target
detection framework to successfully incorporate Transformer
as a pipeline’s core building block. In the areas of target iden-
tification and panorama segmentation, the DETR model per-
formed well. The Transformer-in-Transformer (TNT) model
[34] makes use of an inner Transformer block to extract the
images patch’s internal structure information, allowing the
model to extract both global and local properties. The model
performed well on the ImagesNet benchmark dataset and in
various downstream tasks. The Shifted Windows Transformer
(Swin Transformer) [35] is a hierarchical Transformer that,
like CNN, is capable of increasing the perceptual field of nodes
as the network layers deepens. The use of shifted windows
allows self-attention to be computed in non-overlapping lo-
cal windows, reducing the computational complexity that is
quadratic of an increase in image size, and thus potentially
lowering the hardware requirements for the studies which
require dense pixel-level prediction (e.g., semantic segmenta-
tion). On datasets including ImageNet-1K andADE20K, the

Swin Transformer achieved good results. The experimental
results, however, are unsatisfactory when the model is applied
to the field of remote sensing. It is because the dataset of
remote sensing images is small, and the features of remote
sensing images are quite different from those of ordinary
images. As inspired by the ViT model [9], we combined the
pre-trained Resnet34 as the CNN backbone with the Swin
Transformer model to create a two-branch network model that
can perform well on remote sensing images.

III. PROPOSED METHODS

A. Overview

The input remote sensing image x ∈ RH×W×C , where H
represents the height of the image, W represents the width of
the image, and C represents the number of channels of the
image. We use Swin Transformer and Resnet34 to handle the
images, fuse the feature maps at different stages, and finally
restore the feature maps to their original size. In Paragraph B,
we will introduce the overall structure of STransFuse. Then,
the details of Swin Transformer given in Paragraph C. Finally,
the AFM is described in Paragraph D.

B. STransFuse Overall Architecture

As shown in Fig. 1(a), the image x is input into the
Swin Transformer network and the Resnet34 network respec-
tively. There are 4 stages in Swin Transformer network to
get xs1,xs2,xs3,xs4 feature maps respectively, and each stage
contains Patch Merging and Swin Transformer. Patch Merging
works in a similar way to CNN’s pooling layer in that it
downsamples the image. By shifting the input image’s window,
this module separates the image into non-overlapping patches.
Each patch is considered as a ”token”. We initially fixed the
patch size to 4×4. Then, the eigenvalues in the feature map
are projected to the C dimension through a linear embedding
layer. Finally, Swin Transformer block is applied to these patch
tokens ( H

4 ×
W
4 ). These steps above are collectively referred

to as ”Stage 1”. In the following ”Stage 2”, Patch Merging
concatenates the features of each group of 2 × 2 neighboring
patches, and applies linear embedding layer to change the
output dimension to 2C, and applies Swin Transformer for
feature transformation. In ”Stage2”, The resolution of the
patch is maintained at H

8 ×
W
8 . ”Stage 3” and ”Stage 4”

are similar to ”Stage 2”, and the output patch resolutions are
H
16 ×

W
16 and H

32 ×
W
32 , respectively.

The images are input to the Resnet34 network to get the
feature maps, which are output by layer1 to layer4 as feature
maps xc1, xc2, xc3 and xc4 respectively, and the sizes of
these feature maps are H

4 ×
W
4 , H

8 ×
W
8 , H

16 ×
W
16 and

H
32×

W
32 , respectively. The feature maps generated by Resnet34

are merged with those generated by different stages of Swin
Transformer to make use of Swin Transformer’s capacity in
collecting global semantic contextual information of features.
Finally, the fused feature map is upsampled twice more, and
the feature map is returned to its original size.
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Fig. 1. (a) The overall structure of STransfuse Model; (b) the detail of Swin Transformer Blocks

C. Swin Transformer Block

Swin Transformer uses the feature map enters the Window
Multi-head Self Attention (W-MSA) to replace the Multi-head
Self Attention (MSA) in the Transformer module. As shown
in Fig. 1(b), Swin Transformer inputs the feature map pro-
cessed by Patching Merging into the Swin Transformer block.
Then, the feature map enters the W-MSA module through the
LayerNorm layer, and there is a residual connection between
each module and another LayerNorm layer.

