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Abstract. We study the complexity of the Strategic Argumentation Problem for
2-player dialogue games where a player should decide what move to play at each
turn in order to prove (disprove) a given claim. We shall prove that this is an
NP-complete problem. The result covers one the most popular argumentation
semantics proposed by Dung [6]: the grounded semantics.

1 Introduction

Consider the following argument exchange due to [15], where two players are involved,
a proponent Pr and an opponent Op:

Pr0 : “You killed the victim.”
Op1 : “I did not commit murder! There is no evidence!”
Pr1 : “There is evidence. We found your ID card near the scene.”
Op2 : “It’s not evidence! I had my ID card stolen!”
Pr2 : “It is you who killed the victim. Only you were near the scene at the time of the

murder.”
Op3 : “I didn’t go there. I was at facility A at that time.”
Pr3 : “At facility A? Then, it’s impossible to have had your ID card stolen since facility

A does not allow a person to enter without an ID card.”

The peculiarity of this argument game is that the exchange of arguments reflects an
asymmetry of information between the two parties. First, each player does not know
the other player’s knowledge, thus she cannot predict neither which arguments will be
attacked, nor which counterarguments may be employed for attacking the arguments.
Second, the private information disclosed by a party might be eventually used by the
adversary to construct and play justified counterarguments. In the previous setting,
Pr3 attacks Op2, but only after Op3 has been given. That is to say, the attack Pr3 of
the proponent is possible only when the opponent discloses some private information
through the move Op3.
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The scenario above exemplifies argument games with incomplete information, i.e.,
dialogues where the structure of the game is not common knowledge among the players.
Dialogues with incomplete information are typical in domains such as the legal domain
where a disputant does not know what arguments her opponent will employ. As argued
in [9], players have different logical theories which constitute their private knowledge,
being unknown by the opposite party. A player may build an argument supporting her
claim by using some of her private knowledge; in turn, the other party may then re-
use such rules and others (again from her own private knowledge) to construct a new
argument defeating the previously constructed argument. In other words, the set R of
rules that are used to build arguments is partitioned into three subsets: a set RCom known
by both players and two subsets RPr and ROp corresponding, respectively, to Pr’s and
Op’s private knowledge. Consider a setting where F = {a,d, f} is the known set of facts,
RCom = /0, and the players have the following rules:

RPr = {a⇒ b, d⇒ c, c⇒ b}
ROp = {c⇒ e, e, f ⇒¬b}.

If Pr’s intent is to prove b and she plays {a⇒ b}, then Pr wins the game. If Pr plays
{d⇒ c, c⇒ b} (or even RPr), this allows Op to succeed. Here, a minimal subset of RPr

is successful. The situation can be reversed for Pr. Replace the sets of private rules with

RPr = {a⇒ b, d⇒¬c}
ROp = {d,c⇒¬b, f ⇒ c}.

In this second case, the move {a⇒ b} is not successful for Pr, while playing with the
whole RPr ensures victory.

[9] has considered standard propositional Defeasible Logic [4] in a dialogue game to
represent the knowledge of the players, the structure of the arguments, and to perform
reasoning. In this setting, it has been proved that the problem of deciding what set of
rules to successfully play (called Strategic Argumentation Problem) at a given turn
is NP-complete. That result was offering an interesting starting point, but it covers a
non-standard argumentation semantics [7]. In this paper, we shall extend that result by
considering one of the most popular argumentation semantics proposed by Dung [6], i.e.,
grounded semantics.

The layout of the paper is as follows. Section 2 recalls the basics of [6]’s grounded
semantics and a framework for argumentation with logically structured arguments for
that semantics. Section 3 considers the strategic argumentation framework introduced in
[9] and offers a formulation of the Strategic Argumentation Problem. Section 4 outlines
Defeasible Logic and, in particular, the Ambiguity Propagating Defeasible Logic variant
that corresponds to Dung’s grounded semantics. Section 5 presents an implementation
of the strategic argumentation game with Defeasible Logic as the underlying logical
framework, and Section 6 proves the main complexity results. Some conclusions end the
paper.



