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Abstract

A three axis inertial system is packaged in an Apollo gimbal fixture for fine

grain evaluation of strapdown system performance in dynamic environments. These

evaluations have provided information to assess the effectiveness of real-time

compensation techniques and to study system performance tradeoffs to factors such

as quantization and iteration rate. The strapdown performance and tradeoff studies

conducted in this program include:

1. Compensation models and techniques for the inertial instrument first-

order error terms were developed and compensation effectivity was

demonstrated in four basic environments; single and multi-axis slew,

and single and multi-axis oscillatory.

2. The theoretical coning bandwidth for the first-order quaternion algorithm

expansion was verified. The pseudo coning bandwidth was measured

and identified to be a combined function of the attitude algorithm's coning

bandwidth and the OA coupling compensation algorithm's bandwidth.

3. Gyro loop quantization was identified to affect proportionally the system

attitude uncertainty.

4. Land navigation evaluations identified the requirement for accurate

initialization alignment in order to pursue fine grain navigation

evaluations.
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1.0 Introduction

Characteristic of strapdown inertial guidance systems is the measurement of

specific force and angular rate inputs in the vehicle coordinate frame. Hence, the

gyroscopes and accelerometers encounter the full dynamic environment imposed

by the controlled vehicle's maneuvers and motions. To maintain an inertial reference

frame, algorithms are implemented in a digital computer to process the gyro and

accelerometer data. The data inputs as sensed by the inertial instruments include

errorsasaresult of the instrument's physical characteristics. These errors result

from factors such as scale factor linearity and inertia response, the mechanization

of the torque-to-balance loops (quantization effects), and the bandwidth of the

algorithms. The dynamic errors can be compensated provided that an error model

can be defined for implementation in a general purpose mini-computer.

The objective of the program described in this report was to effect a fine

grain test evaluation of a strapdown system in a dynamic environment to assess

the effectivity of instrument error compensation techniques and system performance

response to different algorithm iteration rates and quantization effects. To achieve

this program objective a test facility was developed that enabled the introduction of

a broad spectrum of multiple axis slew and oscillatory inputs to an experimental

three axis gyro and accelerometer strapdown test package. The package was operated

in real time with a general purpose mini-computer that included extensive

compensation and strapdown algorithm software. Using this capability and cor-

responding software models a wide band performance evaluation of the torque-to-

balance strapdown mechanization was effected. The resultant test and trade-off

performance findings presented in the body of this report provides a fuller ap-

preciation of the strapdown error propagation characteristics and identifies the

opportunities for further strapdown system refinements and advanced software

development.

The program objective has been fulfilled through the accomplishment of the

following specific tasks as stipulated in the contract work statement 1 1) the

assembly of a three axis inertial component strapdown unit consisting of three size

18 Inertial Rate Integrating Gyroscopes (18 IRIG), and three size 16 Permanent

Magnet Pulsed Integrating Pendulums (16 PM PIP) and packaged within an Apollo

Block I gimbal system (IMU#5). The gimbal system was modified to accept slew,

oscillatory and other angular functional dynamic inputs via control of the gimbal

torque motors to the instrument package, 2) the development of a test facility to
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support the strapdown unit testing consisting of the electronics necessary for test

operations, a Block I IMU modified to accept the package in place of the stable

member, an Apollo rotary test station for accurate positioning of the IMU fixture

with respect to gravity and earth rate inputs, and a computer for on-line real-time

operation with the strapdown inertial unit, 3) the development of suitable software

necessary for dynamic testing including calibration, and real-time instrument.

compensation algorithms and, 4) the development and conduct of a test program

sufficient to evaluate strapdown system performance and the effectiveness of

compensation in a dynamic environment.

In fulfillment of the above tasks the program's accomplishments included: 1)

the implementation of a test facility consisting of the dynamic gimbal test fixture,

the three axis strapdown package with its supporting electronics (torque-to-balance

loops, etc.) interfaced with the H316 mini-computer and the automatic test control

electronics, 2) the development of analytic error models and software compensation

routines that included: compensation for gyro errors such as gyro scale factor

linearity, misalignment, Output Axis coupling, anisoinertia, Spin-Reference Axis

cross-coupling, major anisoelasticity, bias and g-sensitive drift terms, and ac-

celerometer scale factor, misalignment and bias. In addition higher order ac-

celerometer models were evaluated using a least square technique operating on

multi-position accelerometer test data, 3) implementation of full parameter

compensation algorithms at three iteration rates; 100,50, and 25 updates per second,

4) implementation of a third order quaternion expansion algorithm (without the cross

product term) and an inertial referenced land navigator at three iterative rates;

100,50, and 25 iterations per second, 5) calibration software for automatic static

and dynamic parameter calibration, gimbal alignment certification and average float

hangoff measurement, 6) the implementation of software for system diagnostic testing,
data management, transfer, storage and analysis., 7) initiation of a broad base test

program to evaluate:

a. Static and dynamic parameter calibration

b. Pseudo coning

c. SRA cross coupling and anisoinertia

d. Scale factor linearity

e. Pulse bursting

f. Coning

g. Quantization tradeoff

h. Algorithm iteration rate

i. Land navigation performance with tradeoff studies
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This report describes in Section 2 the test facility and Section 3 discusses

the inertial instruments and the appropriate error models. Section 4 discusses

calibration, compensation and navigation software. Section 5 presents the test results

including calibration statistics, bandwidth, quantization, compensation studies and

navigation results. Also presented and discussed are the results of the "least

squares" accelerometer data evaluations. Volume II of this report contains the

security classified accelerometer calibration data (confidential).
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2.2 Strapdown Instrument Test Package

The strapdown instrument test package is a three (3) axis inertial system

mounted in a three (3) degree-of-freedom gimbal system. The gimbal system used

is the prototype gimbal system for the Apollo Block II configuration. The strapdown

test fixture capabilities and parameters are defined in Appendix A.

The inner member is an aluminum frame, fabricated as a part of the inertial

subsystem Structure Mounted Attitude Reference Test Studies (SMARTS) Task II of

contract NAS 9-68232. The frame form factor is designed to replace the stable

member of a prototype Apollo Block II gimbal configuration for the dynamic evaluations

required in the current contract (modification 11 of contract NAS 9-6823).

Mounted on the aluminum frame are the gyros and. accelerometers with their

complement of pre-amplifiers and temperature controllers, a dual axis rate

transducer (DART), two optical reference cubes, and frame mounted temperature

sensors. (Figures 2.2.1 and 2.2.2.)

The gyro used in the strapdown package, the 18 IRIG Mod B is a single-degree-of-

freedom integrating rate gyro specifically developed for the strapdown application.

It has a permanent magnet torquer that is sized to be compatible with rates up to a

radian per second. A description of the gyro is included in Section 3.2.

Each gyro is mounted in an adjustable alignment mounting assembly to allow

freedom of adjustment of the gyro Input Axis about the Output Axis and Spin Reference

Axes. Each gyro electronics complement includes individual temperature controllers

and float suspension adjustment electronics. The signal generator (SG) pre-amplifier

conditions the gyro output for reliable transmission through the gimbal slip rings

to the pulse torque electronics. The pulse torque electronics are mounted on the

rotary test table to minimize the distance from the gyro. Operationally, the pulse

torque electronics provides a closed loop control of the gyro to maintain the gyro

float at its null position. The gyro torque pulses (AO) represent angular increments

and are transmitted to the H316 mini-computer for data processing and analysis.

In addition to the pulse torque electronics, the SG output is encoded into six(6) bits

of digital data by the interpolator for float hangoff measurements and finer attitude

quantization.

The accelerometer used in the strapdown package is the 16 PM PIP, a

single-degree-of-freedom pendulous integrating specific force receiver. The ac-

celerometer is designed to operate in a closed-loop torque-to-balance mode. A

description of the accelerometer is included in Section 3.1.
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Fig. 2.2.1 STRAPDOWN TEST PACKAGE.
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Each accelerometer is supported on the aluminum frame by an alignment and

mounting ring to enable freedom of adjustment of the accelerometer's Input Axis

about the Output Axis and the Pendulous Reference Axis. In addition, the mounting

ring contains the heater elements to maintain the accelerometer at operating

temperatures. The mounting ring is separated from the aluminum frame with a

1/16 inch thick MYCALEX shim to provide thermal isolation from the aluminum

frame.

A Mu metal shroud that usually encases the accelerometer body for magnetic

field insulation was removed to allow clearance of the accelerometer through the

aluminum frame mounting hole. Mu metal shielding was installed elsewhere on the

inner frame to isolate the accelerometers from the gimbal torque motor magnetic

fields.

The accelerometer electronics complement includes a proportional

temperature controller and suspension adjustment hardware. A pre-amplifier

conditions the accelerometer's signal generator (SG) output for transmission through

the slip rings to the pulse torque-to-balance electronics. The torquing electronics

pulse restraints the accelerometer float to its null position and furnishes incremental

velocity data to the H316 computer.

A dual axis rate transducer (DART) is installed on the aluminum frame to

inhibit the gimbal torque motor driving electronics in the event of a gimbal runaway.

Under conditions of gimbal runaway it is possible that the wheel bearing rate capability

of the 18IRIG MOD B gyro will be exceeded, and a catastrophic wheel-touchdown

failure will occur. The DART instrument (a Northrop Nortronics component) is a

subminiature rate sensor that uses a piezoelectric bimorph crystal element to detect

torques within a fluid that rotates at 24,000 rpm. Gyroscope torque occurs from

the interaction of the body fluid rotation with angular rates applied about two input

axes. The output of the DART is a ac signal that is proportional in amplitude to

the vectorial sum of the two input excitations. An electronic assembly monitors

the DART output to provide noise filtering and signal sensing to inhibit the gimbal

drive loops at excessive rates.

Two optical reference cubes were installed on the aluminum frame to align

the strapdown body frame to an earth fixed reference frame. Optical sighting ports

were machined in the middle and outer gimbal hats for alignment purposes. The

optical cubes were useful for the initial package alignment and alignment stability

measurements. Once the accelerometer alignment was established, the alignment

to a reference frame was more efficiently determined from the accelerometer's

output.
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The strapdown thermal design uses separate proportional temperature control-

lers for each inertial instrument. Thermal control is maintained by temperature

sensors that are wrapped around the inertial instruments case and heater coils

attached to the mounting fixture. Heat transfer from the inertial instrument is

directed through the aluminum frame to the outer case of the gimbal system. The

outer case temperature is cooled to 42 F by circulating glycol water through an

integral coolant loop machined in the Apollo IMU case. Fans in the outer gimbal

hat are included to reduce the thermal resistance between the strapdown system

and the outer case.

The aluminum frame, on which the inertial instruments are mounted,

incorporated integral coolant channels for heat exchange purposes and were used

in the SMARTS test effort. In mounting the frame in a closed gimbal system, use

of this coolant heat exchange feature was not possible. The reduced heat transfer

characteristics of the gimbal system represented a design problem; however, rather

than initiating a comprehensive thermal design, the gyro operating point was shifted

upwards 100F to 140 F and the accelerometer operating point was shifted downward

10 F to 130 F. The strapdown thermal model is given in Appendix A, Figure A-2.

The higher gyro operating temperature reduces the gyroviscousfluid damping

coefficient. Damping coefficient reductions, increase the float time constant and

decrease the gyro transfer function between the angular input and the output float

displacement. The float time constant increase, reduces the pulse bursting threshold

and increases the float hangoff from its null position for a given Input Axis rate.

These changes were accounted for in the software modeling and torque-loop design.

The accelerometer temperature reduction does not affect performance

significantly. The accelerometer permanent magnetic design includes two shunting

rings to minimize scale factor instabilities because of the magnet's temperature

sensitivities. These rings were effective at thereducedoperating temperature and

the measured scale factor instabilities were bounded by a couple of ppm. At lower

operating temperatures, the transfer gain between specific force inputs and output

float displacement is reduced. However, this effect is corrected by an adjustment

of the pulse torque threshold.

2.3 Pulse Torque Electronics

Both the gyroscopes and accelerometers operate with ternary pulse torque

float restraining control loops. The function of the control loop is to apply torque

commands to the gyro or accelerometer torquer to maintain the instrument output

2-8



axis at a null position. The loops are digital in nature; their outputs are pulses

representing an angular increment (Ae) about the gyro Input Axis or equivalent velocity

increments (AV) into the accelerometer. This incremental information is processed

by the various compensation, attitude, and velocity algorithms to provide the package

attitudewith respect to an inertial coordinate frame.

Compensation circuits are included in the gyro loops to eliminate the "Pulse

Bursting" ( 3 , 4 ) associated with the gyro time constant. A gyro signal generator

(SG) output analog to digital convertor (interpolator) furnishes float position data

for finer quantization and float hangoff measurements. The accelerometer loops

do not have these ancillary electronics.

A simplified block diagram of the ternary pulse torque-to-balance control

loop with the gyro pulse burst compensation and the gyro signal generator (SG)

output interpolator is shown in Figure 2.3.1 (photograph Figure 2.3.2).

Because the gyro and accelerometer control loops are similar, only the gyro

loop will be used to explain its method of operation. The control loop responds to

an input from the signal generator (SG) output. The SG output is a 9600 hertz sinusoidal

voltage that is proportional to the magnitude of the float angle displacement from

null. The phase of the SG output is a direct function of the angular direction of

rotation from the null position. A high narrow bandwidth preamplifier provides

ample amplification and noise rejection for signal transmission through the gimbal

slip rings. Further amplification is achieved in the pulse torque electronics buffer

stagewhere the SG signal is phase shifted to assure maximum quadrature rejection

with peak signal sampling.

Signal samplingis achieved with threshold level comparators. If the SG signal

does not exceed the threshold level, no output is emitted and no torque command is

generated. If the threshold level is exceeded, the interrogate logic determines the

phase of the SG signal and generates the appropriate torque command. Torque

commands, therefore,are applied in one of three states: positive, negative, or zero.

This mode is identified as ternary.

A schematic, Figure 2.3.3, shows how the torque commands are generated in,

the pulse torque switching network.

For illustrative purposes, mechanical rather than the actual semiconductor

switches are shown. The switch status is shown in the positive torque mode. Note

that the torquing polarity is set by an H switch feeding current in the plus or minus
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Fig. 2.3.1 Pulse Torque-to-Balance Control Loop.
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Fig. 2.3.2 TABLE MOUNTED ELECTRONICS.
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direction of the winding. Switch S 5 operates so that current flows through either a

dummy load or the torque winding.

The dummy load is a noninductively wound resistor approximately equal to

the same resistance as the gyro torque winding mounted outside the torque electronics.

The switch S 5 selects either command torquing (set position) or dummy load (reset

position). Regardless of the torque-command state, the same current is fed into

the scale-factor resistor. The voltage across this resistor is compared with a

precision voltage reference at the input of a high-gain dc amplifier. The amplifier

is part of a control loop that maintains a precise, direct current level. Note also

that an RC network shunts the torque coil. It tunes the coil so that the load seen by

the switches and current source is purely resistive.

The control of the set-reset switch S 5 in Figure 2.3.3 is clock synchronized

to apply torque current as discrete pulses of fixed width. In each interrogation

cycle, the clock issues interrogate, set and reset pulses defined in Figure 2.3.4.

The time between the set and reset switching pulses is adjusted in 6.5ps increments.

Interrogate
(4800 pps

Reset
( 4800 pps

169. 2 ps Gyroscope
17. 6 ps Accelerome er

Set I I
( 4800 pps

Fig. 2.3.4 Interrogate, Set and Reset Pulses.

The SG output is sampled at each interrogate cycle to determine if a positive,

negative or no torque is required. If torque is required, S 5 is transferred to the

set position by the set pulse and back to the reset position by the reset pulse.
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Thus, at least a small fraction of each cycle is spent in the reset position. During

this time of zero current in the H switch, the torque polarity can be reversed if

required. If no torque is required, S 5 remains reset and the torque current is

dissipated in the dummy load.

For this program, H switch protection logic was designed to prevent the

simultaneous activation of switches S 1 , S2, S3 and S 4 . The torque command lines

are monitored to assure that positive and negative torque commands do not occur

together. If simultaneous detection is made, then the control loop is reverted to

the torquing state of the previous interrogation cycle.

Operation in a binary loop mode may be achieved by suppressing the "no"

torquing state. In this case only two torquing states are generated, positive and

negative. If the torque threshold level is not exceeded, the previous interrogation

cycle's torque command is repeated.

The basic torque-loop parameters used for the majority of tests are listed

in Table 2. 3. 1.

In the first half of the SPOT program, the gyro loops operated with 70ma

torquing current level and an 8 arc second loop quantization. The loop quantization

was satisfactory for fine grain strapdown evaluation, however, the dynamic

environment was rate limited to 0.2 radians/second. The dynamic environment

range was later extended to 0.8 radian/second with a gyro loop rescaling by doubling

both the torquing current and the torquing duty cycle. Hence, loop quantization was

increased to approximately 40 arc seconds per pulse which resulted in a larger

dynamic range.

The finer attitude quantization required for strapdown evaluation is achieved

with an interpolator, scaled such that its least significant bit is equal to one-eighth

of a gyro torque pulse (5 arc seconds). The interpolator provides attitude information

stored by the float within the pulse torque quantization. This interpolator information

is processed with the accumulated gyro torque pulses.

The interpolator is also used for float hangoff measurements. The selection

of the mode of operation (attitude quantization or float hangoff measurement) is

computer controlled through the activation of Field Effect Transistor (FET) switches.

If the interpolator is to measure float hangoff, then the gyro SG output is sampled

and converted to a digital representation. When the interpolator is used to quantize

data for altitude algorithm processing, a signal component equivalent to the pulse
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Table 2.3. 1

Torque Loop Parameters

GYROSCOPE ACCELEROMETER

Interrogation 4800 PPS 4800 PPS

Duty Cycle 81. 3% 35. 1%

Torque Current 140 ma 73 ma

Quantization

WITHOUT INTERPOLATOR DATA

X Axis 35.6 sec/pulse 1 cm/sec/pulse

Y Axis 45.1 sec/pulse 1 cm/sec/pulse

X Axis 37.8 sec/pulse 1 cm/sec/pulse

WITH INTERPOLATOR DATA

X Axis 4.5 sec/pulse

Y Axis 5.6 sec/pulse

Z Axis 4.7 sec/pulse

LOOP RATE CAPABILITY

X Axis 0.83 rad/sec

Y Axis 1. 06 rad/sec

Z Axis 0. 87 rad/sec
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burst compensation signal is subtracted from the gyro SG output prior to interpolator

sampling. This signal processing is required because with pulse burst compensation,

a larger float hangoff results with a corresponding larger attitude component in the

gyro SG output. (See Section 3.2.) In addition, if a torque pulse is generated at the

time of sampling, then the interpolator's output is preset to eliminate the redundant

attitude information in the torquing pulse and the gyro float position. Figure 2.3.5

is the interpolator's block diagram.

The signal that is sampled by the interpolator is converted into a digital

representation with a voltage ramp comparison convertor. Data transfer to the

H316 computer is multiplexed over six (6) parallel lines into buffer registers.

Data transfer is controlled completely from the H316.

2.3.1 Pulse Burst Compensation
( 3 ' 4)

A compensation network is incorporated in the torquing electronics to suppress

pulse burst instabilities caused by inertia lags of the float response to torque

commands. The compensation scheme used is the single pole analog circuit that

anticipates the exponential movement of the float subsequent to the generation of a
torquing pulse.

Figure 2.3.6 is the float response to a 80% duty cycle torque pulse. Note that
during the first interrogation cycle only 26% of the total commanded float motion is
achieved. This fact establishes a pulse bursting threshold defined by the Input Axis
steady state rate that is 13% of the gyro full-on rate capability. Assume that at a
particular sampling time that the float is just below the torquing threshold. No
torquing pulses will be generated. At the next sampling period the float will be
approximately 13% above the torquing threshold and a torquing pulse will be
generated. The float sums the steady state input and the response to the torque
pulse. If the steady state rate is slightly above 13%, a second torque pulse will
also occur during the subsequent sampling period. Thus, two torque pulses have
been generated in response to an input that warrants only one pulse. If the steady
state rate is below 13%, pulse bursting will never occur.

2.4 Resolver to Digital Encoder

The resolver to digital encoder (RDE) converts the analog gimbal information
into seventeen (17) bits of digital data. The RDE output is used as an attitude reference
to compute system attitude errors. Seventeen bits are used to provide a 10 arc
second accuracy with a tracking capability up to one radian per second. The RDE
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design is based on the Apollo Coupling Data Unit (CDU) angle encoding concept

(sin(G-0)). However, a sample and hold technique with higher bandwidth switching

was used to achieve linear 60 0 /sec tracking without two speed switching as in the

Apollo CDU. Field effect transistors (FET) replaced capacitor coupled transistor

switches and monolithic operational amplifiers replaced discrete components. Both

of these design changes increased the encoder's bandwidth.

Figure 2.4.1 is the functional diagram of the RDE. The RDE is a servo type

of analog-to-digital convertor that transforms resolver signals into digital data.

Digital conversion is completed in two steps. First the coarse section of the RDE

operates in a closed looped system to solve the equation:

Sin (0-) = Sin0 cos - cos 0 Sin

Where

0 = gimbal angle

¢ = incremental value of attenuation that is required to null the input signal.

0 is dependent on the activation of specific combinations of FET switches

in series with gain adjusting resistors. The exact combination of FET

switch activation is determined by the RDE output.

The seven most significant bits are used to null the coarse system

loop. Hence, a coarse null is first achieved within 2.80 of the actual

gimbal position. Once a coarse null is achieved, the fine system is

activated to establish a null within 0.00350 of the gimbal position. This

is the second step of digital conversion. After a fine system null is

achieved, the output data is sampled and processed at the H316 computer.

2.5 COMPUTATIONAL FACILITY

2.5.1 Introduction

The SPOT computational facility comprises three separate, but interconnected

computer facilities: 1) a Honeywell H316 mini-computer is used for direct interface

and computational support of the strapdown test system, 2) a Honeywell DDP516

computer facility is used for software development and data storage, and 3) an IBM

360/75 computer facility for the sophisticated data processing, analysis, and plotting.

Figure 2.5.1 shows the major components of the SPOT computation facility and their

interconnection. This section discusses the H316 computer; its interface to the

strapdown system and utilization in conjunction with the DDP516 facility.
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The Honeywell H316 mini-computer is central to the SPOT test facility. It

controls the automatic calibration programs which permit overnight instrument

certification. Attitude and navigation algorithms enable the evaluation of the

strapdown dynamic performance.

Although the H316 mini-computer is adequate with its memory cycle time of

1.6 ps and a 16K word memory for the development and execution of the SPOT

programs, a serial link to the more powerful DDP516 facility was provided to

facilitate software development and enable access to mass storage.

The DDP516 computer with its complement of peripheral equipment such as;

disk storage, a CRT display, and a telephone data link, affords three distinct

advantages to the SPOT facility:

1. The 7 million word disk memory provides sufficient storage for the

full set of SPOT operating programs and test data. When an operational

program is required at the H316, the selected program is transferred

fromthe disk memoryunder program control through a serial data link

between the computers.

Test data is accumulated on the disk memory for later recall to

perform parameter computation and analysis.

2. Efficient software development is possible at the DDP516 facility using

the Sander's 720 CRT display, the mass storage, and a powerful set of

editing and debugging software. Since the instruction sets of the two

machines (316 and 516) are identical, it is advantageous to write and

debug the full complement of SPOT software on the DDP516 facility.

3. A Bell 201A data set links the DDP516 to the IBMI 360/75 which allows

the transfer of formatted data to the 360/75 facility for computation,

compilation, statistical analysis and plotting.

As illustrated in Figure 2.5.1, all of the peripheral equipment supporting the

H316 mini-computer, including the serial data link, is connected by a single

input-output (I/O) bus line. The sequence and control of the peripheral equipment

is accomplished under program control With the combination of two methods: 1)

Input/Output instructions, and 2) a single level interrupt system.

The Input/Output instruction is the language used to communicate with the

peripheral equipment. The complete instruction repertoire is given in Appendix B.
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The second method of program control is achieved by a single level of interrupt

which allows any one of the pheripheral equipment to interrupt the computer's

processor. With priority decisions, the single line is capable of handling multiple

interrupts. It exercises this capability by interrogating devices (peripherals) one

at a time under program control until it finds the source of the interrupt. This

interrogation is generally done in order from the highest priority device to the

lowest. Since interrupts can be inhibited by the processor while the higher priority

device is serviced it is possible to share the single line among multiple device

interfaces.

The hardware that interfaces the H316 mini-computer to the strapdown system

and to the DDP516 computer was designed and implemented in five main sections;

1) the serial data link between the H316 and the DDP516, 2) the interface to the

gyro and accelerometer pulse torque-to-balance loops, 3) the interface to the gyro

SG interpolator, 4) the interface to the resolver-to-digital encoder, and 5) the

interface necessary for computer controlled gimbal positioning. A discussion of

these interface designs now follows.

2.5.2 Serial Data Link

The serial data link is a synchronous, hard wire data link between the H316

and the DDP516. The interface is identical, with minor modifications, to the Honeywell

supplied synchronous line convertor. Characters are transferred to the data link

interface from the computer I/O bus by bytes (8 bits each) in parallel where they

are converted to a serial form and clocked out to a matching interface in the other

computer. A series of synchronizing characters proceeds any transmission to identify

the beginning of the information characters.

2.5.3 Pulse Torque Electronics Interface

The net total of gyro and accelerometer pulses are accumulated in six separate

8 bit up-down counters. The plus and minus AO or AV lines for each axis are

separate but are combined as a single input to the up-down counter. The leading

edge of the incoming pulse on either the plus or minus line determines the counting

direction. The torque loops are mechanized such that pulses of both polarities will

never occur simultaneously.

An "output control pulse" initiates the pulse accumulation through clearing

and interface enabling functions. A preset timer register is enabled to count

interrogation pulses and interrupt the computer in order to read accumulated torque

2-23



pulses when the register's count is full. With counter presets, the computer interrupt

is generated at any integral number of interrogate pulses up to 255. Thus, the

preset timer register is used to release the computer for other operations while

the torque pulses are being accumulated.

2.5.4 Interpolator Interface

The six (6) bit interpolator quantizes the gyro signal generator (SG) output

into 64 levels over a range of eight pulse torque thresholds. The interpolator-

computer interface is a single set of six parallel lines. The input lines to the

computer are buffered with a six (6) bit accumulator to isolate the transmission

lines from the address bus. Data transfer is initiatized with a test instruction to

determine that the interpolator is ready with valid information. An "output control"

pulse then selects which of the three interpolator outputs (X, Y, or Z axis) is to

transmit. The interpolator information is directly added to the accum-nulated gyro

pulses. No clearing function is required because the interpolator is reset at every

interrrogation cycle.

2.5.5 Resolver to Digital Encoder (RDE)

The 17 bit analog to digital converter quantizes the gimbal angular information

into 10 arc seconds increments. The RDE-computer interface consists of two sets

of 17 parallel lines with gating circuits at the computer to input data into the computer

register. Data transfer is initiated with a test instruction to check for synchronism

between the RDE interrogation signal and the 800 pps timing signal. This check

establishes the beginning of the RDE conversion cycle. After waiting 5 interrogation

cycles (1040 microseconds) to assure complete RDE analog to digital conversion,

an input instruction is used to gate the RDE output into the computer's register.

An inhibit line is also available to assure that data transfer is not accomplished

before the analog-to-digital conversion is completed. Because the 17 bits exceeds

the capacity of the computer's 16 bit accumulators, the data is read in two parts.
The two low order bits are read first, followed by the 15 high order bits to form a
double precision word. An RDE zero control pulse is available to electronically

reset the RDE to a zero orientation and to force the completion of a conversion
cycle.

2.5.6 Test Sequencer Interface

The test sequencer enables automatic gimbal system positioning for computer
controlled inertial instrument calibration. The interface between the test sequencer
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circuitry and the computer includes four groups of data lines: 1) six data lines are

used to transmit gimbal positioning commands, 2) a control pulse line is used to

sequence the inner, middle, and outer gimbal position commands over the same

data lines, 3) a position ready pulse line is used to flag the computer when the

desired test position has been achieved, 4) an end of test pulse line is used by the

computer when data acquisition cycle is completed and a new sequence cycle is to

begin. The end of test pulse clears all circuits to accept new information.

2.6 Support Electronics-Automatic Test Facility

The electronic equipment required to support, monitor, and excite the strapdown

test system was integrated into the SPOT test facility to include the typical complement

of dc and ac supplies and monitoring equipment, as well as a unique capability for

computer controlled testing.

The ac supplies include the gyro wheel supply, the ducosyn suspension supply

and the resolver excitation supply which were adapted from hardware used in prior

programs. The monitoring equipment includes the oscilloscopes for gyro wheel

current and SG output visual monitoring, inertial instrument temperature monitors

with, hot and cold alarms, and a seven channel strip chart recorder for continuous

thermal surveillance.

An automatic test capability was developed to increase the utilization to the

test facility and to enable the accumulation of calibration data for statistical and

stability evaluations. The automatic test capability was implemented with a modified

Apollo gimbal position control electronics assembly (GPC) and "test sequencer"

electronics interface with the H316 computer. Figure 2.6.1 shows the one axis

mechanization of the test sequencer electronics and its interface to the GPC, H316

computer, and gimbal system.

The "test sequencer" accepts incoming computer commands and converts them

into activating signals to select one of two operating modes in the GPC: 1) a coarse

mode, and 2) a fine mode. The "coarse mode" energizes the gimbal torque motors

to rotate at a constant speed of 0.066 radian per second. This is the mode used to

change the strapdown system orientation. As the gimbals are rotated, the resolver

null positions are counted in a binary counter. When the counter reads the desired

preset count, the GPC is switched to the "fine mode" to electronically lock the

gimbal system to a resolver null position. Note that the amount of gimbal rotation

is determined by counter presets that are selected prior to rotation. When all

three gimbals are in the "fine mode" the desired test orientation has been achieved
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and a command is transmitted to the computer to activate the data acquisition

programs.

Automatic dynamic calibration is achieved with the outer gimbal programmed

for continuous rotation and the inner and middle gimbals programmed for orientation

changes. The outer gimbal rotation is accomplished by locking the last stage of

the binary counter in the reset state. In the reset state, the gimbal position control

loop is switched into the coarse mode and slewing is maintained at 0.066 radians

per seconds.

Slewing speeds other than 0.066 radians per second are possible, but not in

the automatic mode. A second torque motor with a multi-speed resolver is connected

to the gimbal resolver. Controlled speeds up to one radian per second are available.

Gimbal oscillatory excitations are produced by driving the gimbal torque drive

amplifier from a low frequency commercial oscillator. The gimbal position control

loop is switched to the fine mode for oscillatory tests.