The self-attention used in the standard Transformer block
is calculated by relating one of the tokens to all other to-
kens. This calculation makes the computation workload of
the network grow quadratically with respect to the resolution
size of the image, and for some intensive prediction tasks
(e.g., semantic segmentation), the model will require high-end
computing devices. The Swin Transformer will perform the
self-attentive computation in a local window. Each window
will be evenly split into M×M patches in a non-overlapping
manner. In this case, the computational complexity of MSA
is shown in (1), and the computational complexity of W-MSA
is shown in (2).

ΩMSA=4hwC2 + 2(hw)
2
C (1)

ΩW-MSA=4hwC2 + 2M2hwC (2)

Where h and w are the height and width of the image,
respectively. In (1), the computational complexity of MSA is
quadratic to the production of h and w. In (2), when M is a
fixed size (set to 7 by default), the computational complexity
of W-MSA is linearly related to the production of h and
w. Compared with W-MSA, Shifted Window Multi-head Self
Attention (SW-MSA) shifts the window. Because of the sliding
window segmentation operation performed by W-MSA, the
cropped patches do not overlap, and there is no correlation
between the windows which limits the performance of Swin
Transformer. Therefore, in order to realize the cross-window

connection of the model, article [32] introduced SW-MSA in
the model.

In general, the calculation process of the feature map in
Swin Transformer block is shown in (3)-(6):

x̂l = W-MSA(LN(xl−1)) + xl−1 (3)

xl = MLP(LN(x̂l)) + x̂l (4)

x̂l+1 = SW-MSA(LN(xl)) + xl (5)

x̂l+1 = MLP(LN(x̂l+1)) + xl+1 (6)

Where x̂l denote the output characteristics of the W-MSA
module of l block, x̂l+1 denote the output characteristics of the
SW-MSA module of l+1 block, and xl denote the MLP module
of l block. W-MSA denote based multi-head self-attention
using regular window partitioning configurations. LN denote
Layer Normalization. MLP denote Multi Layer Perceptron.
SW-MSA denote based multi-head self-attention using shift
window partitioning configurations.

D. AFM

To efficiently fuse the encoded features from CNN and
Swin Transformer, we designed an AFM based on the self-
attentive mechanism, whose structure is shown in Fig. 2. We
will perform the fusion of features with the following :

xcs,i = ReLU(Conv(Interpolate(concat(xs,i, xc,i)))) (7)

xBN,i−1 = ReLU(BN(Conv(Concat(xcs,i, xs,i−1)))) (8)

xq = Softmax(Conv(xBN,i−1)) (9)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

xk = Linear(Concat(AdaptiveAvgPool2d(xBN,i−1)))
(10)

xv = Linear(Concat(AdaptiveAvgPool2d(xBN,i−1)))
(11)

xs,i−1 = (xq ⊗ xv)⊗ xv ⊕ Concat(xcs,i, xs,i−1) (12)

Among them, xs,i represents the feature matrix output by
the i-th stage of Swin Transformer, and xc,i represents the
feature matrix output by the i-th layer of CNN. xq is the query
in self-attention calculation, xk represents the key in self-
attention calculation, xv represents the value in self-attention
calculation, xq

⊗
xv gets the self-attention weight matrix,

(xq

⊗
xv)

⊗
xv obtains the weighted feature matrix, and add

the weighted feature matrix and the fusion feature matrix to
obtain xs,i−1.

Fig. 2. Detail display of AFM

IV. DATASET DESCRIPTION AND DESIGN OF
EXPERIMENTS

A. Dataset

1) Vaihingen: There are 33 patches in the Vaihingen
dataset. Each patch is made up of genuine orthoimages that
were recovered from a larger mosaic. The ground sampling
distance (GSD) is 9 cm, and each image has a resolution of
roughly 2500×2500 pixels. The image contains three wave-
bands, namely near-infrared (NIR), red (R) and green (G). We
did not use normalized digital surface model (nDSM) data,
and DSM data. We used the ground truth whose boundaries
of objects have not been eroded by 3-pixel radius for testing.
According to the official division principle, 17 patches were
used as the test set (image id: 1, 3, 5, 7, 11, 13, 15, 17, 20, 21,
23, 26, 28, 30, 32, 34, 37), and the other 16 as the training set
(image id: 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33,
35, 38). For the large image, we cut it into 256×256 slices. In
the data augment strategy, we adopted random horizontal and
vertical flip operations.

