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Strategic and Tactical Asset Allocation and
the Effect of Long-Run Equilibrium Relations

And+  Lucas
Financial Sector Management, Free University, De Boelelaan 1105,

1081 H V Amsterdam, the Netherlands, alucas@econ. vu. nl

T his article focuses on the relevance of long-term equilibrium relations
for financial decision making. Special attention is devoted to optimal

asset allocation in the presence of possibly cointegrated time-series, e.g.,
asset prices. Using a stylized asset allocation problem, the link is estab-
lished between the number of cointegrating relations and their precise form
on the one hand, and the optimal asset allocation on the other hand. The
paper disentangles the different effects of long-term relations on optimal
asset allocation with different planning horizons: error-correction mainly
affects tactical asset allocation, while cointegration affects strategic asset
allocation. The paper also presents results on the effects of incorporating
an incorrect number of error-correction mechanisms in financial decision
models. Mis-specifying the number of cointegrating relations in a scenario
generator can induce either inefficient or overly risky financial management
decisions. The findings are illustrated using a stylized empirical example
from currency management.
(Cointegration; Error-Correction; Tactical Asset Allocation; Strategic As-
set Allocation; Mean Reversion; Non-Stationarity;  Mis-specified Equilib-
rium Relationships; Currency Management)

- / -\

1. Introduction

The uncertainty associated with possible future developments of economic
and social circumstances constitutes one of the main complications in deci-
sion making in general and financial decision making in particular. Banks,
for example, have to assess the future prospects of alternative investment
opportunities in order to design a solid investment policy. Also, e.g., pension
funds have to cope with several sources of uncertainty in strategic policy
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making. In addition to predicting the developments of returns on differ-
ent investment opportunities, pension funds have to forecast the long-term
movements in their liabilities. This involves making forecasts of variables
like inflation (because of price indexed pension payments) and ageing (for
the design of sustainable contribution schemes).

In order to formally include the future uncertainty in a financial decision
process, the decision maker needs a compact description of future possible
developments, i.e., of possible scenarios. On easy and obvious way to achieve
such a description is by using quantitative models for the economic (and so-
cial) environment. There are numerous papers in which quantitative models
are used for financial decision making, see, e.g., Boender and Romeijn (1991))
Carino  et al. (1994))  Mulvey (1995))  Consigli and Dempster (1996))  Boender
(1997),  Boender et al. (1997),  Carino  and Ziemba (1997a,b),  Dert (1997),
and Mulvey and Thorlacius (1997). In the present paper, the focus is on
multivariate time-series models to describe the range of possible scenarios.
Time-series models have the attractive property that few a priori knowledge
about the working of the economic system is needed. By explaining the
behavior of a time-series by its own past and by the past of related time-
series, one obtains a set of scenarios that is consistent with the observed,
past behavior of those time-series.

An important issue over the last decade in time-series analysis concerns
the long-term or (non-)stationarity properties of time-series models. Loosely
speaking, a time-series is called stationary in the present paper if the effect of
present circumstances on developments in the distant future diminishes and
eventually dies out. Since the seminal paper of Nelson and Plosser (1982),
there has been an abundance of empirical literature demonstrating that the
non-stationarity of most economic time-series is very difficult to reject: the
effect of present economic developments is very persistent. Good starting
references are Ooms (1994) and Hendry  (1995). For financial time-series,
non-stationarity often emerges quite naturally as a result of the assumption
of efficient markets and the absence of arbitrage, see, e.g., de Vries (1994)
for foreign exchange markets.

The long-term behavior of non-stationary time-series differs markedly
from that of their stationary counterparts, see, e.g., Section 2. Therefore,
when using time-series models to generate scenarios for financial decision
making, it is important to make the correct choice concerning the (non-
)stationarity properties of the time-series under study. This is even more
important in multivariate settings, i.e., in situations where we consider sev-
eral economic variables simultaneously. It may well be the case that two series
are individually non-stationary, while a transformation of the two series is
stationary. For example, interest rates might be individually non-stationary,
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while the term-structure of interest rates is stationary. Similarly, in the con-
text of a pension fund, real estate prices and the consumer price level might
each be non-stationary, while some combination of the two series might be
stationary due to a partial hedging function of real estate investments for
inflation. Engle and Granger (1987) introduced the concept of cointegra-
tion as a formalization of the above issue. If there exists a stationary linear
combination of two non-stationary time-series, the two series are said to be
cointegrated. A lucid explanation of the concept of cointegration can be
found in the story of a drunk and here dog, see Murray (1994). Similar to
the choice concerning the stationarity properties of univariate time-series,
the cointegrating properties of multivariate time-series models can have im-
portant consequences for financial decisions based on scenarios that are gen-
erated by these models.

The goal of the present paper is to obtain’ insight into the interaction
between the cointegrating properties of econometric time-series models on
the one hand, and financial decision models on the other hand. In particular,
two questions will be addressed.

1. Do the cointegrating properties of multivariate time-series models, i.e.,
the long-term time-series properties of scenario generators, have an ef-
fect on the (optimal) policies emerging from financial planning models,
and if answered affirmatively, what can be said about the relative im-
portance of this effect for different planning horizons?

2. If the cointegrating properties of the time-series model used for finan-
cial decision making are incorrect, what are the consequences for the
feasibility and efficiency of the adopted policy?

Although the literature on cointegrated time-series is enormous and still
expanding rapidly, no effort has yet been made to formalize the effect of the
cointegrating properties of time-series and time-series models on (financial)
decision models. Most theoretical cointegration papers, on the one hand,
focus on new methods for testing for the presence of cointegrating relation-
ships and on distributional properties of proposed estimation and inference
procedures. Most empirical cointegration papers, on the other hand, restrict
attention to determining the number (and nature) of cointegrating relation-
ships in systems of variables. Clements and Hendry  (1995) discuss the ac-
curacy of the predictions obtained with cointegrated and non-cointegrated
time-series models. It is the author’s opinion that for decision purposes and
policy advise the analysis should be taken a step further. For a financial de-
cision maker, it is important to develop a general understanding of the Zinlc
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between the long-run time-series properties of scenario generators and the re-
sulting optimal financial policy. Moreover, the decision maker must be able
to assess the sensitivity of his adopted financial policy to mis-specification
of the long-term time-series properties of the scenario generating model used
for decision making. These issues have (to the author’s knowledge) not yet
been addressed systematically in the existing literature.

In this paper, I focus on the effects of cointegration on asset allocation.
Using a stylized asset allocation problem with a risk averse investment man-
ager, the effect of cointegration on the optimal asset allocation is character-
ized analytically. The framework is in continuous time. It turns out that
for long-term or strategic asset allocation, the long-run cointegrating proper-
ties of the time-series are of prime importance. Cointegrating combinations
of time-series reveal less long-term variability, and, therefore, less long-term
risk. By contrast, for short-term or tactical asset allocation, the most im-
portant mechanism concerns the time-series’ reaction to temporary states
of disequilibrium. If series are cointegrated, they show error-correcting be-
havior. The error-correction mechanisms allow the financial decision maker
to anticipate future developments of key (financial) economic variables, thus
affecting tactical management decisions. Concerning the mis-specification
of the cointegrating properties of time-series, we obtain a mixed conclusion.
For long-term decision problems, it seems advisable not to over-estimate the
number of cointegrating relations. By contrast, for short-term forecasting it
appears better not to under-estimate the number of relations.

