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During the past few years, batch service systems have attracted considerable attention due to their wide area of applications. In this
present paper, we study a special batch service polling system (the so-called Israeli queue) with priorities. Different from the
previous papers which focus on the performance analysis, we aim to investigate the strategic behavior of customers and optimal
design for the underlying queueingmodel. By considering two levels of information (observable and unobservable) provided upon
customers’ arrival, we, respectively, derive the equilibrium strategies of high-priority and low-priority customers, regarding the
joining or balking dilemma. We also present some numerical examples to reveal the impacts of several parameters on the
equilibrium strategies, together with some intuitive explanations. Finally, we formulate the revenue function of the service
provider and present the Particle Swarm Optimization algorithm to seek the optimal service prices for the high-priority and low-
priority customers to maximize the service provider’s revenue under the two levels of information.

1. Introduction

Nowadays, queueing models with batch services fre-
quently encountered in practice and studies addressing
the batch service queueing systems have been investigated
extensively owing to their wide area of applications, such
as the transportation systems, tourist services, and tele-
communication systems. So far, the literature on this topic
can be roughly divided into two categories. *e first
category is to analyse the batch service models with fixed
batch size. For example, at the airports, the airplane
departs once all seats are occupied. In tourism services,
the tour guide starts his/her work as soon as a fixed
number of travelers have been accumulated. Another
example is that, in tourist areas, sightseeing bus will start
off while the bus is full of travelers. *e second category is
to deal with the batch service models with infinite batch
size. For example, at the bus stations and metro stations,
the bus and the train can remove all present passengers.
Such batch service models can be also referred to as
stochastic clearing models.

Due to the wide range of applications on batch service
models, in this paper, we will consider a special polling
system with batch service of an unlimited size, i.e., the so-
called “Israeli queue,” which has been widely used in practice
and extensively studied in the literature. As pointed out by
Perel and Yechiali [1], Israeli queue stands for a real situation
of a physical waiting queue for buying tickets at stations and
it is a multiqueue, single-server polling system with un-
limited-size batch service; after completion of a visit at a
queue, the next queue to be served is the one whose first
customer has been waiting for the longest time. For example,
when buying ticket at a railway station, a new arriving
customer first searches for the acquaintance already standing
in the waiting line; if he/she finds one, he/she will ask for the
acquaintance to buy the tickets along with him/her. Since the
service time of a batch does not depend on its size, the
waiting time of customers is not affected by the customers
that join the queue in front of them. Actually, this setting can
be also seen in real life especially in transportation systems.
At a bus station or a metro station, there may be multiple
routes through the station. While a bus or a train visits the
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station, it can pick up all passengers going to the same
destination.*erefore, the passengers may be served prior to
the passengers who have already arrived at the station before
them, since each arriving bus goes to a specific destination,
and passengers waiting to go to different destinations have to
wait for their dedicated bus. *erefore, for the Israeli queue,
this may not be a real interjection, since the waiting time of
customers is not affected by the customers who join the
queue in front of them; nonetheless, we could come to an
agreement that the queueing phenomenon no longer follows
the first-come, first-served (FCFS) discipline and the cus-
tomers may be served prior to the customers who have
already arrived at the system before them.

However, the majority of the papers on batch service
systems are devoted to the stationary distribution and the
performance evaluation. It seems that only limited attention
has been paid to the issue of the batch service systems arising
from the customers perspective; i.e., there are few works that
consider such batch service systems from the viewpoint of
customer behavior (see, e.g., Economou and Manou [2],
Manou et al. [3], and Bountali and Economou [4, 5]).
Actually, the optimization problems related to the strategic
customer behavior in batch service polling systems could not
only provide important managerial insights, but also have a
wide range of applications in real life. *erefore, it seems
important to give a game-theoretic research to the special
batch service polling system.