2) Potsdam: The Potsdam-2D semantic annotation collec-
tion consists of 38 patches, each with a GSD of 5 cm and
a resolution of 6000×6000 pixels. We used IRRG images as
the dataset instead of nDSM or DSM data. We followed the
official division principle and used 13 of them as the test
set (including the image ids of 02 13, 02 14, 03 14, 04 13,
04 14, 04 15, 05 13, 05 14, 05 15, 06 13, 06 14, 06 15,

07 13), and the other 24 as the training set (with image ids
of 2 10, 2 11, 2 12, 3 10, 3 11, 3 12, 4 10, 4 11, 4 12,
5 10, 5 11, 5 12, 6 7, 6 8, 6 9, 6 10, 6 11, 6 12, 7 7, 7 8,
7 9, 7 10, 7 11 and 7 12). We also used the ground truth
that has not been eroded for testing, and used the same data
enhancement method as the Vaihingen dataset.

B. Evaluation Metric

We employed the data publisher’s evaluation approach [36],
which was also used in the articles [19], [21], [27], [37]. We
used Intersection over Union (IoU) for each category, F1-score
for each category, mean Intersection over Union (mIoU), mean
F1-score, overall accuracy (OA) as our evaluation indicators.
Because many indicators are based on confusion matrix for
calculation, before introducing the specific formula of each
indicator, the meaning of some symbols of the confusion
matrix is defined as follows: True positive (TP), True negative
(TN), False positive (FP) and False negative (FN). Therefore,
the precision rate is calculated by using (13), and the recall
rate is calculated using (14):

precision=
TP

TP + FP
(13)

recall=
TP

TP + FN
(14)

The definition of OA is shown in Equation (15):

OA=
TP

TP + FP + FN + TN
(15)

The F1-score formula for each category is defined as shown
in Equation (16):

F1=2
precision · recall

precision + recall
(16)

The mean F1-score is obtained by averaging the F1-score of
each category. The higher the value of F1-score is, the better
the experimental result is. The definition of IOU is shown in
the following formula :

IoU=
Np ∩ Ngt

Np ∪ Ngt
(17)

where, Np represents the prediction set, and Ngt represents
the ground truth images. mIoU is generally calculated based
on class. With the calculated IoU of each class, a global
evaluation is obtained by using the average of the IoUs.

C. Training Configuration

All the experiments were implemented using PyTorch 1.4.0,
Python3.7, CUDA 10.1 and CuDNN 7.6.5. The networks use
the Adam optimizer, and the weight decay is 0.0002. We
adopted “ploy” learning rate policy with a power of 0.9. The
cross entropy loss with weight was defined as shown in (18):

xs,i−1 = (xq ⊗ xv)⊗ xv ⊕ Concat(xcs,i, xs,i−1) (18)
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For all datasets, we set the size of batch size to 16 for
all models, except for the TNT model and the Transunet
model. Because the TNT model and the Transunet model
are computationally expensive, in order to cater to our GPU
memory size, we set the batch size of these two models to
12. All experiments were measured on a single 2080Ti with a
memory size of 11G.

V. EXPERIMENTAL

We tested the effectiveness of the proposed module through
an ablation studies. Then, we compared the proposed STrans-
Fuse with some state-of-the-art methods and discussed the
experimental results.

A. Ablation Studies

We conducted a series of ablation studies in the Vaihingen
and Potsdam datasets to demonstrate the validity of the pro-
posed model. We choose FCN [1] (Resnet34) as the baseline
network for comparison.

Table I summarized the Ablation results with different
configuration of the network blocks. Among them, Swin xs4
represents that only Swin Transformer is used as the feature
extractor, and only the feature map output by stage4 is input
into the decoder. Swin uses concat for feature fusion of the
feature maps output by all stages of Swin Transformer, and
inputs the fused feature maps into the decoder. Res34+Swin
represents that we use Resnet34 to process the input map, and
then input the extracted feature map into Swin Transformer.
Swin+Res34 is a two-branch network model built by fusing
Swin Transformer network and Resnet34. This fusion model
uses concat to fuse the feature maps of different phases of
Swin Transformer network and Resnet34. STransFuse also
uses a dual-branch structure as a feature extractor. At different
stages of the feature map, we used our own AFM instead of
the concat module to fuse the feature map.