To prevent gyro wheel damage (high speed touch down) resulting from

excessive gimbal rates, three rate protection schemes were incorporated to prevent

gimbal runaway.

1) The primary rate protection scheme is the gimbal dump circuits that

inhibit the torque motor drive electronics when the back emf (of the

gimbal torque motors) exceeds a given threshold.

2) The secondary rate protection device is a frame mounted dual axis rate

transducer (DART), a device that generates a voltage level equivalent

to the vectorial sum of rates about two orthogonal axes. Electronic

circuits deactivate the gimbal drive loops when the DART output exceeds

a prescribed threshold level.

3) When the GPC is in the "fine mode", gimbal movement in excess of 30

is prevented by inhibiting the drive electronics.
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3.0 Inertial Instruments and Compensation Parameters

3.1 16 Permanent-Magnet-Pulsed-Integrating Pendulous

Accelerometer (16PM PIP)

3.1.1 Physical Description

The 16 PM PIP is a single-degree-of-freedom integrating specific force

receiver. Figure 3.1.1 is a mechanical line schematic and Table 3.1.1 presents a

survey of operational and control parameters. The PIP consists of a cylindrical

body (float) that is suspended within a cylindrical case by a dense, highly viscous

fluid. The fluid also provides rotational motion damping. In addition to the fluid

buoyant support, the float is supported and centered radially and axially by a microsyn

(variable reluctance transducer) at each end of the case.

The float has freedom of rotation about its longitudinal axis (Output Axis) and

the float mass that is offset from the Output Axis provides specific force sensitivi'ty

along an Input Axis. Thus, specific force inputs rotate the float. The float rotation

is sensed by the signal generator (SG), a linear angle-to-voltage generator located

at one end of the instrument case. When the SG output voltage reaches a given

threshold value, a discriminator detects the polarity of the SG signal and generates

a torque command that switches a controlled current pulse of fixed amplitude and

duration into the torque generator winding. The torque generator (TG) is a linear

current-torque transducer, located at the opposite end of the case. The polarity of

torquing is set to oppose the sensed input torque.

3.1.2 Principle of Operation

The float acts as a torque-summing member and the torques acting on the

float (neglecting uncertainty torques) can be expressed as:

IOA + C + ml ain +M() = 0 (3.1.1)

I d 2  
the torque due to inertia of the floatOA dt

IOA = moment of inertia of the float about OA

0 = angle of rotation of the float about OA

C de = the viscous damping torque about OA
dt
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TABLE 3. 1. 1

16 PM PIP PARAMETER SURVEY

Nominal Value Symbol

Pendulosity 1 gm-cm ml(p)

Output Axis Moment of Inertia 24 gm-cm/sec 2  
1OA

Damping Coefficient 14x10 4 dyn-cm/rad-sec C

Float Time Constant 170 usec tf

Pendulous Ref. Axis Moment 35 gm-cm I
of Inertia sec

2 I -I
Anisoinertia Coefficient 1 cm/sec IA pra

radian/sec 2  ml

Torquer Sensitivity 265 dynema -cmSG
ma TG

Torquer Time Constant 27 usec t

Torquer Temp. Sensitivity <10 ppm/ C

Signal Generator Sensitivity 20 mv/mr SSG

Suspension Reaction Torque < 0. 2 dyne-cm

Elastic Restraint <0.01 dyne-cm/mr

Operating Temperature 130 0 F

Excitation SG & Suspension 4V, 9600-cps, 100 milliamps/ end housing
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C = damping coefficient

mlain = input acceleration torque

ml = pendulosity of float

ain = component of acceleration input along IA

M t) = restraining torque provided by the torque
generator for a fixed current amplitude

Integrating:

de
IOA dt + c = mlf in + - M(tg) (3.1.2)

where AVin = change in velocity along IA.

The terms on the left-hand side of equation (3.1.2) represent the dynamic

storage of the instrument. These terms can be assumed constant in a steady state

input condition because the control-loop maintains the float at the null position.

Thus, the torquer output (Mtg) balances the specific-force input in steady state

conditions and the indicated change in velocity is expressed as:

AVi ml Mt dt (3.1.3)in tg

Mtg is a time invariant torque pulse. When sized by the pendulosity of the float

(ml) each torque represents an increment of velocity (AV) measurement where AV

is the scale factor of the instrument. The indicated velocity input (VIND) is determined

by accumulating the positive (N + ) and negative (N-) torque pulses for a given test

period (tt) and multiplying the result by the scale factor (AV).

Thus

tt/tc

VIND = AV (N (n) - N (n) 
(3.1.4)

n=D 1n(3.1.4)

n=l 1

where

V = Mts
AV g t s is the torque pulse duration

ml
m c is the period of the interrogation cycle
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The indicated velocity is the time integral of the average indicated ac-

celerometer over the update interval. This quantity includes the acceleration sensed

along the Input Axis and the addition of various error sources characteristic of the

accelerometer. The full accelerometer model describing the response of a pulsed

integrating pendulous accelerometer in dynamic environments is given in Figure

3.1.2 with the various error parameters described in Appendix C. Errors such as

sculling which are generated in linear vibration environments, are not included

because the gimbal test bed environmental inputs are restricted to oscillatory and

angular rotations.

3. 1. 3 Accelerometer Model

Table 3. 1. 2 lists and estimates the magnitudes of the first order, second order and

dynamic accelerometer error terms.

Although the first order error terms (bias and misalignment angles) have a

limited effect on attitude errors, their effect on navigation performance is significant.

Therefore, the first order terms are included in the calibration and compensation

models.

The second order error terms have a negligible effect on attitude and navigation

performance. These terms are evaluated using least square and fourier modeling

techniques with multi-position accelerometer data inputs (See Section 5.4).

The dynamic term s, if excited with the environments defined, have a significance

that is equivalent to the first order terms. These dynamic terms were not modeled

because with the original gyro pulse torque scaling, the testing environment was

reduced by a factor of four and the error magnitudes were negligible. The application

of higher dynamic environments merit evaluation of dynamic accelerometer modeling

techniques.

3.2 18 Integrating Inertial Gyro Mod B ( 18 Mod B)

3.2.1 Physical Description

The 18 IRIG Mod B gyro is a single-degree-of-freedom gyroscope that was

developed at the MIT CS Draper Laboratory. The basic features of the 18 IRIG

Mod B gyro are its reduced size, gas bearing wheel package and permanent magnet

torquer. The 18 IRIG Mod B design is specifically designed for strapdown

environment applications. The torquer, for example, is compatible with input rates

up to one radian per second. Similarly, the magnetic suspension design is capable

of withstanding radial side loading for rates in excess of one radian per second.
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TABLE 3.1.2 ACCELEROMETER ERROR PARAMETERS

ERROR
ERROR PARAMETER INFORMATION SOURCE MAGNITUDE EQUIVALENT SYSTEM ERROR

First Order Error Sources

Bias (B o )  Accelerometer Calibration 0.3 cm/sec 2  A 0.3 cm/sec 2 bias error affects the gyro compensation of
Data acceleration sensitive drift components (0 .003 meru for a

10 meru/g gyro or 300 ppm). 0.3 cm/sec is also 300 ppm
of one g.

Misalignment Angles Accelerometer Calibration 0. 25 mr A 0. 25 mr accelerometer misalignment miscompensates a
(AORA. APA) Data 10 meru/g gyro and results in a 0.06 meru error (6000 ppm)

Second Order Error Sources

Scale Factor Centrifuge Test 4 ug/g 2  
At one g the error is 4 ppm of g

Non-Linearity (KII) Data

Cross Coupling Multi-Position 30 ug/g 2  
30 ppm of one g

(Kip, KIO) Accelerometer Test
Evaluation (Fourier
and Least Square
Analyses)

Cross Axis Estimatedfrom suspension 1 ug/g 1 ppm of one g
(KO )  stiffness and accelero-

meter geometry

Dynamic Error Sources

OA Coupling Calculated for: Assuming that the acceleration from 0 to 1 radian/second
a) 0 to 1 radian angular a) 20 cm/sec per is accomplished in 5 seconds, the indicated acceleration

acceleration rad/sec, how- error is 4 cm/sec 2 or 4000 ppm of one g
ever self cancel-

ling during
de-acceleration

A

b)W= 0.3rad/secisthe b) float motionis
maximum gimbal below pulse 0
oscillatory velocity torquing

threshold

Anisoinertia Calculated for 1 cm/sec 2  
1000 ppm of one g

W IA= 
WA= 1 rad/sec

IpA-IA = A gm=cm
2



The 18 IRIG Mod B gyro (Figure 3.2.1) has a gas-bearing wheel that rotates

at 24,000 rpm and develops an angular momentum of 150,000 gram-centimeters2/

second. The wheel is driven by a 4 pole, 800 hertz, 2 phase synchronous hystersis

motor. The wheel bearing consists of a stabilized journal pressurized by outboard

thrust plates. The wheel and motor structures are mounted in a hermetically sealed

cylindrical float and is pressurized with one atmosphere of neon gas. The float is

surrounded by a high density damping fluid for fluid buoyant support and rotational

motion damping. In addition to the fluid buoyant support, a 8 pole magnetic microsyn

suspension is available at both ends of the case for support and centering of the

float within the gyro case.

At one end of the case is a signal generator (a 12 pole multiple-E-connected

microsyn) whose output magnitude is proportional to the angular position of the

float about the Output Axis. At the other end of the case is the permanent-magnet

torque generator consisting of an Alinico V permanent magnet with 8 poles, an armco

iron return path and 8 torquing coils each having 144 turns.

Table 3.2.1 presents a survey of operational and control parameters for the

18 IRIG Mod B gyro.

3.2.2 Principles of Operation

The equation of motion for an ideal single-degree-of-freedom gyro is given

by

OA AOA + CAOA OA H WIA + Mtg+ UT (3.2.1)

where

IOA = moment of inertia of the float about its output axis(gm-cm 2)

AOA = float-to-case angle about the output axis (rad)

C = float damping coefficient about output axis (dyne-cm/rad/sec)

.K = elastic spring constant about the output axis (dyne-cm/rad)

H = wheel angular momentum (gm-cm2 /sec)

WIA = angular rate of the case about the input axis (rad/sec)

Mtg = commanded torque of the torque generator (dyne-cm)

UT = uncertainty torque acting on the gyro float about the

output axis (dyne-cm)
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TABLE 3.2. 1

18 IRIG MOD B NOMINAL PARAMETERS

AND OPERATIONAL FEATURES

Gyro Constants Units Symbol

Angular Momentum 0. 151 x 106 H
sec

Output Axis Damping Coefficient -400, 000* dyne-cm-sec COA

Output Axis Inertia 225 gm-cm 2

OA

Float Time Constant -550 usec tf = OA

Transfer Function 7.6 millivolts H S
milliradian C SGOA

Torquer Time Constant 55 p sec t= L
tg R-

Anisoinertia Coefficient 1 x 10-4 rad/(rad/sec)2  ISA IA

H

Parameters given are for a 140 F floatation temperature. At the nominal
floatation temperature (130 F), COA 502, 000 dyme-cm-sec, tf = 450 usec,
and the transfer function = 6.
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For the condition of no torque commands (Mtg = 0), a constant-input rate will

cause a constant torque about the gyro-float Output Axis. The resultant Output

Axis float rotation corresponding to the torque is expressed as:

A H WIA dt (3.2.2)
OA C

Since the float output angle, AOA, is proportional to the integral of input angular

rate, WIA , the gyro is called an integrating gyro. When the gyro is being

pulse-torqued, the scale factor is defined as the angular motion about the gyro Input

Axis that yields the same Output Axis rotation as one torque pulse.

The scale factor is expressed in Equation 3.2.3, under steady state conditions

(Mtg = HW ) where Mtg is a time invariant torquing level and t s is the duration of

torquing.

SF M t s (3.2.3)
H

The scale factor is used to determine the input axis angular displacement

(AIA) by scaling the accumulated positive (N ) and negative (N-) torque pulses.

t t/tc
A (M + N - Mtg N ) (3.2.4)
IA H ntg (n) tg

where M - commanded torque (dyne-cm) for positive torque pulses
tg

Mtg - commanded torque (dyne-cm) for negative torque pulses

t - interrogation period (208 microseconds)

tt  - test period

3.2.3 Gyro Model

The full gyro model describing the response of a pulsed integrating gyro in

dynamic environments is given in Figure 3.2.2 with the normal errors (gyro drift)

described in Appendix D.

The strapdown error sources are further discussed in this chapter and are

excited when the gyro operates in dynamic environments. One group of the dynamic

error sources is geometrical in nature such as coning and would be observed even

in an ideal gyro instrument. Coning errors are inherently compensated in the system

attitude algorithm based on knowledge of the dynamic inputs. Coning is discussed

in greater detail in Section 4.2.5.
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Output Axis Desired

Float Dynamic = Torque +

Torques

IOA AA + COAAOA = H WIRA +

Normal Errors

Torques due to acceleration + Torques due to acceleration + Acceleration

squared sensitivity sensitivities insensitive Torques

(Kss - KII) aSRA alRA + (ADIA) aIRA + (ADSRA) aSRA + NBD

+ (ADOA) aORA

Strap Down Errors

Commanded Output Axis Cross- SF linearity

Torque - Coupling - coupling + Anisoinertia Torque + Coefficient Misalignment

Torque Torque

SF x ITG IOAW ORA Hs SRAAOA + (ISA - IIA) IRA SRA + K2 WIRA OAW SRA +  SRAWORA

FIGURE 3.2.2 GYRO DYNAMIC MODEL



The second group of strapdown errors result from the physical gyro or torque

loop departing in performance from the ideal instrument. These error sources

include: anisoinertia, scale factor linearity, SRA cross coupling and OA coupling.

If properly calibrated, the dynamic error sources are adequately compensated in

the algorithms. (See Section 4.2.2). The instrument dynamic errors are discussed

below with a concluding section devoted to gyro attitude storage and attitude

quantization.

3.2.3a Anisoinertia

The anisoinertia error term arises from the difference in the inertia about

the float Spin and Input Axes. The applicable gyro response equation is:

IOA AOA + COA AOA = (SA IA) WIRA WSRA (3.2.5)

Only simultaneous inputs about the Input Reference Axis (IRA) and the Spin Reference

Axis (SRA) can exercise the anisoinertia error. For constant rotational rates applied

simultaneously about the IRA and SRA (WI andWS respectively), starting at t=0, the

steady state drift rate (WD) is found to be:

WD ((ISA M- IIA w

ISA (f) = Float inertia about the Spin Axis (a frequency dependent (3.2.6)
function)

IIA = Float inertia about the Input Axis

The multi-axes oscillatory environment is defined by two excitations that have

the same frequency, but different amplitudes and have some relative phase (S).

ASRA = a sinwt WSRA = aw coswt

AIRA = c sin (wt+O) WIR A  = cwcos (wt+O,) (3.2.7)

The steady state drift rate in an oscillatory environment is determined to

be:
5

WD ( ISA (f)- IIA) c 2 (cos (2wt + +) + cos )

sinusoid non-zero

time average (3.2.8)

where ¢= tan (2r7r) and (rw 2)<< 1
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The steady state drift rate comprises a sinusoidal component with twice the

input frequency and a constant, non-zero time average component expressed as:

W SA (f) IA a cw 2 cos (3.2.9)

2H

Hence, a kinematic rectification of the oscillatory input occurs and the resultant

error is dependent on the relative phase between the two inputs and is maximum at

an in phase condition (0 = "0").

The inertia of the float spin axis is expressed as a function of frequency (ISA(f))

to account for the decoupling of the wheel element from the input excitation when

the oscillatory input exceeds the wheel hunt frequency. The wheel hunt frequency

(generally in the range 2 to 5 hertz) is defined by the natural frequency of oscillation

which is determined by the inertia of the wheel element and the stiffness of the

wheel motor. As the input frequency increases through the wheel hunt region the

inertia difference (ISA(f) I IA) is estimated to change from 21 gm-cm 2 at low

frequencies to -40 gm-cm above wheel hunt for the 18 IRIG Mod B gyro design.

In the current program, only the low frequency anisoinertia coefficient is modeled

in the compensation algorithm. The incorporation of a frequency dependent coefficient

requires the spectral analysis of the environment from the gyro pulse outputs, a

task beyond the scope of the current program but worthy of future investigations if

environments above the wheel hunt frequency are anticipated. Based on Saturn V

and XB-70 flight data, the random angular environment associated with a shuttle

vehicle at a navigation base is essentially limited to below 1 hertz. Therefore

meaningful errors associated with changes in inertia with frequency is not expected

to be encountered for that environment.

The effective anisoinertia error generated in the gimbal system for various

test inputs is illustrated in Table 3.2.2.

TABLE 3.2.2 ANISOINERTIA ERROR MAGNITUDES

ISA() -IIA

frequency H a c Drift Error

(hertz) ( pradian per radian/second) (radian) (radian) (meru) (o/hr)

.5 140 0.024 0.022 5 0.08

1 140 0. 024 0. 022 20 0.3

5 -267 0. 0057 0.011 -113 -1. 7

10 .-267 0. 0015 0. 004 - 43 -0. 65

25 -267 0.0002 0.0006 - 5 -0.08
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3.2.3b Scale Factor Linearity

Characteristic of permanent magnetic torquer gyros is the torquing response
7

variation with respect to rate. Intensive tests conducted in other programs have

verified the rate dependent variation and have attempted to analyze its sources.

Part of the variation is attributed to the torquer itself and part to the torquing loop

mechanization. All loop mechanizations tested (ternary, binary, and analog) have

exhibited a rate dependent scale factor.

The scale factor linearity calibration curves for gyros 427A, 422B, are shown

in Figures 3.2.3 and 3.2.4. The ordinate scale is plotted relative to the scale factor

m agnitude calibrated at +0.066 radians per second about the Input Axis. The linearity

curves are the best fit lines drawn between data from two sequential calibrations.

In general, the scale factor spread between test runs is 10 ppm. The difference in

the average scale factor for a positive rate about the gyro Input Axis (IA) from the

negative rate about IA is the result of a pulse torque-to-balance loop unbalance

and/or an instrument SG to TG misalignment. The 427A and 422B gyro linearity

functions (Figures 3.2.3 and 3.2.4) are characteristic of resistively tuned gyro torquer

coils. At high rates, the curve is concave upward because of two factors: 1) a

TG-SG misalignment, and 2) power effects due to torquer heating.

Figure 3. 2. 5 shows the scale factor linearity curve for gyro MB4. Note that

the scale factor spread over the full dynamic range is less than gyros 427A and

422B, but its variation is not linear. The MB 4 gyro linearity curve is typical

when torquer coils are purposely mistuned to reduce the linearity spread but with

the cost of achieving a non-linearity scale factor function. The test data given in

Section 5.2.6 demonstrates that a gyro linear scale factor function (as displayed in

Figures 3.2.3 and 3.2.4) can be adequately compensated (within 7 ppm) in the real

time data processing algorithms and therefore torquer mistuning techniques are

not necessary.

3.2.3c SRA Cross Coupling Errors

SRA cross coupling errors result from the Input Axis being offset from its

reference direction because of float rotations about the Output Axis (OA). If rotational

rates are applied simultaneously about the Input and Spin Reference Axes (SRA),

errors will result by the amount of rate detected by the gyro Input Axis along the

SRA. In oscillatory environments the float rotation about the OA is a sinusoidal

function. Hence, if the oscillatory excitations about the Input and Spin Reference

Axes are in phase then kinematic rectification will occur and a steady state drift

error will result.
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Compensation of SRA cross coupling errors depends on the accurate description

of the float rotation by a function describing the average float hangoff in response

to input axis rates. After the hangoff function has been defined, the amount of cross

axis error can be estimated and the appropriate corrections made.

An analytical study by Lory 8 has defined the linear relationship between the

average float rotational offset (float hangoff) and the average Input Axis rate. For

the ternary-torque loop with pulse burst compensation, the relationship is expressed

as:

low rate offset rate dependent factor

<0> = (d - 1/2) sgn (v) + v (1 +1 K (3.2.10)

where:

(0) is the average float rotational offset

v is the average input angular rate sized to
the full-on gyro loop rate capabilities

rK  is the sum of the gyro time constants
(torquer and float) sized to the
interrogation period

d is the torquing threshold defined by
the float rotation from null required
to generate a torque pulse

sgn(v) +1 for v positive
0 for v zero

-1 for v negative

The assumptions of the above model includes a constant input angular rate

and that the pulse burst compensation network gain is set to equal the sum of the

gyro time constants.

Without pulse burst compensation, the float hangoff function is expressed as:

<e> = (d-1/2) sgn (v) + v

low rate offset rate dependent factor (3.2.11)

The float hangoff functions are shown in Figure 3.2.6.

Note that a torque rebalance loop implemented with pulse burst compensation

increases the average float hangoff for a given input rate. The float hangoff increase

is dependent on the sum of the gyro time constants. The average float hangoff

functions for gyro 427A, MB 4, and 422B are shown in Figures 3.2.7, 3.2.8, and

3.2.9 respectively.
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As shown in the figures with the pulse burst compensation gain and loop threshold

correctly set, the float hangoff approximately equals half the torquing threshold

plus a rate dependent hangoff term that increases with rate. The slope is related

to the sum of the gyro torquer and float time constants (from Equation 3.2.10). It

should be noted that in the low rate region (for example when no torque pulses are

generated during an interaction interval) the exact float hangoff is undefined in the

region of uncertainty (See Figure 3.2.6). From these float hangoff calibration curves,

one estimates the gyro float time constants to be 560, 570, and 540 microseconds

for gyros 427A, MB 4 and 422B respectively. These time constants are greater

than the typical 18 IRIG Mod B time constant (450 microseconds), however, this is

the expected result of operating the gyros at higher temperatures.

The linear float hangoff function is the model that was used for SRA cross

coupling error compensation. Rate estimates are derived from the gyro pulse count

in an algorithm iteration interval and are used to determine the operating point

corresponding to the hangoff curve. However, when no torque output pulses occur

in an iteration interval, rate estimates can not be made and in such a case, float

positionuncertainty can be in error by a maximum of 1.5 torquing thresholds (1.5d).

This error is attributed to the fact that the exact float position is somewhere in the

dead zone region defined by the torquing thresholds. Because the torquing threshold

has not been exceeded, accurate knowledge is unavailable as to the exact float position.

To account for SRA coupling errors that might arise when the float is in the

torque dead zone region, the interpolator is used to read float position mid point in

the iteration interval when no torque pulses occurred during a computer iteration

interval. For this reading, interpolator furnishes float position directly by quantizing

the gyro signal generator (SG) output. The compensation model therefore also

included direct use of hangoff measurement in addition to the linear model. Use of
the direct float read out for SRA coupling compensation is not possible over the

full rate range because of dynamic limitations and the need for an "average" hangoff

over the entire iteration interval. With high dynamic inputs, the mid point reading
of the interpolator does not necessarily represent average float hangoff.

In the constant rotational environment, with inputs applied simultaneously about
the input (VRA) and spin reference axes (VRA) the uncompensated SRA cross
coupling drift is expressed as:

Drift Error = (d-) W (1+ K) WSR A WIRA
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For example if (d-1/2) = 20 microradians and (1 +rK) = 257 microradians per

radian/ second, a one radian per second rotational rate could generate a drift error

equal to 3250 meru (49 0 /hr) if no compensation were used.

In the oscillatory environment, with the magnitude of input axis oscillation

(c) much larger than the spin reference axis (a) oscillation, the SRA cross coupling

drift due to rectification is expressed as:

2
2 1 aco

Drift Error = a (d- - + ) ac2

Where:

W = c sinut

WSR A = a sinwt

The effective rectification generated in the gimbal system for various test

inputs is given in Table 3.2.3.

TABLE 3.2.3 RECTIFICATION MAGNITUDES

frequency a c Drift Error

(hertz) (radians) (radians) (MERU) (o/hour)

.5 0.024 0.022 +2.9 0.04

1 0.024 0.022 -12.6 0.19

5 0.0057 0.011 -48.6 0.73

10 0.0015 0.004 +2.2 0.03

25 0.0002 0.0006 +11. 0.17

3.2.3d OA Coupling

OA coupling error is a function of -the float inertia response. OA coupling

errors are exhibited in two ways depending on the nature of the environment. The

first way is a lagging effect when the gyro is excited by a transient input. Figure

3.2.10 shows the effect on attitude error propagation during the acceleration and

deacceleration phase of a ten revolution slew test at 0.15 radians/second (9.8 0 /sec).

OA coupling errors are manifested as steps in attitude errors which nearly averages

to zero in a complete acceleration-deacceleration cycle. With OA coupling

compensation effected, as in Figure 3.2.11, the steps of attitude error are virtually

eliminated.
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The second way OA coupling errors are exhibited is in the oscillatory

environment. When an oscillatory input is impressed about a gyro's Output Axis

because of its inertia, the float will lag the excitation and extra torque pulses will

be required to maintain the float's null position. If the oscillatory excitation about

the Output Axis is:

w O = a sinwt
(3.2.12)

then the OA coupling error oscillation is:

OA coupling error = I/H O= I/H awcost. (3.2.13)

where I is the float output axis inertia and H is the gyro wheel angular momentum.

The correct compensation model is to estimate the rate change magnitude

about the Output Axis, then to scale the estimate by the ratio I/H. The resultant

quantity is subtracted from the input gyro torque pulse count. OA coupling errors

which are not compensated in an oscillatory environment appear as a second sinusoidal.

input by the attitude algorithm. Because of its 900 phase displacement with the

input oscillation, the attitude algorithm assumes a coning input and corrects by
adding a drift component on the third axis. This drift component is an error and is
termed "pseudo coning drift." Pseudo coning compensation evaluations are discussed

further in Section 5.2.2.b.

3.2.4 Attitude Storage

Attitude storage results from the lagging response of the SDF gyro float to
an input stimulus. Figure 3.2.12 is the SDF floated gyro model, normalized for
unity gain. Figure 3.2.12 also gives a comparison of float response between an
ideal integrator and the typical gyro.
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Figure 3. 2.12 Gyro Pulse Response

Float storage is defined as the difference between the ideal integrator and

the gyro's responses and therefore represents the change in attitude that is sensed

by the gyro, but not yet translated into float motion.

Typically, the gyro float position is pulse restrained to a null position with

electronics applying torque pulses whenever the float exceeds a given threshold.

The torque commands are applied through an almost identical gyro model with the

result that in a given time interval the energy that is stored from torquing nearly

cancels the energy stored due to the applied input rate.

Figure 3.2.13 is the gyro model expanded to include the effect of torquing:

cua I 
1

S (ST + 1 )
ATTITUDE STORAGE + FLOAT

STORAGE

TORQUE

COMMAND S (STT + )(STf +1)

TORQUE COMMAND STORAGE

Figure 3. 2. 13 Gyro model with torquing
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The torquing model includes in addition to the float time constant (Tf), the

torquer time constant (Tt). Thus, float storage is modified by torque command storage

when stimulated by both a rate input and a torquer input and the resultant float lag

becomes a function only of the torquer time constant (Tt).

Storage as a function of input axis rate is illustrated in Figure 3.2.14. Also

shown are the float hangoff functions defined in Section 3.2.3c. The important

observation from Figure 3.2.14 is that float storage is a linear function of input

rate but not equal to the magnitude of the float hangoff.

3.2.5 Fine Attitude Quantization with Hybrid Operations

(i.e. Torque Loop Plus Interpolation)

Without the interpolator electronics the system quantization is determined by

the gyro's torque loop quantization (for example, 40 arc seconds). Because there

is gyro float storage, a small quantity of attitude is stored within the gyro. This

stored attitude data is represented by the residual change in the float movement

that is not detected by the torque loop.

Without pulse burst compensation in effect, the interpolator measures the

required residual float movement by digitizing the signal generator (SG) output. In

this mode of operation the interpolator information is added to the accumulated

torque pulses for a finer quantization that is defined by the interpolator's bit size.

However, when pulse burst compensation is in effect, the loop dynamics are

modified and consequently the float movement no longer represents the true gyro

response. With pulse burst compensation, a signal is added to the signal generator

(SG) output which predicts where the float should be based on the occurrence of

torquing. By predicting the float movement, the magnitude of storage error is

modified. Therefore, the pulse burst compensation signal must be subtracted from

the SG output such that the resultant signal represents the true float position under

conditions of no pulse burst compensation. The resultant signal is now in error by

only the float storage which if necessarycan also be corrected because of its linear

relationship with respect to rate (See Figure 3.2.14).
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4.0 Software Development

4.1 Introduction

A dedicated H316 mini-computer is used to support the strapdown inertial

system and to provide comprehensive data processing capabilities that include

automatic inertial instrument calibration, system attitude maintenance capabilities

and land navigation. In addition, the software design facilitates the evaluation of

system tradeoffs and provides for-efficient data processing and management. A

considerable software development effort is necessary to achieve the above test

capability. The software developed to support the program's requirements is

discussed in this text in five subsections: 1) calibration software, 2) compensation,

attitude and velocity algorithms, 3) attitude error analysis software, 4) land navigation

algorithms, and 5) H316 mini-computer and IBM 360/75 remote terminal software.

4.2 Calibration Software

The calibration software enables the automatic calibration of the inertial

instrument parameters. Two sets of software were written - one set to calibrate

the gyro drift components and the accelerometer parameters such as; scale factor,

bias, and alignment, (so called static calibration) and the second set to calibrate

gyro scale factor, misalignment angles, and anisoinertia (so called dynamic

calibrationr).

Calibration is achieved in two parts. Data outputs from the inertial instruments

are first accumulated and stored in the H316 computer. This operation is accomplished

under control of the data acquisition software. Final data reduction and display in

engineering units is done in the DDP516 under control of the data transfer software

that is stored in the disc file. The inertial instrument parameters calculated are

shown in Table 4.2. 1.

4.2.1 Data Acquisition Software

The data acquisition program performs four basic functions: 1) automatic

calibration control, 2) data accumulation , 3) data format conversion and storage,

and 4) data transfer control.

The static calibration data acquisition software sequences the strapdown system

through twelve calibration positions (see Appendix P). Gyro and accelerometer

pulses are accumulated for a ten minute test period and then stored in the H316

buffer.
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TABLE 4.2.1 INERTIAL INSTRUMENT PARAMETER CALIBRATION.