Apart from the game-theoretic research to batch service
queueing systems, providing priority access is a widespread
method for improving the work efficiency; meanwhile,
designing an appropriate priority system is also an efficient
scheme for reducing congestion. *erefore, the problems of
priority queueing models are frequently encountered in
practice and they have been extensively studied due to their
wide applications in some health-care systems, production
systems, communication systems, etc. For more studies on
priority queues, we may refer the interested readers to
Drekic and Grassmann [6], Jouini and Roubos [7], Takagi
[8], Atencia [9], and the reference therein.

To this end, we incorporate customers’ joining/balking
decisions into a special batch service polling system with
priorities. Different from the classical batch service queueing
systems, the queueing phenomenon in consideration no
longer follows FCFS discipline. *erefore, we are interested
in the following research questions: Q1: How do the strategic
customers (high-priority and low-priority customers) make
their joining/balking decisions under different levels of
information (observable and unobservable cases)? Q2: How
do the system parameters affect the customers’ joining/
balking decisions? Q3: How does the revenue-maximizing
decision maker choose the optimal pricing decision to
maximize his/her revenue?

To address the research questions, we consider a special
batch service polling system with priorities, which can be
modelled as a two-class, single-server, preemptive priority
queueing model, in which the high-priority customers form an
M/M/1 queue, while the low-priority customers form the so-
called Israeli queue with at most N different groups. *e main
contribution of our study can be summarized as follows:

(1) In the existing literature, steady-state analysis of the
Israel queue has been well studied; however, only
limited attention has been paid to the issue of the
queueing service from the viewpoint of customer
behavior. Such a treatment (which ignores customer
behavior) could be sometimes unrealistic especially
when customers’ strategic behaviors affect service
system performance and system revenue. Based on
this situation, we aim to investigate the strategic
customers’ joining/balking decisions of the under-
lying Israel queue, and this has not been studied in
the open literature.

(2) Different from the classical batch service queueing
systems with homogeneous strategic customers, the
underlying special batch service polling system
adopts classification of service through setting pri-
ority due to the heterogeneity of sensitive customers.
*erefore, under the two levels of information, we
distinguish the high-priority and low-priority cus-
tomers, respectively, derive their joining/balking
strategies, and present the equilibrium rates with
respect to various system parameters by considering
different scenarios.

(3) In order to achieve optimal pricing strategies and
maximize the service provider’s revenue by dis-
tinguishing the observable and unobservable cases,
we establish a new revenue function and use the
Particle Swarm Optimization (PSO) algorithm to
search for the global numerical solution (feasible
combination of the service prices for the high-pri-
ority and low-priority customers) and show the
difference between the two informational cases.

Some interesting insights can be found from the derived
results. First, the joining rates of high-priority and low-
priority customers are monotonically decreasing in the
arriving rate of high-priority customers. *e numerical
result shows that if the arriving rate of high-priority cus-
tomers is high, the low-priority customers are inclined to
balk. Conversely, if the arriving rate of high-priority cus-
tomers is low, both of the high-priority and low-priority
customers decide to join the system. *erefore, if the service
provider wants to ensure his/her revenue, he/she should
effectively control the number of high-priority customers.
Second, the low-rate service of high-priority customers
could cause the high-priority customers to balk, which could
also reduce the waiting time of low-priority customers and
lead them to join the Israeli queue with a higher probability.
And then, as the service rate of high-priority customers
gradually increases, the high-priority customers are more
willing to join the system due to the reduction of their
waiting time, which indirectly affects the joining strategies of
low-priority customers. When the service rate of high-pri-
ority customers is large enough, the service time of high-
priority customers is quite short, and their expected waiting
time tends to be zero; that is, the waiting time of high-
priority customers has a smaller effect on the low-priority
customers, which exactly promotes the low-priority cus-
tomers to join the Israeli queue. In short, the joining
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probability of low-priority customers is sensitive to the
service rate of high-priority customers. *erefore, under a
fixed cost, determining a suitable service rate of high-priority
customers is vitally important for the service provider.