2 Abstract Argumentation and Grounded Semantics

The well-known, abstract argumentation paradigm was originally proposed by Dung [6]
to study the general aspects of argumentation without specifying the internal structure of
arguments. In this perspective, an argumentation framework AF is a structure 〈A ,�〉,
where A is a non-empty set of arguments and� is a binary attack relation on A . For
any pair or arguments A and B in A , A� B means that A attacks B. If the goal is to
determine whether an argument can be accepted, this cannot be done by only choosing
between two arguments that directly conflict with each other. We need to understand how
arguments can be indirectly defended by other arguments. The corresponding literature
flourishes [5] with different formalisations among which Dung’s grounded semantics is
perhaps the most popular one.

Let us recall the basic formal concepts of abstract argumentation and the basic
features of Dung’s grounded semantics. An argument A is acceptable w.r.t. a set of
arguments S if and only if any argument defeating A is defeated by an argument
in S . The function FAF , for an argumentation framework AF = 〈A ,�〉, is defined
as FAF : 2A ⇒ 2A and FAF(S ) = {A |A is acceptable w.r.t. S ⊆ A }. A grounded
extension GE(AF) of an argumentation framework AF is the least fixed-point of FAF .
An argument A and its conclusion are justified w.r.t. an argumentation framework AF if,
and only if, A ∈ GE(AF).

As is done in [7, 14, 16], given the above framework the (internal) logical structure
of arguments can be specified in such a way that arguments are logical inference trees.

Definition 1. The language consists of literals and rules. Given a set PROP of proposi-
tional atoms, the set of literals is Lit = PROP∪{¬p | p ∈ PROP}. We denote with ∼p
the complementary of literal p; if p is a positive literal q, then ∼p is ¬q, and if p is a
negative literal ¬q, then ∼p is q.

Let Lab be a set of unique labels. A rule r with r ∈ Lab describes the relation between
a subset of Lit, called the antecedent or the premises of r and denoted by A(r) (which may
be empty) and a literal in Lit, called the consequent or head of r and denoted by C(r).
Three kind of rules are allowed: strict rules of the form r : A(r)→C(r), defeasible rules
of the form r : A(r)⇒C(r), and defeaters of the form r : A(r) C(r). An undisputed
fact is represented as a strict rule with empty antecedent.

A strict rule is a rule in the classical sense: whenever the antecedent holds, so is the
conclusion. A defeasible rule is allowed to assert its conclusion unless there is contrary
evidence to it. A defeater is a rule that cannot be used to draw any conclusion, but can
provide contrary evidence to complementary conclusions.

Definition 2. An argumentation theory D is a structure (R,>), where R is a (finite) set
of rules and >⊆ R×R is a binary relation on R called the superiority relation.

The relation > describes the relative strength of rules, that is to say, when a single rule
may override the conclusion of another rule, and is required to be irreflexive, asymmetric
and acyclic (i.e., its transitive closure is irreflexive).

By combining the rules in a theory, we can build arguments (we adjust the definition
in [14] to meet Definition 2). In what follows, for a given argument A, Conc returns its



conclusion, Sub returns all its sub-arguments, Rules returns all the rules in the argument
and, finally, TopRule returns the last inference rule in the argument.

Definition 3 (Argument). Let D = (R,>) be an argumentation theory andV∈ {→,⇒
, }. An argument A constructed from D has the form A1, . . . ,AnVr φ , where

– Ak is an argument constructed from D, for 1≤ k ≤ n, and
– r : Conc(A1), . . . ,Conc(An)V φ is a rule in R.

With regard to argument A, the following holds:

Conc(A) = φ

Sub(A) = Sub(A1), . . .Sub(An),A
TopRule(A) = r : Conc(A1), . . . ,Conc(An)V φ

Rules(A) = Rules(A1)∪·· ·∪Rules(An)∪{TopRule(A)}
Rules(A1)∪·· ·∪Rules(An) does not contain a defeater

The following example illustrates the notions just introduced.