It is seen from the Table I that the STransFuse model
produced the best results. We first examined the impacts
of the single-branch network model and the double-branch
network model. Table I shows that single-branch network
models (FCN, Swin xs4, Swin, Res34+Swin) perform worse
for semantic segmentation of images than two-branch network
models (Swin+FCN, STransFuse). At the same time, we com-
pared the experimental results of using only the features (xs4)
output from the final stage of SwinTransformer and fusing fea-
tures of different stages (xs1, xs2, xs3, xs4). The testing results
demonstrate that the Swin model, which combines the feature
maps of several phases of the Swin Transformer, can enhance
metric OA by 0.49 %. Then, we compared the experimental
effects of connecting the Resnet34 network with pre-trained
weights to the Transformer model in series (Res34+Swin) and
in parallel (Swin+Res34, STransFuse). The parallel network
model performs better in the experiments, as seen in Table I.
Swin+Res34 is 1.19% better than Res34+Swin in terms of
OA. Finally, we compared the AFM and concat modules’
performance. As shown in Table I, the model employing
our proposed AFM for feature map fusion performs 0.24 %
better in OA than the model using concat for fusion. By

comparing the Swin Transformer’s trial findings, it is observed
that our model can solve the problem of Swin Transformer’s
inability to distinguish small targets. This is because when
the Transformer network computes the picture, it stretches
the patch into a one-dimensional token. Under the influence
of the surrounding large target pixels, the same pixel values
of tiny targets will be separated into locations far apart, and
the features of the pixels of small targets will appear less
visible. The STransFuse model can learn features from both
semantic and spatial context information, which helps to tackle
the problem of Transformer’s inability to learn small target
features.

It can be seen clearly from Fig. 3 that the STransFuse model
segmented better than the baseline network FCNs, and that
the STransFuse model did not misclassify the features with
shading effects in row (b). It is demonstrated that combining
the feature maps of several stages of the swin Transformer
is more effective than utilizing simply single stage feature
maps when comparing Swin xs4 and Swin, and the two-
branch network model has superior segmentation performance
for buildings than that by the single-branch network model
when comparing the visualization effect maps of Res34+Swin
and Swin+Res34 in row (b).

We compared the recognition capabilities of the benchmark
model FCNs and STransFuse models for different categories
of the ground objects. We visualized the last Score layer
in the FCNs model and STransFuse model. The highlighted
area (red) in the figure depicts the network focusing on the
area, whereas the dark (dark blue) area reflects the model not
focusing on the area, as seen in Fig. 4. It is shown that the
STransFuse model can better detect different sorts of targets
in the Vaihingen dataset by comparing the CAM of FCNs and
STransFuse. In the building column, our STransFuse model
is able to have a more accurate classification of building.
Because the features in the photographs are obtained from
an above view, the height information of the features in the
images is absent, resulting in the texture representation of the
tops of building and impervious surface being comparable.
Therefore, the FCNs model appeared the phenomenon of ”car
flying on the roof” in the recognition image. However, due
to the use of self attention, STransFuse model modelled the
long-range semantic correlation and determined the category
information of similar semantics. Therefore, the STransFuse
model can recognize semantic information better. In the col-
umn where the category car is located, the FCNs did not
identify all car features and were not accurate enough in the
already identified car boundary information, compared to the
STransFuse model which is also good at identifying features
with small targets like car. In the column where impervious
surface is located, it is shown that FCNs recognized some car’s
semantic information as impervious surface. This is because
car occupies a smaller proportion of the image compared
to impervious surface, and impervious surfaces enclose the
car. There is no correlation between car and car. This is
a common inter-class imbalance in remote sensing photos,
which occurs because remote sensing photographs often span
a wide range of locations, and larger objects can fill a larger
proportion of the image, whereas smaller-scale elements can
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TABLE I
ABLATION RESULTS OF DIFFERENT BLOCKS COMBINED SWIN TRANSFORMER, RESNET34 AND STRANSFUSE FRAMEWORK USING VAIHINGEN AND