The set-up of the paper is as follows. In Section 2, I introduce the con-
cept of cointegration and explain the main consequences of cointegration and
error-correction for forecasting and scenario analysis. In Section 3, I intro-
duce a stylized asset allocation model and characterize its solution using
stochastic dynamic programming. In Section 4, I illustrate the findings from
Section 3 using a stylized empirical application on currency management.
The effect of model mis-specification is considered in Section 5, where I treat
the effect of imposing an incorrect number of error-correction mechanisms
in the model describing the economy. In Section 6, I present some brief
conclusions and suggestions for future research.

2. Cointegration and scenarios

In this section I explain the notions of cointegration and error-correction,
especially in their relation to forecasting and scenario generation. Given the
dichotomy between the effects of cointegration on short-term versus long-
term financial decision making in Section 3, it appears useful to split the

VERSION:  AUGUST 12, 1997 4



A. LUCAS
Asset Allocation and Long-term Equilibria

present exposition in two parts. Subsection 2.1 deals with long-term char-
acteristics of cointegrated models. Subsection 2.2 considers the short-term
behavior of such models.

2.1. Cointegration

In order to explain the notions of cointegration and error-correction and their
relevance for generating scenarios, I start by introducing the class of Vector
AutoRegressive  (VAR) time-series models. Consider the VAR model of order
P,

Ayt = IIyt-1  + %Ayt-1  + . . . + @‘p--lAyt--p+l  + p + Et, (1)

with yt E ll??, A denoting the first difference operator Ayt = yt -  ytel,  II and
@I,... , Q>,-i  denoting Ic  x k parameter matrices, p E ll@ denoting a vector
of constants, and ct denoting an independently and identically distributed
(i.i.d.) error term. The VAR model in (1) uses a linear projection of the
time-series yt on its own past to obtain a prediction. VAR models have the
advantage that the modeler has to rely on very little (possibly incorrect) a
priori information stemming from, e.g., economic theory. The VAR approach
is data oriented and, as such, able to produce scenarios that are compatible
with the past behavior of economic processes. For a fuller exposition of the
merits of VAR models as opposed to, e.g., structural econometric models, see
Sims (1980).

Now for illustrative purposes, consider a VAR model of order one,

AYt  = P + nyt-1  + Et  @ yt = p + (I + lqyt-1  + Et. (2)
By repeated substitution, we obtain

t - 1

Yt = (1-t WY0  + X(1 + l-I)“(p  + Et-i). (3)
i=o

Note that in order to exclude explosive behavior, the eigenvalues of (I + II)
must lie inside or on the unit circle. If the eigenvalues lie strictly inside
the unit circle, (3) hs ows that the past has an ever diminishing influence
on the future, i.e., the impact of Et (or yt) on yt+k  decreases if Ic  grows
to infinity. The classical example of this case is II = -I,  in which case
(2) reduces to a pure white noise model: the past has no influence on the
present. If all eigenvalues lie inside the unit circle, the time-series yt is weakly
stationary, see, e.g., Hamilton (1994). By contrast, if some of the roots of
(I + II) lie on the unit circle, past observations have an everlasting impact
on future observations. A simple example is the case II = 0, in which case
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all eigenvalues of (I + II) 1 ie on the unit circle. Model (2) then reduces to a
pure random walk (with drift) model.

Following Engle and Granger (1987) and Johansen  (1988,1991),  we re-
strict our attention to the case where the eigenvalues of (I + II) lie either
inside the unit circle, or at +l. This is the most interesting case for most
economic (non-seasonal) time-series. The number of non-unit eigenvalues of
(I + II) coincides with the rank of the matrix II. Assume that II has rank
0 < 7’  < Ic,  then II can be decomposed as the product of two (Ic  x r) matrices
o and ,0,  II = cQT,  where T denotes transposition. Consequently, (2) can be
rewritten as

Ayt = apTyt-l + p + Et. (4
Now under the assumption that the time-series Ayt is stationary, it follows
directly from (4) that PTyt-i  must be stationary, as both Ayt and Et are
stationary processes, see also Johansen  (1991). So the T linear combinations
PTyt of the k possibly non-stationary time-series yt, are stationary. Put in
the terms of Engle and Granger (1987)) we say that there are T cointegrating
relationships between the elements of yt. The cointegrating relations ,BT  yt
are also called equilibrium relations.

The fact whether or not a time-series is cointegrated has important con-
sequences for the scenarios that are generated. To illustrate the main dif-
ferences between scenarios with different cointegrating properties, I gener-
ate 1 through 20-step-ahead  predictions and corresponding (pointwise) 95%
confidence intervals using a univariate version of (3) with standard normal
disturbance terms. The starting value is taken to be ya = 3, while /1 = 0.
Three different values of II = x are considered. The case K = 0 corresponds
to the absence of cointegration, while rr  = -0.1 and rr  = -0.2 results in a
“cointegrated” or stationary time-series. The results of the experiment are
presented in Figure 1.

It is clearly seen in Figure 1 that the confidence bands for 7r  = 0 are much
wider than for K = -0.1 or 7r  = -0.2, especially at long horizons. Moreover,
the conditional mean of yt gradually adjusts to the long-term equilibrium
value (i.e., the unconditional mean) 0 for -2 < T < 0, while it remains
constant for 7r  = 0.

Although the above example in Figure 1 is univariate and, strictly speak-
ing, concerns stationarity rather than cointegration, the extension to the
multivariate setting with genuine cointegration is straightforward. If a vec-
tor time-series exhibits cointegration, certain linear combinations of the series
will display behavior as for O T T  = 0 in Figure 1, while other linear combina-
tions (/3’yt)  will behave like the plots for -2 < 7r  < 0. So in the multivariate
setting, both the level, the range, and the coherency properties of scenarios
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8 12 16 20

Figure 1: Forecast Intervals of an AR(l)  Model (3) with yo  = 3 and Forecast
Horizon 0 through 20.

are affected by the presence or absence of cointegration. It is intuitively clear
that such differences must also have their impact on the decisions that are
based on these scenarios. For example, if yt denotes the price of a specific as-
set category, this asset would be riskier in the long term and thus potentially
less interesting, for O T T  = 0 than for -2 < K < 0.