STATIC CALIBRATION

Parameter Calibration Unit

Gyro Bias (NBD) meru

Acceleration Sensitive

Drift (ADOA, ADIA, and

ADSRA) meru/g

Major Compliance 2
(KSS - K II) meru/g

Accelerometer Positive and Negative

Scale Factor (SF + , SF-) cm/sec/pulse

Misalignment of the

Input Axis about the Output

Axis (SO) and, about the

Pendulous Reference Axis (SP) radians

Accelerometer Bias (B 0 ) cm/sec
2

DYNAMIC CALIBRATION

Parameter Calibration Unit

Gyro Positive and Negative

Scale Factor (SF + , SF-) radian/pulse

Misalignment of the Input

Axis about the Output Axis (GO)
and the Spin Reference Axis (GS) radian

Anisoinertia Coefficient radians/radian/second

Meru is equivalent to one thousandth of the earth's rotational rate or 0. 015 0
/HR.
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The dynamic calibration data acquisition program drives the outer gimbal

either positively or negatively in six test positions determined by the inner and

middle gimbal orientations (see Appendix R). Gyro torque pulses are accumulated

for a given test duration determined by the rotational rate and the number of complete

revolutions selected for calibration. The resolver to digital encoder monitors the

angular rotation of the outer gimbal to identify the starting and ending points of the

data acquisition cycle. As backup to the resolver encoder, additional software was

written to determine the test duration from the automatic test control electronics

that emits a position ready pulse for every 3600 of gimbal rotation.

The calibration sequence is initialized by the operator aligning the system

with all gimbals at zero degrees, and providing as an input to the computer the test

record identifiers and special test sequence requests. For dynamic calibrations,

the number of revolutions per test is also selected. Once initialized, the calibration

sequence is completely automated and under computer control.

The data acquisition software is controlled with a main executive program

which calls the appropriate subroutines required for specific system operation.

The first operation executed is the development of actuating signals that command

the gimbal's rotation to the desired calibration position. Gimbal orientation is possible

in sixteen different positions that correspond to the sixteen multi-speed resolver

null positions. The executive program determinesfrom a stored table the gimbal

orientation of the next calibration position. Actuating signals are developed from

this information and gimbal rotation is activated. When the desired test orientation

is achieved, a position ready pulse is generated to switch the gimbal positioning

loops to a high gain servo mode about the multi-speed resolver signal and to notify

the executive controller that the data acquisition cycle can begin.

The executive program now transfers control to the data acquisition subroutine

that accumulates the torque pulses (gyro and accelerometer), and clock timing pulses.

Both positive and negative torque pulses are accumulated for each of the six inertial

instruments with the use of twelve memory locations. Two locations are assigned

to each instrument to accumulate positive and negative torque pulses seperately.

Time is accumulated with a main counting loop, implemented to accumulate

time seperately for each of the six inertial instruments. When the first gyro or

accelerometer pulse is sensed for each instrument, a time counter is read into a

"starting time" buffer for that instrument. The time counter continues to be

incremented every interrogate cycle thereafter. At the end of test, the time of the

last pulse for each instrument is stored into a "end time" buffer to determine the
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test duration within an interrogation cycle (208 micro-seconds). This procedure

synchronizes the time of test individually for each inertial instrument to the

occurrence of the initial and final torque pulses.

Dynamic calibration also synchronizes the outer gimbal rotation to the-

occurrence of the initial and final torque pulses. Because the resolver encoder's

sampling rate is 800pps, a linear interpolation is made based on the gimbal test

rate to estimate the rotational angle at the time of the initial and final torque pulses.

When the data acquisition cycle is completed, the executive calls a Fortran

subroutine to convert the raw data into a double precision floating point format for

initial display on the teletype and storage in the H316 buffer memory for subsequent

data reduction. The inspection of the raw data on the teletype verifies the reasonability

of data prior to transfer to the DDP516. The data format includes the different

pulse count totals, time, and gimbal angles.

The data acquisition and control program requires approximately 25% of the

H316 - 16K word memory capacity. Each test position requires 160 words and a

memory capacity for 52 sets have been assigned. This is sufficient for four complete

automatic static and dynamic calibrations before a data transfer to the disc via the

DDP516 is required.

When the 160 word set is stored in the H316 buffer, the DDP516 is interrogated

for its readiness to accept data. Data is transferred to the DDP516 only if the

appropriate programs are resident in the DDP516 core. If the required DDP516

programming has been established, program control is returned to the data acquisition

executive for continuation of the calibration sequence. Data that is not transferred

to the DDP516 is stored in the H316 until the limit of 52 sets is reached at which

time the calibration cycle halts for a data transfer.

4.2.2 Data Transfer Software

Data transfer to the DDP516 is accomplished with an interaction of the data

acquisition software with the data transfer software that is resident in the DDP516

core. A serial data link which connects the two computers is used for data

transmission. A series of synchronizing pulses are transmitted to identify the start

of data characters. One complete 160 word data set is transmitted into the DDP516

core with a checksum verifier. The checksum assures transmission reliability. If

transmission is correct, the data set is permanently stored in the disk file.
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Disk filing is accomplished using four subroutines that interface with the

DDP516 Disk Operating System (DOS). The same four subroutines maintain the

active data file (DATAKK) which includes threemajor components: 1) the 160 word

calibration data sets, 2) the system alignment angles that are used as inputs to the

calibration compution programs, and 3) the results of parameter computation.

Each DATAKK data set is assigned a serial number with a back pointer to

the previously stored data set. Disk storage occurs after the serial number is

read into the DDP516 core. The DATAKK indexis then updated and the DOS system

closed. The serial number is transmitted over to the H316 for teletype display and

cues the H316 to transmit the next data set. The data "transfer and storage sequence"

continues until the H316 buffer is empty, at which time control is returned to the

data acquisition executive for resumption of the calibration cycle.

When the DDP516 determines that a complete set of calibration data (twelve

test positions) has been transferred from the H316, Fortran subroutines are called

to compute the calibration parameters using the equations given in appendixes P

and R. The results are printed on the DDP516 teletype, and stored on the disk file.

After the computed parameters are stored, the DDP516 returns control to the H316

for additional data transfer, if its buffer is not yet empty. Therefore, the H316

operating with the DDP516 provides a continuous calibration capability. The H316

operating by itself is memory limited to four static or dynamic calibrations.

4.3 Compensation, Attitude, and Velocity Algorithms

4.3.1 Introduction

The strapdown system performance is dependent on the efficient real time

data processing of the gyro and accelerometer outputs into attitude and velocity

updates. Figure 4.3.1 shows the data processing algorithms that include the

compensation algorithms the attitude algorithm, and the velocity algorithm.

4.3.2 Compensation Algorithms

The gyro compensation algorithm corrects the body referenced angular pulses

to account for errors attributed to bias, drift and dynamic error sources. The

corrected angular increments are the input to a quaternion expansion algorithm to

derive system attitude information.
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The accelerometer compensation algorithm corrects body reference velocity

increments to account for accelerometer bias and alignment. A directional cosine

matrix transforms the velocity increments into the inertial frame.

The corrected accelerometer pulses are used to compensate the gyro's

acceleration sensitive drift components. This procedure allows the accurate

compensation of g field sensitive error sources without requiring indirect estimates

of the gravity vector. Similarly, rate estimates derived from corrected gyro torque

pulse data compensates the accelerometer's centripetal acceleration component and

the gyro's OA coupling, anisoinertia, and scale factor components.

An important adjunct to the compensation algorithm is the load making program.

This program inputs and scales all compensation parameters into appropriate formats

for storage in specified memory locations. The data in its specified locations is

"on call" to the compensation algorithms.

The compensation algorithms are implemented at three iteration rates: 100,

50 and 25 iterations per second. This is achieved by changing the compensation

iteration interval which is controlled by the preset interrupt counter. At 100 iterations

per second the counter interrupts every 48 interrogation cycles (0.01 second) and

at 50 iterations per second the interrupt is every 96 cycles. The gyro and

accelerometer read routines are changed to halve the pulse scaling to account for

the doubling in the iteration interval. This was the most direct and efficient method,

requiring no modification to the load making program.

An alternative method is to maintain the read routines constant, and change

the compensation parameter scaling. This scheme-was evaluated and found to require

an increase in software and operator assistance. Other modifications necessary to

allow operation at the different algorithm iteration rates pertain to the attitude and

velocity algorithms to account for the revised pulse scaling.

The gyro and accelerometer compensation iteration intervals are equal but

are staggered to allow the gyro derived attitude data to be available at the middle

of the accelerometer update interval.

4.3.2.a Gyro Compensation Algorithm

The gyro compensation model is defined in Figure 4.3.2.

The detailed compensation equations and sequence are given in Appendix E.

This discussion provides a descriptive review of the processing flow illustrated in
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Figure 4.3.1. Before the gyro pulse outputs are corrected for the various gyro

error parameters, finer attitude quantization information from the gyro interpolator

is added to the accumulated gyro pulses. Because pulse burst compensation is in

effect, the compensated interpolator output is used (See Section 3.2.4). The

quantization increment furnished by the interpolator is varied by the use of a masking

instruction which selects one of four quantization magnitudes. For example, with

the interpolator information completely masked, the algorithm quantization is 40

arc seconds per pulse, while with none of the six interpolator bits masked, the

quantization is 5 arc seconds. Intermediate quantization levels of 10 and 20 arc

seconds are achieved by masking the least or the next to least significant interpolator

bits respectively.

The raw attitude data is scaled by the gyro scale factor to determine the

input axis angular displacement. Pulse scaling is accomplished in two steps. First,

the accumulated pulses are sized to a nominal scale factor determined for

computational efficiency to be an even power of two. The nominal scale factors

-18 -18 -18
selected for the X, Y, and Z axis gyro are 45e2 , 57x2 , and 48%2 radian

per pulse respectively. The different nominal scale factors are required because

of the variations in configuration of the 18IRIG Mod B gyros used. The second step

of gyro pulse scaling is to correct for the deviation of the true scale factor from

thenominal value. The scale factor compensation model includes two terms; a low

rate scale factor component and a rate dependent component. The low rate scale

factor is determined from baseline test data and is stored in a memory location

determined by the load making program. The rate dependent factor is a linear

function of the input axis rate which is based on real time rate estimates by the

gyro input pulse count (reference Section 3.2.3b).

The acceleration insentive drift component (NBD) is compensated by adding

incremental corrections to the gyro pulse count. The magnitude of the correction

increment is derived from the NBD magnitude and from the compensation iteration

time.

The acceleration sensitive drift components are corrected with body referenced

acceleration estimates from the accelerometer outputs. Based on the accelerometer

output, the magnitude of the drift component to be compensated, and the iteration

time duration, incremental corrections are applied to the gyro pulse count.

Output axis (OA) coupling drift errors (reference Section 3.2.3d) result from

a lagging float motion in response to rate changes about the output axis (inertia

torque). Hence, extra torque pulses result when the gyro case is accelerated.
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These pulses operate to maintain the float at the signal generator (SG) null position.

OA coupling error compensation is accomplished by using OA angular acceleration

estimates derived from a second gyro whose Input Axis is collinear with the Output

Axis of the gyro requiring compensation. Correction is applied to the pulse count

by weighting the OA rate change estimates by the gyro parameter ratio I/H (Moment

of inertia about OA/wheel angular momentum).

Spin Reference Axis (SRA) cross coupling drift errors (reference Section 3.2.3c)

derive from float OA rotations. Those rotations (float hangoff) cause the Input Axis

to sense an angular rate composed of the rate about the Input Reference Axis plus

a component of the rate imposed about the Spin Reference Axis. To compensate

SRA cross coupling errors, it is necessary to determine the float OA angular

displacement and the imposed SRA rate. A two-step method is implemented to

determine float hangoff. The point-slope model derived in Section 3.2.3c, Equation

3.1.10, is used with rate estimates from the gyro. When no rate estimates are

available (for example, no torque pulse during an iteration interval), the

uncompensated interpolator output is used to establish the float hangoff magnitude

and polarity.

Anisoinertia drift (reference Section 3.2.3a) is generated when simultaneous

IA and SRA angular rates cause drift due to the float dynamics corresponding to

the differences in SA and IA float inertias. Anisoinertia error compensation is

based on estimating the IA and SRA rates and scaling the rate product by a coefficient

that is a function of the inertia difference. The coefficient used is a constant low

frequency coefficient that does not account for inertia shifts along the SA resulting

from wheel rotor decoupling effects above the wheel hunt frequency. The

implementation of the more complex rate dependent coefficient requires the spectrum

analysis of the rate estimates, a task worthy of further investigation. In actual

flight environments, however, the typical random frequency spectrum is below the

wheel hunt range (2-4 hz) and therefore the simple model approach appears to be

adequate.

Gyro misalignment angles cause attitude errors by sensing angular rates from

orientations other the Input Reference Axis. The misalignment angle about the Spin

Reference Axis is a fixed quantity that is dependent on gyro mounting alignments.

The Output Axis misalignment, however, includes in addition to the fixed quantity
dynamic alignment terms that represent the effects of hangoff due to the applied

input rate. The fixed misalignment errors are corrected by subtracting the estimated

rate error resulting from misalignments from the gyro pulse count. Dynamic error

terms such as Anisoinertia and SRA cross coupling have processing similarities to
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the Output Axis misalignment term (i.e., multiplication by the Spin Reference Axis

rate estimate) and therefore the composite of these errors is treated in the same

processing block in Figure 4.3.1.

4.3.2.b Accelerometer Compensation Algorithm

The accelerometer compensation model used in this program included only

the following terms:

indicated input accelerometer misalignment errors

output bias

A

SF = AI + B + ( ORA ) aRA - A ) aORA

centripetal and tangential acceleration

2
+ Re2 + R

Figure 4. 3. 3 - Accelerometer Compensation Model

The detailed compensation equations and their sequence is given in Appendix

F. As noted in Section 3.1.3 other accelerometer dynamic terms such as anisoinertia

and OA coupling were not compensated for in this program. They can introduce

significant although transient type errors (as tabulated in Table 3.1.2). It was intended

to investigate modeling compensation for these terms. However, the program

emphasis was directed to gyro dynamic modeling and time did not permit their

implementations.

This discussion provides a descriptive review of the processing flow. The

accelerometer pulses are first scaled by the accelerometer's scale factors to

determine the magnitude of the velocity increment. Two scale factor values are

used to distinguish differences between positive and negative acceleration inputs.

Accelerometer bias is corrected by adding increments to the pulse count.

The increment magnitude is based on the bias magnitude and duration of the

compensation interval.

The accelerometer misalignment angles are both fixed quantities dependent

on the mounting alignment. Misalignment errors are corrected by subtracting the

estimated acceleration errors from the input accelerometer pulse count.
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Centripetal acceleration (rw 2 ) and tangential acceleration (rw) normalization

is required because of the dispersed location of the accelerometer mass elements.

Ideally, the mass elements of the'three accelerometers in an inertial system

should be located at a single point such that all acceleration can be sensed in three.

dimensions at a single point. This situation is obviously impossible to attain. The

errors caused by the angular rotation of each separate accelerometer mass element

with respect to an arbitrary reference point is represented by a centripetal error

and by a tangential rotation acceleration error (see Appendix G).

If a convenient system reference location is chosen, compensation for angular

rate errors from any instrument can be accomplished. The rotational error sources

are computed from the different instrument positions, and by the use of the sensed

body angular rate and change in rate over the compensation interval. For this

program, the X accelerometer mass element is the point of reference.

4.3.3 Attitude Algorithm

The attitude algorithm is a transformation algorithm that provides a

mathematical recurrent form to transform data from one frame of reference to
another. The type of attitude algorithm implemented in this program is the four

parameter quaternion transformation. 9

The basic quaternion algorithm is of the form

q(t + At) = (t) Y(t, At) (4.3.1)

Quaternion q(t) is the attitude quaternion at time t, and q(t+At) is the attitude quaternion

at t+At. Thus, quaternion Z(t) propagates over a time interval At.to quaternion

q(t+At) as a function of the update quaternion x(t, At). The update quaternion represents

incremental attitude information updated by the gyro loops. The exact third order
quaternion expansion is given as

(t, At) = 1 + - x - L (4.3.2)

0 is the current attitude update from the gyro loops and 0* is the set of angular

increments over the past sampling interval.
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The third order algorithm expansion implemented in this program includes

two main subroutines: the first subroutine updates the quaternion of rotation to

perform the third order attitude algorithm. 10 The equation representing the algorithm

is expressed as:

P = Sx + Rpx + S (pyaz - pzay)

S= S + Rp + S (pa - pa )

p Say R(4.3.3)

P =XSaz + Rpz + S (pza - pya )

where S and R are functions of the gyro angular increments Ae:

2

S= (1- 1
24

R = (1 - (- A))

This algorithm implementation is a third order quaternion expansion without

the cross product term [( x . The cross product term approximates the

angular velocity change between each axis from one iteration to the next. The modified

algorithm does not affect the third order performance in the constant slew

environment. In the coning environment, however, the modified algorithm will function

with the bandwidth characteristics of a first order algorithm.

Each quaternion component, X, Px, Py' and pz, is formed from three 16 bit

signed computer words with the resulting capacity up to a 45 bit signed word.

Thirty-seven (37) significant bits were selected for the 100 iteration per second

algorithm. One bit uncertainty during an iteration interval corresponds to a 0.01

m eru uncertainty. The 50 and 25 iteration per second algorithms were implemented

with 36 and 35 bits of significance respectively because the input gyro pulse scaling

was halved with update time reduction.

The second subroutine of the attitude algorithm corrects the quaternion to

maintain the unity constraint. It imposes the constraint that:

X + P2 +p2 2 = 1 (4.3.4)
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by approximating the following equations:

X' =Xd

P' Pd
x x

(4.3.5)

y y

p = pd
xz

where

4.3.4 Velocity Algorithm

The velocity algorithm constructs a cosine matrix from the quaternion which

transforms a vector in the body frame to the inertial frame. The cosine matrix is

expressed in terms of the quaternion element as:

1-2 (p2 +P 2 ) 2 (pxPy - ) 2 (px + y

C 2 (Pxpy+ X p) 1-2 (p2 + 
2 ) 2 (p yP - XP)

2 (px - XPy) 2 (pypz +X 1-2 (px + y

and

-IIB

Figure 4. 3. 4 Velocity Algorithm

The directional cosine matrix elements are derived each update with 30 bits

of significance. Hence, each element is accurate to 1 part .in a billion.

4.3.5 Algorithm Evaluation

The three axis strapdown test system developed in this program permits the

evaluation of the algorithm's performance characteristics in various environments.

By selecting the test environment, specific error sources are isolated and therefore

can be evaluated.
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As background information, this section reviews prior simulation and analysis

studies that define inherent algorithm performance characteristics. The areas of

study include: 1) attitude algorithm small angle error studies, 2) pseudo coning

drift evaluations, 3) coning environment studies, 4) algorithm slewing errors, and

5) algorithm round-off errors.

4.3.5.a Attitude Algorithm Small Angle Studies

11
A study by H. Musoff evaluates the relationship between algorithm

performance and small angle deviations that include alignment errors and gyro drift.

The analysis uses system quaternion differential equations to determine that an

earth rate compensated algorithm propagates attitude errors in the inertial frame

as ramping sinusoids. The sinusoidal periodicity is a direct function of earth rate

and therefore hasa 24 hour period. The ramp slope and the peak to peak sinusoidal

amplitude are linear combinations of the system alignment angles and gyro drift

(see Appendix H).

Figures 4.3.5, 4.3.6, and 4.3.7 are the attitude errors in the inertial frame

for a 63 hour test period with the system fixed to an east, down and north orientation

(X, Y and Z axes respectively). The measured attitude errors match the theorectical

results in two ways: 1) the attitude errors propagate as sinusoids, and ramps are

observed only on the two axes with significant earth rate components (down and

north) and, 2) the sinusoidal periodicity is 24 hours.

Since the attitude drift magnitudes are linear combinations of the system

alignment errors and gyro drift, a solution was attempted to determine the error

parameters from the measured drift error. An explicit solution was not possible

because of insufficient number of independent equations. Instead, the data was analyzed

with a comparison to SIRU system test in which a 0.50 alignment error was impressed

about the vertical and east axes. The comparison, in terms of peak to peak sinusoidal

magnitude, is given below:

TABLE 4.3. 1 SPOT-SIRU COMPARISON

PEAK TO PEAK SINUSOID MAGNITUDE

SIRU SYSTEM SPOT SYSTEM
(0. 50 Alignment Offset)

VERTICAL AXIS 20.0 m radians 1.6 m radians

NORTH AXIS 18. 0 m radians 1. 6 m radians

EAST AXIS 24. 0 m radians 2.0 m radians
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The ten to one ratio between the SIRU and SPOT sinusoidal amplitudes implies

that the SPOT alignment error is no greater than 0.050. This alignment calculation

however neglected the gyro drifts residuals and assumed a linear relationship between

the alignment errors and the peak to peak siniousidal magnitude. Thus, the actual

alignment error is considerably less than 0.050

4.3.5.b Pseudo Coning Drift Evaluations

Pseudo coning drift results if OA coupling errors are not compensated. As

an example, in a single axis oscillatory environment without OA coupling

compensation, the attitude algorithm is excited on two axes. The first axis is the

normal input oscillation sensed by the gyroscope whose input axis is along the axis

of oscillation. The second axis results from OA coupling errors. The OA coupling

error is a function of the float inertia response and is proportional to the derivative

of the input oscillatory motion. Thus;

input oscillation excitation 
= a sinwt

OA coupling error = I/H aw coswt

where

a is the peak oscillatory amplitude (4.3.6)

w is the oscillatory frequency

I is the float inertia about OA

H is the angular momentum

If OA coupling errors are not compensated, the attitude algorithm operates

on both inputs, assuming them to be true oscillatory inputs that are displaced by

900 and corrects for a non-existent kinematic coning drift on the third axis. The

resulting effect is the generation of an attitude drift error that is exactly equal to:

22
pseudo coning drift 2H (4.3.7)

The pseudo coning drift test evaluations that are described in Section 5.2 were

conducted using gimbal oscillatory excitations over a range of 0.5 to 25 hertz.

(The closed loop response for the outer and inner gimbals for the above test spectrum

is illustrated in Appendix A, Figure A.1). The effective pseudo coning error generated

in the gimbal test system for various test inputs is illustrated in Table 4.3.2.
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TABLE 4.3.2 PSEUDO CONING ERROR MAGNITUDES

Oscillatory Outer gimbal Pseudo Coning Drift

frequency amplitude
(hertz) (radians) meru O/HR

0.5 0.024 77 1.15

1.0 0.024 308 4.62

3.0 0.011 605 9.08

5.0 0.0057 434 6.66

10.0 0.0015 120 1.8

25.0 0.0002 11 0.17

Coning Evaluations

True coning, unlike pseudo coning, is a kinematic drift that occurs in the

single-degree-of-freedom gyro mechanization in a multi-axis oscillatory

environment. Coning is evaluated with two phase displaced oscillations with identical

frequency applied to two of the three orthogonal axis, and thereby causing the third

axis to trace a cone at an angular rate equal to the rotation frequency and with an

amplitude proportional to the product of the input excitation. The third axis senses

a rate equal to:

Drift Rate = a b sin

where

a and b are the peak oscillatory amplitudes (4.3.8)

is the phase displacement between the oscillatory inputs

w is the oscillatory frequency

Coning drift is corrected by sensing the sinusoidal inputs and their relative phase,

and subtracting from the third axis the appropriate drift magnitude. Attitude algorithm

coning performance is therefore related to its bandwidth.

Figure 4.3.8 shows the performance of three algorithm orders in the coning

environment. Coning error (defined by the ratio of algorithm output drift magnitude
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to the coning drift input) is plotted as a function of the oscillatory frequency (f)

multiplied by the computer update interval (At).

With regard to theuseof the Figure 4.3.8, one can determine the coning error

in a specific strapdown computational mechanization for a known coning environment -

in the following manner. Assume a first order algorithm operating at 100 iterations

per second. Then for 1 Hz coning input frequency the fat point on the abscissa of

Figure 4.3.8 corresponds to 0.01. The percentage coning error that would propagate

would then, from the curve correspond to approximately 1% on the ordinate for the

first order curve. The resultant coning drift rate would then correspond to 1% of

the solution to Equation 4.3.8 for the specific cone angles and frequency.

The algorithm performance curves in Figure 4.3.8 are derived using small

angle approximations (coning amplitude is less than 50), and with zero algorithm

quantization. With quantization, time lags are introduced into the attitude information

and SRA cross coupling errors become more significant. Coning performance is

also influenced by quantization. At low frequencies,coning performance tends to

degrade due to quantization however, at higher frequencies the quantization effects

are masked by the effects of the finite iteration interval and the performance closely

follows the curve shown in 4.3.8.

Note, that the first - and second- order algorithms performance are identical.

These results agree with computer simulations by Otten 12, and illustrate the

similarity of their algorithm bandwidth characteristics. The significant improvement

observed by the third order algorithm is related to the use of both past and present

incremental gyro outputs. The point f A t = 0.5, represents the theoretical limit in

the ability of any algorithm to recognize any coning input. That is, at least two

samples for each cycle of a sinusoidal input. are required for adequate input

recognition.

The algorithm performance characteristics generated in Figure 4.3.8, assume

a symmetrical coning input. The same results also apply to non-symmetrical inputs,

as was imposed by the gimbal test system, since the coning error term is a squared

trigonometric function.

The effective coning environment based on gimbal oscillatory data and the

expected first-order algorithm performance is given in Table 4.3.3.
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TABLE 4. 3. 3 CONING ENVIRONMENT

Frequency Amplitude Coning Input Coning Error for

(radians) a 100 update/second

Inner Outer algorithm

(hertz) Gimbal Gimbal meru O/HR (%)

0.5 0.022 0.024 11,930 179 0. 012%

1.0 0. 022 0. 024 23,720 356 0.05%

5.0 0.011 0.0057 13,600 204 1.4%

10.0 0.004 0.0015 2,800 42 6.0%

25.0 0.0006 0.0002 110 1.6 25.0%

4.3.5.c Algorithm Slewing Errors

For a constant-slew rate the rotational angle error for various orders of

algorithm expansion is given in Table 4.3.4 where 0 is the total angle traveled over

the update interval.

TABLE 4.3.4 ALGORITHM SLEWING ERRORS

Algorithm Three Axis Unit Length

Order Slewing Error Degradation Error

1 03 92

12 4

2 3 04

24 64

3 95 94 92

480 192 12

A trade-off exists in selecting the iteration interval with respect to slew rate

because the errors are dependent on the angle accumulation per update. For high

slew inputs, a relatively fast iteration rate is required to minimize the generated

error. Figure 4.3.9 illustrates these trade-offs.
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The slewing errors are negligible with a third order algorithm. At 25 iterations

per second in a one radian per second environment the slewing error is less than

1.0 meru (0.0150 1 HR).

4.3.5.d Algorithm Round-off Errors

Computer round-off errors result from the finite word length used in

implementing the algorithms. Inthis system, the 100 iterations per second algorithm

uses 37 bits per word, and the 50 and 25 updates per second algorithms use 36 and

35 bits respectively.

14

Computer simulations have established that round-off errors propagate

as sinusoidal functions. Hence, in the long term, the error averages to zero. The

frequency of propagation is equal to the quaternion frequency which is half the

mechanical slewing frequency of the instrument package. The error magnitude is

a function of the arithmetic operations required in each iteration. Therefore, its

magnitude is independent of the mechanical slew rate, and is a function of both the

algorithm expansion order and computer word length. The peak round-off error

increases with algorithm complexity and therefore the error will differ for the same

algorithm order depending on the computational efficiency of the particular program

coding and. the number of operations. Hence, the third order algorithm without the

cross product term has less round-off errors. The peak magnitude for a complete

third order algorithm (including cross-product term) is given in Table 4.3.5.

TABLE 4.3.5 PEAK ROUND-OFF ERRORS

Algorithm Implementation Single Axis Slew Three Axis Slew Environment
Environment

100 updates/second 0.1 meru (0. 0015 0 /HR) 1.0 meru (0. 015 0 /HR)

50 updates/second 0.3 meru (0. 0045 0 /HR) 1.2 meru (0. 018 0 /HR)

25 updates/second 0. 4 meru (0. 006 0 /HR) 1.4 meru (0. 021 0 /HR)

These errors are not considered significant because of the averaging effect.

4.4 Error Quaternion

The fine grain evaluations of the real time compensation and attitude algorithms

requires the comparison of the quaternion generated from the attitude algorithm to
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a perfect quaternion based on attitude data furnished from the resolver encoders

and system alignment calibration data.

The perfect quaternion is defined as a unit quaternion that transforms an

arbitrary vector in the body frame (B) to an earth fixed navigation frame (N) that

coincides with the rotary table axes of east, down and north.

Perfect quaternion = (qN)

Such that

N N - (4.4.1)

N B B p

The perfect quaternion is developed entirely from the angular rotations that isolate

the strapdown body frame from the navigation frame. These isolating rotations

include: the gimbal orientation, resolver alignment errors, gimbal nonorthogonalities

and table leveling errors.

The quaternion that is computed from the attitude algorithm output is also a

unit quaternion relating the body frame to the navigation frame, but with a different

formation.

-N
Computed quaternion = () (4. 4. 2)

c

where:

N -N I BO
(q)c = (q) (qB 0 ) (q )

_BO

qB a unit quaternion equal to the output of the attitude algorithm. It

relates a vector in the body frame at any time to the body frame

at t = 0. Thus at t = 0, qB = (1, 0, 0, 0)

-I

qB0 a unit quaternion that relates the body frame at t = 0, to an

inertial frame of reference. It is a time independent trans-

formation since the inertial frame never moves and the body

frame at t = 0 is also fixed.

_N
q, a unit quaternion which depends only on the earth's rotation

-N wiev wineh
qI= cos wiet/2 + (J wie wieh) sin wiet/2 (4.4. 3)
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wieh - horizontal earth rate component

wiev - vertical earth rate component

wie = wiev 2 + wieh 2

The error quaternions are formed by comparing the perfect and computed

quaternion as follows:

error quaternion in the body frame

S N N (4. 4. 4)

error quaternion in the inertial frame

i= ( N)P (9)c (4.4.5)

Derivations of the error quaternions are given in Appendix I and J. In the

body frame the error quaternion represents the transformation between two body

frames: the actual body frame and the computed body frame. This means that the

error quaternion in the body frame is the difference between where the body actually

is, and where the algorithm indicates it is. Likewise the error quaternion in the

inertial frame represents the transformation between the true inertial frame and

the computed inertial frame.

To demonstrate the significance of the above error quaternions, an analysis

is included in Appendix K which illustrates the effects of alignment errors, gyro

scale factor errors, and gyro drift on attitude error propagation in a slew environment.

A IBM 360/75 program is implemented to compute and plot error quaternions

in the body and inertial frames. The software is written to accept the system

quaternion and angular encoder information from either magnetic tapes or via the

Bell 201A data set link. Program flexibility is incorporated to bypass select data

points, provide data smoothing and to select the range of the ordinate scale.

4.5 Land Navigation Software

15, 16

An inertially stabilized land navigator is implemented for real time

processing in the H316 computer. The block diagram of the navigation algorithm

is given in Figure 4.5.1 and the difference equations in Appendix L. The navigation

algorithm operates at one iteration per second with information inputs provided by

the strapdown system and associated compensation algorithms.
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The inertially stablized land navigator computes the velocity and position

vectors in the inertial coordinate frame. Forty-five (45) bits of accuracy are used.