POTSDAM DATASETS. THE VALUE IN BOLD IS THE BEST. ALL VALUES ARE EXPRESSED AS PERCENTAGES

Method xs1 xs2 xs3 xs4 concat AFM
Vaihingen Potsdam
mF1 mIoU OA mF1 mIoU OA

FCNs [1] 76.57 63.85 84.71 80.36 69.19 85.44
Swin xs4

√
71.77 58.87 83.4 76.26 63.93 82.46

Swin [35]
√ √ √ √ √

73.04 60.18 83.79 76.82 64.82 82.95
Res34+Swin

√ √ √ √ √
77.17 64.76 84.91 80.16 68.89 85.28

Swin+Res34
√ √ √ √ √

77.95 66 85.94 81.61 70.92 86.47
STransFuse

√ √ √ √ √
78.67 66.66 86.07 82.08 71.46 86.71

Image Ground truth FCNs Swin_xs4 Swin Res34+Swin Swin+Res34 STransFuse

clutter car building tree low vegetation impevious surfaces

(a)

(b)

(c)

(d)

Fig. 3. The result figures of ablation studies visualized in different datasets. (a) and (b) represent the results in the Vaihingen dataset while (c) and (d)
represent the results in the Potsdam dataset

building car impevious surfaces low vegetation treeGround_truth
滚滚长江东逝水

Fig. 4. The class activation mappings (CAM) of different categories of features. The image of the first row is generated by FCNs and the second row is for
STransFuse
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only occupy a smaller number of pixels. FCNs rely on a fixed-
size convolution kernel to obtain features. Therefore, when
extracting such small-scale features, they are easily affected by
the surrounding feature categories. The Transformer branch we
use can effectively solve this type of problem. Low vegetation
and tree can be found that the two features have similar feature
information through images. In the absence of image height
information, it is easy to cause misclassification. Compared to
FCNs, the STransFuse model has a better distinction between
two different features.

FSTransFuseFCNs

Fig. 5. Confusion matrixes of a sample of Vaihingen dataset with FCNs and
STransFuse

Fig. 5 shows the confusion matrix generated after the com-
pletion of the test on the Vaihingen dataset. The proportion of
accurately predicted categories of the images to total predicted
categories is represented by the values in the image blocks
at the main diagonal places of the confusion matrix. The
darker the image block is, the higher the model’s classification
accuracy would be. Low vegetation and tree are prone to be
misclassified, as seen in Fig. 5, and small-scale car are easily
labeled as large-scale impervious surface. To some extent, the
STransFuse model solves this problem.

B. Evaluation and Comparisons on the Vaihingen Dataset

Table II shows the results of the comparative experiments.
All convolutional network models use Resnet34’s pre-training
weights. It can be seen from the table that the STransFuse
model can achieve the best results. Although Deeplabv3+
[38] produced impressive results, the network uses a lot of
GPU memory during training due to the ASPP of the model
architecture, and Deeplabv3+ has the longest training time of
all the comparable experimental models, as seen in the Fig. 10.
The Deeplabv3+ model’s overall efficiency is low. Scale-
Aware Network (SANet) [16] is a network model that uses
the same dataset. This model designed a re-sampling module
that implicitly introduced spatial attention through re-sampling
feature maps. Through experimental comparison, the model
we designed is better than SANet. The mean F1-score was
increased by 5.32%. BoTNet [39] replaced the last three bottle-
neck blocks in Resnet with a global attention module, and was
implicitly regarded as multi-head attention through the author’s
model design. On the Vaihingen dataset, this model performed
reasonably well. Due to the limited amount of remote sensing
image data, the TNT model [34] has poor experimental results.

The Transformer was used as an encoder in the Transunet
model [40] to present modeled remote dependencies and to
add low-level detail information to the feature maps in the
decoder via skip connections. However, due to the design of
the encoder and the skip connection, Transunet model has
higher requirements for hardware equipment. Comparing the
experimental results in testing CNN-based improved models
(FCN, Deeplabv3+, Unet, SANet, PSPNet) and Transformer-
based improved models (BoTNet, SETR PUP , TNT, Tran-
sunet), the STransFuse model achieved better performance.