To conclude this subsection, note that if /.L  # 0, the time-series may
display trending behavior. Again, this is most easily seen in the univariate
case. For 7r  = 0, the constant p in (2) then becomes the drift of a random
walk process, resulting in a trend term pt in the levels yt. For -2 < 7r  < 0,
by contrast, p is directly related to the unconditional mean of yt, so that the
deterministic trending part in yt eventually levels off and becomes constant.
Both effects can be seen directly by-considering the deterministic function
of time in (3), Cjii(I  + II)i~.  Again, in the multivariate setting the effects
are similar. Certain linear combinations of the constant term cause linear
trending, while other combinations have a bounded impact on the levels of the
series. It is clear, therefore, that the cointegrating properties of the system
also have important effects on the trending behavior of scenarios through
the specification and interpretation of deterministic regressors in (2), like the

VERSION: AUGUST 12, 1997 7



A. LUCAS
Lon,q-term  Equilibria

constant term.

2.2. Error-correction

In the previous subsection, the focus was on the long-run properties of coin-
tegrated systems. Cointegrating combinations of a time-series show much
less long-term variability than non-cointegrating combinations. This has di-
rect implications for decision making over long planning horizons. In order
to give an assessment of the effect of cointegration on short-term financial
decision making, we have to take a slightly different point of view using the
concept of error-correction.

As mentioned in Subsection 2.1, the cointegrating relations are also called
equilibrium relations. In fact, the elements of PTyt give the deviations from
the long-run equilibrium relations, i.e., the equilibrium errors. An alterna-
tive way to interpret the cointegrated VAR on the right-hand side in (2) is
therefore obtained using the error-correction model parameterization  on the
left-hand side in (2),

Ayt  = 4EE)t  + P + it, (5)
where EE, = PTyt-i  is the equilibrium error. (5) clearly shows that if
the time-series variables yt are in a temporary state of disequilibrium, i.e.,
EEt # 0, then yt will adapt towards the equilibrium. It is illustrative to
present a graphic example of this behavior. Figure 2 presents some simulated
time-series based on the bivariate VAR model

(;;;)  = (-8)  b-;-4+%
with Q i.i.d. standard normally distributed, ~-0  = rC;  -  0.1 = 4, and rt and r:
denoting, e.g., a local and foreign short-term interest rate, respectively. For
0 < Q < 2, (6) is error-correcting. This is clearly seen in the Figure 2. For
Q = 0.01, and even clearer for o = 0.05, we see that equilibrium errors (ri-rt)
affect the series in such a way that future equilibrium errors become smaller.
As a result, we see that the series for larger values of cy  stay closer together,
i.e., the series are cointegrated. By contrast, for o = 0 the equilibrium errors
do not seem to affect the pattern of the series, such that rt and r: may drift
arbitrarily far apart. Engle and Granger (1987) and Johansen  (1991) formally
prove the direct relation between cointegrated models and error-correction
models.

The relevance of error-correction mechanisms for short-term financial pol-
icy making is evident. If yt is temporarily in a state of disequilibrium, i.e.,
PTyt # 0, we can predict part of the near future developments of yt due to
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Figure 2: Realization of the Bivariate VAR Model in (6).

the working of the error-correction mechanisms. The partial predictability
of yt may clearly have an impact on present decisions through the possibility
to anticipate future developments in the (economic) state variables.

Concluding, cointegration entails the existence of long-run equilibrium
relations between variables. Error-correction, on the other hand, describes
the reaction of series to temporary deviations from the long-run equilibrium
relations. The presence of long-run equilibrium relations has important con-
sequences for:

1. the short-term predictability of the time-series;

2. the level of forecasts or scenarios;

3. the interpretation of deterministic terms in the regression model and
their effect on scenarios;

4. the coherency displayed by the simulated series over time;

5. the confidence bands for forecasts, or put differently, the range of pos-
sible scenarios.
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The first four consequences mainly affect the level or return dimension of
a financial decision process. The fifth consequence, and to some extent also
the fourth one, mainly affects the risk dimension of the problem. In all cases,
however, it is intuitively clear that the presence or absence of cointegrating
relations is relevant for decision making. In the next sections, we formalize
these intuitive ideas and disentangle the effects of cointegration on long-term
and short-term planning problems.

3. Analytical results

In this section I develop a stylized asset allocation model to qualify the
effect of the number of cointegrating relations in a scenario generating model
on optimal asset allocations. I first present the model in Subsection 3.1.
In Subsection 3.2, I characterize the effect of cointegration on long-term or
strategic asset allocation. In Subsection 3.3, I discuss the impact of error-
correction on short-term or tactical asset allocation.

3.1. The model

Consider an investment manager that is faced with formulating a dynamic
investment policy over a planning period [0, T]. The manager has initial funds
F(O), while his cumulative funds at time t are equal to F(t). At each point
in time, the manager has to decide what amount to invest in each of n + 1
asset categories. Asset category 0 is a money market account giving a risk-
free return. The returns on the remaining asset categories are stochastic,
such that investing in one of these categories entails a risk. Assume that
the performance of the investment manager is measured by his cumulative
earnings F(t) , and that the manager, therefore, gets his utility from the total
amounts of funds he has to manage. We assume that the utility function of
the manager is time-separable and that the manager uses a const,ant  discount
factor over the planning period to maximize his expected utility. Formally,
the manager tries to maximize

Eo [s T e-&F(t))& 1 ) (7)
0

where p is the discount factor, 7’  denotes the planning horizon, Eo[.] is the
expectations operator given the information available at time 0, and U(e)  is
an increasing, concave utility function. Throughout this section, we will work
with a constant relative risk aversion (CRRA) utility function, although the
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results in Subsection 3.3 continue to hold for more general utility functions.
We have

Fler/(l - 7) for y # 1,
f o r  y=l, (8)

where y > 0 is Pratt’s (1964) measure of relative risk aversion. It follows
easily that -U”(F)F/U’(F)  = y, such that the investor is more risk averse
for higher values of y. The framework so far is slightly non-standard, in
that we consider an investment manager that has to pick an asset allocation
only and derives his utility from the funds under management. In a more
standard framework, we would consider an agent who derives his utility from
consumption and has to decide on an asset allocation and a consumption plan
simultaneously, see, e.g., Merton (1990). In the present paper we abstract
from the consumption decision for expository purposes. Incorporating the
consumption decision in the model would not alter the qualitative results on
the interaction between cointegration and (financial) decision making.

Assume that the return on asset category i at time t over an infinitesimally
small holding period dt is given by exp(ri(t)) - 1. Then the state variable
F(t) evolves as follows:

d&‘(t)  = F(t)~(t)~{r(t)  + idiag(r(t)r(t)T)}, (9)

with ICY  = (ze(t),  . . . , zn(t)), am = (TO(~),  . . . , r,(t)), F(t)~i(t) denoting
the amount invested in asset category i = 0,. . . , n at time t, and CyzO  xi(t) =
1. Equation (9) states that the funds under management grow due to the
returns earned by investing the funds available at time t in each of the n + 1
asset categories. The second order term in (9) is due to the possible stochastic
nature of the returns.