A local vertical navigator was also considered for implementation, however,

greater programming complexities were expected because of Coriolis force

compensation requirements. The advantage of the local vertical navigator is that

latitude and longitude parameters are derived in the navigation frame and therefore

conversion computations are not required. For this reason the local vertical navigator

provides a better interface for analysis and display purposes.

The inertially stablized navigator by performing computations in the inertial

frame that is earth centered and non-rotating and therefore does not require coriolis

computation. Hence, its algorithm is less complex to implement. The position

vector in this implementation ( shown in Figure 4.5.2) is earth centered and describes

location (P) on the earth's surface. Note that the Z component is along the polar

axis, and the X and Y components are orientated in the equatorial plane with Y axis

east. From this vector latitude and longitude parameters are then derived. For

ease of use, the latitude and longitude parameters are computed remotely using the

IBM 360/75 computer via the magnetic tape interface. Appendix L describes the

analysis algorithm.

4.6 Diagnostic and IBM 360/75 Remote Terminal Programs

In addition to the calibration and compensation software diagnostic and analysis

software are required for hardware and software verification, and for parameter

computations.

The verification of the complex algorithms required the writing of various

diagnostic programs in the H316 language, These programs verified the integrity

of the algorithm's instruction; their sequence and interface with the system's

hardware.

The IBM 360/75 computer and its remote terminal facility provides quick

turnaround capabilities that proved indispensable to system calibration and analysis

software development.

The H316 diagnostic and IBM 360/75 remote terminal programs are listed,

with a brief description, in appendix (M).
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5.0 Evaluation Results

5.1 Calibration Results

5.1.1 Introduction

Inertial instrument calibration is necessary for the fine grain evaluation of

strapdown system performance. Without accurate calibration data, 'the isolation of

algorithm quantization and bandwidth errors from the inertial instrument error

sources is not possible. Periodic calibration is therefore required to establish the

current instrument calibration. The automatic test facility permitted instrument

certification nightly. In addition, the large amounts of system calibration data provided

meaningful statistical insights into the short and long-term data characteristics.

This section discusses the calibration procedures and results. First discussed

is the gimbal alignment calibration results that determines the strapdown package

orientation with respect to an earth fixed reference frame. The gimbal calibration

results demonstrate gimbal alignment shifts with system temperature cycling and

that a linear correlation exists between accelerometer calibration data and the

gimbal's alignment. These results are important in that they allowed the routine

verification of gimbal alignment with accelerometer data.

Static calibration results are next.discussed in terms of their short and long

term statistics. Statistical evaluations of gyro calibration data demonstrated less

than one meru (0.015 0 /HR) drift stabilities between instrument calibrations. This

conforms to the program's requirement. Evaluation of the gyro data over a sixteen

month period has established a level of performance across several system

cooldowns and wheel start - stop sequences. The accelerometer data is presented

in Volume II.

Dynamic calibration discussions include gyro scale factor and alignment

calibration, anisoinertia calibration, and verification of accelerometer centripetal

acceleration effects.

5.1.2 Gimbal Calibration

For this test program, since the gimbal system is the test bed, the determination

of the orientation of the inner gimbal package with respect to an earth fixed reference

frame is extremely important. Thus, characteristic gimbal orientation errors

associated with leveling errors, gimbal non-orthogonalities and resolver
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misalignments were calibrated. The calibrations were then used in a transformation

matrix to define the inner package attitude.

The gimbal alignment errors are defined in Appendix N and Figure 5.1.1 is

the direction cosine matrix, using small angle approximations, that determines the

strapdown package orientation (Xref, Yref' and Zref) in terms of an earth fixed

frame (X , Ye, and Z . The earth fixed frame coincides to the test table triad of

east, down, and north.

The gimbal calibration, a technique similar to Apollo gimbal calibration

procedures,uses accelerometer nulls to calibrate the alignment errors. The attitude

difference between the accelerometer's horizontally orientated Input Axis and the

test table's horizontal axis defines a specific sum of gimbal alignment errors and

accelerometer alignment and bias. Twenty-four (24) unique calibration positions

are used with a simultaneous equation solution to isolate the required alignment

magnitude. The calibration uncertainty, a function of accelerometer and test table

positioning uncertainties, is seven (7) arc seconds (0.034 milliradians). Appendix

N lists the calibration positions and calibration equations. The calibration

computations are performed on the IBM 360/75 remote terminal facility.

Gimbal calibration data was periodically obtained during the course of the

program. Review of the data illustrates a gimbal alignment stability within the

calibration uncertainties (0.034 milliradians) for benign test periods that included

no gimbal disassemblies and temperature cycling. Three system cooldowns to room

temperature (70 F) were experienced during the observation period, reasons included

building air conditioner maintenance, power outages and gyro wheel start problems.

During one of these overnight cooldowns (9 August 1971), the gimbal alignment shifted

greater than the measurement uncertainty. Specifically, the inner and middle gimbal

resolver alignments (E IGR and E MGR) shifted 0.18 milliradians and the inner gimbal

non-orthogonality ( IGA) shifted 0.098 milliradians. This occurrence demonstrated

that even in a well designed gimbal system (Apollo 1 technology), structural expansion

and contraction from temperature cycling can cause gimbal alignment shifts to require

recalibration.

The gimbal alignment shift was also observed in the accelerometer calibration

data. For benign test periods, the standard deviation of the accelerometer Input

Axis alignment is generally 0.02 milliradians. Note that this magnitude is similar

to the gimbal uncertainty. Over the 9 August 1971 cooldown, the accelerometer

alignment shifted 0.15 milliradians which is equivalent in magnitude to the gimbal

alignment shift. Hence, the gimbal alignment shift was detected in the accelerometer
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calibration data. Restoration to the baseline accelerometer alignment measured

prior to the cooldown was achieved when the gimbal system was re-calibrated.

The interdependency between gimbal and accelerometer alignment data

demonstrates the usefulness of the accelerometer data to monitor the gimbal

calibration status. Rather than calibrating the gimbal alignment on a periodic basis,

a task that requires considerable time, calibration is necessary only when the

accelerometer data indicates that it is warranted. Of additional interest is the

possibility that the accelerometer alignment data can be used in an adaptive process

to correct gimbal alignment anomalies. Thus, a system alignment maintenance

capability based on accelerometer inputs may exist and therefore warrants future

study of possible implementation.

5.1.3 Static Calibration

A twelve position procedure is used to calibrate the gyro drift components

and the accelerometer's scale factor, null bias and alignment angles. In each of

the twelve positions, gyro AO pulses and accelerometer AV pulses are accumulated

for a ten minute test period. Six of the twelve position are cardinal test positions

with each triad axis orientated, up and down, along a vertical axis. The six remaining

test positions -orientate the triad at an offset angle of 450 from the vertical for

major compliance (anisoelasticity) calibration. The test positions are given in

Appendix P with the pertinent calibration equations.

The gyro calibration model is a five parameter model (see Appendix D)

comprising the non-acceleration sensitive drift component (NBD), and the three

acceleration sensitive drifts: ADIA, ADOA, and ADSRA, and major compliance (KSS
- K II).

Input Acceleration
Commanded Axis in Sensitive

Torque Rate Torque Acceleration Sensitive Torques

SFX ITG = HSWIRA + NBD + (ADIA)a I + (ADOA)a O + (ADSRA)a S

Acceleration

Square Torque Misalignment Angles

+ (KSS - KIi)aSa I + AORAf(Iie) + ASRAf( le)

Gyro Calibration Model
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four overnight calibrations (designated as one-third day), 2) one calibration per

day for three consecutive days, and 3) one calibration per day for three weeks.

The standard deviations are computed for each group; using 27 one-third day

samples, 9 three day samples and 3 three week samples. Figure 5.1.2 is the histogram

showing the average standard deviation for each period.

The one-third day stability is generally 0.5 meru (0.0075 0 /HR) or better and

the three day stabilityis 1.0 meru (0.015 0 /HR). This performance level is adequate

for the maintenance of calibration intergity for the fine grain strapdown evaluations.

Gyro 415 has the best overall stability, however, the results are inconclusive

with regard to rating the performance of the 410 series, 18IRIG Mod B gyro. The

gyros selected for test may not represent the typical performance level of their

respective gyro family. In addition, system level tests introduce various unknown

parameters that are impossible to separate from the gyro performance. These

parameters include: gimbal alignment uncertainty, positional (orientation in the

IMU) sensitivities, and differences in the pulse torque electronics and power supplies,

interface and noise levels.

Most of the statistics increase with the test interval. This increase may be

caused by the randomness of data, changes across environmental variations, and/or

a ramping drift with time (gyro MB-4 ADSRA has a ramp component of 10 meru/g

per month).

Note that ADOA and major compliance are generally not time dependent.

The long term gyro drift performance (NBD, ADSRA, and ADIA) are plotted

in Appendix Q for gyros MB-2 , MB-4, and 415. The test period encompasses a

sixteen month period, April 1971 to July 1972, and therefore measures gyro

performance across five system cooldowns and six wheel stop-start sequences that

are described also in Appendix Q.

The long term drift data illustrates known generic physical design performance

problems of the early 18IRIG Mod B gyro family used in this test program. One

such problem is ADIA and ADSRA shifts across cooldowns. For example, MB-2,

measured a 20 meru/g change (0.30 0 /HR) across the 9 August 71 cooldown. This

cooldown sensitivity has been attributed to structural instabilities caused by

The MB gyro population was fabricated by Bendix.
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Gyro scale factor and the two gyro alignment angles are also included in the

calibration model, however, their values are entered as known quantities from dynamic

calibration data. Hence, an iterative process is necessary for gyro calibration

between the static and dynamic procedures.

With each accelerometer sensitive drift component calibrated, a gyro bias

drift value is obtained; NBDI, NBDO, and NBDS respectively for the Input Axis,

Output Axis, and Spin Reference Axis orientated vertically. It has been observed

that differences exist between the three bias drift magnitudes, for example,

NBDI4NBDO NBDS. This difference is caused by positional sensitivities as affected

by measurement uncertainties and thermal gradients. Clearly, because the

phenomenon is observed in both gimbal and strapdown systems, additional study of

fine grain system calibration procedures is warranted. For compensation purposes,

the average of the three values (NBDI, NBDO, NBDS) is used and for gyro MB-2

this has been determined to be the least square value.

The accelerometer model (see Appendix C) comprises a single null bias, two

alignment angles, and separate scale factors for positive and negative acceleration

inputs.

Indicated. Input Axis Accelerometer
Output Acceleration Bias Misalignment Errors

S  = A. + B + A Aap A (5.1.2)

SF+ or SF 1 PAaO

Accelerometer Calibration Model

The acceleration parameter calibration is based on a four position calibration

procedure. Section 5.4 presents the results of studying higher order accelerometer

models with data inputs from up to 48 test positions. The similar five parameter

accelerometer model, however, proved satisfactory with accelerometer compensation

results verified within the uncertainty of the null bias. The accelerometer calibration

results are presented and discussed in Volume II of this report.

The automatic test facility is used to sequence the strapdown package through

the twelve positions required for inertial instrument calibration. Overnight

calibration (four complete calibration cycles in a ten (10) hour period) were run

periodically during the test period. During the four month period (19 May 1971 to

16 September 1971) 180 sets of calibration data were compiled for each inertial

instrument. This data population was divided into three groups: 1) three of the
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dissimilar materials used, for example, the torquer coil support (beryllium-oxide-

ceramic) and the float (beryllium), and material mismatches in the wheel assembly.

Significant improvements are anticipated with the 181RIG Mod D gyro which is

designed with a PM torquer and an integral beryllium oxide coil support that is the

sleeve for the entire beryllium oxide float body. It also has an integral wheel gimbal

assembly and the balance adjustment screws have been eliminated.

A second generic problem is the exponential change of ADSRA over a long

period of time. Gyro MB-4 ADSRA shifted 80 meru/g over a sixteen month period

with a two month time constant. Such shifts can be attributed to the floatation fluid

filling empty cavities and thereby shifting the center of gravity over a period of

time 14 The 18IRIG Mod D gyro has been designed with many improvements

including the elimination of adhesive joints between dissimilar materials. Data on

several instruments has verified that this drift change phenomenon has been

eliminated.

5.1.4 Dynamic Calibration

5.1.4a Gyro Scale Factor and Alignment Calibration

A three position procedure is used to calibrate gyro scale factor and alignment

angles. In each position, positive and negative constant rotational rates are impressed

about a horizontal, east-west orientated axis. The calibration positions and equations

are given in Appendix R.

Data accumulation is achieved within an exact revolution of the applied rate.

Therefore, the contribution of the acceleration sensitive drift components averages

to zero. The nonacceleration drift component is compensated from the accumulated

torque pulses by an amount based on the drift magnitude and test duration. Second

order effects such as anisoinertia are not considered in the scale factor calibration

because of their insignificant effect (less than 0.05 ppm).

Gyro scale factor calibrations are achieved automatically at a rate of 0.066

radians per second. From the accumulated system test data, a six (6) hour standard

deviation of 5.0 ppm and a two (2) month benign test period standard deviation of 12

ppm was demonstrated. The gyro alignment stability is established as 50 microradians

(10 arc second), primarilya test resolution uncertainty resulting from the alignment

uncertainties of the gimbal system.
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5.1.4.b Anisoinertia Calibration

A three position calibration procedure is designed to calibrate the low frequency

anisoinertia coefficient, defined by:

ISA -IIA

Anisoinertia coefficient = H (5.1.3)

ISA' IIA are the float inertias about the Spin Axis and Input Axis respectively. H is

the wheel angular momentum.

The anisoinertia calibration procedure was based on orienting the inner and

middle gimbals with a 450 offset so that the gyro Input Axis is 450 with respect to

the horizontal. The outer gimbal axis is then rotated causing equal rates to be

simultaneously impressed about the gyro Input Axis (IA) and Spin Reference Axis

(SRA). In each test the gyro SA and IA bisector axis, (the axis of rotation) is along

the east-west line. The calibration positions (7, 8 and 9) and calibration equations

are given in Appendix R.

The accuracy of the anisoinertia calibration, however, was severely limited

because of a high sensitivity to the gimbal alignment and pulse count uncertainties.

Appendix S presents an analysis that defines the anisoinertia sensitivity to gyro

scale factor errors, pulse count uncertainty and gimbal alignment errors. The

sensitivity to gimbal alignment errors is inversely proportional to rotational speed.

Because the rotational rate is limited to the full-on rate capability of the gyro loops,

further improvement is not possible in the 450 offset calibration position unless

the gyro input axis is oriented further from the axis of rotation. At this 450 angle,

a 33% coefficient uncertainty was measured for every arc second of alignment

uncertainty. With an offset of 67.50, the measured sensitivity is 26% of coefficient

change per arc second of gimbal alignment uncertainty. These uncertainty magnitudes

severely limited the ability to calibrate anisoinertia in the gimbal test fixture.

Because the inertia difference (ISA - IIA) and the wheel angular momentum

(H) parameters are constant parameters and are accurately measured during gyro

fabrication, anisoinertia calibration was not considered critical in this program.

Section 5.2.2 discusses the results of anisoinertia compensation using specification

sheet values for gyro inertia and angular momentum.
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5.1.4c Centripetal Acceleration Calibration

Centripetal acceleration calibration is conducted to demonstrate the centripetal

acceleration phenomenon and to verify the spatial location of the accelerometers

for accurate compensation.

Calibration is conducted by accumulating accelerometer (AV) pulses for four

revolutions at selected rates from 0.066 to 1 radian per second. The accumulated

pulses, weighted by the accelerometer scale factor, represents an indicated ac-

celeration that includes null bias and centripetal acceleration. The null bias effects

are removed and an indicated centripetal acceleration function is obtained, illustrated

in Figures 5.1.3 and 5.1.4 for the Y and Z accelerometers respectively. The abscissa

scale is rotational rate squared (w ), and therefore the linear slope is the distance

between center of rotation to the accelerometer. The slope value agrees within 0.1

centimeter of mechanical drawing measurements. Hence, the centripetal acceleration

compensation parameters are adequately determined from the mechanical drawings.

The difference between the indicated acceleration at the positive and negative low

rates is a function of testing and analysis uncertainties. Only three negative rotational

rates were tested and without additional points, a more accurate determination of

the calibration curve is not possible.
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5.2 Compensation Evaluation Results

5.2.1 Introduction

The main objective of this program is to evaluate the performance of an inertial

strapdown system in dynamic environments. These evaluations centered on the

verification of the real-time compensation models and techniques, discussed in

Section 4.3.2, and on the understanding of strapdown performance limitations relating

to system quantization and bandwidth.

Significant results are achieved in this program. The coning bandwidth has

been measured and correlates well with theoretical results. Quantization effects

in the coning environment were exhibited by an increase in the low frequency coning

errors as a result of attitude lags.

The assimulation of the coning bandwidth data with OA coupling results allowed

the determination of the inherent bandwidth of the OA compensation technique. The

OA coupling compensation bandwidth is found to be a function of the sampling

technique. From the analysis of the test results, it was observed that a more effective

attenuation of OA error propagation is attainable when the OA compensation algorithm

is operated at a higher iteration rate than the attitude algorithm.

Other results discussed in this text pertain to gyro scale factor linearity

compensation (the results proved 7 ppm compensation effectiveness over the full

dynamic range), and the compensation of anisoinertia and SRA cross coupling errors.

Gyro quantization is found to proportionally affect the system attitude uncertainty.

The effective evaluation of strapdown error phenomenon requires the selection

of a specific test environment to isolate the desired error parameter. Figure 5.2.1

depicts the SPOT gyro strapdown orientations with respect to a single axis slew

(constant angular rate) test input. Tabulated in the Figure is a list of the error

sources that are excited with respect to each body axis by a slew about the Z axis.

The predominate error sources in this environment are the scale factor error of

the gyro Whose Input Axis is along the axis of rotation and the misalignments of the

gyros whose IAs are perpendicular tothe axis of rotation. Thus, the single axis

slew environment is an effective test environment for evaluating scale factor

compensation and scale factor linearity compensation. Analysis of the off-axis

attitude error propagation allows one to size gyro alignment errors.
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Figure 5.2.2 shows the gyro orientation with respect to simultaneous test rates

applied about the X and Y axes. Note that the X axis error propagation includes

contributions from scale factor, gyro alignment, anisoinertia and SRA cross coupling

errors. To adequately evaluate anisoinertia and SRA cross coupling error

compensation, scale factor and alignment error compensation must first be

determined in the single axis slew environment.

Figure 5.2.3 depicts the single axis oscillatory test environment. The

predominate error source is the pseudo coning drift which propagates about the Z

axis. This test environment is used to evaluate the effectiveness of OA coupling

compensation and for end-to-end strapdown bandwidth studies. Quanitzation tradeoffs

are also evaluated in this environment.

Figure 5.2.4 illustrates the multi-axis oscillatory test environment in which

error propagation is dependent on the relative phase of the oscillations. For example,

in phase oscillations (=0
0 ) generate anisoinertia and SRA cross coupling errors

about the X axis while quadrature oscillations (E=900) would generate a coning error

about the Z axis. Observe that OA coupling error compensation must first be

determined in the single axis oscillatory environment. The multi-axis oscillatory

environmerit is used to evaluate coning bandwidths and anisoinertia - SRA cross

coupling error compensation.

5.2.2 Bandwidth Studies

5.2.2.a Coning

When two orthogonal axes are oscillated with a 900 phase displacement, a

coning environment is imposed to the strapdown system. The strapdown algorithm

detects the oscillatory inputs, their magnitudes and relative phase, and generates a

third axis drift to cancel the coning drift.

The attitude algorithm has a known effective bandwidth in responding to a

coning input. This bandwidth was defined using computer simulations and is discussed

in Section 4.3.5.c. The objective of coning testing in this program is to verify the

simulation results and to evaluate the effects of gyro torque loop quantization.

Table 5.2.1 shows the oscillatory inputs applied, the estimated coning drift

generated (based on equation 4.3.8), and the theoretical coning errors that are defined

as the algorithm drift output to the coning drift input. Two algorithm orders (first

and third) are evaluated at 100 iterations per second. Coning evaluation at 25 hertz
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was not conducted because the oscillatory magnitude equaled the gyro loop

quantization. Under these conditions, large errors will exist in detecting the coning

input.

TABLE 5.2. 1 CONING ENVIRONMENT AND PERFORMANCE

Oscillatory
Amplitude

(radians) Theoretical

Frequency Inner Outer Coning Input Coning Error (%)

(hertz) Gimbal Gimbal Meru 0 /hr First Order Third Order

0. 5 0. 022 0. 024 23, 720 179 0. 012 0. 00001

i.5 0.022 0.024 11,720 356 0.05 0.00008

5.0 0.011 0.0057 13,600 204 1.4 0.02

10.0 0.004 0.0015 2,800 42 6.0 0.4

Figure 5.2.5 shows the coning input magnitude in meru (o/Hr) and the

theoretical coning performance for the first and third order algorithms. Suppression

of the coning drift input is achieved by both algorithms, although the third order

algorithm is clearly superior. The major difference between the first and third

order algorithm expansions is a cross product term that upgrades the system attitude

data using angular rate change estimates between different axes. Because of an

oversight in the initial software design, the cross product term was omitted from

the third-order algorithm implementation. Thus, the coning performance achieved

corresponded to the first-order bandwidth. It was intended to modify the software

and conduct limited testing with the third order bandwidth. However, the failure of

gyros MB-4, 427 precluded further testing. Verification was not considered essential,

however, since the behavior is analytically definable and has been comprehensively

simulated. In the constant rotational environment, the cross product term contributes

nothing and the modified algorithm performs as a third-order algorithm.

Three variations of computational quaternion parameters were tested:

1) a 100 iterations per second algorithm with a 5 arc seconds quantization

level,

2) a 100 iterations per second algorithm with a 40 arc seconds quantization

level, and

3) a 50 iterations per second algorithm with a 5 arc seconds quantization

level.
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The results of operating these algorithms in coning environments from 0.5 to

10 hertzare presented in Figure 5.2.6, superimposed on the theoretical normalized

curves given in Section 4.3.5.c. Normalization accounts for the fact that the abscissa

plots the product of computer iteration time (At) and coning frequency (f). The

ordinate scale is coning error in percent expressed as the algorithm drift output to

the total coning drift input.

Figure 5.2.6 also demonstratesthe fact that a third order quaternion expansion

without the cross product term performs with a first order algorithm bandwidth.

The deviation of performance from theoretical at low frequencies is a

manifestation of gyro loop quantization effects. The theoretical curves assume a

zero quantization and, therefore, because of attitude lags introduced by quantization

larger coning errors are expected. Note that with larger quantization levels (for

example, the 5 and 40 arc second quantization at 100 iterations per second) the low

frequency error increases (from 0.3% to 0.85% at f At = 0.005). Quantization effects

have no effect at higher frequencies because the quantization error is bounded over

a finite interation interval, and the total error magnitude is significantly greater.

At higher frequencies (for example 10hertz), the deviation of the algorithm's

performance from theoretical is the result of distortion effects as the coning

frequency approaches the sampling frequency. This effect tends to reduce

compensation effectiveness because of the reduced amplitude after sampling.

The 50 iterations per second algorithm performs closer to the theoretical

expectation. One should not however assume that this is an optimaliteration

rate. It is probable that testing uncertainties, e.g. phase adjustments have influenced

the test results and to investigate this further would require a much more accurate

test capability and technique.

Fora 100 iterations per second algorithm, At = 0.01. Thus the theoretical 10hertz

coning error (At f = .1) is 6% for the first order algorithm and 0.4% for the third

order algorithm.
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The theoretical coning bandwidth is illustrated in Figure 5.2.7 by displaying

coning compensation effectiveness (1-coning error) as a function of frequency for

the first-order algorithms implemented in this program. From the Figure the coning

bandwidth has a low pass band characteristic. For example, the 100 iterations per

second algorithm starts to rolloff at 2 hertz with 95% compensation effectiveness

observed at 8 hertz.

The test data obtained in this program has verified the basic low frequency

coning bandwidth characteristics. The 50 iterations per second algorithm measured

performance matched the theoretical bandwidth for the test spectrum 1 to 10 hertz.

The measured 100 iterations per second algorithm bandwidth rolled off slightly faster

than theoretical, within expected testing uncertainties. Gyro loop quantization effects

predominate at low frequencies and therefore do not measurably affect the bandwidth

characteristics.

Wider bandwidths are expected with the inclusion of the cross-product term.

in the quaternion mechanization. The cross product term third order bandwidth

characteristics derived analytically are displayed in Figure 5.2.8. Note that the

third order bandwidth is extended (approximately 99% compensation effectivity is

achieved at three times as high a frequency), however, a sharper high frequency

rolloff is evidenced. Future dynamic strapdown evaluations should be implemented

with the cross product term to verify the third order bandwidth.

5.2.2.b Output Axis (OA) Coupling Compensation

Bandwidth

OA coupling errors propagate from lagging float motion (inertia torque) when

angular rate changes are applied about the Output Axis. As the float lags the case's

oscillatory motion, additional torque pulses are generated to maintain the float at a

null position. The added torque pulses describe an oscillatory motion (OA coupling

error) that is proportional to the derivative of the input oscillatory motion. Thus,

the gyro response to the single axis input oscillation is an output corresponding to

'two oscillations that are 900 phase displaced. With respect to the attitude algorithm

these gyro outputs correspond to a coning environment even though the third axis

is not coning. However, the attitude algorithm assumes coning exists and incorrectly

Coning compensation effectiveness measures the amount of coning drift suppressed
by the attitude algorithms.
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applies an attitude drift correction to the third axis. This erroneous drift correction

is termed "pseudo coning drift", and equals:

pseudo coning drift = I/H 2

2

where:

a = peak amplitude of the oscillatory input

w = oscillatory frequency I/H is the gyro parameter ratio: float in-

ertia about OA/wheel angular momentum.

The evaluation of OA coupling compensation bandwidth is described in

conjunction with Figure 5.2.9 . The test environment is shown in Figure 5. 2. 3.

Note that the attitude algorithm senses the input oscillations on the X axis and on

the Y axis, uncompensated OA coupling errors. To compensate the OA coupling

error, rate estimates are derived from a second gyro whose Input Axis is collinear

with the input excitation (asinwt). From these rate estimates a rate change magnitude

is determined and scaled by the gyro ratio, I/H, to estimate the OA coupling oscillation.

The estimated oscillation is subtracted from the gyro whose output reflects the OA

coupling oscillation. The difference represents the OA coupling error seen by the

algorithm.

The character of the pseudo coning error propagation is directly related to

the attitude algorithm's bandwidth defined in Section 5.2.2.a from the coning

environment results. Coning bandwidth is low pass with the theoretical three (3)

db point established as 22% of the algorithm's iteration rate and with an approximate

6/octave rolloff slope. If OA coupling errors are uncompensated and pass through

to the attitude algorithm, they will propagate as a pseudo coning drift in the system

attitude performance and will roll off with the coning bandwidth. Thus in the region

in which coning correction degrades, uncompensated pseudo coning drift is attenuated.

Figure 5.2.10 shows the pseudo coning error drift measured with a 100

iteration per second algorithm and compares this data to the theoretical drift error

calculated from oscillatorymagnitudes given in Section 3.5.6 (Table 4.3.6) and using

Equation 4.3.7 . The measured drift correlates to the theoretical drift within testing

uncertainties (quantization, frequency, and oscillatory amplitude). Thus, the coning

bandwidth is not a limiting factor for the 100 iteration per second algorithm for the

test spectrum, 0.5 to 10 hertz.

Also shown in Figure 5.2.10 is the significant reduction in pseudo coning drift

that was achieved with the same test inputs but with the OA coupling errors
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compensated. The compensation scheme used also has bandwidth limitations which

are considered next.

Functionally, the compensation technique estimates the OA coupling oscillation

and subtracts the estimate from the true oscillation. In a low frequency band this

compensation method is effective and no OA coupling error is propagated into the

attitude algorithm (Y axis). However, as the oscillatory frequency increases and

approaches the compensation iteration rate, the compensation effectiveness degrades.

Degradation begins when the oscillatory frequency is one-tenth the iteration rate,

verified with 25 and 100 iterations per second algorithms on IBM 360/75 computer

simulations.

Figure 5.2.11 shows the simulation results by plotting the OA coupling

compensation effectiveness for the 25 and 100 iterations per second algorithms.

Observethe low pass bandwidth characteristics with approximately 30% degradation

when the forcing frequency is one-tenth the iteration rate.

Now, the evaluation of the OA coupling phenomenon, operating end-to-end

through the compensator and attitude algorithms, is possible by considering the

combined effects of the OA compensation and the coning bandwidths. Figure 5.2.12

shows the combined effect based on simulation studies with a 25 iteration per second

algorithm. Pseudo coning error is expressed in Figure 5.2.12 as the ratio of

pseudo coning drift with bandwidth limitations considered to the theoretical pseudo

coning drift of an infinite bandwidth algorithm.

Three areas of performance are observed: 1) at low frequencies, the OA

coupling error compensation is completely effective and therefore no error is

propagated to excite the coning bandwidth. :2) As the frequency increases, the OA

coupling compensation loses its effectiveness and excites the attitude algorithm with

what appears to be coning. The attitude algorithm's response is to impose a coning

drift correction. Thus, the pseudo coning error increases as the input oscillation

frequency increases. 3) As the frequency increases further, the coning bandwidth

is encountered and the algorithm's capability to correct for a real coning environment

degrades. In this region pseudo coning errors flatten out and start to decrease.

Hence, OA coupling error propagation is affected by two separate bandwidths: 1)

the coning bandwidth, and 2) the OA compensation bandwidth.

Figure 5.2.13 shows the end-to-end OA coupling performance data for three

algorithm iteration rates. Pseudo coning error, defined as the ratio of measured

pseudo coning drift with compensation to the theoretical pseudo coning drift without

compensation, is plotted as a function of frequency.
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The 25 and 50 iterations per second algorithms match the simulated results

given in Figure 5.2.12 . Observe that the 25 iterations per second algorithm begins

to degrade at a lower frequency than the 50 iterations per second algorithm. This

is the effect of the OA coupling compensation bandwidth. Note also that the 50

iterations per second peak occurs at a higher frequency than the 25 iterations per

second algorithm because of its wider coning bandwidth. If a wider test spectrum

were possible, the 100 iterations per second algorithm would also illustrate a peaking

effect in the 20 to 30 hertz range.