*e rest of the paper is organized as follows. A detailed
literature review on related works is given in Section 2. In
Section 3, we describe the batch service polling system with
priorities and construct the reward-cost structure. Section 4
and Section 5 are devoted to deriving the individual optimal
threshold strategies and the mixed equilibrium joining
strategies under the two informational cases (observable and
unobservable). In Section 6, we construct a revenue function
of the service provider and employ the PSO algorithm to
solve the optimization problem of service provider’s revenue
under the observable and unobservable settings. We con-
clude the paper and summarize the main findings of our
work in Section 7.

2. Literature Review

*is work is closely related to three streams of literature: the
Israeli queues, batch service queueing systems with strategic
customers, and queueing models with customer service
priorities.

Different from some batch service systems that the server
serves customers in batches of fixed size, Israeli queue is a
specific polling system with batch service of an unlimited
size. Customers arrive at the system and form groups; each
group is unrestricted in its size and served in one batch; after
one group is served, the next group to be visited is the one
whose group leader has been waiting for the longest time.
*is model was first introduced by Van derWal and Yechiali
[10], who considered a multiqueue, single-server polling
system with unlimited-size batch, and customers in the same
queue can be served together. Lately, Boxma et al. [11]
studied the batch service polling system with unrestricted
batch size and finite number of queues. Perel and Yechiali
[12] considered a batch service queueing model with infinite
number of groups and studied the M/M/c, M/M/1/N-type
queues, and a priority queueing model. Perel and Yechiali
[1, 13, 14], respectively, investigated the Israeli queue with
preemptive priorities, the Israeli queue with retrial, and the
Israeli queue with a general group-joining policy. By using
the probability generating function and matrix analytic
method, the authors provided an extensive probabilistic
analysis and derived some key performance measures. Re-
cently, Jiang et al. [15, 16], respectively, investigated the
multiserver Israeli queue with dynamic service control and
the Israeli queue operating in a multiphase random envi-
ronment on the basis of Perel and Yechiali’s studies.
Moreover, in [13], if each retrial customer in the orbit in-
dependently repeatedly tries for receiving service rather than
only the first customer in the orbit tries for receiving service,
an explicit closed-form solution for the steady-state prob-
ability distribution may be difficult to derived. *erefore,
Jiang [17] again analysed the tail asymptotics property of the
Israeli queue with retrials and nonpersistent customers on
the basis of Perel and Yechiali’s studies [13].

Our model also belongs to the class of queues with
strategic customers. *e study of queueing systems under a
game-theoretic perspective was first introduced by Naor [18]
who studied the strategic behavior of customers in M/M/1
queue, where arriving customers know the number of
customers in the system and decide whether to join or balk
based on their surplus utilities. Edelson and Hildebrand [19]
considered the strategic behavior of customers in M/M/1
queue by studying the corresponding unobservable case.
Since then, there has been considerable attention paid to the
strategic behavior of customers in queueing systems; in-
terested readers may also refer to the books of Hassin and
Haviv [20, 21], Hassin [22], recent papers Hassin and Roet-
Green [23], Ibrahim [24], and the reference therein. *e
study of strategic customers in batch service queueing
systems is a recent endeavor. For example, Economou and
Manou [2] investigated an M/M/1 clearing system in an
alternating environment, where all customers are served
together at the completion epoch of a service cycle. Manou
et al. [3] considered the strategic behavior of customers in a
transportation station, where all present passengers can be
removed together, once a vehicle reaches the station.
Bountali and Economou [4, 5] investigated the strategic
behavior of customers in queueing systems with fixed size
batch services under the unobservable, observable, and
partially observable cases. In [4, 5], the authors discussed the
impact of different levels of information and the batch size
on the joining strategies of customers and compared the
joining strategies of customers under the incomplete in-
formation level with the corresponding strategies in the
complete information level. Recently, Bountali and Econ-
omou [25] studied the strategic customer behavior in a two-
stage service system with batch processing. Wang et al. [26]
studied passengers’ joining strategies in a batch transfer
queueing system with gated policy under the full observable
case. Adan et al. [27] considered a polling system with two
queues and studied the optimal routing problem of cus-
tomers under different levels of information. Chai et al. [28]
studied a batch double-sided service system with impatient
servers and boundedly rational customers, where each server
could serve the customers with a fixed service capacity N.