Example 1. Given the set

R = {r1 : → a, r2 : ⇒ b, r3 : a,b⇒ c}

we have arguments:

A1 : →r1 a (strict argument)
A2 : ⇒r2 b (defeasible argument)
A3 : A1,A2⇒r3 c (defeasible argument)

Let us now consider conflicts between arguments. In grounded semantics we just
need to consider rebuttals. Hence, conflicts between contradictory argument conclusions
are resolved on the basis of preferences over arguments using a simple last-link ordering
according to which an argument A is stronger than another argument B, denoted as
A > B, if, and only if, the rule TopRule(A) is stronger than the rule TopRule(B) (i.e.
TopRule(A)> TopRule(B)).

Definition 4 (Defeats). An argument B defeats an argument A if, and only if ∃A′ ∈
Sub(A) such that Conc(B) =∼Conc(A′), and A′ 6> B.

We can now define the argumentation framework that is determined by an argumen-
tation theory.

Definition 5 (Argumentation Framework). Let D = (R,>) be an argumentation the-
ory. The argumentation framework determined by D is 〈A ,�〉 where A is the set of all
arguments constructed from D, and� is the defeat relation defined above.

Given this definition of argumentation framework, if D is an argumentation theory,
we can abuse notation somewhat and write GE(D) to denote the grounded extension of
the argumentation framework determined by D.

The following is thus a standard result that can be obtained:

Theorem 1. Given a theory D, a conclusion φ is justified by D under the grounded
semantics iff there is an argument A in GE(D) such that Conc(A) = φ .



3 Strategic Argumentation

We herein consider the strategic argumentation framework introduced in [9]. The di-
alogue games proposed in that work involves an alternating sequence of interactions
between two players, the Proponent Pr and the Opponent Op. The content of the dispute
being that Pr attempts to assess the validity of a particular claim, whereas Op attacks
Pr’s claims in order to refute such a claim. In that setting, Op has the burden of proof on
the opposite claim, and not just the duty to refute Pr’s claim.

The challenge between the parties is formalised by means of argument exchange. In
the majority of concrete instances of argumentation frameworks, arguments are defined
as chains of reasoning based on facts and rules captured in some formal language. Each
party adheres to a particular set of game rules as defined below.

The players partially share knowledge of a logical theory, which includes common
facts and rules to put forward arguments. Each participant has a private knowledge
regarding some rules of the theory. Other rules are known by both parties, but the set of
such rules may be empty. These rules along with all the facts of the theory represent the
common knowledge of both participants.

The repertoire of moves at each turn just includes either putting forward an argument,
or passing. By putting forward a private argument during a step of the game, the agent
increases the common knowledge by the rules used within the argument just played.
Essentially, the agent chooses a subset of her private knowledge which, along with the
current common knowledge, justifies her claim. On the other hand, when a player passes,
she declares her defeat and the game ends. This happens when there is no combination
of the remaining private rules which proves her claim.

We now provide the formal definition of a dialogue game. The state of the game
at turn i is denoted by a theory Di = (Ri

com,>) and by two sets Ri
Pr and Ri

Op. Ri
Com is

the set of rules known by both participants at turn i (which may be empty when i = 0),
and Ri

Pr (Ri
Op) is the private knowledge of Pr (Op) at turn i. We assume that each player

is informed about the restriction of > to the rules that she knows. We assume that the
private theories of the proponent and the opponent are conflict-free.

We now formalise the game rules which establish how the theory Di−1 and the sets
Ri−1
Pr , Ri−1

Op are modified based on the move played at turn i.
The parties start the game by choosing the content of dispute l (in our case, a literal)

to discuss about. At turn i, Pr has the burden to justify l (under the grounded semantics)
by using the current common knowledge along with a subset of Ri−1

Pr , whereas Op’s final
goal is to justify∼l (under the grounded semantics) using Ri−1

Op instead of Ri−1
Pr . We point

out that at turn i, Pr (Op) may put forward an argument whose terminal literal differs
from l (∼l).