One should recall that in each of these tests the OA coupling compensation

routine operated at the same iteration rate as the attitude algorithm. Thus the

analysis and the test results show that for optimum suppression of pseudo coning

the OA coupling compensation algorithm should operate at a higher iteration rate

than the attitude algorithm. For example, referring to Figures 5.2.8 and 5.2.11,

one observes that if OA compensation is operated at 100 iterations per second a

30% OA coupling error exists at 10Hz, however, if the algorithm iteration rate is

25 per second the coning correction bandwidth (roll off) is encountered at 5Hz and

negligible pseudo coning drift propagates. Hence, as the compensation algorithm

loses effectiveness, the coning bandwidth will have already degraded so that the

coning environment is not recognized. Clearly, various tradeoffs of algorithm

implementation exist, especially in consideration of the wide range of dynamic inputs

and error sources which warrant meaningful evaluations with respect to specific

test environments.

5.2.3 Anisoinertia and SRA Cross Coupling

Compensation

Anisoinertia and SRA cross coupling errors are generated in the multi-axis

environment. In the slew environment if rates are applied simultaneously about

the Input Axis and Spin Reference Axis an attitude drift error(WD) is generated as

defined by: (SA- IA
WD (SAH WIRA SRA - (F) WSRA - (Fm) WIRA WSRA

Anisoinertia Error SRA Cross Coupling
Contribution Contribution

Anisoinertia

ISA - float inertia about the Spin Axis.

IIA - float inertia about the Input Axis.

H - wheel angular momentum.
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SRA cross coupling

F - float hangoff in deadzone of torquing region.

F - additional average float hangoff due to input rates about the Input

Axis.

SRA cross coupling errors occur from Input Axis misalignment resulting from

float hangoffs. Float hangoff is a linear, rate dependent function as illustrated by

the calibration curves in Section 3.7.3.c for a 40 arc second quantization gyro loop.

From similar curves developed earlier for a 8 arc second gyro loop, the calibrated

SRA cross coupling coefficient was determined to be F = 10 microradian, and F
-4o m

= 4.5 x 10 4 radians per radian/second of Input Axis rate.

Anisoinertia errors occur from simultaneous rates applied to the unequal Spin

Axis and Input Axis float inertias. For the low rate capability of the gyro loops at

8 arc second quantization (0.2 radians per second) anisoinertia could not be calibrated

directly because of gimbal alignment uncertainties. To circumvent the calibration

difficulty, a nominal anisoinertia coefficient is derived from known gyro inertia

and angular momentum magnitudes. For gyro MB2 a nominal anisoinertia of 1.2

10 - 4 radians/radian per second was estimated.

A multi-axis slew test was conducted to verify the anisoinertia - SRA cross

coupling compensation model described in Equation 5.2.1 and the validity of using a

nominal anisoinertia coefficient. Rates of 0.16 radians per second were applied

about both the Input Axis and Spin Reference Axis of the X gyro (MB2). At that

input, the theoretical drift error is 122 meru (1.83 0 /Hr). Without anisoinertia and

SRA cross coupling errors compensated the measured drift was 138 meru (2.07 0 /HR).

With the error terms compensated the measured drift rate was -3 meru (-.0450 /HR).

. Figures 5.2.14 and 5.2.15 show the attitude error propagation for the compensated

and uncompensated conditions. These results verify the compensation model and

the adequacy of the use of the nominal anisoinertia coefficient for this gyro.

Preliminary evaluation at higher rates (0.5 radians per second) were also

conducted, however, with changed compensation parameters because of new gyros

and a gyro loop scaling change. At these new conditions, the gyro's (427A) anisoinertia

coefficient was estimated to be 1.0 x 10 - 4 radians/radian per second and the SRA

cross coupling coefficients calibrated to be F = 20 microradians and F = 2.57x

10 radians/ radian per second. The initial results were ambiguous and final detailed

testing was precluded by the program's termination due to a hardware failure. It

is probable that at higher rates, gimbal alignment and compensation uncertainties
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are significant. For example, a ten arc second uncertainty in the gyro's alignment

at 0.5 radians per second causes a 332 meru (50/Hr) error sufficient to mask the

evaluation of the anisoinertia compensation performance. Additional evaluation of

high rate multi-axes environment error phenomenon is recommended.

Another area of interest is the determination of the sensitivity of system

anisoinertia - SRA cross coupling attitude drift to the compensation load. This

was done at low rate conditions (0.15 radians per second) by varying the compensation

load +20% and -50% from the nominal compensation load. The results are shown in

Figure 5.2.16. The linearity relationship shown is valid for the rate condition tested.

Since anisoinertia and SRA cross coupling errors are a multi-axis environment

phenomenon, the linearity magnitude is a non-linear function which varies as the

square of the rate (assumingWR A =WSRA). Hence, a family of sensitivity functions

are expected over the full dynamic range. In Figure 5.2.16 the linearity magnitude

is 26 meru (0.390/Hr) per 1 x 10- 4 radians/radian per second compensation change.

At 0.5 radians per second the expected linearity is 289 meru (4.3 0 /Hr) per 1 x
-4

10- 4 radians/radian per second.

Anisoinertia and SRA cross coupling errors were evaluated in the multi-axes

oscillatory environment. The relationship that defines the drift error propagation

in the oscillatory environment is expressed as:

(I (f) - I 2  2

ATTITUDE DRIFT SR H 2 cos - m 2 cos

Anisoinertia SRA Cross Coupling
Contribution Contribution

where a, c are the input excitation peak amplitudes

0is the phase difference of input excitation

is oscillatory frequency

F is the float hangoff offset (20 , radians)

SA (f) - IA is the frequency dependent anisoinertia coefficient

H (1 x 10-4 sec below the wheel hunt frequency)

-4
F is the; SRA cross coupling coefficient (2. 57 x 10-4 sec)

m
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The anisoinertia coefficient is now a function of frequency. At the wheel hunt

frequency, the wheel rotor element decouples from the input oscillatory motion and

thereby shifts theinertia difference(I,SA(f) - IA) from 21 gm-cm 2 at low frequencies

to -40 gm-cm2 above the wheel hunt frequency.

Applying the calibrated parameters and environment magnitudes to the attitude

drift equation (Equation 5.2.2), drift magnitudes were computed. These results,

are compared to measured data with anisoinertia -SRA cross coupling error

uncompensated in Figure 5.2.17.

Clearly, the strapdown system performance exhibits the predicted wheel

decoupling phenomenon. The close correlation between measured and theoretical

below 5 hertz verifies the error model. Hence, the low frequency compensation

model seems adequate. At 5 hertz and above, the measured data differs from

theoretical. This difference is related to other uncertainties such as testing (phase

and amplitude adjustments) and bandwidth limitations of the algorithms. For

example, because of the bandwidth limitations of the OA coupling compensation

algorithms, a 20 meru (0.30/Hr) error is contributed at 5 hertz by OA coupling

errors and at 10 hertz, 10 meru (0.15 0 /HR) is contributed.

The peaking anisoinertia - SRA cross coupling error illustrates the importance

of accounting for wheel decoupling effects if environments above the wheel hunt

frequency are anticipated. Compensation for this effect may require frequency

signature analysis of the gyro data to determine the coefficient to be used for

compensation. If only low frequency environments are anticipated then the simpler

low frequency compensation model is adequate.

5.2.4 Algorithm Dynamic Uncertainty

5.2.4.a Attitude Uncertainty

Gyro loop quantization affects the level of system attitude uncertainty. This

relationship is verified with the comparison of attitude error profile for two

quantization mechanizations: 1) the 40 arc second quantization of the gyro torque

loop, and 2) the 5 arc second quantization from interpolator information.

Figures 5.2.18 and 5.2.19 illustrate the attitude error propagation for two

quantization levels (40 and 5 arc seconds respectively) operating with a 100 iterations

per second algorithm.
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The test environment is 0.5 hertz with a 0.024 radian peak amplitude. It is

interesting to observe that the peak-to-peak attitude uncertainty is 5.5 arc seconds

for the 5 arc seconds quantization condition and 37 arc seconds for the 40 arc second

quantization level. Thus, a proportional relationship exists between the quantization

size and the attitude uncertainty level. This relationship is also observed in test

results at 1 and 5 hertz.

5.2.4.b Bandwidth

Quantization level is observed not to effect bandwidth performance. This result

was determined with a simulated third order algorithm (without the cross product

term) operating in a 10 single axis oscillatory environment. Table 5.2.2 tabulates

the pseudo coning error (algorithm drift output with OA coupling errors compensated
-15

divided by the theoretical pseudo coning drift) for two quantization levels 2 and

-20
2 radians.

TABLE 5.2.2 PSEUDO CONING ERROR

Theoretical
pseudo coning Pseudo Coning Error (%)

drift for 1 -15 -20

Frequency Environment 2 radians 2 radians

(hertz) (meru) (6. 3 se) (0. 2 se)

0.5 41 1.9 0.3

1.0 163 2.0 1.0

2.0 653 3.5 4.0

5.0 4,082 19.0 18.3

10.0 16,327 17.8 17.8

20.0 65,308 22.2 22.2

The high frequency coning errors are unaffected by quantization. Low frequency

error differences are the result of attitude information lags introduced by quantization.

System tests to verify the effects of quantization requires the consideration

of the relative magnitude of the oscillatory motion with respect to the gyro loop's

quantization. Figure 5.2.20 shows this relationship between quantization and the

Output Axis (OA) coupling oscillation.
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Note at 15 hertz, the float displacement is only four times the 5 arc second

quantization level. At this point, the ability of the attitude algorithm to detect

magnitude and phase of the system's oscillations is marginal and uncertainties are

expected. Therefore, meaningful evaluations at 5 arc second quantizations are

restricted to below 15 hertz.

The 40 arc second quantization results are expected to have large uncertainties.

Below 0.8 hertz and above 8 hertz, the quantization exceeds the float motion. Hence,

in these regions the OA coupling oscillation is not detected and no pseudo drift

errors will be generated. Even the region 0.8 to 8.0 hertz, the uncertainty in the

pseudo coning drift propagation is likely with the 40 arc second quantization since

a sizable amount of the float motion is still masked by the torque threshold and

quantization.

Figure 5.2.21 shows the measured pseudo coning drift for the two levels of

quantization and a 100 iterations per second algorithm. Observe that with the 40

arc second quantization algorithm since the OA coupling oscillations are suppressed

at higher frequencies, a lower pseudo coning error exists. At 0.5 hertz, although

the OA coupling oscillation is less than the 40 arc second quantization, a pseudo

coning error (22%) was measured. This error propagation, shown in Figure 5.2.19

was a constantly drifting error with a 120 microradian attitude change during the

test interval. This drift is still within the pulse torque threshold for the test time

and therefore represents system uncertainty.

5.2.5 Pulse Burst Compensation

Pulse burst compensation effectiveness may be verified by observing the

pattern of gyro torque pulses for a given test interval. This procedure was followed

with the gyro loops compensated for pulse bursting and then without compensation.

Significant improvement was observed. Without compensation thirty eight different

patterns were observed, 88% of which involved double pulsing. With compensation

only four different pulse patterns were observed and none with double pulsing.

Hence, the compensation scheme (Reference Section 2.3.1) is effective, by reducing

the multiplicity of pulse patterns and the occurrence of pulse burst. Therefore,

pulse burst compensation reduces the ambiguities of attitude information.

The verification of the effect of ambiguities on system performance is desired.

The test environment selected is the single axis environments (oscillatory and slew)

which in retrospect is not adequate for evaluating the pulse burst phenomenon.

The oscillatory environment marginally exceeded the threshold rate level that is

required for pulse bursting (13% of full-on rate, see Section 4.3.1). Re-test at
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higher oscillatory magnitudes were planned but were precluded due to termination

of testing. In the slew environment the short term instabilities were averaged out

by the sampling of attitude data for plotting purpose. Each point plotted is an average

of 480 interrogation periods.

A more effective test environment would have been in a multi-axis slew

environment with a rate below the pulse burst threshold about one axis and a rate

above the threshold about a second axis. Under these conditions, the ability to

compensate cross axis errors such as SRA cross coupling would probably have

degraded as a result of the pulsing instability.

5.2.6 Scale Factor Linearity Compensation

Scale factor linearity is an error phenomenon that is characteristic of

permanent magnet torquer gyroscope/torque-to-balance loop operation. The linearity

error is evidenced as a change in the scale factor of the quantized pulse as a function

of the input rate (frequency of torquing). For the 18 IRIG and the ternary

torque-balance control loop used in this program an essentially linear error

curve (scale factor increasing with rate) has been evidenced, (see Figures 3.2.3

and 3.2.4 of Section 3.2.3.b).

The model used for compensation in the system is a linear scale factor function

with respect to Input Axis rate. Rate estimates derived from the gyro accumulated

torque pulse establish the operating point on the compensation curve.

The evaluation of the linearity model is conducted in the single axis rotational

environment. In this environment, the end-to-end performance through the

compensation and attitude algorithms is easily evaluated because the. attitude error

propagated about the slewing axis is essentially the scale factor error (see Figure

5.2.1).

The system sensitivity to scale factor linearity errors was evaluated by rotating

the system at eight rates over the full gyro torque loop range. The full strapdown

algorithm was excited, and therefore the resultant attitude error drift was scaled

to reflect the equivalent scale factor error in parts-per-million (ppm). The evaluation

was first conducted without linearity effects compensated. The attitude error (see

Figure 5.2.22) depicts the rate dependent scale factor with a 50 ppm spread over

the full dynamic range. This is the typical scale factor spread for a resistively

tuned 18 IRIG Mod B gyro torquer.
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Compensation was then applied, using a 50 ppm linearity model for positive

ratesand a 43 ppm linearitymodel for negative rates. The results in Figure 5.2.22

show that compensation was effective to within 7 ppm spread over the entire test

range which is well within the calibration and compensation uncertainties and

demonstrates the effectiveness of compensating the scale factor linearity effects.
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5.3 LAND NAVIGATION RESULTS

5.3.1 Latitude and Longitude Errors

An inertially stabilized navigator updating at a rate of one per second was

implemented for real time processing in the H316 minicomputer. The attitude and

velocityalgorithms were operated at 100, 50, and 25 iterations per second. Testing

of the system was conducted to evaluate performance of the compensated strapdown

system in a dynamic environment as processed through the navigation algorithm.

The initialization system orientation used during navigation testing is illustrated in

Figure 5.3.1 (Z axis is along the polar axis, Y axis is east, and the X axis completes

the right handed triad). This orientation was chosen for the simplicity afforded in

the software implementation by not requiring a coordinate frame transformation or

Coriolis compensation.

Polar
Z

North

Y East

L = Latitude AnqIb

Fig. 5.3.1 Navigation Evaluation Orientation.
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In a relatively static environment, a properly operating Schuler tuned iner-

tial navigator
1 7 , 18 operating on the surface of the earth with the system orienta -

tion shown in Figure 5. 3. 1 has performance characteristics that include:

1. a bounded latitude error that has a Schuler oscillation (84 minute period)

superimposed ona 24 hour sinusoid. The Schuler oscillation magnitude

is primarilya function of the X and Z accelerometer scale factor, bias,

and alignment errors. The 24 hour sinusoid magnitude is a function of

the Y gyro drift error and system alignment errors.

2. a longitude error that is composed of three components: a Schuler

oscillation, a 24 hour sinusoid, and a ramp function. The Schuler

oscillation magnitude is a function of the Y accelerometer scale factor,

bias, and alignment error, and the 24 hour sinusoid magnitude is .a function

of the X and Z gyro drift error and system alignment errors. The

ramp is a function of the gyro drift error about the polar axis (Z gyro).

Figures 5.3.2 and 5.3.3 shows the latitude and longitude errors respectively

for a 93 hour period with the system in the position given in Figure 5.3.1. Note

that the latitude error is bounded and has two sinusoid components; the 84 minute

and 24 hour oscillation.

Based on sensitivity studies and tests conducted in the SIRU utilization program

the Schuler oscillation in Figure 5.3.2 of 0.25 nautical miles is equal to a 35

rnicroradian initialization alignment error about the North Axis (equivalent to 0.035

cm/sec
2 accelerometer bias). The 0.2 nautical mile per hour slope (first three

hours) of the 24 hour sinusoid component is equivalent to an East Axis drift of

0.003 0 /hour. These errors are derived with an earth fixed system, navigating with

single position calibration data that was adjusted for the specific navigation

orientation. Thus, the bulk of initialization alignment errors were artificially

compensated by adjusting the accelerometer bias compensation and the errors

observed in the above navigation performance are the residual error after this

compensation.

The longitude error in Figure 5.3.3 is a ramping 24 hour sinusoid with Schuler

oscillations superimposed. The 0.05 nautical mile Schuler oscillation magnitude

translates into East Axis initial alignment error of 7 microradians (equivalent to

0.007 cm/sec 2). The 0.7 nautical mile per hour slope (first three hours) of the 24

hour sinusoid component is equivalent to a North Axis drift of 0.0105 0 /hour.
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As noted, a single-position- calibration load was used in the navigational testing

procedure. This is consistent for land navigation in a real-flight environment.

The single-position calibrations load normalizes the orientation sensitivities of

the strapdown package as installed in the gimbal assembly. For example; the drift

sensitivities, referred to in Section 5.1, obtained from the multiposition calibration

procedure showed a spread between 0.03 0 /hr-0.450 /hr (1-3 meru) for drifts derived

from different position dependent equations (IBD, OBD, and SBD, Appendix P).

The ultimate demonstration of navigational nerformance accuracy is limited

uging this gimbal test configuration due to the inability to precisely establish the

strapdown triad body frame with respect to the initialization inertial attitude. For

example, it was estimated that absolute positioning uncertainty, using the gimbal

readouts, with respect to an absolute reference is on the order of 50 arc seconds.

The uncertainty is inherent in the gimbal non-orthogonalities, the resolver readouts,

and the uncertainties in measurement of the strapdown triad with respect to the

gimbal axes.

Land navigation testing was also conducted with oscillatory and slew inputs.

For the oscillatory inputs the single position load in a first order sense is still

satisfactory since the average orientation of the body did not change. With regard

to initialization uncertainties, rectification errors may be anticipated that cause

the axes perpendicular to the rotational axes to both drift as well as indicate an

apparent net acceleration. In generalzone would expect performance degradation to

be more pronounced in the inertial navigator mechanized in these tests. As opposed

to a local-level implementation (in which the two sensing accelerometer axes are

level) both the X and Z accelerometers in this inertial orientation see a sizable

portion of "g". Another error source introduced that is considered negligible

corresponds to the influence of output axis coupling. The X accelerometer has its

OA collinear with the oscillatory axis. For the OA coupling input (1 Hz at 0.024

radian) however the effective float motion is below the torquing threshold, less 1

arc second, and negligible OA otuput or PRA cross coupling errros should be

introduced.

Slew testing was conducted with constant rate, approximately 50 revolutions

at 4 0 /sec applied about the Y body axis of the strapdown package. As a consequence

of this rotation the X and Z axes are tumbled continuously in the "g" field, clearly

Insufficient space existed in the gimbal assembly to allow satisfactory thermal
gradient design shielding.
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a non-representative environment. Multiple error sources are excited with the

inertial orientation reference frame used in this test. As one might expect the

single-position-calibration load that was used could not accuratey account for the

previously discussed orientation sensitivities, a completely new thermal gradient

condition was established in the tumbling mode. The body-inertial frame initialization

uncertainty now represents a significant error source that propagates in a manner

similar to gyro and accelerometer misalignments but is systematic in nature, i.e.,

one frame is rotated with respect to the other. Thus, both gyro and accelerometer

errors are introduced in a similar manner and tend to be reinforcing. Additional

errors are introduced by the rotation about the horizontal Y axis, which also tumbles

the X and Z accelerometers. The rotation excites the Y gyro scale factor but the

tumbling also introduces accelerometer asymmetry and linearity error sources.

Finally, since the navigational algorithm was operating at a one per second iteration

rate, velocity sampling errors in tracking the cycling "g" input (approximately a

90 second period) are likely to further degrade navigational performance.

As is obvious, in retrospect, slew testing conducted in this manner was

ill-defined. Precise representations of relevant error propagation terms could not

be deduced nor could representative strapdown performance capabilities be reflected.

Use of a local-vertical navigational mode would have been more consistent with a

slew test evaluation. In this case one would have rotated the platform about the

vertical axis thereby exciting more realistic error sources while keeping the two

sensing accelerometers near null. Recognizing these factors, a subsequent test

procedure was defined in which the inertial reference navigator would be initialized

so that its axes were in a local vertical orientation as opposed to the polar axis

orientation. The inertial navigation mode would still be used, avoiding the necessity

for an entire software recoding effort. Local vertical initialization accuracy however

would now be consistent with the null bias uncertainties of the two horizontal

accelerometers. Rotation about the Z axis of the platform would then primarily

reflect gyro scale factor and misalignment error propagation effects. Unfortunately,

retest in this orientation was precluded by the gyro failure that was experienced

during the retesting phase of the program. To provide a more realistic base-line

of strapdown capabilities we have included in this report a slew test conducted at

50 per second on the SIRU strapdownsystem with the system initialized and operating

in a local-vertical mode.

5.3.2 Oscillatory Test Results

Navigation results were accumulated with oscillatory tests at attitude and

velocity algorithm iteration rates of 100, 50 and 25 per second.
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Tables 5.3.1a and b present the results of the oscillatory tests-i hertz, 0.024

radians peak to peak, for 1 hour. With the navigation algorithm operating at a rate

of one per second, the variation in the velocity iteration rates (100, 50 and 25 per

second) becomes a measure of effect of coarseness on the navigation performance.

The magnitude of the Schuler oscillation in latitude (Table 5.3.1a) is consistent for

all tests indicating an independence from AV iteration rate however it is excessively

high (equivalent to approximately 0.25 milliradian leveling initialization error).

This error is attributed to a misalignment of the XZ plane about the East (Y) axis

body frame with respect to the earth centered inertial frame at initialization and is

consistent with the estimated absolute positioning capability of the gimbal fixture.

The slopes of the 24 hour sinusoids are tabulated and presented as a general

indication of the Y gyro performance. Because of the relatively short test times,

accurate slope determination is not feasible. The variation in slope for the three

iterations are assessed to be a function of the initial azimuth alignment for each

test.

It is interesting to note that with the algorithms operating at 25 iterations

per secondthe 24 hour slope was better than at 50 and 100 iterations per second.

These results do not correlate with the pseudo coning bandwidth studies conducted

in Section 5.2.2.b and therefore it is believed that the 25 iterations per second

performance reflects an extremely good alignment initialization for that particular

test.

5.3.3 Slew Test Results

As noted in the prior discussion, initial slew evaluations in a navigational

mode were conducted such that error propagation was significantly influenced by

the test initialization uncertainties and the test method, for example tumbling the

platform in the "g" field introduced several unrealistic error sources. The test

performance degradation was reasonably bounded however, considering the tumbling

environment and the number of input revolutions, 50. For example, in the three

different 40 per second slew tests, using algorithm iteration rates of 100, 50 and

25 per second respectively, the Schuler oscillation magnitude in longitude cor-

responded to 1, 1.5 and 2 nautical miles. In latitude the Schuler magnitudes were

1.1, 3 and 4 nautical miles for the same tests. These amplitudes are not inconsistent

with the estimated 1/ 4 milliradian nominal uncertainty in the gimbal chain positioning

of the strapdown triad, in that the Schuler amplitude coefficient with respect to the

accuracy of leveling initialization is theoretically 7 nautical mile per milliradian.

With regard to the 24 hour slope, the longitude error corresponded to approximately
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Attitude and Schuler Equivalent

Velocity Algorithm Oscillation Initial Alignment 24 Hour Period Equivalent

Iteration Rate Peak Magnitude Uncertainty in Oscillation Slope Y Axis Gyro

(Iterations /Second) (Nautical Miles the Horizontal (Nautical Miles/Hour) Drift (o/Hour)
Plane (Milliradians)

100 2.1 0.3 ~2.0 0.03

50 2.0 0.28 ~3.0 0.045

25 1.7 0.25 ~0.6 0.009

Table 5.3.la. Latitude Error (1 Hertz Oscillatory Environment)

Attitude and Schuler Equivalent
Velocity Algorithm Oscillation Initial Alignment 24 Hour Period Equivalent

Iteration Rate Peak Magnitude Error Oscillation Slope X and Z Axis Gyro
(Iterations /Second) (Nautical Miles) (Milliradians) (Nautical Miles/Hour) Drift (o/Hour)

100 0.55 0.08 ~1.5 0.022

50 0.6 0.08 ~3.0 0.045

25 0.3 0.045 ~0.1 0.001

Table 5.3.1b. Longitude Error (1 Hertz Oscillatory Environment)



5 nautical miles per hour in all tests while the latitude 24 hour sinusoid error

propagation slope was on the order of 6 nautical miles per hour at 100 and 50 iterations

per second. At 25 iterations per second the 18 nautical mile per hour slope in

latitude that was observed is considered to represent a significantly larger

initialization error (retest was not possible). This conclusion appears to correlate

well with the 8 nautical mile Schuler magnitude in latitude (2.3 times the estimated

0.25 mr alignment uncertainty) in the same test. From these results it would appear

reasonable to conclude that for the slew environment testing, basic navigational

performance is unaffected over the 25 to 100 per second range of iteration rates

used for the attitude and velocity algorithms. This conclusion is consistent with

theoretically derived drift rates of a third order attitude algorithm (reference Figure

4.3.9) that show for a 40 per second slew the equivalent computational drift is

considerably less than 0.000150 per hour (0.01 meru).

The observed 5 nautical mile per hour latitude and longitude 24 hr slopes are

surprisingly low when one considers all error sources excited by the constant Y

axis rotation. For example, if we assume gyro scale factor error propagation effects

only, an equivalent Y system axis drift rate of 0.075 0 /hr corresponding to ap-

proximately 5 ppm scale factor uncertainty would be projected. The more likely

occurrence is that multiple errors are being excited and that varying degrees of

cancellation exist.

Finally, to provide a more representative base-line of navigational strapdown

performance in a slew mode a test made on the SIRU (redundant strapdown system)

is presented here. The SIRU facility and software implementation allows a more

accurate leveling initialization (gyrocompassing mode with accuracies on the order

of 10 seconds of arc). A local-vertical navigator is implemented and the system

was constantly rotated for six hours about an axis coincident with the vertical

(accelerometers are essentially null sensing) at 5 0 /sec. The attitude and velocity

algorithms iteration rate was 50 per second and the navigational equation operated

at a rate of one per second. Although the SIRU dynamic compensation was not as

comprehensive as in SPOT the test results (Figures 5.3.4 and 5.3.5) are indicative

of what can be achieved and clearly evidence the reduction in the Schuler magnitude.

The latitude (Figure 5.3.4) and longitude Schuler peak position error corresponded

to 0.5 nautical mile, equivalent to approximately a 14.5 arc second of alignment

initialization uncertainty.

SIRU dynamic compensation does not employ SRA, anisoinertia or scale factor
linearity modeling for the gyros and only average scale factor is used for the
accelerometers. The SIRU geometry does however, when all six instruments are
used, have a measurable level of SRA-Anisoinertia error self-cancelling.
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The 24 hour slope for both latitude and longitude is approximately 2 nautical

miles per hour. For this SIRU data, the error propagation is more directly

representative of the gyro SF and alignment uncertainties. Other probable error

sources in the SIRU test at this slew rate although not as dominant arise from the

lack of compensation of the SRA and anisoinertia terms. Although they are

self-cancelling because of the geometry, the rotation about a single axis does excite

these terms due to the non-orthogonality of the SIRU-IA arrangement. Any off-nominal

coefficients will therefore result in some second order dynamic error propagation.

5.3.4 Summary

With regard to all of the slew testing one should recognize that a 50 per second

constant rotational rate applied for 6 hours is clearly not representative of any

realistic environment. The navigational performance that is evidenced therefore

in these test results does not directly relate to what might be anticipated in an

aircraft mission. The navigational implementation does provide a very sensitive

indication of initialization alignment accuracy as well as initial calibration residual

errors.

Unfortunately the navigational test evaluations were terminated due to the

system hardware failure so that a more comprehensive evaluation using the

recommended procedural changes could not be effected. Similarly, a comparative

evaluation of performance without the full complement of compensation models was

not possible.

In general for the limited testing that was done the modeling appeared to be

adequate and performance was consistent with the implementation capabilities. The

strong dependence upon accurate initialization was clearly evidenced leading one to

conclude that for a strapdown implementation in a land navigation application the

local-vertical initialization mode is preferred.

An interesting projection for future evaluations in a navigational mode using

the type facility developed under this program is possible. With the incorporation

of a linear servo controlled rate drive on the gimbal, an actual flight profile of

attitude, angular rate and oscillatory environments could be used to excite the system.

One could then accurately assess the applicability of compensation models and system

performance in a direct manner with extremely high confidence.
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5.4 Multi-Position Accelerometer Evaluations

5.4.1 Introduction

This section discusses the results of multi-position accelerometer testing

and the development of higher order accelerometer models. This effort supported

a NASA/MSC accelerometer modeling study that used a Delco 653 accelerometer

and software support on the Univac 1108 computer. The automatic test capability

of the SPOT system proved ideal for the accumulation of multi-position data with

little impact to the program's schedule. The analysis of data was accomplished

off-line on the IBM 360/75 computer. Two methods were developed to analyze the

rr ulti-position accelerometer data: 1) a fourier series analysis, and 2) a least square

error analysis.

5.4.2 Fourier Series Analysis

The fourier series analysis fits the data from sixteen different test positions

to a fourier series expansion. The accelerometer data is generated by rotating the

system through sixteen equidistant increments (22.50) about a horizontal axis of

rotation. The accelerometer whose Pendulous or Output Axis is along the axis of

rotation describes an indicated acceleration function aIND(0) that is periodic with

respect to the system orientation.

The fourier series that fits this periodic data is developed from the Taylor

series expansion given as follows:

A 2
a. 0 o=B +a +K 2+K +Ka

aind K o aIA 2aIA OaOA p PA
(5.4. 1)

+ KIpaIA aPA + KIOaIA aOA +

where ain d = acceleration input indicated by the accelerometer (g)

A 0 = accelerometer output indication (output units)

K 1 = accelerometer scale factor (output units/g)

a IA aPA, a0A = acceleration inputs along the input, pendulous, and output

axes of the pendulum (g)

B 0 = accelerometer bias (g)

K 2 = second order non-linearity coefficient (g/g2

K 0 = output cross-axis coefficient (g/g)

K = pendulous cross-axis coefficient (g/g)

Kip = input axis - pendulous axis cross-coupling coefficient (g/g2

KI0 = input axis - output axis cross-coupling coefficient (g/g2
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Assume that the system rotation is applied about the Pendulous Reference

Axis and that the Input Axis is oriented vertically up in the initial test position. As

the system rotates by 0, the acceleration inputs are described as aiA = g cose,

aOA = g sin e, and apA = 0. The general accelerometer model, under these conditions,

simplifies to:

2 2
aind(8) Bo+ gcos+ 2 Kgsin 2aind() = B + g cos + K2g cos 0 + Kg sin + KIOg sineocoso (5.4.2)

This model converts to a fourier series expansion that is truncated at the

second harmonic.