Given the utility of the manager in (7) and the evolution of the funds that
are available for investment, we now describe the nature of the (stochastic)
returns on each of the different asset categories. We assume that the return
vector r(t) is a function of dt, q(t),  and &(t), where q(t) is an m-dimensional
diffusion process

clq(t)  = pdt + rI(q(t)  - q(0) - #L&It  + LTdW, (10)

with IV(t) a standard multivariate Wiener process, and LTL  = R.  It follows
that q(t) follows an Ornstein-Uhlenbeck process around the deterministic
growth path q(O)+&  The definition r(t) = r(t; dt, q(t), dq(t))  combined with
the evolution of q(t) described in (10) comprises a wide variety of stochastic
processes for the return vector r(t). For example, if q(t) is the logarithm of
asset prices at time t and if II = 0, we have r(t) = dq(t)  while (10) reduces to
the familiar log-Brownian motion model for asset prices. Alternatively, (10)
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could be used to describe the return process directly by defining q(t) = r(t).
Some special care is needed for the treatment of the risk-free rate of interest.
In all models, we assume that rg(t)  does not depend on dq(t),  such that the
risk-free rate of interest from t to t + dt is known at time t.

The presence of the matrix II& in (10) is of central interest in the present
paper. In most theoretical papers on asset allocation, we find II = 0. By con-
sidering non-zero values of II, we are able to study the effect of cointegration
and error-correction. The specification in (10) closely follows the cointegrated
VAR model presented in Section 2. Multiplication by the length of the time
interval dt follows the approach taken by, e.g., Phillips (1988) and Johansen
(1989) for studying the power of cointegration tests under local alternatives.
In fact, (10) presents a model exhibiting local cointegration. Local cointe-
gration has the advantage that we can employ continuous-time methods as
in Merton (1990) to obtain a direct characterization of the optimal asset al-
location. Given the discussion in the previous paragraph, we can allow for
cointegration in the returns as well as for cointegration in prices. Moreover,
by separating the time-series model for q(t) from the asset returns r(t), we
allow for situations where the time-series model contains more variables than
asset prices only, i.e., m > n+ 1. Such situations can be of interest if the risk
of a specific asset category can be split naturally into several risk factors,
which can be modeled separately. An example based on empirical data is
presented in Section 4.

To complete the model, we abstract from market imperfections, e.g., we
assume that short-selling is allowed and that the investment manager can
borrow and lend freely on the capital market against the risk-free rate of
interest r0 (a). Incorporating capital market imperfections at the present stage
into the model would unnecessarily complicate the exposition.

3.2. Cointegration and strategic asset allocation

In this subsection, I consider the effect of Il # 0 on the “long-term” asset
allocation resulting from the financial decision problem described in the pre-
vious subsection. For expository purposes, I make the following simplifying
assumptions.

First, I assume that the investment manager may decide on the compo-
sition of his portfolio only once, namely at time t = 0. The chosen portfolio
has to be kept until time T, at which time the investment manager is evalu-
ated. So we have x(t)  E x. By making this assumption we can abstract from
all “short-term” effects of cointegration caused by the ability of the man-
ager to adapt his asset allocation to present economic circumstances. Such
short-term effects are considered in detail in Subsection 3.3.
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Second, I assume that there is only one (possible) cointegrating relation-
ship, i.e., I assume that the rank of II is equal to one. More specifically,
assume that

l-I = cdipT, 01)
with Q and ,0 column vectors in Iw”, X  E Iw,  and oTo  = ,BT/3  = 1. Restricting
attention to one cointegrating vector does not affect the generality of the
results derived below. Define X* = XaT,O,  then we can distinguish three
situations. First, if X’  = 0, there is no local cointegration as X  = 0 and so
II = 0. Second, if X’  > 0, (10) is locally explosive, as the eigenvalues of I + II
lie on or outside the unit circle. Finally, if X*  < 0, m - 1 eigenvalues of I + II
are equal to one, while the mth eigenvalue is smaller than one, such that q(t)
is locally cointegrated. Given the focus of the present paper, I concentrate
on the third case, X’  < 0. It is interesting to note that in the limiting case
X’  + -00,  the process pTq(t)  is stationary, see the comments in Phillips
(1988).

The third simplifying assumption made in this subsection concerns the
specification of the returns. I assume

r(t) = r(t;  dt, q, dq) - r(dt,  dq). (12)

So neither the exact instant in time t nor the level of q(t) affects the returns
on the different asset categories. An obvious example in which (12) holds is
when q(t) is the vector of log-asset prices. The simplification in (12) is made
in order to allow for an explicit solution of the stochastic differential equation
(9). This explicit solution can then be used in maximizing the investment
manager’s utility at time T.

The following theorem can now be proved (see Appendix A).

Theorem 1 Given the model of Subsection 3.1 and the three simplifying
assumptions mentioned in the present subsection,

E,-,(e-PTU(F(T))  = U(F(0)) . exp [h(x,  t) + f(1  - y)2xTr,Q(t)rlx] , (13)

with h(.,  .) a quadratic function in x that does not depend on Q, ,8,  or A,
rq = dr(O,  O>/Wq> a matrix of constants, and

Q(t)  = JD’  (I+  (es’*  -  I)$)  52  (1,  (es’*  -  l)$)Tds*
(14)

The matrix Q(t) in Theorem 1 is the covariance matrix of q(t) given
q(0). Theorem 1 implies that if the investment manager is allowed to take
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only one strategic decision at the start of the planning period, cointegration
only affects this decision through the covariance matrix of the diffusion that
determines the asset returns. The fact that q(t) may temporarily be in a state
of disequilibrium, IIq(0) # 0, does not affect the long-term decision process.
By contrast, the relative long-term riskyness of different asset combinations
has a direct effect on the optimal asset allocation.

In order to obtain some more insight into the effect of cointegration,
consider the case lrQl  # 0 with dominant cointegration X*  + -co. Then by
choosing x = (r,‘)-‘/3, xTrQQ(T)r~x  reduces to PTRP(exp(2X*T)-1)/(2X*)  +
0. Taking into account the sign of U(F(O)),  the second term in the exponen-
tial in (13) has a positive effect on utility if 0 < y < 1, and a negative effect
if y > 1. So by choosing x = (r,‘)-‘p, we increase utility through this second
term for y > 1, while a decrease is established for 0 < y < 1. Naturally,
choosing x = (rl)-rp also affects the first term in the exponential in (13),
such that the composite effect on expected utility is ambiguous. The formu-
las show, however, that dominant cointegrating relations will be exploited by
the investors who are relatively more risk averse. For extremely risk averse
investors y + 00,  the second term in the exponential in (13) becomes domi-
nant and the optimal asset allocation becomes a direct linear transformation
of the cointegrating vector ,D.

So for long-term decision making, cointegration matters as it reduces the
long-term variability of the asset allocations corresponding to the cointegrat-
ing relations. ‘Though the results for X* > --oo  and y < 00  will be less
clear-cut than the results above, the qualitative conclusions remain similar.
Investors that are relatively risk-averse (y > 1) will invest in a portfolio that
lies closer to the cointegrating space. Investors with a risk aversion param-
eter 0 < y < 1, by contrast, will invest in a portfolio further away from the
cointegrating space. This last conclusion is intuitively clear once we realize
that the variable F(t) is log-normally distributed in the present context. As a
result, decreasing the variance of xTrqq(T)  also decreases the expected value
of F(T). If y > 1, this decrease in expected value does not outweigh the
variance reduction in the utility trade-off. The opposite holds for 0 < y < 1.