On the Vaihingen dataset, the qualitative comparison results
are displayed in Fig. 6. As shown in Fig. 6, the STransFuse is
capable of recognizing a variety of target categories. It benefits
from the Transformer network’s capabilities, such as improved
global context modeling efficiency without sacrificing low-
level detailed localization capability, and the ability to more
precisely recognize small-scale objects (car). The car is antici-
pated as a fuzzy area in comparison to other networks, and the
car boundary cannot be reliably determined. Furthermore, we
discovered that the model with a pure Transformer encoder
(SETR PUP, TNT) correctly recognizes a building as an
impervious surface, but they mistakenly recognized Building
as Impermeable Surface. The reason for this phenomenon
may be that the two categories of features, building and per-
meable surface, have similar characteristics. Transformer has
similar building and impermeable surface feature values when
stretching the patch into a 1D token. When calculating the
similarity, the self-attention judges the two types of features
as the same type. When the characteristics are very different,
the Transformer can distinguish them.

The results of testing the original image on the Vaihingen
dataset are shown in Fig. 7. The STransFuse model can
better identify large-scale buildings and accurately identify the
boundaries of various features.

C. Evaluation and Comparisons on the Potsdam Dataset
Table III shows that the STransFuse model is able to get

the highest overall accuracy score on the Potsdam Dataset.
About the indicators mean Intersection over Union and mean
F1-score, the STransFuse achieved the second highest score.

The results of the qualitative comparison of the models
are displayed in Fig. 8, where it can be shown that the
STransFuse model performed well for various sizes of features.
The STransFuse model determine more precisely the borders
of features of small-scale car. It discriminated trees from
low vegetation better than previous models. It also reliably
determined the boundaries of buildings with huge dimensions.
As a result, the STransFuse model is able to recognize multi-
scale remote sensing images with high accuracy.

Fig. 9 shows the results of testing the original images from
the Potsdam dataset. The STransFuse model showed stronger
capability in feature identification at various scales and also
in feature boundary identification.

D. Comparison of the Efficiency of State-of-the-art Models in
Different Datasets

Fig. 10 (a) shows a comparative plot of the efficiency of
the different models for the Vaihingen data.It can be seen that
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Image

STransFuse

Ground truth FCNs Deeplabv3+ Unet SAN

PSPNet SETR_PUP TNT Transunet BoTNet

clutter car building tree
low 
vegetation

impevious 
surfaces

Fig. 6. Visualization results on Vaihingen Dataset
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TABLE II
THE COMPARISON OF STRANSFUSE WITH SOME STATE-OF-THE-ART MODELS USING VAIHINGEN DATASET. THE VALUE IN BOLD IS THE BEST, AND THE

UNDERLINED VALUE IS THE SECOND BEST. ALL VALUES ARE EXPRESSED AS PERCENTAGES

Method
Trees Cars Buildings Low Veg Imp surf

mF1 mIoU OAF1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Deeplabv3+ [38] 84.85 73.69 69.99 53.83 90.13 82.04 77.14 62.79 87 76.98 75.39 62.82 84.69
Unet [5] 85.49 74.65 77.49 63.25 90.86 83.25 77.88 63.77 87.83 78.31 77.43 65.38 85.53
SANet [16] 84.67 73.42 71.78 55.98 90.43 82.53 77.21 62.88 86.93 76.89 73.35 63.74 84.79
PSPNet [4] 84.45 73.08 67.26 50.67 90.53 82.69 76.49 61.93 86.47 76.16 75.21 62.41 84.44
BoTNet [39] 85.07 74.03 75.33 60.42 91.2 83.82 78.26 64.28 88.04 78.64 77.71 65.51 85.65
SETR PUP [33] 81.67 69.03 44.5 28.62 83.23 71.27 70.93 54.96 81.06 68.15 65.19 51.58 78.9
TNT [34] 81.68 69.04 41.89 26.49 84.58 73.28 70.82 54.83 81.76 69.15 64.76 51.49 79.39
Transunet [40] 84.93 73.8 70.44 54.37 88.26 78.99 77.34 63.05 85.86 75.23 72.78 60.49 83.93

STransFuse 85.51 74.69 77.14 62.79 91.46 84.27 79.04 65.35 88.25 78.97 78.67 66.66 86.07