Note that for system rotations about the accelerometer Output Axis, the output

related cross axis coefficients (K., and KIO) are replaced with the Pendulous Axis

related coefficients (KP, andK p).

A numerical analysis algorithm 1 9 is used to derive the fourier coefficients

from the sixteen equidistant data points.

The fourier series analysis results yields a scale factor and null bias that

correlates well with the results from the standard four position accelerometer

calibration data. The statistical significance of the cross coupling and cross axis

coefficients is marginal. Depending on the accelerometer, the standard deviation

of the calibrated coefficient exceeds the mean value. The scale factor non-linearity

term is observed to be significant with typical values of 80g/g measured. This

magnitude of non-linearity causes a 80 ppm scale factor error between a condition

of no acceleration and a Ig input.

The large scale factor non-linearity is attributed to the use of one average

scale factor in the fourier model. Had two scale factors been used, one for positive

acceleration inputs and one for negative acceleration inputs, the non-linearity term

is expected to be small.

A decision is therefore required to determine the optimum accelerometer

model. In other words, what coefficients are to be included for a model to accurately

describe the accelerometer performance? The fourier series analysis revealed

that a model comprising the accelerometer scale factor, and the null bias coefficient

is an accurate model, but is it the model with the least square error ? This question

is the impetus of the least square investigation. (Appendix U presents the method

of least square evaluation).
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5.4.3 Least Square Analysis

The accelerometer model employed in the least square evaluation of the

multi-position test data is derived from the general accelerometer model (Equation

5.4.1) and is of the form:

aind = B + K 1 Sin (e -) + K 2 Sin (0 - )

+ KIP Sin (0 -4I) Cos (0 -s) (5.4.3)

+ Kd Sin (0 -t)

where

aind = acceleration input indicated by the accelerometer in pulses
per second (pps)

B0 = accelerometer bias (pps)

K 1  = scale factor (pps/g)

K2 = second order non-linearity coefficient (pps/g 2 )

KP = input axis-pendulous axis cross-coupling coefficient (pps/g 2

Kd = plus and minus scale factor differential (pps/g)

0 = - misalignment angle (radians)

The significant difference between the general model (presented in equation

5.4.2) and the computation model (equation 5.4.3) is the omission of the cross axis

coefficient (K 0 cos (0-) or K cos (0-0))and the addition of the misalignment angle

0, and the plus and minus scale factor differential term, K d.

The misalignment angle 0 is included to account for the sum of gimbal and

accelerometer misalignments that are relevant for the particular accelerometer

and test sequence. With 0 included, however, the least square computation fails to

converge. Analysis of the matrix of the partial differentials has shown (See Appendix

V) that the partial derivative with respect to the non-linear misalignment angle

term is in fact a linear combination of the partial derivatives with respect to the

other coefficients and, therefore, is redundant. It can be shown that, if the rectangular

matrix A has a redundant row, then the square matrix ATA is singular and has no

inverse. Thus, one of the coefficients in the full general model, is arbitrarily

determined. Since the inclusion of the misalignment angle in the model makes more

sense than including the Output Axis sensitivity coefficient, the Cos (0) term does

not appear in the current version of the accelerometer model.
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The plus and minus scale factor differential (Kd) recognizes the difference of

accelerometer scale factor under conditions of positive and negative acceleration.

The average of the plus and minus scale factors is the average scale factor (K1)

expressed by *

K+ + K
1 2

where (5.4.4)

K = K 1 + Kd

K = 
K 1 - Kd

This is equivalent, however, to treating the average scale factor as a coefficient of

a sin(O-0) term and the plus and minus scale factor differential as the coefficient

of an I sin(O-0) I term. One difficulty encountered here is that such a term is

non-linear, and its derivative is undefined for sin(O-0) = 0. However, there exists

no data at this point in any case, and the difficulty is ignored.

5.4.4 Accelerometer Model Evaluation

One objective of the least square analysis is to determine the significance of

each term in the accelerometer model. Eight accelerometer models were formed

using a basic model that comprises the scale factor, null bias, and misalignment

angle and all eight combinations of the three remaining terms. Each model was

compared with each other model configuration by computing the sum of the squares

(SSR) of the differences between the indicated acceleration and the predicted

acceleration using the least square techniques. The SSR is the residual and is

expressed in parts per million (ppm) as:

I SSR 6
ppm = 'TOTAL SQUARE x 10  (5.4.5)

where the "total square" is the sum of the squares of the raw data points. Therefore,

the residual in ppm refers to that fraction of the data not explained by the model,

and is a figure of merit representing the "goodness of fit" relative to other models.

Fourteen (14) sets of sixteen-position accelerometer data were run against

the eight (8) different models. Table 5.4.1 gives the mean, standard deviation, and

range of the residuals for each model.
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TABLE 5.4.1 SUMMARY OF RESIDUALS (PPM FOR 14 DATA SETS)

Range Standard

Low High Mean Deviation

Model #1 Full Model 7 32 14.0 5.9

Model #2 Without scale factor differential term (Kd) 8 32 17.4 6.7

Model #3 Without scale factor non-linearity (K 2 ) 8 34 14. 8 6. 2

Model #4 Without the scale factor differential (Kd) 28 37 38.0 9.5

and non-linearity (K 2 ) terms

Model #5 Without cross coupling coefficient (Kip) 12 42 19. 1 8. 5

Model #6 Without cross coupling coefficient (Kip) 12 42 22.3 7. 5

and scale factor differential (Kd)

Model #7 Without cross coupling coefficient (Kip) 13 44 19. 8 8. 7

and scale factor non-linearity (K 2 )

Model #8 Minimum model with null bias (Kd) , scale 28 63 40. 6 9. 6

factor (K 1 ) and misalignment angle (/)



Obviously (from Table 5.4.1), the full computational model provides the "best

fit" in terms of yielding the lowest residual. There is very little difference between

a model that includes the cross-coupling coefficient (model #4) and model #8 that

does not include cross-coupling. This indicates that the cross-coupling coefficient

contributes little to the model. The most significant contribution (other than bias

and scale factor), appears to be the plus and minus scale factor differential. Compare,

for example, the results for models #7 and #8. The other measurable contribution

is made by the second order non-linearity factor.

Based on the comparison of residuals, the full model is the best model to

implement with respect to the set of models analyzed. The question which remains

is: Does improvement in the residual warrant the inclusion in the model of a given

coefficient? A corollary question is: What is the best criteria for appropriate

model selection?

One technique that may be used to answer this question is to evaluate the

probability that the coefficient in question is different from zero. This probability

is obtained from the "t" statistic that is computed from the mean value (x) of the

coefficient and the standard deviation of the data about the mean(s).

t x fi (5.4.6)

where n is the number of data points.

This statistic is then compared with the normal distribution.

For small samples, it is necessary to use the Student's "t" distribution with

n-m degrees of freedom where m is the number of coefficients in the.model. The t

statistic becomes

t E~ xn -- m (5.4.7)

Student's "t" distribution has a slightly larger dispersion than the normal distribution,

but approaches the normal distribution asymptotically as n increases.

Using the full computational model, and data obtained from the Y accelerometer

on 29 March 1971, the "t" statistics were computed and are presented in Table

5.4.2.
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TABLE 5.4.2 COMPUTED T STATISTICS FOR FULL MODEL

Standard
Coefficient Value Deviation t-Statistic

Kb .065680 .003205 64.8038

K 1  960.392 .004532 670036.

K2 .036851 .033490 3.47969

KIO -.009007 .009065 -3.14193

Kd .032619 .036524 2.82420

Ox10 -  
.034193 .004720 22.9105

At the 1% level of significance and for 10 degrees of freedom, the bias, scale

factor, and misalignment angle terms, as expected, are highly significant. The

scale factor differential, and cross-coupling coefficients are not significant. Thus

with a 99% probability, the means of the scale factor differential and cross coupling

coefficient are not different from zero. The scale factor non-linearity term marginally

passes the significance test. Not all coefficients for all models and data sets have

been tested for statistical significance. However, since the least square methods

determines the model coefficients in a probabilistic sense, the statistical testing

for significance is directly applicable as a criterion of model selection. The levels

of significance are chosen as the confidence of model selection warrants.

Another factor that influences model selection is the interaction between terms.

The computation program models the plus and minus factor differential as a coefficient

of a sin (-)I term which is added to or subtracted from the average scale factor

to yield the desired plus and minus scale factors. The second-order non-linearity

coefficient is modeled as a sin 2 (0-k) term. Both sin 2 (0-0) and Isin (-0) I have a

positive average value which would interact with the bias term. Such interaction

makes it difficult to ascertain whether or not the second-order non-linearity or the

plus and minus scale factor differential terms is a statistically significant contributor

to the model. The statistical dependence between coefficients is verified by isolating

the three coefficients and by performing a cross correlation analysis. The correlation

analysis operates on the following expression with dummy variables a and b.

B + aK 2 + bK d = CONSTANT VALUE (5.4.8)

The product moment correlation coefficient computed for 16 data set is 0.963.

This high correlation implies that the current accelerometer model is not an optimal

one in terms of coefficient independence.
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An interesting result derived from the least square analysis is that the

significance of computed coefficient is dependent on the input data. Using MIT/CSDL

data, little difference was observed in the misalignment angle (0) when the data

was divided into positiveand negative acceleration sets. However, with NASA/MSC

furnished data (Delco 653 accelerometer) the difference was significant. This result

implies a larger pendulum hangoff in the NASA data than in the MIT/CSDL data.

5.4.5 Sixteen Position Data-Four Position

Data Comparison

A second objective of the least square analysis is to compare the estimation

of coefficients between a data set from sixteen positions to a data set comprising

four of the sixteen positions. The comparison analysis is restricted to the scale

factor coefficient (K 1 ). The first set of four-position test (4PT) data includes the

four ordinal points ( 0 = 00, 900, 1800, and 2700) from the sixteen-position test (16PT)

data and solves for the bias, plus and minus scale factors, and the misalignment

angle in a deterministic sense. Assuming that the 16PT least squares (probabilistic)

solution for the accelerometer model coefficients is more "accurate" in some sense

than the 4PT solution, it is desirable to compare the results to find out how well

the 4PT determines the accelerometer model coefficients. Over the fourteen (14)

sets of data points, differences between the computed 4PT and 16PT solutions for

scale factor ranged from -1 to +23 parts per million.

While the differences do not seem large, a statistical analysis was made with

the following results. The mean difference in scale factors is 6.93 parts per million

(ppm) with a standard deviation of 7.52 ppm. The resulting "t"-statistic (3.32) for

13 degrees of freedom indicates that the probability is very low (less than .005)

that the scale factors computed by the two methods are the same. This analysis

concludes that the 16PT least squares method yields a scale factor coefficient that

is more statistically significant than the 4PT solution.

An effort was made to determine the coefficients when four other points (other

than the ordinal points) are used in the computation.

For example, an additional four data set was selected from the sixteen position

data sets that were rotated 22.50 off the ordinal position (e = 22.50, 112.50, 202.50,

and 292.50). The 4PT solution was computed for this orientation and for 450 and

67.50 rotations as well. The results are summarized in Table 5.4.3.
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TABLE 5.4.3 DIFFERENCE BETWEEN 16PT AND 4PT SOLUTIONS
FOR SCALE FACTOR

Rotation
from Mean(ppm) Standard

Ordinal Low High Difference Deviation(ppm) t

00 - 1 23 6.93 7.52 3.320

22.50 - 9 16 1.57 6.57 0.350

45.00 -32 8 -2.79 9.90 1.016

67.50 - 3 15 1.57 8.39 0.675

It is to be noted that there are no significant differences ("t"-statistics too

small) between the 4PT and 16PT solutions in any of the three "off ordinal" positions.

The conclusion may be made that the 4PT in the ordinal position is the solution

least likely to estimate the accelerometer model scale factor coefficient as determined

by the 16PT least squares solution.

A similar comparison between 16PT and 4PT data sets was conducted for

null bias and the misalignment angle. The results are not given here. However,

the 4PT solution of bias and misalignment angle are generally not good estimators

of the corresponding 16PT solution.

An important result, however, is that as the Input Axis approaches 450 with

respect to the g-vector, the plus and minus scale factors tend to diverge, yielding

obviously poor results. For example, 1090.948 and 829.903 pps/g where the 16PT

average scale factor is 946.224 pps/g.

The divergence between plus and minus scale factors is due to the fact that

we are trying to compute the slope of the line using two points which are very

nearly the same operating point for the accelerometer. For example, the four

accelerometer models that express the accelerometer's output for orientations to

include 450, 1350, 2250, and 3150 from the horizontal are given as follows:

A = B + K sin (45 0 +0)

A = B + K + sin (135 0 + )

A3 = B 0 + K- sin (2250 +0) (5.4.9)

A 4 = B + K- sin (3150 +0)
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The positive scale factor solution is:

+  A -A A -A

K = 1 2 2(5.4.10)

sin (450 +0) - sin (1350 + ) q2sin (

The differences in both the numerator and denominator are small quantities

but with large sensitivities to the computed scale factor. The sensitivity due to

this source is obviously smaller in the cases of 22.50 and 67.50 rotations from the

ordinal position.

In summary, the 4PT in the ordinal position yields better results for plus

and minus scale factors than the 4PT in off ordinal positions. On the other hand,

the off ordinal orientations yield better results for the average scale factor.

The compromise 4 position test is the four sets of data that are, rotated 22.50

from the vertical (0 = 22.5 , 157.5 , 202.5 , and 337.5 ). If this is a feasible

alternative for system testing, it may offer improved results insofar as determining

accurately both average scale factor and the plus and minus scale factor.

To correlate the results of the least square evaluation to the fourier series

expansion,.an analysis was conducted (See Appendix W) that relates the coefficients

from the two methods and proves that the two solutions are equivalent if only the

low order terms are considered (bias, scale factor and scale factor non-linearity).

Additional evaluations of multi-position accelerometer data are warranted.

Least square and "t" statistics techniques provide useful methods to evaluate different

models, however, the optimum accelerometer model has not yet been defined. The

statistical interaction of the null bias, scale factor differential, and scale factor

non-linearity coefficients also illustrates the need for a model with less dependence

between terms. Another area of investigation is the evaluation of correlation between

the aggregate misalignment term (4), and system misalignment errors.
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5.5 Program Milestones

This text discusses the achievement of the program milestones that included:

the system design, fabrication, integration, and the inertial strapdown performance

calibration and evaluation. The chronological sequence of completed program

milestones is given in Table 5.5.1 and is illustrated in Figure 5.5.1.

It is observed from the milestone data that four gyro wheel start problems

occurred during the course of the program. The 410 series, 18 IRIG Mod B gyro

population designated for utilization in this program was known to have a generic

wheel start problem from experience with earlier developmental programs.

Unfortunately, the gyro population did not withstand the countless power on-off cycles

incurred during the system start-up phase where many subsystems were integrated

into one facility. Each gyro failure impacted the program schedule approximately

one month to harness and calibrate a replacement gyro and to establish a new system

baseline upon which strapdown evaluations were based.

The backup gyro population included four similarly designed gyros that were

manufactured by the Bendix Corporation. The Bendix gyros, because their hardware

actually corresponded to a very early 410 series gyro design release, incurred a

similar wheel start problem which exhausted the total planned gyro population prior

to the completion of all program objectives. With the concurrence of the NASA

technical monitor, the newer designed 420 series gyro was loaned for use in this

program. These gyros proved to perform satisfactorily.

It is noteworthy to comment, that the redesigned Mod D gyro uses a beryllium-

oxide wheel element which is expected to permanently correct the wheel start

problem.

Another factor influencing the milestone performance resulted from the basic

program ground rule that the system design was to use hardware and equipment

available from earlier programs along with surplus hardware and equipment from

the Apollo program to the extent that the only major procured item was the Honeywell

H-316 computer. For system supplies and monitoring equipment, this approach

was sound.

One system component, the resolver-to-digital encoder (RDE), was of a new

design and required a considerable unanticipated developmental effort because of

reoccurring noise, transient, and reliability problems. A RDE rebuild effort was

necessary to correct these problems. In retrospect, had the design effort occurred
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TABLE 5. 5. 1

SPOT Major Program Milestones

1. August 70 Strapdown inertial system packaging in gimbal completed

and ready for test.

2. December 70 Supporting electronics, computer facilityand system

harnessing completed.

2. January 70 Gyro MB-413 removed from the population (wheel

start problem).

3. February 70 Gyro MB-411A removed from the population (wheel

start problem).

3. June 71 System integration completed and ready for strap-

down evaluations. (Integration effects include: thermal

adjustment, pulse torque loop calibration, computer

software verification and activation of the automatic test

capability. The resolver to digital encoder was completed,

however, because of a rebuild effort necessary to

correct an operational problemintegration with the

system was not completed until October 71.

4. October 71 System end-to-end performance is verified in a

stationary environment. Dynamic evaluations started.

4. November 71 Gyro MB-2 removed from the population because of

wheel start problem.

5. January 72 Dynamic calibrations completed (Gyro scale factor

linearity, anisoinertia, float hang off and centripetal

acceleration).

5. March 72 Gyro MB-415 removed from the population because

of a wheel start problem.

6. May 72 Program resumed aftergyro replacement, gyro torque

loop scaling change, establishment of a detailed test
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plan and NASA redirection.

7. July 72 Program evaluation requirements completed.

8. August 72 Program evaluation to verify earlier test results and

to pursue other areas of strapdown investigation. Program

terminated because of wheel touchdown failure (MB-4 and

427) from excessive gimbal rates.
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Fig. 5.5.1 SPOT Program Milestone Chart.



one year later, medium scaled integration logic (MSI) would have permitted reasonably

accurate encoders to be purchased as an "off-the-shelf" component and therefore

reducing its impact to the program's schedule.

The program was terminated in August 1972 when during verification of earlier

test results, two gyros inexplicably failed because of wheel touchdown. Those failures

exhausted all available spare gyro resources and because of limited funds, the

program's testing was terminated. Those areas of evaluations completed prior to

the program's termination included:

1. Gyro scale factor linearity calibration and compensation.

2. SRA cross coupling calibration and compensation in slew (constant

rotating) and oscillatory environments.

3. Anisoinertia compensation in slew and oscillatory environments.

4. OA coupling error compensation and pseudo coning error bandwidth

studies including the effects of quantization and algorithm iteration rate.

5. Coning bandwidth studies including the effects of quantization and

algorithm iteration rate.

6. Centripetal acceleration calibration.

7. Least square accelerometer modeling evaluations.

8. Quantization tradeoff studies.

9. Land navigation performance-tradeoff evaluations with respect to

iteration rate.

10. Pulse burst evaluations.

11. Four months of gyro and accelerometer parameter calibration statistics.

Those areas of investigation that remain to be accomplished had the gyro

failures not occurred include:

1. Further evaluations of the pulse burst phenomenon by impressing a

non-symmetrical multi-axis slew environment (one axis rate above the

pulse bursting threshold and the second axis rate below the threshold).

2. Anisoinertia - SRA cross coupling error compensation over the full

multi-axis slew environment range (0.1 to 0.8 radians/second).

3. Land navigation evaluations under various conditions of compensation

(centripetal acceleration effects compensated and uncompensated, and

pulse bursting compensated and uncompensated).

4. Implementation and evaluation of the third order quaternion expansion

algorithm.
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6.0 Conclusions and Recommendations

A fine grain strapdown evaluation system was mechanized in this program by

packaging a three axis inertial system in an Apollo gimbal fixture. The gyros and

accelerometers were operated in a strapdown ternary pulse-torque mode. Dynamic

environments were imposed on the strapdown system by introducing slew and

oscillatory driving functions to the gimbal torque motors. An on-line mini-computer

with a comprehensive set of real-time processing algorithms was interfaced with

the inertial hardware to enable a fine grain evaluation of the system performance.

Performance evaluation was accomplished through the use of extensive data reduction

software that derived real-time attitude error profiles. The data reduction was

effected on an IBM 360 computer using the recorded output samples (10 times a

second) of the on-line mini-computer which included readout of the positioning gimbal

fixture.

The evaluation of strapdown performance required the analysis and modeling

of all significant error sources such as scale factor linearity, output axis coupling,

anisoinertia, SRA cross coupling, static drift, and alignment. Software compensation

algorithms were developed based on theoretically derived error models and were

subsequently confirmed in the test evaluations. For example, OA coupling

compensation was effected by using rate data from a second gyro to estimate the

rate change magnitude about a gyro's Output Axis. This relatively simple model

suppressed the pseudo coning error by 100 to 1 in the effective operating range

determined by bandwidth rolloffs. Other significant compensation results included

gyro scale factor linearity error compensation from an uncompensated 50 ppm spread

over the full dynamic rate range (0.8 rad/sec) to error magnitudes within 7 ppm.

This residual error can be attributed to the fact that the pulse torque electronics

were separated from the gyro instruments by the gimbal slip rings and was within

the basic SF stability uncertainties. Anisoinertia-SRA cross coupling (using the

nominal coefficients) compensation effectiveness was demonstrated by reducing an

uncompensated 2.07 0 /hour (138 meru) error drift to 0.045 0 /hour (3 meru) for a

continuous multiple axis 0.15 radian per second input.

Anisoinertia and SRA cross coupling compensation was also evaluated at higher

rates (0.5 radians per second), however, the results were not conclusive because

of the large sensitivity to gyro scale factor and alignment uncertainties. Additional

evaluations at the high rate multi-axis slew inputs were to be conducted during

re-test had the program not terminated because of the gyro failure.

Static error source residuals such as gyro drift proved to be a significant

contributor of system performance errors in this test program. The compensation
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model used a single set of drift parameters, assuming an insensitivity of drift

magnitude to the gimbal position. Because of thermal gradients, wheel compliance ,

environmental differences within the gimbal structure, and other second order effects,

positional sensitivities did exist such that 0.030/hour (2 meru) was observed between

calibration position drift magnitudes. A fine grain static calibration procedure would

be desirable to analyze the source of the positional sensitivity and to derive

appropriate models to accommodate for second order effects.

A large inventory of software was amassed to provide system calibration,

compensation, attitude maintenance, navigation and analysis capabilities. The

strapdown algorithms were implemented at three iteration rates (100, 50 and 25

iterations per second) which permitted the evaluation of various bandwidth tradeoffs.

These evaluations verified the theoretical coning bandwidth for a first-order

quaternion expansion. For example, the 100 iterations per second algorithm rolloff

becomes significant (95% coning compensation effectiveness versus 100%) at 8 hertz.

For this program, a third order algorithm was implemented, however, the cros.s-

product term was inadvertently omitted by an initial programming oversight and

therefore only a first-order performance in coning was achieved. Had the program

not terminated during the re-test phase due to a gyro failure, evaluations with the

fully implemented third-order algorithm was planned for the retest phase. It is

recommended that the full third-order performance be verified in future evaluations.

Coning errors at low frequencies (0.5 hertz) were observed to increase because

of attitude lags introduced by the torque loop quantization. For example, with a 5

arc second quantization the 0.5 hertz coning error is 0.03% and with a 40 arc second

quantization it is 0.08%. However, because the error magnitude at this frequency

is extremely low, the effects of quantization on coning bandwidth is negligible.

The effective bandwidth of pseudo coning compensation was analyzed and

verified to be a combined function of the coning bandwidth and OA compensation

bandwidth. The OA compensation bandwidth is determined by the ability of the gyro

rate estimator to accurately determine the rate change magnitude of the oscillatory

input. Compensation errors are observed to become significant when the oscillatory

frequency is one-tenth the compensation algorithm iteration rate. Interestingly,
this rolloff occurs at a lower frequency then the basic attitude algorithm when both

Wheel major compliance has been modeled in the compensation algorithm. However,
the minor compliance terms which were not modeled, and they may contribute as a
second order effect to the positional sensitivity observed in the data.
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are operating at the same iteration rate. Thus when OA compensation ceases to be

effective, the attitude algorithm mistakes the OA coupling error with the input

oscillatory input as a coning input and then incorrectly compensates for a non-existent

coning input. As the oscillatory frequency increases and the attitude algorithm

becomes bandwidth limited, the attitude algorithm no longer responds to OA coupling,

and pseudo coning errors are not generated. With respect to pseudo coning errors,

optimum compensation is therefore achieved when the OA compensation algorithm

iteration rate is greater than the attitude algorithm rate. Using such a scheme

would extend the OA coupling compensation bandwidth so that when OA coupling

errors are generated, they will not be recognized by the attitude algorithms. The

optimum implementation would be selected on the basis of the anticipated vehicle's

environment.

Gyro loop quantization was observed to proportionally increase the system

attitude uncertainty. For example, with a 5 arc second quantization the measured

peak to peak attitude uncertainty is 5.5 arc seconds. With 40 arc second quantization

the uncertainty level is 37 arc seconds.

Land navigation evaluations were conducted with an inertial referenced

navigator operating at one iteration per second and with inertially referenced velocity

increments updated at 100, 50, or 25 updates per second. Navigation evaluations

were conducted in both slew and oscillatory environments, as well as a 96 hour

evaluation during which the system's position was fixed. Classic navigation error

profiles (a Schuler oscillation superimposed on a 24 hour sinusoid) were observed

in all of the navigation results. The magnitude of the two sinusoid components,

being a function of system alignment and residual compensation errors, reflected

the salient system error for the environment tested. For example, the slew and

oscillatory tests reflected a 50 arc second initialization alignment error in the Schuler

oscillation magnitude through a sensitivity factor of 7 nautical miles per milliradian

of alignment error. These error magnitudes, unfortunately masked the observance

of navigation error propagation from less significant error sources such as centripetal

acceleration. Therefore, accurate alignment of the strapdown body frame with respect

to an inertial referenced frame is required for future evaluations.

Another factor influencing the resultant navigation data is the choice of

environments. The slew environment was imposed by rotating a horizontal east-west

axis 50 revolutions at 4°/seconds. Thus, two accelerometers were tumbled through

the "g" field and therefore introducing errors attributed to accelerometer scale

factor compensation in addition to the initialization alignment error. In retrospect,

a better slew environment would have consisted of rotations about a vertical axis

such that scale factor errors are not excited.
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With regard to the slew testing, however, a 50 revolution rotation is clearly

not representative of any realistic environment that might be anticipated in an aircraft

mission. An actual flight profile of attitude angular rate and oscillatory inputs is

suggested, whereby the applicability of the compensation models and system

performance can be assessed in a direct manner with extremely high confidence.

Other recommendations for future strapdown evaluations include:

1. The definitive modeling of accelerometer dynamic error terms such as

OA coupling and anisoinertia. These terms were not modeled because

the initial dynamic rate range was limited by the gyro torque loops to

0.2 radians per second. At these rates magnitudes, the error magnitudes

are not significant. Later with a gyro loop rescaling, the dynamic range

was extended to 0.8 radians per second and therefore allowed testing at

higher rates which increased the significance of accelerometer OA

coupling and anisoinertia.

2. Gyro anisoinertia compensation was accomplished with a constant cor-

rection factor based on the low frequency inertia difference between

the float's Input Axis and Spin Axis. This compensation model is accurate

for environments below the wheel hunt frequency (3 to 5 hertz). However,

if environments above the wheel hunt frequency are anticipated then the

decoupling of the wheel element from the input oscillation should be

accounted for because the inertia about Spin Axis is signficantly reduced.

To adequately compensate for the wheel decoupling effect, a more complex

model based on the spectral content of the environment sensed data is

required.

3. The evaluations conducted in the program centered in the 1 hertz to 10

hertz frequency band. Useful information relating to algorithm

bandwidths, quantization and compensation effectiveness were derived

from these evaluations. Additional evaluations are required, however,

in the frequency range below 1 hertz where the majority of vehicle

oscillatory motion is anticipated.

4. The pulse burst phenomenon was evaluated in this program and it was

observed that the compensation scheme suggested by Lory is effective.

Additional evaluations are required to determine the effects of pulse

bursting on attitude error propagation. A suggested environment is a

multi-axis rotational excitation where the rate about one axis is below

the pulse torquing threshold and the second axis is above the threshold.

6-4



In summary, the recommendations for future study and evaluation are listed

below:

1. Finer calibration and model techniques to account for second-order gyro

error effects and accelerometer dynamic terms.

2. Additional evaluations of higher multi-axis slew rate environments.

3. Development of a frequency dependent gyro anisoinertia compensation

model.

4. Additional pulse burst compensation evaluations.

5. Evaluation of a fully implemented third-order quaternion expansion

algorithm.

6. Test with OA compensation operating at a higher iteration rate thanthe

attitude algorithm.

7. Land navigation evaluations with greater initialization alignment ac-

curacy and with realistic environments.
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APPENDIX A

STRAPDOWN TEST FIXTURE PARAMETERS

GIMBAL ALIGNMENT UNCERTAINTY 1  
+ 7 arc seconds

GIMBAL POSITIONING ACCURACY 2  
+ 50 arc seconds

GIMBAL FREQUENCY RESPONSE See Figure A-i

GIMBAL ROTATIONAL RATE Limited to 1 radiant per

second by gyroscopes

NOTE 1 - Based on 5 arc seconds table uncertainty and 3 arc seconds accelerometer
null uncertainty.

NOTE 2 - With respect to an earth fixed frame.. The positional accuracy is deter-
mined by the gimbal and table alignment errors.
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Figure A-1 - GIMBAL OSCILLATORY PERFORMANCE



Inertial Units X IRIG Y IRIG Z IRIG X PIP Y PIP Z PIP
Operating Temp: 140. 80F 135. 60 F 141 0F 1300F 129. 20 F 1290 F
Pwr. Dissipation: 7.3 w 9.2 w 7.3 w 7.7 w 7.5 w 7.8 w

0=50F/ watt

0 = 3.4 0 =5 :0 =3.4 0 =3.4 0= 3.2

S 104 0

Aluminum Frame 10 =1. 10F/watt

Gimbal Case 420

TOTAL POWER DISSIPATION

Gyroscopes 23. 8 watts
Accelerometers 23 watts
Temp. Controllers 3 watts
Dart 2 watts
SG Preamplifiers 5 watts

56. 8 watts

Fig. A-2 Spot System Thermal Model.