3.3. Error-correction and tactical asset allocation

After having studied the effect of cointegration on long-term financial plan-
ning, we now turn to the short-term decision process. The model is the same
as in Subsection 3.1. Note that we drop the three assumptions made in the
beginning of Subsection 3.2. Although we stick to the CRRA utility func-
tion in the present subsection, it should be kept in mind that the qualitative
results obtained here remain valid for more general types of utility functions.
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In order to concentrate on the short-term decision process, we assume
that the investment manager can revise his portfolio any time in the future.
The manager is thus faced with a dynamic decision problem, in which he has
to construct an asset allocation rule that produces the optimal allocation
given present economic circumstances. So the optimal allocation rule will
generally be a function of the economic state variables (q(t)), the funds under
management (F(t)), and time (t).

Following Merton (1990, Chapter 4),  we start solving the dynamic opti-
mization problem by introducing the value function

vw),  4(t), t> = yap 1 VW*), dt*), t*>  + J’ t*  eMP’“U(F(s))ds , (15)
t 1

where t* > t, and E,(m) denotes the expectations operator conditional on the
information available at time t. We obtain the following result.

Theorem 2 A necessary condition for x*  to be an optimal allocation rule
for the maximization problem with objective function (7) is

x1(t)  = -vF _
p . vFFpi(=(q(t)  - Q(O) - CL&  q(t)), (16)

fori=l,... , n, an.d  x:(t)  = 1 -  CyzI  x:(t),  with x*  the optimal investment
policy, VF and VFF  the first-order and second-order partial derivatives of V(.)
with respect to F,  and fii(.,q(t)) d enoting a linear function for every value

of 4(t).

Theorem 2 states that the optimal short-term asset mix generally depends
on time, the amount of funds, and the diffusion process q(t) (all through VF
and VFF).  If the value function is separable in t, q(t), and F(t), however,
the optimal asset allocation only depends on F(t) (through VF/(FVFF))  and
on q(t) (through  ii(-, ->>, see for example Section 4 and Merton (1990). The
vector q(t) thus affects the optimal mix in two different ways. First, q(t)
enters directly into jii due to the fact that the returns may be a non-linear
function of dq(t) and/or (dt,q(t)). For example, if r(t) = dq(t) with q(t)
the vector of logarithmic asset prices, & only depends on IIq(t) and not on
q(t) itself. The effect of cointegration on the optimal asset mix through the
second argument of jii is very limited. (Local) cointegration for q(t) implies
restrictions on the behavior of q(t) through time, see also Subsection 3.2.
These restrictions, however, are taken as given for the short-term decision
process and are not exploited in determining the optimal asset allocation. For
example, if q(t) contains a long-term and a short-term interest rate and if the
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spread between these interest rates is (locally) stationary, then the optimal
asset mix takes the levels of the interest rates as given. It does not exploit
the fact that the term structure may have forecasting power for the growth
rates of interest rates due to the cointegrating properties of the two series.
The possible explanatory power of cointegrating relations for future values of
q(t) is taken care of by the second argument of jii,  namely lI(~(t)  --q(O)  -,~t).

In order to consider the effect of cointegration on the optimal short-term
asset allocation in more detail, we again decompose II into CX/~~,  with cx  and ,0
being two Ic  x r matrices of full column rank. Furthermore, for simplicity we
set q(O)  = ,LL = 0. Using the linearity of ji in Q(t),  (16) shows that it is not
the cointegrating relations or equilibrium errors pTq(t)  per se that directly
affect the optimal asset mix. What is more important is the way in which
the process q(t) reacts to equilibrium errors, i.e., the relative strength of the
error-correction mechanism. This mechanism is given by aPTq(t) = IIq(t).
The intuition behind this finding is clear. If one of the elements of q(t) is
out of equilibrium, we anticipate a price movement towards the equilibrium
during the next period, i.e., an error correction, see Section 2. Under the op-
timal strategy, the investment manager tries to exploit these anticipated price
movements. Without loss of generality we can assume that the cointegrat-
ing vectors p are normalized such that PT,D = I. The formal derivations in
Appendix A then reveal that the effect of cointegration and error-correction
is strongest if the magnitude of the error-correction parameters CE  is large
compared to the variance of diffusion process R = LTL.

The theoretical analysis in this section has produced two clear-cut re-
sults. First, for long-term decision making based on a multivariate time-
series model, cointegrating relationships matter for the long-term variability
of portfolios. Temporary deviations from equilibrium relations appear to
have no influence on strategic decisions. By contrast, for short-term decision
making, the temporary deviations from long-term equilibria are of prime im-
portance. In fact, these deviations and the error-correction mechanisms in
the time-series model drive the optimal allocation rule. For the short-term,
it appears that “error-correction” instead of “cointegration” seems the most
important characteristic of the time-series model. The next section applies
the findings of the present section to an empirical data set using a stylized
investment problem.

4. Empirical illustration: FOREX management

In this section we study a simple international investment problem with one
risky, and one risk-free asset. The risk-free asset is a one month deposit,
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- - -  lOUS$/uKE

Figure 3: UK and US 1 Month Interest Rates and lOUS$/UKXSpot  Exchange
Rate.

giving a certain continuously compounded annualized return of To(t)  per cent.
The risky asset is a one month deposit in a foreign country, giving a certain
continuously compounded annualized return of r,*(t)  in the foreign currency.
The exchange (spot) rate at time t is given by S(t) and denotes the amount of
foreign currency to be received for one unit of the local currency. We use a real
data set to illustrate the main effects of cointegration and error-correction on
asset allocation. The data are taken from Datastream and contain monthly
observations over the period January 1981 until August 1996. We take the
UK as the home country, and the US as t,he  foreign country. The data are
visualized in Figure 3.

We construct the vector

4(t) = (n(t),  ~0(t)  - TG(t),  ln(S(t))T.
Next, we model q(t) as a VAR process using the empirical data at the monthly
frequency. This implies that we take dt E l/12. The first element of the
vector q(t) is the UK interest rate, the second element is the international
UK/US interest rate spread, and the third element is the logarithm of the
spot exchange rate (in US$/UKE),  which approximately equals the exchange
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rate returns. Using standard order selection criteria like Akaike’s or Schwarz’
information criterion, we select a first order VAR model for q(t). Using the
cointegration tests as proposed in Lucas (1996))  a cointegrating rank of T = 1
is found. In order to investigate the effect of cointegration, we also consider
a fully stationary model (T  = 3) and a fully non-stationary model (T  = 0).
In the cointegrated model (r = l), there appears to be a significant long-run
equilibrium relation between the spot exchange rate and the international
interest rate spread. For example, if domestic (i.e., UK) interest rates are
high compared to the long-run equilibrium, the exchange rate rises, in this
case implying a depreciation of the US dollar vis a vis the UK pound. All
estimated’ models are given in Appendix B. It remains to be mentioned here
that we use the specification of the VAR model as explained in Section 2. This
is the form of the model that is mostly used in the empirical cointegration
literature. As there is a slight difference between the discrete time model
introduced in Section 2 and the continuous time model used in Section 3, we
have to re-specify p(t)  defined below (A9) as p(t)  = p + IIq(t).