Let R0
Com, R0

Pr and R0
Op be respectively the common knowledge, and the private

knowledge of Pr and Op at the beginning of the game, and D0 = (R0
com,>). If l is

justified by D0 then Op starts the game. Otherwise, Pr does so.
At turn i, if Pr plays Ri, then

– ∼l is justified by Di−1 under the grounded semantics;
– Ri ⊆ Ri−1

Pr ;
– Di = (Ri

Com,>);



– Ri
Pr = Ri−1

Pr \Ri, Ri
Op = Ri−1

Op , and Ri
Com = Ri−1

Com∪Ri;
– l is justified by Di under the grounded semantics.

At turn i, if Op plays Ri, then

– l is justified Di−1 under the grounded semantics;
– Ri ⊆ Ri−1

Op ;
– Di = (Ri

Com,>);
– Ri

Pr = Ri−1
Pr , Ri

Op = Ri−1
Op \Ri, and Ri

Com = Ri−1
Com∪Ri;

– ∼l is justified by Di under the grounded semantics.

The corresponding decision problem can be formulated as follows:

Strategic argumentation problem under grounded semantics

Pr’S INSTANCE FOR TURN i: Let l be the content of dispute, Ri−1
Pr be the set of

the private rules of Pr, and Di−1 be such that ∼l is justified by Di−1 under the
grounded semantics.
QUESTION: Is there a subset Ri of Ri−1

Pr such that l is justified by Di under the
grounded semantics?

Op’s instance of the problem is similar, asking for ∼l to be justified.
Later, we will show that both Pr’s and Op’s version of this problem is NP-complete.

4 Defeasible Logic

Defeasible Logic is a rule-based skeptical approach to nonmonotonic reasoning. It
is based on a logic programming-like language and is simple, efficient but flexible
formalism capable of dealing with many intuitions of non-monotonic reasoning in a
natural and meaningful way [2].

The language of Defeasible Logic consists of literals and rules. In order to avoid
notational redundancies, from now on we use the same definitions of PROP, Lit, com-
plementary literal, and the same rule types, structure and notation as already introduced
in Definition 1.

A defeasible theory D is a triple (F,R,>), where F ⊆ Lit is a set of indisputable
statements called facts, R is a (finite) set of rules, and >⊆ R×R is a superiority relation
on R as introduced in Definition 2.

The proof theory of a defeasible logic can draw two main types of conclusions. A
conclusion +d f q expresses that the literal q can be proven defeasibly, while a conclusion
−d f q expresses that a proof has established that q cannot be proven defeasibly. d f
is known as a tag. Different tags are used to characterize the conclusions of different
defeasible logics. In this paper, there are two defeasible logics of interest, characterized
by the tags ∂ and δ .

The logics are denoted by DL(∂ ) and DL(δ ). There is no room here to provide the
full inference rules for these logics; we refer the reader to [?] (where ∂ap is used instead
of δ ).



In a series of papers [10, 11] Maher investigates the relative expressiveness of
variants of Defeasible Logic. Briefly, two (defeasible) logics L1 and L2 have the same
expressiveness iff the two logics can simulate each other. A defeasible logic L2 simulates
a defeasible logic L1 if there is a polynomial time transformation T that transforms a
theory D1 of L1 to a theory D2 = T (D1) of L2 such that, for any set of additional facts
F , D1 +F and D2 +F have the same conclusions in the language of D1

1. [11] provides
polynomial time transformations from DL(∂ ) to DL(δ ) and the other way around.

Theorem 2. [11] DL(δ ) can simulate DL(∂ ), and vice versa.

5 Strategic Argumentation in DL

A defeasible logic implementation of the game introduced in Section 3 follows the same
structure, but some specifics are expressed in terms of the defeasible logic. From now on,
the content of the dispute discussed by the players will be called the critical literal, and
the arguments brought about by the players will be in the form of defeasible derivations.
We state that the players may not present arguments in parallel, that is to say, they take
turns in making their move.