APPENDIX B

SPOT H316 COMPUTER COMMANDS

Gyroscope, Interpolator and Accelerometer Interface

INA '1007 Read X Gyro Counter

INA '1017 Read Y Gyro Counter

INA '1027 Read Z Gyro Counter

INA '1047 Read Interpolator

INA '1107 Read X PIPA Counter

INA '1117 Read Y PIPA Counter

INA '1127 Read Z PIPA Counter

OCP '07 Enable Interrogate to scaler (Interface On)

OCP '17 Interface Off

OCP '27 Clear Gyro Counters, Ready FF, and Scaler

OCP '37 Clear PIPA Counters, Ready FF, and Scaler

OCP '47 Actual Float Angle Discrete to Interpolator

OCP '57 Compensated FA Discrete to Interpolator

OCP '77 Clear Preset Register

OCP '167 Gate X Interpolator to Transfer Lines

OCP '267 Gate Y Interpolator to Transfer Lines

OCP '367 Gate Z Interpolator to Transfer Lines

OTA '77 Preset Preset Register With C(A)

SMK '20 Set Interrupt Mask if A12 is Set

B-1



SKS '147 Skip if Ready FF Set

SKS '157 Skip if Interface not Interrupting

SKS '167 Skip if Interpolator Inhibited

Resolver/Digital Encoder Interface

INA '1006 Read RDE Channel 1 High

INA '1016 Read RDE Channel 2 High

INA '1026 Read RDE Channel 1 Low

INA '1036 Read RDE Channel 2 Low

OCP '06 Set RDE Zero FF

OCP '16 Reset RDE Zero FF

SKS '06 Skip if 800 FF Set (SYNC)

Test Sequencer Interface

OCP '05 Reset Test Sequencer (Start of Test)

OCP '15 Count Pulse

OTA '05 Output Data to Test Sequencer

SKS '05 Skip if Ready (GPC in Fine Mode)
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516 - 316 DATA LINE CONTROLLER

OCP

OCP '60 Enable Receiver

OCP '160 Search for Sync. (Preceed by OCP '60)

OCP '1060 Disable Receiver

OCP '260 Enable Transmitter

OCP '1260 Disable Transmitter

OCP '360 Set Data Terminal Ready (Resets Ring Signal,

Disconnect Signal)

OCP '1360 Reset Data Terminal Ready (Disable Receiver

before OCP '360 again)

SKS

SKS 'x060 Skip if Receiver Ready is Set

SKS '160 Skip if Receiver Fault is set Pauffy Error

lemptied on time

SKS '1260 Skip if Transmitter not Busy

SKS '260 Skip if Transmitter Ready

SKS '360 Skip if no Ring Signal

SKS '1360 Skip if no Disconnect Signal

SKS '460 Skip if Controller not Interrupting

OTA

OTA '160 Skip if Receiver Fault is set, Reset it

OTA '260 Skip and Output from A if Transmitter Ready Set

SMK '420 Set Mask (Bit 1 of A)
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INA

INA '60 Input and Skip if Receiver Ready is True

INA '1060 (Reset Receiver Ready)
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APPENDIX C

Accelerometer Error Parameters

Accelerometer bias (B ) is a function of suspension and SG reaction torques

acting about the Output Axis to displace the float from its null position.

Cross coupling coefficients (KIP and KIO) are caused by simultaneous linear

acceleration along two axes. An acceleration along the Input Axis causes rotation

of the pendulum from its null position. A component of pendulosity results from

the rotation that is therefore sensitive to acceleration inputs along the Pendulous

Axis (Kip). (KIO) is the anisoelastic effect caused by rectified error torques if

unequal spring restraints exist along the Input Axis at opposite ends of the float.

Cross Axis coefficients (K o ) are caused by the difference between the center

of gravity and center of buoyancy. An acceleration input along the Output Axis

causes rotations of the float about the Input Axis. This rotation, within the suspension

field, has a small but measureable effect on the accelerometer scale factor and

bias.

Output Axis coupling error is related to the float response to velocity changes

about the Output Axis. Because of the float inertia, the float motion lags the case

motion and additional torque pulses are generated to maintain the float at its null

position.

Anisoinertia errors arise from the application of simultaneous angular rates

to the inertia difference between the float Pendulous and Input axes.
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APPENDIX D

Gyro Drift Parameters

The gyro drift error parameters represent the torques that arise from the

non-ideal nature of the gyro.

Acceleration Insensitive Torque (NBD)

The accelerometer insensitive torque (NBD) is a function of torques resulting

from flex lead stiffness, and the magnetic -restraining torques between the float and

case.

Acceleration Sensitive Torque (ADIA and ADSRA, and ADOA)

Acceleration sensitive torques are caused by a non-coincidence of the gyro-

float center of gravity (cg) and the center of buoyancy (cb). For example, ADIA is

generated by a specific force along the Input Axis operating in conjunction with a

cg-cb displacement along the Spin Reference Axis.

ADSRA is generated by a specific force input along the Spin Reference Axis

operating in conjunction with a cg-cb displacement along the Input Axis. ADOA is

an acceleration sensitive drift inherent to the gyro when specific forces are applied

along the Output Axis.

Acceleration Squared Sensitive Drift

Major compliance (KSS - KII) is the result of an unbalanced yielding of the

wheel structure to simultaneous acceleration input along the Input Axis and Spin

Reference Axis. Other compliance terms (KIS and KIO ) are not modeled because

of their insignificant magnitudes (less than one meru or 0.015 0 /hr).
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APPENDIX E

SPOT GYROSCOPE COMPENSATION EQUATIONS

A. Definition of Terms

GXPC, GYPC, GZPC - The X, Y and Z axis net gyro torque pulses accumulated in

one iteration period

IXCC - compensated interpolator information- current update interval

IXCP - compensated interpolator information - previous update interval

GXPS, GXNS - The deviation of the X gyroscope positive and negative scale factors

from a nominal scale factor

SSPX, SSNX - X gyroscope positive and negative scale factor linearity slopes

respectively

Wmax - maximum rate of torque loops, defined by torque pulses per update period

SXSF - X gyro scale factor

GXBX - normal bias drift

ADX, ADY, ADZ - acceleration sensitive drift terms (ADIA, -ADSRA, ADOA for

the X gyroscope respectively)

XA2D - major compliance

PXPC, PYPC, PZPC - X, Y and Z accelerometer net torque pulses per iteration

time (these pulse count will have been compensated for the accelerometer error

magnitudes)

GXIH - I/H coefficient

XOAO, XOAP - correction factor for OA coupling; XOAO calculates for the current

update time, XOAP calculates for preceding update time

GMXY - X gyroscope misalignment into the Y reference axis (OA misalignment)

MXYC - compensated misalignment of X gyroscope into the Y reference axis

XFOP, XFON - low rate float offset

XAN - X Gyroscope anisoinertia coefficient

XFOP + (XSOP)GXPC - float hangoff model if GXPC positive

-XFON + (XSON)GXPC - float hangoff model if GXPC negative

IXUC - compensated interpolator information
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GZPC4  GZPC5  GXPC6

GPXPC GXPC4 CROSS AXIS GPC5 GYPC5

RAW GYRO GXPC 2  3 RATE CHANGE CROSS AXIS INCREMENTAL
DATA DATA RATE DATA BODY MOTION

ADIA, ADOA, ADSRA MISALIGNMENT ANGLES, AbX
"' + F SCALING NBD AND MAJOR OA COUPLING ANISOINERTIA, SPIN

a. y CORRECTION COMPENSATION COMPLIANCE COMPENSATION AXIS CROSS COUPLING Abby

COMPENSATION COMPENSATION Az.o To
a COMPENSATED

INTERPOATCCR

IXCC, IXCP ACCELEROMETER

UNCOMPENSATED INTERPOLATOR (IXUC) DATA

Fig. E-1 Compensation Mechanization (X Axis).



B. Equations

This section explains the gyro compensation algorithm using the X axis gyro

as an example. Figure E-1 depicts the compensation steps corresponding to the

following discussion.

1. Combination of compensated interpolator information with gyroscope

pulse counts

GXPC 2 = GXPC 1 + IXCC - IXCP

IXCP = IXCC

2. Scale factor determination

SXSF = (GXPC 2 ) (SSNX/w MAX) + GXNS : If GXPC 2 negative

SXSF = (GXPC 2 ) (SSPX/w MAX ) + GXPS : If GXPC 2 positive

3. Gyro pulse scaling and normal bias drift compensation

GXPC 3 = (GXPC 2 ) (SXSF) + GXBD + GXPC 2

4. Acceleration sensitive drift compensation

GXPC 4 = GXPC 3 + (ADX) (PXPC4) + (ADY) (PYPC 4 ) + (ADZ) (PZPC4 )

+ (XA2D) (PXPC4 ) (PYPC 4 )

5. OA coupling compensation

XOAO = (GXIH) (GZPC 4 )

GXPC 5 = (GXPC 4 + XOAO - XOAP)

XOAP = XOAO

6. SRA cross coupling, anisoinertia, and misalignment compensation

If GXPC 5 positive: MXYC = GMXY + XFOP + (XSOP-XAN) GXPC 5
If GXPC 5 negative: MXYC = GMXY - XFON + (XSOP-XAN) GXPC 5
If GXPC 5 zero: MXYC = GMZY + IXUC

GXPC 6 = GXPC 5 + (MXYC) (GYPC 5 ) + (GMXZ) (GZPC 5)
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APPENDIX F

SPOT ACCELEROMETER COMPENSATION EQUATIONS

A. Definition of Terms

PXPC, PYPC PZPC - X, Y and Z accelerometer net pulse counts per update time

respectively

PXPS, PXNS - X accelerometer positive and negative scale factor deviation from

nominal respectively

PXAB - X accelerometer null bias

PMXY, PMXZ - X accelerometer misalignments into the negative Y and Z reference

axes (OA misalignment and PRA misalignment respectively)

RXX, RXY, RXZ - X accelerometer position from system center

GXPC, GYPC, GZPC - X, Y and Z gyro net pulse counts respectively

GYPCp - gyro net pulse count from previous update

B. Equations

This section explains the accelerometer compensation algorithm using the X

axis accelerometer as an example. Thus PXPC, is the raw accelerometer pulse

count accumulated during an iteration interval.

1. Scale factor and bias compensation

PXPC 2 = PXPC 1 + (PXPC1 ) (PXPS) + PXAB : If PXPC 1 positive

PXPC2 = PCPC1 + (PXPC 1 ) (PXNS) + PXAB : If PXPC 1 negative

2. Misalignment compensation

PXPC 3 = PXPC 2 + (PMXY) (PYPC 2 ) + (PMXZ) (PZPC 2 )

3. Centripetal and tangential acceleration compensation

PXPC4 = PXPC 3 - (RXY) (GXPC6 ) (GYPC 6 ) - (RXZ) (GXPC 6 ) (GZPC 6 )

+(RXX) (GYPC 6 ) (GYPC 6 ) + (RXX) (GZPC6) (GZPC 6 ) - (RXZ) (GYPC 6

-GYPCp 6 ) + RXY (GZPC 6 - (RXZ) (GYPC 6 - GYPCp6) + RXY (GZPC 6
GZPCp6 )
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APPENDIX G

STRAPDOWN ANGULAR RATE INDUCED ACCELERATIONS

P

RCP RBP WB

C .CB

Fig. G- 1 Strapdown Angular Rate Induced Accelerations.

From Figure G-1, 1 3 let P represent an accelerometer mass element and B

the chosen body reference point containing an associated body coordinate frame

which contains the point (P). Let C be assigned as another point representing the

inertial reference of this system which references the motion of the B frame and

therefore of P. We are now ready to derive the effect of introducing an angular

rate upon the mass element. This angular rate input (WCB) is measured in the

body frame with respect to the inertial reference frame. Notice, in this discussion

RBP is fixed in the vehicle.

From the Theorem of Coriolis the velocity of P with respect to the C frame

will be:

PCRCp 
= PC RCB 

+ PB RBP 
+ WCB X BP (G-1)

and the resultant acceleration of P can be derived to be:

2 2 2W XPR +P XR
P RC 

= p2 RC B + 2WCB X B RBP B CB X RBP

(G-2)
+ W X (W XR 

(G-2)

CB -CB G-B
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Notice, in Equation G-2, the coriolis acceleration(2WB X PB RBP) is zero

since the mass element is fixed with respect to the body reference point (PB RBP
= 0). The linear acceleration of the body frame with respect to the, reference frame

(PC2RCB) is the primary acceleration expected and is not of concern at this time.

The remaining terms in Equation G- 2 then represent the accelerations induced during

rotation by the accelerometer mass elements not being centered at exactly a single

point or,

A = ACCELERATION ERROR = PB B X RB + WCB X (WCB X RBP) (G-3)

In general RBP will contain three dimensions for each accelerometer. The

actual error can now be derived for the ith accelerometer in general by resolving

Equation G-3 in body computational axis components to obtain:

Aeix = -(W 2 + W2 ) RiX + (WXW - WZ) RiY - (WWZ - W) RiZ

Aeiy = -(WWy - W) Ri - (WX + WZ) RiY + (WyWz - WX) RiZ (G-4)

Aeiz = -(W - W RiX- (W -W X) Riy - (W 2 + W 2 ) Ri

(W 2 + W) -(WWy-W) (WxWz-WY) (G-5)

A ei= (WXWy-WZ) (WX + WZ) -(WyWz-W) RBP

(WxWzWY) (WyW-Wx) (Wx + Wy)
XWZ Y Y Z-WX X

where, RBP = RiX RiY RiZ for the ith accelerometer
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To determine the actual required compensation for each of the three instruments

in SPOT we now recognize,

1AX A = -X Accelerometer compensation
1AY - eX

1 " A = -Y Accelerometer compensation1AY -eY

1A *A = -Z Accelerometer compensation

where for the present SPOT system, (G-6)

1 -SPYI SP
1 AX= SOx 1 1AV = 1 1

1AZ = -SO

-SP x  SOy 1

In this discussion no gyro misalignment is assumed for the derivation of the

rate information since we can use the input information after scale factor and alignment

compensation to derive rate. The accelerometer alignment effects cannot be reduced

in this way and are shown so the error effects on compensation can be evaluated.
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TABLE H-1

ATTITUDE ERROR PROPAGATION (0x , 6y, AND 6z) DUE TO GYRO DRIFT

AND SYSTEM ALIGNMENT ERRORS

ATTITUDE ERROR PROPAGATION ATTITUDE ERROR PROPAGATION

RESULTING FROM GYRO DRIFT RESULTING FROM ALIGNMENT

RAMP SINUSOID CONSTANT SINUSOID CONSTANT

D +WWD x(0) cos W. t
x v Y sinW. t W D x ie w (0) + W Wh y(0)
W.3 le v z h x v h y

8 (W
2

D + WWhD) t le W
2  2

x hx le + v 0z(0) sinWiet le

W.2 -WvD z  ie z
le 2 Cos W. t

- Wh0x(0) + W Whey(0)

S+ Dx cos W. t
O sin W. t W.

- 2D + W WhD 9y(0) Cos W t

S(WWD +W
2

D )t 2 z Whz(0) W.
y v h x v e - sin Wie t le

2 +WhDz  
ie

le W" 2 cos W. t
2 COeZ

ie W
2 

y(0) + W Wh (0)

+D W. 2  ie

Y sin Wie t e

ie

0 le 2 0
osW [

+D e +0 (0) cos Wie t
z sin W. t

W. le
ie

D x D D, D Gyro Drift Errors 0 (0), 0 (0), 0 (0) Alignment Error

Wie, W, Wh Earth Rate Parameters

System Orientation: x-North, y-Up, z-West



APPENDIX I

ERROR QUATERNION -BODY REFERENCE FRAME

This section derives the error quaternion in the body frame ( qeB ) in terms

of a perfect quaternion ( ~p) and a computed quaternion ( qc) from the attitude

algorithm.

The perfect quaternion ( ~p), assumed to be without error, transposes a true

velocity vector (VBt) in the body frame from the inertial frame.

VBt = V I (I-l)

The computed quaternion ( c ) performs the same transformation function as

q , however, because of compensation, quantization and bandwidth errors the resultant

velocity vector (VBc) will be in error.

VBc = c VI qc (1-2)

A quaternion:, eb' is defined as the transformation quaternion between the

true velocity vector (VBt) and the algorithm indicated velocity vector (VBc)

VBt =eB VBc eB (1-3)

Substituting the inertial frame equivalence for VBt and VBc into the above

expression we have

-qp VI qp = B qc VI qc eB (I-4)

Thus

-q = qeB qc (1-5)

And

qeB = qp qc (I-6)
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APPENDIX J

ERROR QUATERNION- INERTIAL REFERENCE FRAME

This section derives the error quaternion in the inertial frame ( el) in terms

of a perfect quaternion ( p) and the computed quaternion ( Ic). The perfect quaternion

is Without error, therefore Vit is an arbitrary vector in the inertial frame..

It = qp VB $ (J-1)

Since 4c is an imperfect quaternion with compensation, quantization and

bandwidth errors, VIc is an arbitrary vector in the inertial frame indicated by the

algorithm

VIc =c VB -qc (J-2)

The relationship between Vit and VIc is expressed by a transformation between

the two vectors.

VIt= qel VIc qeI (J-3)

Substituting (J-1) and (J-2) into (J-3) gives

qp VB qp = q c VB c (J-4)

qp is therefore equivalent to qeI qc and

qeI 
=  p qc (J-5)
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APPENDIX K

Analysis of Error Quaternions in the Slew Environment

This text analyzes the effects of alignment errors, gyro scale factor errors,

and gyro drift in a single axis rotational environment on expected attitude error

propagation.

The study computes error quaternions defined in the body (&eB) and inertial

(qe) reference frames from two quaternions; 1) the perfect (4 ) and 2) the

computed (c ) quaternion. The error quaternions are defined below as:

" peB =pc 
(K-l)

e qp qc (K-2)

Alignment Errors

Figure K-1 is the orthogonal strapdown system with small angle alignment

errors (Exv Ez) about the X and Z axes respectively.

Axis

ez

Fig. K-1 Strapdown Body Triad with Misalignment Errors.
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Alignment errors such as fixture levelling error and gimbal non-orthogonal-

ities are easily calibrated and will not degrade the system attitude data if pro-

grammed into the software. It is the alignment errors that are not calibrated

that concerns this analysis. The perfect quaternion (q ), a function entirely of the

system orientation is unaffected by alignment errors.

Thus:

S= cos ws t/2 + j sin ws t/2 (K-3)

The computed quaternion (qc) because it is derived from the gyro angular

measurements will inherently contain the alignment errors. The computed

quaternion is expressed in (K-4) using small angle approximations:

qc = cos t/2 + iE sin w t/2 + j(1- ' 2 +E 2) sin w t/2 - kc sin w t/2 (K-4)
c s z s x z s x s

Using equations (K-l) and (K-2) error quaternions are formed and expressed

as follows:

=eB 1 +Tisin w t/2 (c cos w t/2 + sin ws t/2

- J (c 2+E 2 sin s t/2 cos ws t/2) (K-5)

+ k sin ws t/2 (cx sin ws t/2 - Ex cos wst/2)

qeI = 1 +T sin ws t/2 (( x sin ws t/2 - cz cos tds t/2)

(K-6)
+ j ( c 2+E 2 sin w t/2 cos w t/2

x z s s

+ sin ws t/2 (c x cos t/2 + z sin w t/2)

Thus, alignment errors propagate attitude errors in both frames of reference

that are combinations of sinusoids. The sinusoidal amplitude is of the same mag-

nitude as the alignment error and the frequency is equal to the mechanical rotation

frequency.

Gyro Scale Factor Errors

Gyro scale factor errors affect the system attitude accuracy by the quality

of angular increment information inputted to the attitude algorithm. If each angular

increment is in error, then an accumulation of attitude errors is expected in a

constantly rotating environment. This attitude accumulation (6.e) is expressed

in the computed quaternion as follows:
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qc = cos (ws + Awe)t/2 +j sin (ws A-Awe) t/2 (K-7)

The perfect quaternion, a function only of the strapdown orientation, is

unaffected by scale factor errors.

Using equations (1) and (2), error quaternion are formed and expressed as

follows:

qeB = 1 + j Awe t/2 (K-8)

qeI = 1 - j Awe t/2 (K-9)

Thus, in both frames of reference, scale factor errors propagate ramping

attitude errors with slopes that are proprotional to the scale factor error.

Gyro Drift

The effect of gyro drift is to impress body referenced drift rates about the

corresponding axes. For example, X and Z gyro drift errors (WDx and WDz
respectively) impress equivalent attitude drifts as described by the following earth

rate compensated quaternion:,

- Dx -Dz
qD = cos w t/2 + i sin ot t/2 +k -sin W t/2 (K-10)sT t 1WT T w n t (K-10)

In a single axis constant rotating environment, the effect of rotation is

accounted for by pre-multiplying the above drift quaternion with a quaternion that

describes the rotation.

Thus, qc = qp qD

Where, =p cos ws t/2 +j sin ws t/2 (K-11)

and qc = cos s t/2 cos wT t/2 +

WDx 
wDZ

=sin w T t/2 cos ws t/2 + sin w t/2 sin w t/2)WT TWT 5T )

+j cos wT t/2 sin ws t/2 (K-12)

CDz (0_

+k (-T cos w t/2 sin w t/2 - sin w t/2 sin w t/2)
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Using equations (1) and (2) error quaternions can be formed and are

expressed as follows:

WDx Dz
qeB = cos t/2 cos wt + W--- sin wTt/ + k sinu t/2 (K-13)

T W -LT T

el = cosw t/2 cos wst - i ( sin w t/2 sin ws t + sin T t/2 cos st)

w (K-14)
Dx coDx

+ k T sinw t/2 sin wt - sinw T t/2 cos us t )

For short test durations the small angle approximations, sin wT t/2

OT t/2 is made. Thus gyro drift propagate as constant drift error rates in the

body frame and as growing sinusoidals in the inertial frame. As the body frame

rotates from the inertial frame the skewed orientation generates the growing

sinusoid in the inertial frame.
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APPENDIX L

LAND NAVIGATION ALGORITHM AND ANALYSIS SOFTWARE

The inertially stablized land navigation difference equations are described as

follows:

1. A velocity vector (V n) is computed from the velocity increments (AVsn )

and corrections for the gravitational field (A Vn 1 
) and attitude damping

n-1
(D n 1 ).

Vn =Vn- 1 + Avgn- 1 + Vsn + Dn-1 (L-l)

2. A position vector ( n) in the inertial coordinate is determined from the

velocity vector.

rn = r n-+ 2 (V + Vn-1) (L-2)

3. A radial unit vector (Un) along the position vector (Yn) is computed from

a first order correction (E) for the unnormalized radial vector (l'n)

along rn).

-nn
Un  RT

E = 1 +- (1 - i' TI') (L-3)
n nL

- = E U'
n n

where RT is the geocentric radius.

4. The change in velocity due to the force of gravity (AV ) is found from

the acceleration vector ( n) due to gravity.

n = -GT ' ln

(L-4)

g n 2 (3n -gn-1)

where GT is the acceleration magnitude due to gravity.
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5. The velocity correction (D ) for attitude damping is determined from

the vertical error inF n (din). Attitude is assumed fixed with the vertical

error damped to the altitude defined by RT. The damping coefficients

used include C 1 = .2 and C 2 = -1.

d-n= RT n

(L-5)

D = C dF + C dF
n 1 n 2 n-1

The output from the land navigation algorithm is the position vector,

n . The data is initially stored in the H316 buffer for later transfer,

over the H316-DDP516 data link, to the digistore magnetic tape reader.

The magnetic tape serves as the interface to MAC programs that compute

and plot the following error parameters:

1. Latitude error in nautical miles is developed from a comparison of the

known latitude (420 15' 56.38") to a computed latitude from the position
r

vector (arcsin z

r *r
n n

2. Longitude error in nautical miles is developed by comparing the

computed rotation in the equatorial plane from the position vector (arc
r

tan -- )) to a value based on the earth rotation rate and time.
r

x

3. Position error in nautical miles is calculated as the root sum of squares

of the latitude and longitude errors.

4. North, east, and radial velocity errors are determined from the time

differentials of the position vectors components ?x, Fy, and z
x y z

respectively.

5. Altitude error is found from the difference between the position vector

height and the known earth geocentric radius.
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APPENDIX M

H316 Diagnostic Software

Program Function

BHSF, BH72 A real time compensation algorithm, implemented to

calculate the body referenced acceleration and angular rate

vectors from gyro and accelerometer pulse inputs.

ROAHS A pulse bursting compensation analysis program that outputs

the histogram of pulse burst patterns.

RAFO Measures average float hangoff by averaging 512 successive

interpolator samples.

RTHRI An interpolator diagnostic program that prints twenty suc-

cessive interpolator states.

SHIS An interpolator diagnostic program that displays the

histogram of interpolator outputs.

RDET2 A RDE analysis program that prints the periodic outputs of

both RDE channels. Periodicity is selected with a memory

content modification.

TS6TST A program to test the automatic gimbal positioner function

by translating operator inputs into computer commands.

DGPR Prints the contents of Digistore magnetic tapes.

Remote Terminal Software

Program Function

ALIGN Computes system misalignment errors from twenty four
"accelerometer nulled" positions.

ALIGNCHK Verifies system misalignment calibration with end to end
computations that relate measurement data to computed

parameters.

REFAXES Computes body referenced acceleration and angular rate
vectors with a direction cosine matrix.

XGYRO, YGYRO, Computes the static instrument coefficients using Cramer's
ZGYRO solution.

DYNAMIC An alternative method to compute the dynamic instrument
coefficients: scale factor and misalignment angles.

PX, PY, PZ Computes the anisoinertia coefficients.

M-1



SFPPM Computes the scale factor deviation from a nominal.

PIPA 16 Computes accelerometer parameters by fitting a Fourier
series to multiposition data.

LANDNAV Compute latitude and longitude errors from the position
vector.

QUATGEN Computes quaternion errors based on system attitude data.

REGRESS Performs a simple linear regression analysis.
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APPENDIX N

Gimbal Alignment Error Definition and Calibration

Solution /
Alignment Calibration
Term Definition Procedure

TR Leveling error of the tilt table in the ver- Optical Alignment
tical plane containing the Tilt Axis, Positive technique defined
when TA is rotated about the south vector. in JDC 00001

(Apollo Documenta-
tion)

TT Leveling error of the tilt table in the verti- JDC 0001 or #6,
cal plane normal to the Tilt Axis. 09 (Table N-1)

SfX, Y or Z Cumulative alignment errors between the E fx JD0011
Sor Table Fixed Axes and the Gimbal Case E fyo23,024

Fixed Axes using small angle approxima- E fz 02,05
tions.

EOGR Outer Gimbal Resolver alignment error #6, #7
defined as the alignment difference between
the outer gimbal multi-speed resolver elec-
trical zero and the mechanical zero.

EIGR Inner Gimbal Resolver alignment error 016, 017
defined as the alignment difference between
the inner gimbal multi-speed resolver
electrical zero and the mechanical zero.

CMGR Middle Gimbal Resolver alignment error 01, 02
defined as the alignment difference between
the middle gimbal multi-speed resolver
electrical zero and the mechanical zero.

EMGA Middle Gimbal Axis Non-orthogonality error. 016, 018
The rotation of the MGA with respect to the
OGA and represented as positive rotation of
MGA away from ZOG and YOG'

EIGA Inner Gimbal Non-orthogonality error. The 020, 021
rotation of the IGA with respect to the MGA
and represented as positive rotation of IGA
away from YMG and XMG

E11z (x) Alignment error between the cube 1 surface 010, 011
1 normal and the Z reference axis about
Xre

f '
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12 x (z) Alignment error between the cube 1 surface 012, 013
2 normal and the X reference axis about

Zref:

21x (z) Alignment error between the cube 2, 01, 03
surface 1 normal and the X reference axis
about Zref:.

E2 2 z (x) Alignment error between the cube 2, 06, 0 8
surface 2 normal and the Z reference axis
about Xre

f.

SO , SO , SO Alignment rotation of the PIP case fixed SO - 01, 05
x y z triad (IRA, OA, PRA) about the output SOx - 019, 021

axis. SOY - 010, 0 15

QB A fictitious rotation of the n PIPA Case QB - 01, 04
n (either about its Output Axis (OA) or its aBX - 019, 022

Pendulous Reference Axis (PRA) that is a aBY - 010, 0 14
result of the PIP null bias and will pro- z

duce a moment due to gravity equal in
sign and magnitude to the actual bias
moment.

Each term is determined by the simultaneous solution as applicable from the

referenced equations in this column. The referenced equations are listed by
these symbols in Table NY2. A typical solution example is shown in Table N-2.
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TABLE N-2 ALIGNMENT ERROR CALIBRATION POSITIONS AND EQUATIONS

Rotary Outer Middle Inner Nulling

Test Table Gimbal Gimbal Gimbal Accelerometer With

Position Axis Axis Axis Axis Axis Orientation Alignment Error Equations

1 2400 00 1800 00 X PIP (IA-W, PRA-D, OA-S) 01 = 2400 + TR - fz - CMGR + SOx abx

2 600 1800 1800 1800 X PIP (IA-W, PRA-D, OA-S) 02 = 600 + TR - Cfz + CMGR + SOx -abx

3 2400 00 180 00 Cube #2, Surface #1 03 = 2400 + ETR - fz - MGR 
+ 

C21x(z)

4 600 00 1800 00 X PIP (IA-E, PRA-U, OA-S) o4 = 600 + CTR - fz - CMGR + SO 
+ 

'bx

5 2400 00 1800 1800 X PIP (IA-E, PRA-D, OA-N) 05 = 2400 + ETR - Cfz-- MGR - SO + abx

6 2400 00 1800 00 Z PIP (IA-N, PRA-U, OA-E) 06 = 900 - ETT - Cfx - 'OGR + 'IGA - SOz - abz

z 7 600 00 00 00 Z PIP (IA-N, PRA-U, OA-E) 0 7 = 900 - CTT + Efx+ EOGR + CIGA - - bz

8 2400 00 1800 00 Cube #2, Surface #2 0 8 = 90 - TT - Efx - COGR + IGA + E22z(x)

9 600 1800 1800 00 Z PIP (IA-S, PRA-U, OA-W) 09 = 900 - ETT + Efx + COGR - EIGA + SOz+ abz

10 2400 00 1800 2700 Z PIP (IA-W, PRA-U, OA-N) e010 = 2400 + CTR - fz - MGR - SOz -
0

bz

11 2400 00 1800 2700 Cube #1, Surface #1 ell = 2400 + TR - "fz - EMGR + llz(x)

12 2400 00 1800 2700 XPIP (IA-S, PRA-D, OA-E) 912 = 900 - TT - fx- COR 
+ 

C
IG A - 

SOx 
+ 

abx

13" 2400 00 1800 2700 Cube #1, Surface #2 013 = 900 - cTT - Efx- COGA 
+ 

CIGA 12x(z)

14 2400 00 00 2700 Z PIP (IA-E, PRA-D, OA-N) 014 = 2400+ CTR - Efz - EMGR - SOz 
+ 
Obz

15 2400 00 00 900 Z PIP (IA-W, PRA-D, OA-S) 015 = 2400 + cTR- Efz - EMGR + SOz - abz

16 1500 2700 00 00 Z PIP (IA-E, PRA-S, OA-D) 016 = 1500+ ETR - Efz + EMGA - CIGR - SPz + abz

17 1500 2700 1800 00 Z PIP (IA-E, PRA-N, OA-U) 017 = 1500MGA 
+  

+ SP +
-TR fz EMGA IGR z bz



TABLE N-2 (cont'd.)