*e queueing model in consideration is also closely
related to queueing models with customer service priorities.
In queueing systems with customer service priorities, high-
priority customers could skip over low-priority customers;
i.e., the high-priority customers are served prior to the low-
priority customers, which leads to a longer waiting time for
the low-priority customers whomay be already in the queue.
*erefore, queueing models with customer service priorities
can be also regarded as a special queueing system with
customer interjection. However, different from the other
queueing systems with customer interjection, providing
priority access is a widespread method for improving the
work efficiency; meanwhile, designing an appropriate pri-
ority queueing system is also an efficient method for
managing congestion. For more detailed studies on priority
queues, readers are referred to Jouini and Roubos [7], Takagi
[8], Drekic and Woolford [29], Afèche and Mendelson [30],
Gavirneni and Kulkarni [31], Wang et al. [32], and
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references therein. Moreover, the study of priority queues
from an economic viewpoint is also a recent endeavor. For
example, Drekic and Woolford [29] analysed a two-class,
single-server, preemptive priority queueing model, where
the decision to balk or not of the two types of customers
depends on the queue length. Brouns and van der Wal [33]
studied the optimal threshold strategies in a preemptive
priority queueing system with admission and termination
control. Liu and Berry [34] considered a preemptive priority
queueing model, where the authors focus their analysis on
the price competition and social welfare in an unobservable
M/G/1 queue with two types of customers. Later, Xu et al.
[35, 36], respectively, obtained the optimal balking strategies
of high-priority and low-priority customers in an M/G/1
queue with preemptive priorities. In addition, in the liter-
ature of operations management, some authors considered
the queueing systems with a pay-for-priority option. For
example, Hassin and Haviv [20] considered the equilibrium
threshold policies with preemptive priority customers.
Afèche and Mendelson [30] investigated the pricing and
priority auctions in queueing systems with a generalized
delay cost structure. Gavirneni and Kulkarni [31] studied a
self-selecting priority queue, where customers have het-
erogeneous waiting costs , and they decide whether to be-
come priority customers or regular customers or balking
customers on the basis of their different waiting costs levels.
Wang et al. [32] studied the equilibrium strategies in an M/
M/1 priority queue, in which the authors consider the
system with a pay-for-priority option, and derive the cus-
tomers’ joint decisions between joining/balking and pay-for-
priority. For more details on this topic, the interested readers
are referred to Adiri and Yechiali [37], Hassin and Haviv
[21], and Hassin [22], in which the authors give compre-
hensive reviews on the topic of pay-for-priority option.

3. Model Description

We consider a two-class, single-server, preemptive pri-
ority queueing model in which the high-priority cus-
tomers form a classical M/M/1 priority queue, while the
low-priority customers form the so-called Israeli queue
with at most N different groups. We use “he” to represent
a high-priority customer and “she” to represent a low-
priority customer for ease of exposition. We also assume
that high (low-)priority customers arrive at the system
according to a Poisson process with rate λ1(λ2). Service
time of high-priority customers is exponentially distrib-
uted with rate μ1. For the low-priority customers, cus-
tomers are served in an unlimited-size batch mode; i.e.,
the low-priority customers in a group are served together
at a service period, and the service time of a batch in-
dependent of its size is assumed to be exponentially
distributed with parameter μ2. A new arriving low-pri-
ority customer who determines to join the system will first
search for the leader of each group (the searching se-
quence follows the age-based discipline; i.e., an arriving
low-priority customer first searches for the leader of each
group who has waited for the longest time), and if she
knows a group leader, she immediately joins the group