In discussing the effect of cointegration and error-correction on optimal
asset allocation for the above problem, we focus on tactical or short-term
asset allocation. This is not uncommon in the present context of currency
management. Moreover, in order to implement the (long-term) results from
Subsection 3.2, we would need more ad hoc assumptions about, e.g., the
length of the planning period and the magnitude of the discount factor. An
implementation of the short-term results from Subsection 3.3 requires much
less arbitrary choices in this respect.

Given the definition of q(t), we have

rl(t,  t + h; q(t), q(t  + h)) = ln( s(‘)~;t~~~~)dr))

(17)

(18)
= (QOW  - !?l(W  - k?(q,

where the differential operator must now be interpreted as the difference
operator over periods of one month, e.g., dq&t)  is the one month (logarithmic)
exchange rate return. Using the definitions below (Al) in Appendix A, we

’ The models are estimated using usual discrete time methods instead of continuous
time estimation methods. The continuous time parameter estimates are obtained using a
first order approximation, i.e., dividing the discrete time parameter estimates by dt = l/12.
This first order approximation turns out to be adequate in the present context to illustrate
the main points involved.
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To,t = 40, T1,t  =  40 - 41 , To,q  = 0, Tl,q = (O,O,  -l)‘, To,qq  =  rl,qq  =  0 .

Using these equalities, (A9)  reduces to

0 = max  (e+U(F)  + V,  + V, . ji + +trace(V,,  . St) + $VFF  . F2  . wgjzf+
Xl

VF ' F * {TO,t  + xl * (rl,t  - TO,t - p3  + +33)})  , (19)

with ,!i3 and ~33  the 3rd and (3,3)-element  of ji and R,  respectively. (19) de-
termines the optimal tactical asset allocation for infinitesimally small hold-
ing periods. In the present experiment, however, the investment manager
is forced to hold his portfolio for the minimum period of one month. As a
result, the optimal portfolio according to (19) might prove far too risky for
the investment manager. This indeed turns out to be the case. Some prelim-
inary experimentation with (19) revealed that allocations that are optimal
for infinitesimally small holding periods can lead to unrealistic allocations
for a one month holding period. For example, in some cases more than 40
times2  the amount of available funds is invested in one of the asset categories,
resulting in an investment policy that is both far too risky and difficult to
implement in practice. In order to avoid this unrealistic behavior, I abstain
from the possibility of short-sales by requiring zi E [0, 11.  As a result, using
Theorem 2 the optimal policy following from (19) is

z;(t) = median(O, z;*(t),  l), (20)

with
xc;*(t)  =

-b

VFF'F'W33
(-41 - (070, wkl(q  +d + $33) * (21)

Consider the following trial solution for the value function based on com-
monly found separability results (see, e.g., Merton, 1990),

W,  F, 4) = e-PtVMq), (22)
for some function g(q). Substituting this candidate solution in (21) and (19)
and dividing by exp(-pt)U(F),  (19) re d uces for y # 1 to a second order
partial differential equation for g(q) with varying coefficients. Assuming a

2 It should be noted that these unrealistic asset allocations are also partly due to
the crude first order approximation used to estimate the continuous time parameters, see
footnote 1.
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function g(e)  exists that solves this partial differential equation, x7*  in (21)
reduces to

xc;‘(t)  =
-9 - (0,0,1)(W)  +  P>  +  +JJ33

7
YW33

(23)

thus simplifying the optimal asset allocation in (20). Equation (23) clearly
shows that the optimal asset allocation is stabler for investors that are more
risk averse. Moreover, if exchange rate risk (~33)  is high, investments in the
risky asset will be smaller in magnitude.

Figure 4 presents the optimal values of xi and the corresponding values
for the funds under management if the optimal dynamic strategy is applied
monthly over the observation period. Three values of the risk aversion pa-
rameter y are considered.

The first thing to note in Figure 4 is that it can make a considerable
difference whether or not a cointegrated or non-cointegrated model is used
to forecast the returns. The differences become really apparent for y > 1.
For y = 1, we have the logarithmic utility function U(F) -  In(F).  In this
case, the differences between the optimal asset allocations for different values
of the cointegrating rank T are relatively weak, which appears in line with
the results of Subsection 3.2. For y = 1, therefore, the amount of funds
under management F is approximately equal over the whole sample period
for all three models considered. If follows directly from intuition and from
(23) that if we increase the risk aversion parameter y, the optimal fraction
invested in the risky US deposit should lie closer to zero if all remaining
model parameters remain constant. This is clearly seen by looking at the
left-hand side plots in Figure 4. It is striking to note that the variation
over y in the optimal value of x1 is much smaller for T = 1 than for T = 0
(and r = 3). As a result, the total amount of funds under management
for T = 0 decreases as we increase y, while F(t) remains relatively constant
for the optimal allocations based on r = 1. The smaller amount of funds for
r = 0, caused by lower average returns on the managed portfolio, is a natural
consequence of the reduction in risk. By contrast, the stability of F(t) for
T = 1 illustrates that the cointegrated model does quite well in this case
in forecasting future excess returns of the risky asset category. This can be
expected given the test results discussed earlier. Using cointegration tests,
the cointegrated VAR with one cointegrating relation seems the best model.
Therefore, the difference stationary model with T = 0 is mis-specified, as a
significant regressor is omitted from the model: the equilibrium error

s(t) -  6.23(r0(t)  -  r;(t)) + 1.17r0(t),

see Appendix B. Further testing reveals that the UK interest rate is in-
significant in this equilibrium relation, and that we only obtain a relation
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Figure 4: Optimal Fraction x; Invested in the US by a UK Investor and the
Cumulative Funds under Management, Starting from F(0) = 1.

between the US/UK exchange rate and the UK/US interest rate spread. In
particular, a high UK/US interest rate spread causes an upward pressure on
the US/UK exchange rate, which appears a plausible result. Omitting this
relation as an explanatory variable in the VAR in differences (as for T = 0)
results in a lack of forecasting power of the corresponding time-series model.
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As a final note to Figure 4, it is interesting to see that the results for
T = 1 and T = 3 are quite similar. Only for high values of the risk aversion
parameter y, the cointegrated model seems to do a better job at forecasting
future returns than the fully stationary model. These issues are investigated
in more depth in Section 5.

5. Model Mis-specification

The findings in Sections 3 and 4 indicate that the presence or absence of coin-
tegrating relations in a time-series model used for financial decision making
may have important consequences for financial policy making. Therefore, it
is interesting to know the effect of using a mis-specified cointegrating rank in
the time-series model. In particular, it is important to find out whether the
effects of fixing the cointegrating rank T too high or too low are symmetric.
The results in Figure 4 suggest that it is more important not to choose T too
low than it is to set T too high. This indeed turns out to be the case for
short-term management decisions. For long-term policy making, much more
care is needed. The present section investigates these issues in more detail.