Rotary Outer Middle Inner Nulling

Test Table Gimbal Gimbal Gimbal Accelerometer With

Position Axis Axis Axis Axis Axis Orientation Alignment Error Equations

18 1500 900 1800 1800 Z PIP (IA-E, PRA-S, OA-D) 018 = 1500+ TR - Efz - MGA -IGR- SPz 
+ 

abz

19 600 900 900 00 Y PIP (IA-W, PRA-U, OA-N) 019 = 600 + CTR - fz - MGA - IGA - SOy - by

20 600 900 2700 1800 Y PIP (IA-E, PRA-D, OA-N) 020 = 600 + ETR - fz - EMGA+ IGA - SO - aby

21 600 900 900 1800 Y PIP (IA-W, PRA-D, OA-S) 021 = 600 + ETR - 'fz - CMGA - IGA 
+ 

SOy - aby

22 2400 900 900 00 Y PIP (IA-E, PRA-D, OA-E) 022 = 2400+ fETR - fz - MGA -IG - SO + aby

23 3300 00 00 00 Z PIP (IA-N, PRA-W, OA-U) 023 = 900 - CTT + (fy + CMGA - CIGR SPsz bz

24 1500 1800 00 1800 Z PIP (IA-N, PRA-W, OA-U) 024 = 900 - cTT- fy + CMGA - IGR - SPz- abz

e2 - ol + 180
°
0 07 -06

Calibration Examples: CMGR 2+ 1800 fx + OGR 2

Test positions 03, 08, e11, and 013 calibrate the alignment between

the normal vector of the optical cubes and the body referenced axes x and z.



Appendix P- Static Calibration Positions and Eqtions.

CAL #1 CAL #2

V

X IA N

REF.

OEOA

YIA / t E YIA

SRA OGA = 0 SR
OA A IGA = 0 A OGA = 0

z_ OGA = 0

Z MGA = 2700 Z IGA =0
IA OA IMGA = 900

IA

CAL #3 YIA CAL #4

OA

SR A .---

OA

OGA = 0 OA SRA
OGA = S

AAIGA = 0 IA J O IGA = 2700

MGA = 2700 IA
MGA = 1800

CAL #5 CAL #6

ZIA
OA

SRA-

A IA

XI A- P RA R XIS

OGA = 2700 oA OA

yA IGA = 0 A OGA = 900

MGA = 180 0  YIA SRA IGA = 0

MGA = 0

Fig. P- 1 Cardinal Calibration Positions- Gyro Orientation.
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CAL #1 CAL #2

IA
Z IA A IA

YIA I Of= /A YlA

PA OGA =0 A RL OGA = 0
IGA=0 -pRA IGA = 0

MGA = 2700 0A MGA = 2700
IA

CAL # CAL#4

VIA

P7PR

SZIA IA1

o PRA
OGA = 0 .t.PRA OGA = 0

AA IGA = 2700 XIA 0 IGA = 2700

MGA = 0 A MGA = 1800

CAL #5 CAL #6

ZIA

PRAPRA

OA PRA OA

OGA = 2700 OGA = 900
A Z IGA = 0 Y PRA IGA =0

MGA = 1800 MGA = 0

(U) Fig. P-2 Cardinal Calibration Positions- Accelerometer (U)
Orientation.
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CAL #7 CAL #10

V

N XIA Y IA

E wSRA

REF.R E F. OA SRA

OA

OGA = 0 O OGA = 1800

S OA IGA = 0 IGA = 0
IA SRA MGA = 1350 MGA = 1350

OA SRA

XIA IA

IGA

CAL 8 CA #11
YIA IA

0 SRA

RA oIA

OGA = 0 OGA = 1800

-" , IGA = 2700 sRA IGA = 2700

OA MGA = 3150 MGA = 3150
SRA /C 0

Z IA OA YIA

CAL #9 CAL #12

A OGA = 2700 OGA= 900

SIGA = 45 IGA = 45

Fig. P-3 Offset Calibration Positions Gyro Orientation.
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Appendix P

I. Gyro Calibration Equations

A. Definitions

.thWij - Measured Drift Rate of the ith gyro (i = x, y, or z) in the

th test position (j = 1, 2, ... , 12). Each Wij is calculated by

scaling the accumulated gyro torque pulses during the calibration

interval. Thus, the units of Wij is radians per second.

GOi, GSi- Input axis misalignments of the ith gyro (i = x, y, or z)

from its reference axis due to rotation about the Output

or Spin Reference Axis respectively.

WIEV, WIEH-vertical and horizontal earth rate components respectively.

E j k - gimbal and test table alignment errors. Definitions are given

in Appendix N.

B. Gyro Calibration Equations

Gyro drift parameters (NBD, ADIA, ADSRA, ADOA and major

compliance) are solved as a function of measured drift rate, earth rate and

gimbal alignment errors. Trigometric identities and small angle approximations

have been used.

a) Gyro Normal bias drift about the IA, OA and SRA axes respectively

(meru)

WX1+WX2 -WIEH [GSX- IGR]
IBDX= - WIEH

OBDX= -WX+WX6 - WIEH [GOX- MG4 WIEV [MG

WX3+WX4
SBDX - - WIEH

2
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WY3+WY4
IBDY - W42 + WIEH [GSY - IGA]

OBDY= - WY1+WY2 + WIEH [GOY- IGA]2 IOBDY=GA

WY5+WY6 - WIEH - WIEV [ETT + Ef + 'OGR]
SBDY = - 2 TT fx OGR]

IBDZ = - WZ5+WZ6 + WIEH [GSZ + EIGA
BDZ = W Z 3 + W Z 4

OBDZ= - 4 + WIEH GOZ - CIGR

SBDZ - WZ1+WZ2 - WIEH -WIEV TT + Efx + OGR]

b) Acceleration Sensitive Drift along the input axis (meru/g)

ADIAX = WX2-WX1 +WIEV WIEH [ETT +f+ OGRj

ADIA = WY4WY3 + WIEV - WIEH TT+fx + EOGR]

ADIAY = + WIEV - WIEH +e +

WZ6-WZ5+ [ ]
ADIAZ = + WIEV - WIEH TT+TEfx + OGR

c) Acceleration Sensitive Drift along the spin axis (meru/g)

ADSRAX WX3-WX4 + WIEV [ETT+Efx+ bGR+CIGA-GO

ADSRAY = - WIEV [GOY - IGA]

ADSRAZ = WZ2-WZ1 WIEV [GOZ- IGR

d) Acceleration Sensitive Drift along the output axis (meru/g)

ADOAX = WX6 -WX5+ WIEV [GSX - ETRCfz+G+ WIEHADOAX 2 TREfz IGTR I fy

ADOAY = W2 + WIEV [GSY + ETR- Efz - MGR]

- WIEH [fy + CMGA]

ADOAZ = WZ3-WZ4+ WIEV [GSZ + TR Cfz- - EMGR

+ WIEH [Efy + EMGA]

P-5



e) Acceleration Squared Sensitive Drift or Major Compliance (meru/g)

A2DX =-WX7-WX8-2IBDX- WIEH (E~ 4) -2WIEV (+ -TRfz) cos [45+GOX- MGR]

A2DY =-WY9-WY10-21BDY+ WIEH ( +2WIEV (ETR fz) cos [45+GOY+MGR

A2DZ =-WZ11-WZ12-2IBDZ+ WIEH (Cfy) +2WIEV (ETR -fz MGA) cos

45+GOY-(TT+Cfx+OGR- MGR IGAI
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Appendix P

II. Accelerometer Calibration

A. Definitions

th
K ij - average accelerometer pulse rate for the i t h , accelerometer

(i = x, y, or z) in the jth calibration position (j = 1, 2, ... 6).

Each kij is calculated by averaging the accumulated accelero-

meter pulses over the calibration interval.

g - gravitational acceleration

Cik - gimbal and test table alignment errors. Definitions are given

in Appendix N

B. Accelerometer Calibration Equations

The accelerometer parameters are solved as a function of the measured

pulse rates. Trigometric identities and small angle approximations have been

used. The average scale factor and the scale factor difference are defined as:

SFAi = SFi
+ + SFi

2

aSFi = SFi + - SFi-

The isolated PIPA parameters are shown to be:

a) Average Scale Factor, SFAi (cm/sec/pulse)

SFAX = 2g
KX1-KX2

SFAY = 2g
KY3-KY4

SFAZ= 2g
KZ6-KZ5

b) Bias, ABi (cm/sec 2 )

ABX = 1/2 SFAX (KX5+KX6) + g (EMGA)
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= 1/2 SFAX (KX3+KX4) + g(CTT + Efx +OGR

ABY = 1/2 SFAY(KY1+KY2)

= 1/2 SFAY (KY5+KY6) + g (TT +Efx+ fOGR)

ABZ = 1/2 SFAZ (KZ3+KZ4)

= 1/2 SFAZ (KZ1+KZ2) - g(ETT +fx + COGHd

c) Scale Factor Difference between ±1 g positions, ASFi

(cm/sec/pulse)

4ABX- 2SFAX (KX1+KX2)
SFX = (KX1 - KX2)

ASFY 4ABY - 2SFAY (KY3+KY4)
(KY3-KY4)

A SFZ = 4ABZ - 2SFAZ (KZ6+KZ5)
(KZ6-KZ5)

d). Input axis misalignment due to a rotation about the output

axis SOi (radians)

SFAX (KX3-KX4)
SOX = 2g + IGA

SOY = +SFAY (KX5-KX6)
2g IGA

SOZ = SFAZ (KZ3-KZ4) +
2g TR - fz

e) Input axis misalignment due to a rotation about the

negative pendulum axis, SPi (radians)

SPX = SFAX (KX5-KX6) +
2g TR -fz IGR

SPY = SFAY (KY1-KY2)+ - +C
2g TR fz MGR

SPZ = SFAZ (KZ1-KZ2) -

2g IGR
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APPENDIX Q

SYSTEM OPERATIONAL LOG

This operational log gives the description of the system event markers given in the

calibration curves, Q-1, Q-2, and Q-3.

28 May 71 Controlled system cooldown for planned air conditioner
maintenance. All system power shutdown with system in
calibration position #1 (X axis up; Y axis west and horizontal;
Z axis south and horizontal). System powered up 1 June
71.

16 June 71 Gyro wheels shut off due to voltage transient induced while
integrating the interpolator electronics in the system. At
time of downmode, the system was rotating about the outer
gimbal axis in calibration position #5. Gyro wheels
operational 15 minutes after downmode. Accelerometer

loops were unaffected.

21 June 71 System powered down in calibration position #1 for system
clock repair.

20 July 71 Gyro wheels shut off due to voltage transient from short in
the test sequencer electronics. System orientation at time
of downmode included all gimbals at 22.50 (Y axis up, X
axis horizontal, Z axis 450 down). Gyro wheels operational
approximately 15 minutes after downmode. Accelerometer
loops were unaffected.

22 July 71 Gyro wheels shut off due to a voltage transient while operating
system in automatic mode. At time of downmode, all gimbals
were oriented to 900 (X axis up, Y axis east and horizontal,
Z axis north and horizontal). Time of downmode was
approximately 15 minutes. Accelerometer loops were unaf-
fected.

27 July 71 Gyro wheels shut off due to voltage transient (source
unknown). At time of downmode, system was orientated in
calibration position #1. Time of downmode was ap-
proximately 15 minutes. Accelerometer loops were unaf-
ected.

9 August 71 Gyro wheels shut off due to voltage transient (400 hertz
supply fuse blew). At time of failure, system orientation
was inner and middle gimbals at 00 and outer gimbal at 3380
(X axis east and horizontal, Y and Z axis 22.50 from
horizontal). System was cooled to room temperature
overnight to start gyro MB-2 (X axis).

22 Sept. 71 System shut down due to accidental turn off of the lamp and
relay 28 volt power supply. At time of downmode, system
was oriented in calibration position #3 (X axis south and
horizontal, Y axis is vertically up and Z axis west and
horizontal).
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19 November 71 Gyro wheel shut off due to voltage transient (source unknown).
At time of downmode, system was oriented in calibration
position #1. System cooled to room temperature in an attempt
to start gyro MB-2 (X axis). Gyro MB-2 was removed from
system 25 November and replaced with gyro 427A on 7
December 1971.

26 January 72 System shut down due to loss of gimbal coolant (circuit
breaker disconnected input 110vac power). Gyro 415 (Z.axis)
hot temperature alarm tripped to downmode system. At the
time of temperature alarm, the system was oriented with
IGA, MGA, and OGA set to 00, 1350 and 1770 respectively.
System cooled to room temperature overnight to start gyro
MB4 (Y axis).

10 March 72 System downmoded due to tripped gyro temperature alarm
(X axis cold alarm). At time of time of temperature alarm,
the system was oriented in calibration position #9 (IGA, MGA,
OGA = 2700, 3150, 1800). System was cooled to room
temperature to start gyro MB415 (Z axis). Gyro 415 was
removed 13 March 72 and replaced with gyro MB 422B on
24 May 1972. In addition to gyro MB415, the DART instrument
wheel element failed. No replacement DART instrument was
available. During the period 10 March to 24 May the gyro
torque loops scaling was increased by a factor of four.

The system was mechanized with a gyro suspension monitor and interlock circuit
which proved to be overly sensitive to system voltage glitches. Inthe later phases
of the program, the circuit function was inhibited because the initial concern for
maintenance of suspension and signal generator voltage was outweighed bythe re-
peated non-essential system downmodes experienced.
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Appendix 0- Gyro Long Term Drift Profiles.
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Fig. Q-1 X-Axis Gyro Drift.
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Appendix R - Dynamic Calibration Positions and Equations.

CAL #1 CAL #7
XIA

SA N SA N
OA

s OGA 00  OA OGA = 0

IGA=0 0  xA IGA= 00
MGA = 2700 

g MGA = 1350

CAL #3 YIA CAL #8

SOA

ZIA OGA OGA

CA

OA 0
XIA OGA = 00 OGA = 00

SA IGA = 270 0  SA IGA = 2700

MGA = 00  MGA = 3150

CAL #5 ZIA CAL #9

SA- OA ,N ZIA N

OAA

OAO

-OG A OGA

SA

OGA 2700 OGA = 2700
OA IGA = 0 SA IGA =450

IA MGA = 1800 MGA = 180

Figure R-1 Calibration Positions - Gyro Orientation.
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APPENDIX R

DYNAMIC CALIBRATION EQUATIONS

A. Definitions

POSITIVE OUTER GIMBAL ROTATIONAL RATE

NGPi.+: Number of positive or negative (+)Ae pulses accumu-

3- lated for the ith gyro (x, y, or zTin the jth test position
for a slew about the positive (P) OGA.

AD.Pi: Magnitude of the angle driven (radians) about the OGA
3 for a positive slew rate, for the ith gyro in the jth cal-

ibration position.

T.P.: Time (seconds) to complete total angle displacement
3 1 AD.P..

3 i

NEGATIVE OUTER GIMBAL ROTATIONAL RATE

NGN..+ : Number of positive or negative (+)AO pulses accumu-
1J- lated for the ith gyro (x, y, or zTin the jth test position

for a negative (N) slew about OGA.

AD.Ni: Magnitude of the angle driven (radians) about the OGA
S1 for a negative (N) slew rate, for the ith gyro in the jth

calibration position.

T.Ni: Time (seconds) to complete total angle displacement
3 AD.P..

FLOAT OFFSET

AF.R: Average float offset of the ith gyro (i= x, y, or z)
defined by the linear relationship:

AF.R= FO. + (FM. - FO i ) R
1 1 1 1

Where: FO. is the float offset at zero input angular
rat . FM. is the float offset at an input angular
rate of one radian per second. R is the outer
gimbal angular rate.
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ALIGNMENT ERRORS

EMGA: - the middle gimbal axis non-orthogonality error.

EIGA: - the inner gimbal axis non-orthogonality error.

EIGR: - the inner gimbal resolver misalignment.

EMGR: - the middle gimbal resolver misalignment.

GYRO DRIFT

NBD.: Normal bias drift of the ith gyro (i= x, y, or z).
1
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B. CALIBRATION EQUATIONS

Scale Factors (radian/AO)

SFGX+ - +(AD5NX) Cos [GSX-EMGA-EIGR ] Cos [GOX-EMGR+AFXR] - (NBDX)T5NX
(NGNX5+)

SFGX- - +(AD5PX) Cos [GSX-EMGA-EIGRI Cos [GOX-EMGR-AFXR] + (NBDX)T5PX
(NGPX5-)

+(AD1NY) Cos [GSY-EMGR] Cos [GOY+EMGA-EIGA+AFYRI - (NBDY)T1NY
(SFGY+) (NGNY1)

+(AD1PY) Cos [GSY-EMGRI Cos [GOY+EMGA-EIGA-AFYRI + (NBDY)T1PY
(SFGY-) (NGPY1-)(NGPY1 -)

(SFGZ+) +AD3NZ Cos [GSZ-EMGRI Cos [GOZ-EIGR+EMGA+AFZRI - (NBDZ)T3NZ
(NGNZ3+)

+AD3PZ Cos [GSZ-EMGR] Cos [GOZ-EIGR+EMGA-AFZRI + (NBDZ)T3PZ
(SFGZ-) (NGPZ3-)

Gyro Input Axis Misalignment Angles

Output Axis (OA) Misalignments (radians)

GOX SFGXN [(NGNX1+) - (NGPX1+ (NGPX1-) - (NGNX1-) ] - (NBDX) (T1PX -T1NX) + EMGR
AD1PX + AD1NX

SFGYN [(NGPY3+) - (NGNY3+) - (NGPY3-) + (NGNY3-)] + (NBDY) (T3PY - T3NY) EMGR
AD3PY + AD3NY

SFGZN [(NGPZ5+) - (NGNZ5+) - (NGPZ5-) + (NGNZ5-)] + (NBDZ) (T5PZ - T5NZ) + EMGA+ EIGRGOZ AD5PZ + AD5NZ



Gyro Input Axis Misalignment Angles (Cont'd.)

Spin Ref. Axis (SRA) Misalignments (radians)

GSX SFGXN [(NGPX3+)-(NGNX3+) + (NGPX3-) - (NGNX3-) ] - NBDX(T3PX-T3NX) EMGA + EIGR
AD3PX + AD3NX

GSY SFGYN [ (NGPY5+) - (NGNY5+) - (NGPY5-) + (NGNY5-)] + NBDY(T 5PY - T5NY) + EMGR
AD5PY + AD5NY

GSZ SFGZN [(NGPZ1+) - (NGNZ1+) - (NGPZ1-)+ (NGNZ1-)] + NBDZ(T3PZ-T3NZ) EIGA+ EMGA
AD1PZ + AD1NZ

Anisoinertia (seconds - time)

PX+ 2 -(NGPX7-) (SFGX-)+ AD7PX Sin [T - GOX+EMGR+FOx+ \- (FMX - FOX) R] Cos [GSX - (EIGR) - EMGA] + (NBDX)T7PX

S(AD7PX)2 (AD7PX Sin 2 [ - GOX+ EMGR+ (AFXR)]

PX- [+(NGNX7+) (SFGX+) - AD7NX Sin[ - GOX+EMGR - FO (FM - FOX) R] Cos [GSX- (EIGR) - EMGA] + (NBDX)T7NX

(AD7NX)2 Sin 2 [-- GOX+EMGR - -2(AFXR)

PY+ -(NGPY8-) (SFGY-)+AD8PY Sin[ 
- 

GOY-EMGR+FOy+ (FM- FO ) R] Cos [GSY+T(+EMGA) - EIGA] + (NBDY)T8PY

(AD8PY Sin 2 [A-GOY-EMGR+( -- AFYR]

(NGNY8+) (SFGY+) - AD8NY Sin[ 1-GOY-EMGR - FO (FM FO )R] Cos [GSY+( )EMGA-EIGA + (NBDY)T8NY

1 ~(AD8NY) 2 
Sin 2

8N-y Sin 2 [~-GOY-E MGR-L :-AFYR]



Anisoinertia (Cont'd.)

[-N P 9)(SFGZ-)+AD9PZ Sin[!GOZ+EMGA+ER+FO +2F FO )R (NBDZ)T9P
PZ 2 4INP29 (A9Z)s 2 [- (F zzR OSS+(-(EIGA+ EMGR)] +jNDZTP

(ADPZ)2 in GO -EMGA +EIGR±+ a(AFZR)]

Pz 2[ (NGNZ9+) (SFGZ-) -AD9NZ Sin[f GOZ +EMGA+ EIGR Z- T-(FM Z-FO z) R] Cos [GSZ + ((EIGA+ EMGR)] + (NBDZ)T9NZ

P- - 2(AD9NZ)' Sin 2rviLQQ- MG+EIR

T 97Z- L - M A E G -T(AFZR)]



Appendix S

Anisoinertia Sensitivity Analysis

This section establishes the sensitivity of the anisoinertia coefficient to

gyro scale factor errors, pulse count variations, and alignment errors.

Figure S-1 establishes that, negative rotations about the outer gimbal axis

generates positive X gryoscope torque pulses that are described by the

expression:

(SFx + ) (Ae) = IA + NBD + 1/2(IA) (WSRA) (Ka + ) 
(S-1)

T

where

SF + = positive scale factor (radians/pulse)
x

AO+ = positive torque pulse (pulses)

T = test time interval (second)

NBD = Drift (radians/second)

WIA = Input axis rate (radians/second)

wSRA = Spin reference axis rate (radians/second)

+
Ka  = anisoinertia coefficient (radians/radians per second)

The input and spin reference axis rates (lIA' wSR A ) can be defined with

an axis offest (0) and alignment error (C).

SRA

WS

- Slew Axis

IA)

Figure S-1: Anisoinertia Calibration Position with Alignment Uncertainties

S-1



WIA = S sin (+) (S-2)

"'SRA = S cos (+E)

Anisoinertia is explicitly solved by substituting the input and spin axis rates

into equation (S-1).

2 (SF x
+ ) (A

+ ) - (NBD) (T) 2
K += x- (S-3)

a (T) (wS 2 ) sin (e+E) cos (e+) WS cos (e+E)

Sensitivity functions are determined with partial differentiations of

anisoinertia with respect to each independent parameter.

The sensitivity to scale factor is determined by

aK+ 26+
a + (S-4)

aSF +  (T) 2 sin (&+E) cos (O+E)x S

Note that, the total angular displacement (TwS ) is proportional to the total

pulses accumulated (e +). Therefore, the scale factor sensitivity is simplified,

and found inversely affected only by the slew rate;

aKa+ 2K A0 +

+ where K =- (S-5)

xSFx S sin (0+c) cos (6+) Tw S

The sensitivity expression is bounded by 0 > 0 >ir/2, and is found to be a

minimum when e = 450. At 0= 450 the sensitivity value is 4A9 .

Thus, the anisoinertia sensitivity to scale factor decreases with increasing

rotational rates.

For a 40 arc seconds per pulse loop quantization, and a 4 revolution test

duration, the scale factor sensitivity is 0. 079 x 10 - 4 sec/PPM at 0. 5 radians per

second and 0.158x10 - 4 sec/PPM at 0.25 radians per second. Hence, the error

per ppm scale factor error in terms of the anisoinertia coefficient is 8% at 0. 5 radians

per second and 16% at 0. 25 radians per second.

The sensivitivy of anisoinertia to the total pulse count is determined as:

2SF
K +  x (S-6)

a (TwS) (wS) sin (e+() cos (e+E)
AO+

S-2



The pulse count sensitivity is inversely affected by slew rate and total

angular displacement. Thus a multi-revolution test would diminish the effect due

to pulse count uncertainties. The sensitivity to pulse counts is a minimum value

of 4SF when 8= 450
x

TwS

For a 40 arc seconds per pulse loop quantization, and a 4 revolution test

duration, the pulse count sensitivity is 0. 61x10 - 4 sec/pulse at 0. 5 radians per

second and 1.22 10 - 4 sec/pulse at 0.25 radians per second. Thebest solutionto

reduce the error sensitivity is to increase the number of revolutions per

test and to increase the speed. Hence, at 1 radian per second and at ten revolutions,

the error is 0. 061x10 - 4 sec/pulse or 6%.

The sensitivity of anisoinertia to alignment errors is determined to be:

+
aK a  2K 1 cos 2(0+E) K 2 sin (o+E)

2  
+ 2 (S-7)

c sin2 2(0+E) cos (0+E)

where +
S4 (SF +)(Ae + )-NBD(T) . 2

K x x and K2
TwS 2  S

At 8= 450, the first term reduces to zero and the sensitivity expression

simplifies to:

8Ka + 0 
(S-8)

8 0=45 wS.

Thus, the anisoinertia sensitivity to alignment errors decreases with

increasing rotational rates. Note that the sensitivity function is bounded

by -0 > e > ir/2 with singular points at 0=0 and 1r/2.

For a 40 arc seconds per pulse loop quantization, and a 4 revolution test

duration the alignment sensitivity is 0. 136 x 10 - 4 sec. per arc second at 0. 5

radians per second and 0. 27 x 10-4 sec. per arc second at 0. 25 radians per second.

These error magnitudes represent approximately 14% at 0. 5 radians per second

and 27% at 0. 25 radians per second.
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APPENDIX U

Method of Least Squares

Introduction

This appendix is a brief presentation of the method of least squares as applied

to both a linear and non-linear model.

Linear Model

The linear model relates a known sequence of observations yl,' ."' Yn to a

set of parameters b 1 ... bq ( to be determined) through a known nxq matrix (A)

so that

y= Ab (U-l)

The solution b is determined by minimizing the following quadratic risk

function.

R(b)= (y - Ab) (y - Ab) (U-2)

The resulting least squares estimate is given by:

A--T- -l1-T--
b (T)-A y (U-3)

where T T is assumed to be non-singular.

Non-Linear Model

The least squares estimate for a non-linear model is obtained by first

linearizing the model using the first two terms of the Taylor series expansion

(Gauss-Newton method). The non-linear model is represented by

y=w(b) j (U-4)

w(b) is expanded into a Taylor series as follows

w(b) = w(o ) + J (o) (b - b) (U-5)
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aw aw aw

-b ab ab2 "b
1 2

-w aw2 aw
J(b 2  8 (U-6)

)w aw 8w
n n ... n

b * *b b= b
1 2 q

where b is the known nominal value of parameter vector b0 .

Substituting (U-4) into (U-5) yields

y - w(b o ) = J(b ) (b - b )  (U-7)

For a solution by iteration, (U-7) becomes

- _ A - A
y-w(b )=J(b )(b - b (U-8)

By definition:

y = y - w(b ), Ab = bn - bn_) (U-9)

Substituting (U-9) into (U-8) yields

y = J (bn_-) b (U-10)

Equation (U-10) has the same form as (U-1), hence

T t ) ) -1 T

ab= (b n) J (b (bnl) A" (U-11)

or

A

b = bnl + ( (b n-) J (b n-1) TT (nl) n (U-12

The iteration continues until AE reaches a small predetermined value.
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APPENDIX V

Mathematical Analysis of the Model

This appendix shows the detailed mathematical analysis of an early model

which led to the removal of the Cos (0 -0) term from the model.

C. 1 Singularity in the Matrix

The early model had the form

ain d = y = Kb + K 1 Sin (e -() + K 2 Sin 2 
(0 -¢)

+ KIO Sin (0 -() Cos (0 -¢), (V-l)

+ K O Cos (0 -sb)

In order to solve for the model coefficients in a least square sense, we first

obtain the matrix of partial derivatives of the form

A = a ij (V-2)

'th
where i = 0, 1, ... 15 ranges over the data points and K. is the jth coefficient. The

partial derivatives have the same form for all i

FKb =
1

b

a-y= Sin (0 -¢)

a = Sin 2 
(0 )

2
(V-3)

=IO- =Sin (0 -(0) Cos (9 - )

-KO= Cos (e -()

= -K 1 Cos (9 -0) -2K 2 Sin (a -4) Cos (e -1)

-K 10 (1 - 2 Sin 2 (e.-)

+K O Sin ( - )
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Note, however, that the partial derivative with respect to the misalignment

angle 0 is a linear combination of the remaining partials

= -K b + K + 2 KIO 2 (V-4)
b 2

-2 2-o - K1g

Now, this is true for all i; therefore, the column of partial derivatives with respect

to 0 is redundant. However, one can not yet speak of singularities in the matrix

since only square matrices may have inverses in any case. It happens, however,

that the matrix we seek to invert for the least square method is ATA, which is

square. It will not be shown here, but it is true that if A has a redundant column

(or row) then ATA is singular and has no inverse. Therefore, the model as stated

in Equation (V-1) cannot be used in the least square method.

C. 2 Ambiguity in the Model

The same result can be obtained if Equation (V-l) is expanded using the small

angle approximation (ignoring 02 terms), thus

y = Kb + K 1 [Sin e - Cos ]

+ K2 Sin2 - 20 Sin Cos ]

(V-5)

+ KIO [Sin Cos e + - 20 S in2 e

+ KO Cos + Sin 0]

collecting like terms we have

y = [Kb+ KIO]

+ [K 1 + KOI Sin 6

+ [2 - 20KIO ]Sin0 (V-6)

+ KIO - 20K2 Sin 0 Cos e

+ [KO - K1 Cos a
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We now form a new set of model coefficients

Kb ' = Kb + OKIO

K 1 ' = K 1 + OK
O

K 2 ' = K 2 - 20KIO (V-7)

KIO'= KIO - 20K
2

Ko ' = K - K 1

'= O

The last equation, a null equation, is of use leaving five equations and six unknowns.

Therefore, one of the unknown coefficients is completely arbitrary. In practice,

the model either does not converge in fifteen iterations or converges at some

arbitrary misalignment angle.
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APPENDIX W

Least Square and Fourier Series Analysis Equivalence

This section proves the equivalence between a simple least square acceler-

ometer model that comprises bias, scale factor, the misalignment angle, and the

scale factor nonlinearity term to a fourier series expansion truncated at the

second harmonic.

A simple least square model is given as follows:

y = B + K 1 Sin (0 -4) + K 2 sin2 (0 -¢)

where

y is the accelerometer output

B is the null bias
0

K 1  is the scale factor

K2 is the scale factor non-linearity term

is the misalignment angle

Expanding the above equation and simplifying yields the truncated fourier expansion:

K 2 (1 +¢2) K2(1 - 2)

y = B - 2 + K 1 Sin - b K1 Cos - 0 KSin20 - 2 Cos20o 2 1 1 L 2  2

DC Components First Harmonics Second Harmonics

Thus, the truncated fourier series model is a least square solution consisting of

three parameters.
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