Image Ground truth FCNs Deeplabv3+ Unet SAN

PSPNet SETR_PUP TNT Transunet STransFuseBoTNet
滚滚长江东逝水

clutter car building tree low vegetation impevious surfaces

Fig. 7. Visualization results on Vaihingen Dataset original image

TABLE III
THE COMPARISON OF STRANSFUSE WITH SOME STATE-OF-THE-ART MODELS USING POTSDAM DATASET. THE VALUE IN BOLD IS THE BEST, AND THE

UNDERLINED VALUE IS THE SECOND BEST. ALL VALUES ARE EXPRESSED AS PERCENTAGES

Method
Trees Cars Buildings Low Veg Imp surf

mF1 mIoU OAF1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Deeplabv3+ [38] 82.14 69.69 87.2 77.31 92.35 85.79 81.35 68.57 88.21 78.9 80.12 68.85 85.14
Unet [5] 84.17 72.67 89.68 81.28 93.22 87.3 82.96 70.89 89.46 80.94 82.14 71.58 86.5
SANet [16] 82.25 69.85 86.83 76.72 92.61 86.24 81.8 69.2 88.47 79.32 80.51 69.27 85.39
PSPNet [4] 82.44 70.12 84.99 73.9 92.54 86.11 81.46 68.72 88.06 78.66 80.31 68.83 85.21
BoTNet [39] 81.66 69 87.68 78.06 93.17 87.21 81.64 68.98 88.95 80.1 80.17 69.14 85.39
SETR PUP [33] 64.58 47.69 73.2 57.73 83.98 72.38 71.18 55.25 80.44 67.27 67.56 53.23 74.68
TNT [34] 68.08 51.61 70.29 54.19 84.9 73.77 72.45 56.8 79.29 65.69 67.44 53.24 75.1
Transunet [40] 80.27 67.04 87.58 77.91 89.97 81.77 80.44 67.29 86.64 76.42 78.33 66.59 83.36

STransFuse 83.61 71.84 88.51 79.39 93.92 88.53 82.91 70.81 89.75 81.41 82.08 71.46 86.71
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Image

STransFuse

Ground truth FCNs Deeplabv3+ Unet SAN

PSPNet SETR_PUP TNT Transunet BoTNet

clutter car building tree
low 
vegetation

impevious 
surfaces

Fig. 8. Visualization results on Potsdam Dataset



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Image Ground truth FCNs Deeplabv3+ Unet SAN

PSPNet SETR_PUP TNT Transunet BoTNet STransFuse
滚滚长江东逝水

clutter car building tree low vegetation impevious surfaces

Fig. 9. Visualization results on Potsdam Dataset original image

(a) Vaihingen (b) Potsdam

Fig. 10. Efficiency comparison of different models on Vaihingen and Potsdam
datasets. The vertical axis represents the overall accuracy. The horizontal axis
indicates the training time of the model (please note that except for TNT
model and Transunet model, the batch size is 12, the default value of other
models is 16)

the STransFuse model improved OA with a small increase in
training time. Because of the ASPP module, the Deeplabv3+
model takes longer time in training and is thus less efficient.
It is also seen from Fig. 10 that when applied directly to
the semantic segmentation of remote sensing images, the
performance of the model based on improved Transformer
model is low. The experimental efficiency of different models
on Potsdam is shown in Fig. 10 (b), and it can be observed
from (b) that the STransFuse model reached a better OA in a
shorter period of time.

VI. CONCLUSION

In this article, the STransFuse model, a combination of
a Fusing Swin Transformer and CNN network, is proposed.
This two-branch model takes the advantages of both Trans-
former network and CNN. Transformer can model the global
correlation of input patches. CNN with pre-training weights
can make up for the shortcomings of fewer remote sensing
image training sets. The proposed model structure can make
full use of feature information and detail information in
all stages of feature maps to generate outstanding feature

representation in the model. In addition, we created an AFM
that can adaptively fuse features from the Transformer and
CNN networks, resulting in a feature map input to the decoder
that incorporates rich semantic and spatial context information.
In comparison with some state-of-the-art models, the result
from STransFuse model using the Vaihingen and Potsdam
datasets is competitive. In the future, we will continue to
research Transformer’s applicability in the realm of remote
sensing image processing to explore its potential.
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