In order to allow for mis-specification of the cointegrating rank of the
diffusion q(t) in (lo), we have to introduce some additional notation. Let
p*,  R*,  II*, and T*  denote the true drift term, covariance matrix, impact
matrix, and cointegrating rank of the process q(t). Note that these values
are not necessarily used by the manager in his decision model. By contrast,
the manager uses pm, am,  IIm,  and rm to determine his optimal dynamic
asset allocation. For example, assume that r* = 1 and that the investment
manager is unaware of the concepts of cointegration and non-stationarity.
The manager will in that case use either a stationary (r” = 3) or a difference
stationary (r” = 0) model to base his financial decisions on. Consequently,
there will be a discrepancy between the true model generating the q(t) and
the model used by the manager. We consider two different cases. First,
Subsection 5.1 considers the case IIm  = 0 (rm = 0) and T*  > 0, such that
the investment manager underspecifies the true cointegrating rank. Second,
Subsection 5.2 looks at the case rm > 0 and T*  = 0, such that we get an
idea of the effect of underestimating the cointegrating rank of q(t). Both in
Subsection 5.1 and 5.2 the focus is on short-term policy making. Subsection
5.3 contains some comments on the effect of mis-specified cointegrating ranks
for long-term policy making.
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5.1. Too much non-stationarity: rm  < r*

Assume that the manager uses a difference stationary model rm = 0 and
IP  = 0, while the true data generating process is either stationary or coin-
tegrated, r* > 0. Equation (4) then clearly shows that the manager uses a
mis-specified scenario generator to base his decisions on, as relevant error-
correction mechanisms are omitted from the model by restricting rm to zero.

Apart from the fact that the manager mis-specifies the dynamics of q(t),
setting rm too low compared to r* also has consequences for the parameter
estimates obtained by the manager. Assume that in line with the specifi-
cation used in Sections 2 and 4, the true data generating process is given
by

dq(t) = p’dt + II*q(t)dt  + (L*)TdW(t),

where (L*)TL*  = R’, and that the manager uses the model
(24)

dq(t) = pmdt  + (L”)TdW(t), (25)

where (Lm)TLm  = s1”. Assume that we observe the process q(t) generated
by (24) from time -K to 0, with K > 0. If standard maximum likelihood
procedures (or ordinary least-squares) procedures are used by the manager
to fix the values of ,LL~  and 0” based on observed data, we get

II* O= P-K -Ks
q(t)dt + qW(-K)

s

0
q(t)&  + 0,(K-1’2),

- K
(26)

and

fK(dq(t)  - pmdt)(dq(t)  - pmdt)
K

= cl*. (27)

So although the variance of the process q(t) is estimated correctly, the es-
timate of the drift term is inconsistent, i.e., p*  # pm.  This even holds for
long observation periods K -+  00.  Together the mis-specification of p*  and
r* generally lead to incorrect predictions of future returns and, consequently,
to suboptimal asset allocation strategies. This clearly emerges in the case
of tactical asset allocation from the application in Section 4. As mentioned
before, formal cointegration tests indicate that r* = 1 for the application
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discussed in Section 4. The right panels in Figure 4 illustrate that underesti-
mating the true cointegrating rank indeed leads to suboptimal performance.
The amount of funds under management is generally lower, indicating that
the portfolio based on the dynamic allocation strategy for rm = 0 generally
underperforms with respect to the portfolio obtained with rm = T*  = 1.
The effect is more pronounced for investors that are more risk averse, i.e.,
investors with a higher value of y. Appendix B also corroborates the above
findings. The estimates of R are similar for T = 0, 1,3. By contrast, the
estimates of the constant term for T = 0 are an order of magnitude smaller
than the estimates for T = 1.

5.2. Too much stationarity: r* < rm
We now turn to the case rm > r*,  such that the investment manager overesti-
mates the cointegrating rank of q(t). Overestimating the cointegrating rank
results in a number of redundant parameters in the VAR model describing the
behavior of q(t). So the VAR model is over-specified in this case. Estimates
of the model parameters will thus be consistent, but generally inefficient. If
the number of observations used for the estimation process is large enough,
we therefore obtain ,LL*  M pm,  II* z IIm, and R* M s1” for T*  < rm. Con-
sequently, the dynamic optimal asset allocation of the manager generally
coincides with the true optimal policy. This stands in sharp contrast with
the results obtained in Subsection 5.1. The findings are corroborated by the
results in Appendix B and Figure 4. The right panels in Figure 4 indicate
that the performance of the optimal policy based on rm = 3 is approximately
equal to that based on rm = T*  = 1. Both policies outperform the allocation
strategy based on rm = 0.

5.3. Cautionary remarks

Although it might seem advisable given the results in Section 4 and Subsec-
tions 5.1 and 5.2 to overestimate rather than to underestimate r*,  one should
remember that the results in this section are based on continuous time and
asymptotic approximations. Therefore, some cautionary remarks are in or-
der if the results of this section are to be applied in practice. These remarks
are especially relevant if long-term decision problems are involved.

The first remark concerns the application of statistical theory for test-
ing in models that overestimate the cointegrating rank of a time-series sys-
tem. Phillips (1991) 1c early shows that the statistical theory for determining
whether particular parameters in the VAR model for q(t) are significant or
not, is a mixture of standard and non-standard distribution theory if one
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does not account for the correct cointegrating rank. This should be kept in
mind when performing further model selection for the scenario generator if
rm  > r*. Furthermore, although the redundant regressors for rm > r* do
not effect the consistency of the relevant parameter estimates, the implied
efficiency loss can substantially affect the estimates and thus the financial
decisions in finite samples.

The second remark is even more important and concerns the finite sample
bias in the estimate of the parameter matrix II in (1). As is well known,
see, e.g., Andrews (1993) and Abadir et al. (1994),  the estimate of the first
order autoregressive parameter (I + II) is generally biased towards zero in
finite samples. This bias becomes worse in higher dimensions, see Abadir
et al. (1994). The bias in the autoregressive parameter results in ‘too much
stationarity’ for certain linear combinations of q(t). As was explained in
Figure 1 in Section 2, the stationarity properties of a multivariate time-series
model have a large impact on the long-term characteristics of scenarios that
are generated with these models. Therefore, for long-term decision making,
the finite sample bias might prove quite important. By contrast, this bias
is less important for short-term policy making, as only one-step-ahead or
few-steps-ahead predictions are needed in that case. As illustrated in Figure
1, the differences between stationary models and non-stationary models only
become clear at longer horizons.