and receives service in a batch mode along with the group
leader. We further assume that a new arriving low-priority
customer knows a group leader with probability θ. *at is,
if n, 1≤ n≤N − 1, groups exist in the Israeli queue, then an
arriving low-priority customer who decides to enter the
Israeli queue will join kth group with probability
(1 − θ)k− 1θ for 1≤ k≤ n or will create a new group and
become a group leader with probability (1 − θ)n. If N
groups are present in the Israeli queue, an arriving low-
priority customer who decides to enter the Israeli queue
will join N-th group even if she does not know any of the
existing group leaders. We further assume that the high-
priority customers have preemptive priority over the low-
priority customers, which indicates that the service for
low-priority customers may be interrupted immediately
by high-priority customers.

For the recent study of Israeli queue with priorities in [1],
the authors have obtained the stationary distribution and
performance measures; however, in the present paper, we
are interested in investigating the strategic behavior of
customers in the batch service special polling system with
priorities, where arriving customers have the option to
determine whether or not to join the system according to
their expected utilities. We further assume that they make
their decisions based on the information of the system in-
cluding the arrival rate, the service rate, the probability that a
new arriving low-priority customer knows a group leader,
and the unit waiting cost. *en, they determine whether or
not to join the system according to the natural linear reward-
cost structure U ≜ R − cE[W] (service reward ≜ service
value-waiting cost), where U is the expected utility of a
customer, R is the reward on completion of a service, c is the
average delay cost per unit of time for each customer, and
E[W] is the expected sojourn time of a customer who de-
cides to join the system. *en, an arriving customer decides
whether or not to join the system based on the value of the
expected utility U. If U≥ 0, he/she will join the system;
otherwise, he/she will balk.

In the following parts, we will investigate the strategic
behavior of high-priority and low-priority customers re-
garding their joining or balking dilemma by distinguishing
the observable and unobservable cases, i.e., the arriving
customers decide whether or not to join the system
according to the information available at their arrival
instants.

4. Analysis of the Observable Case

We first start our analysis by investigating the Israeli queue
with priorities under the observable case. In the observable
case, the customers could receive exact information about
the Israeli queue upon their arrival; i.e., they could get in-
formed about the statistical and economic parameters of the
system, the number of different groups, and the number of
high-priority customers in the system. In order to obtain the
individual optimal pure strategy, we follow the example of
Perel and Yechiali [1] to calculate the expected sojourn time
of customers. According to [1], we have the following
conclusions:
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(1) Since the high-priority customers form a classical M/
M/1 queue, the expected sojourn time of an arbitrary
high-priority customer is 1/(μ1 − λ1).

(2) Define Bm as the time of duration from the first
moment when there are m high-priority customers
in the system until the first moment that no high-
priority customers are present. We have the expected
value E[Bm] � m/μ1 − λ1.

(3) Suppose that there are no high-priority customers in
the system and there are n≥ 1 low-priority customers
groups. Let Cn be the time of duration that these n
groups are served and leave the system; then the
expected value E[Cn] � nμ1/μ2(μ1 − λ1).

(4) Assume that there are m≥ 0 high-priority customers
and n≥ 1 low-priority customers groups in the
system and let Dm,n denote the time of duration that
the service of all those n low-priority customers
groups is completed. We have the expected value
E[Dm,n] � E[Bm] + E[Cn] � 1/μ1 − λ1(m + nμ1/μ2).

4.1. +e Individual Optimal Pure Strategy of High-Priority
Customers. Next, based on the above results, we first de-
termine the unique individual optimal pure strategy of high-
priority customers. Under the observable case, since the
high-priority customers form a classicalM/M/1/n + 1 queue
(n + 1 is the threshold), it is easy to obtain the unique in-
dividual optimal pure strategy. For an arriving high-priority
customer, when he finds n high-priority customers present
in the system, he joins if U1 � R1 − c1E[Wn]≥ 0; otherwise
he balks, where E[Wn] represents the expected sojourn time
of an arriving high-priority customer who finds n high-
priority customers and decides to enter the system.