The state of the game at turn i is now denoted by a defeasible theory Di = (F,Ri
com,>)

and by two sets Ri
Pr and Ri

Op. Ri
Com is the set of rules known by both participants at turn

i (which may be empty when i = 0), and Ri
Pr (Ri

Op) is the private knowledge of Pr (Op)
at turn i. We assume that each player is informed about the restriction of > to the rules
that she knows. Di is assumed to be coherent and consistent for each i, i.e., there is no
literal p such that: (i) p is at the same time defeasibly proved and refuted in Di, and (ii)
both p and ∼p are defeasibly proved in Di.

The game rules discussed in Section 3 are instantiated as follows. In place of requiring
that a literal is justified under the grounded semantics, we instead require that it can be
inferred defeasibly from the defeasible theory under the given logic.

Thus we formulate the strategic argumentation problem under a defeasible logic as
follows.
Strategic argumentation problem under DL(d f )

Pr’S INSTANCE FOR TURN i: Let l be the critical literal, Ri−1
Pr be the set of

the private rules of Pr, and Di−1 be such that either Di−1 ` −d f l if i = 1, or
Di−1 `+d f ∼l otherwise.
QUESTION: Is there a subset Ri of Ri−1

Pr such that Di `+d f l?

6 NP-Completeness Result

We are now ready to give the result of the paper, namely deciding what argument to play
in a given turn of a dialogue game under Dung’s grounded semantics is an NP-complete
problem even when the problem of deciding whether a conclusion follows from an
argument is computable in polynomial time.

Governatori et al. [9] proved that the same problem is NP-complete for DL with
ambiguity blocking, i.e., DL(∂ ).

1 D+F denotes the addition of the facts F to the facts in the defeasible theory D.



Theorem 3. [9] The strategic argumentation problem under DL(∂ ) is NP-complete.

While it is possible to define DL(∂ ) in terms of an argumentation semantics, the logic
corresponding to Dung’s grounded semantics is DL(δ ) [7]. Thus the next step is to
determine the computational complexity of the problem at hand for DL(δ ).

We cannot employ Theorem 2 directly, because it only applies to addition of facts.
However, it is shown in [?] that every strategic argumentation problem involving addition
of rules can be easily transformed into an equivalent strategic argumentation problem
only involving addition of facts. Thus we can apply Theorem 2 to show that the trans-
formed strategic argumentation problem for DL(∂ ) can be reduced to the corresponding
transformed problem for DL(δ ). The NP-completeness of the strategic argumentation
problem under DL(δ ) now follows.

Theorem 4. The strategic argumentation problem under DL(δ ) is NP-complete.

In [7] the equivalence of derivations in DL(δ ) and justified conclusions under grounded
semantics has been established.

Theorem 5. [7] Given a defeasible theory D, D `+δ l iff l is justified by D under the
grounded semantics.

We can solve the strategic argumentation problem by non-deterministically choosing
a set Ri of rules and then verifying whether the critical literal l is justified in the
argumentation framework determined by Di, or not. Further, the literals justified by the
grounded semantics are computable in polynomial time. Thus the strategic argumentation
problem is in NP.

Now, from Theorem 4 and Theorem 5 we obtain the main result of this contribution.

Theorem 6. The strategic argumentation problem under the grounded semantics is
NP-complete.

7 Conclusions

Almost all research in AI on argumentation assumes that strategic dialogues are games
of complete information, that is where the structure of the game is common knowledge
among the players (see [9] for a review of the literature). Following [13, 15], we argued
that argument games work under incomplete information: by not knowing the other
player’s knowledge, each player cannot predict neither which arguments will be attacked,
nor which counterarguments will be employed for attacking her arguments. We proved
that the problem of deciding what set of rules to play at a given move is NP-complete,
even if the problem of deciding whether a given theory (defeasibly) entails a literal can
be computed in polynomial time.
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