The above remarks are in line with recent findings of Christoffersen and
Diebold  (1997). They indicate that from a generalized mean squared error-
perspective, it is important for long-run forecasting not to under-estimate
the integrating rank of a time-series. Put differently, they claim that one
should not over-estimate the cointegrating rank of a system if the time-series
model is primarily used for long-run forecasting. Concluding, we can say
that for short-term forecasting the results of Subsection 5.1 and 5.2 indi-
cate that one should not impose too many unit roots in order not to miss
any advantageous investment opportunities caused by short-term disequilib-
rium situations. For long-term planning problems, the cautionary remarks in
the present subsection apply, indicating that one should be careful in over-
estimating the cointegrating rank.

6. Conclusions

In this paper I investigated the effect of the long-term properties of multivari-
ate time-series models on optimal short-term and long-term asset allocation.
The prime focus was on the interaction between contemporary econometric
time-series methods and financial decision making. The absence or presence
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of long-run equilibrium relationships, i.e., cointegrating relations, turned out
to be important for financial planning. For long-term decision making, it
proved important that cointegrating combinations of time-series generally
show less variability than non-cointegrating combinations. This has con-
sequences for the risk characteristics of long-term policies. For short-term
decision making, it proved important that cointegrating models are error-
correcting: short term deviations from long-run equilibria are annihilated
over subsequent periods. The error-correction property affects the optimal
financial decision through the partial predictability of short-term economic
developments in states of temporary disequilibrium. The analytical results
in the paper were corroborated using a small stylized empirical illustration.

Given the importance of the cointegrating properties of a time-series
model for financial decision making, the paper also addressed the effect of
using a mis-specified cointegrating rank. For short-term policy making, it
turned out that is better to over-estimate rather than to under-estimate
the cointegrating rank. If the cointegrating rank is set too low, profitable
short-term investment possibilities are missed because one does not exploit
the error-correcting behavior of the time-series process. Over-estimating the
cointegrating rank has not got a substantial adverse effect for short-term pol-
icy making. Short-term decisions require only one-step-ahead or few-steps-
ahead predictions. Because the differences between predictions of time-series
models with unit roots estimated and unit roots imposed are generally fairly
close if the prediction horizon is short, it is intuitively clear that too large a
cointegrating rank should have little impact on short-term decision making.
By contrast, for long-term decision making predictions from models with unit
roots imposed can be substantially different from the forecasts based on mod-
els with estimated unit roots. Therefore, based on findings of Christoffersen
and Diebold  (1997))  it seems preferable for long-term planning problems not
to over-estimate the cointegrating rank.
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A. Proofs
Asset Allocation and Long-term Equilibria

This Appendix contains the proofs of the main theorems of this paper.

Proof of Theorem 1. Using the fact that r(t) = r(t; dt, q,  dq) and the evolution
of q(t) as given by (lo),  we obtain

c(t)  = ri,t(t; 0,  q,  O)dt + ri,,(t; 0,  q,  OjTdq  + f(&)Tri,,,(t;  0, q,  0)dq + op(dt), (Al)

with ri,t = ari/a(dt),  TQ = ari/a(dq),  and rilqq = &i,q/a(dq)T.  This follows
easily by noting that ri(t; 0, q,  0) = 0, i.e., if the holding period is zero and asset
prices are constant, returns are zero. Using the assumption in (12),  we have that
ri,t = ri,t(t;O,q,O),  ri,q = ri,,(t;O,q,O),  and ri,qg = ri,,,(t;O,q,O)  are constant.
Combining (9) and (Al), we obtain

and

$ = zT(rtdt + rqdq)  + 2 izitrace{(ri,qq + ri,qr&)fl}dt
i=o

= sTr-&~sdt,

with rq a matrix with ith row equal to rTb. Moreover,

2

= zTr,dq  + h*(z)dt,

with

h*(z)  = zTrt + + 2 sitrace((ri,,,  + ri,,rJJR}  - gzTr,Slr,Tz.
i=l

Prom (A4) it follows that

F(t)  = F(O) . exp[zTrq(q(t)  - q(0)) + h*(z)t].

(AZ)

(A3)

W)

(A5)

(446)

Note that q(t) is normally distributed with mean q(0) + pt and variance-covariance
matrix Q(t), with

Q(t) = It exp(sII)R exp(sIIT)ds, (A7)
0

see, e.g., Phillips (1988). Using the normality of q(t) and the CRRA utility func-
tion, we obtain

I&(e-@U(F))  = U(F(0))  . exp [ ((1 - y)(h*(z) + zTrqp) - p) t+

$(l - y)2z’rqQ(t)rlz 1 . (A8)
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The result now follows by noting that

exp(sII)  = I + (es’* - l)-.

Q.&.D.

Proof of Theorem 2. Following Chapter 4 of Merton (1990, Chapter 4) and
using (Al), we obtain the Bellman-Dreyfus fundamental equation for optimality
(compare (A2) and (A3))

0= max e-
zo+...+z,=l

W(F) + v, + vq . /!i + ; trace (V,,  . 0)  +

VF . F .e 2i [ri,t + r&i + $trace{ (ri,qq + ri,,r&)fl}+] +
i=o

~V’F  ’ F22 w9

with subsripts of the value function V(.)  indicating the variable of differentiation
(e.g., V, indicating the partial derivative of V(.) with respect to t), fi = ,5(t)  = p+
n(q(t)  -q(O)  -put),  and  ri,t,  ri,q, and  ri,gq as defined below (Al). It is immediately
seen that the objective function in (A9)  is quadratic in z (with negative semi-
definite Hessian). Therefore, differentiating (A9) with respect to z and solving the
first order conditions, we obtain the desired result.

Q.&D.

B. Estimates

This appendix presents the estimates of three models for continuously compounded
annualized returns on one-month deposit accounts in the UK (lOO.rs per cent) and
the US (100.  rz per cent) and the logarithm of the spot exchange rate between the
US and the UK (s). All models are vector autoregressive of order 1 and differ in the
cointegrating rank that is imposed. Using the cointegration testing methodology
of Lucas (1996)) we find a cointegrating’ rank r of 1. In all models, the vector q(t)
denotes

T
4(t) = @-0(W-o(t)  - 6X% s(t)) . ow

As we use monthly data to estimate the model’s parameters, we let q(n)  denote
the value of q(t)  in month n. Note that the estimates below are multiplied by
12 (= l/dt) before the numbers are substituted in the formulas of Sections 3 and
4. This amounts to taking a first order approximation to the continuous time
estimates. The models are now presented in (Bll) through (B16).
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B.l. Difference stationary model: r = 0

with

q(n + 1) - 44 = + 44,

4.488 3.664 -3.665
Var(E(n))  = lop5 3.664 7.960 -0.096

-3.665 -0.096 121.500

B.2. One cointegrating relation: r = 1

q(n + 1) - q(n) = ( 1.1665 -6.2266 1.0000 ) q(n) +

+ 44, U313)

with
4.478 3.627 -3.342

Var(E(n)) = 10v5 3.627 7.821 Fw
-3.342 1.103 111.100

B.3. Fully stationary model: r = 3

4.292 3.439 -3.430
Var(&(n))  = 10e5 3.439 7.425 P 16)

-3.430 0.456 109.600
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