Lemma 1 (see [18]). In the observable Israeli queue with
priorities, there exists a unique individual optimal pure
strategy of high-priority customers which has the following
forms:

Case 1. If R1 < c1/μ1, then an arriving high-priority cus-
tomer always balks.

Case 2. If R1 ≥ c1/μ1, the unique individual optimal strategy
is the threshold strategy having the following form: when an
arriving high-priority customer observes that there are n
high-priority customers present in the system, he joins if
n≤ ne; otherwise, he balks, where ne(� ⌊n

∗⌋) with
n∗ � R1μ1/c1 − 1.

4.2. +e Individual Optimal Pure Strategy of Low-Priority
Customers. Let L1(t) and L2(t), respectively, denote the
number of high-priority and low-priority customers in the
system at time t. *en, X(t) � (L1(t), L2(t)), t≥ 0{ } is a
continuous-time Markov chain with state space

Ω � (m, n), m≥ 0, n � 0, 1, . . . , N{ }. For the low-priority
customers, when an arriving low-priority customer finds the
system being in state (m, n), she joins the system if
U2(m, n) � R2 − c2E[Sm,n]≥ 0; otherwise she balks, where
E[Sm,n] represents the expected sojourn time of an arriving
low-priority customer who finds the system being in state
(m, n). Next, we determine the unique individual optimal
pure strategy of low-priority customers. We first give the
following theorem to show the individual optimal pure
strategy of low-priority customers under the observable case.

Theorem 1. In the observable Israeli queue with priorities,
there exists a unique individual optimal pure strategy of low-
priority customers which has the following forms:

qem,j �
1, m≤mj

e,

0, m>mj
e,

 0≤ j≤N, (1)

where

m0
e � ⌊m

∗
0 ⌋, m

∗
0 �

R2 μ1 − λ1( )
c2

−
μ1
μ2
,

mk
e � ⌊m

∗
k ⌋, m

∗
k �

R2 μ1 − λ1( )
c2

−
μ1
μ2

1 − (1 − θ)k+1

θ
,

1≤ k≤N − 1,

mN
e � ⌊m

∗
N⌋, m

∗
N �

R2 μ1 − λ1( )
c2

−
μ1
μ2

1 − (1 − θ)N

θ
,

(2)
with mN

e � m
N− 1
e ≤mN− 2

e ≤ · · · ≤m0
e .

Proof. We first derive the expected sojourn time of an ar-
riving low-priority customer who finds the system being in
state (m, n). Based on the detailed list of results presented in
Section 4 (obtained by Perel and Yechiali in [1]), the ex-
pected sojourn time of an arriving low-priority customer has
the following forms:

E Sm,0[ ] � E Dm,1[ ] � 1

μ1 − λ1
m +

μ1
μ2

( ),
E Sm,n[ ] � ∑n− 1

k�0

(1 − θ)kθE Dm,k+1[ ] +(1 − θ)nE Dm,n+1[ ],
1≤ n≤N − 1,

E Sm,N[ ] � ∑N− 2
k�0

(1 − θ)kθE Dm,k+1[ ] +(1 − θ)N− 1E Dm,N[ ].
(3)

After some calculations, we have
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E Sm,n[ ] � 1

μ1 − λ1
m +

μ1
μ2

1 − (1 − θ)n+1

θ
( ), 0≤ n≤N − 1,

(4)

E Sm,N[ ] � 1

μ1 − λ1
m +

μ1
μ2

1 − (1 − θ)N

θ
( ). (5)

Differentiating U2(m, n) with respect to m and n, re-
spectively, we then have zU2(m, n)/zm � − c2/μ1 − λ1 < 0
and zU2(m, n)/zn � μ1c2/μ2θ(1 − θ)n+1ln(1 − θ)< 0; that is,
U2(m, n) is a decreasing function of m and n. Hence, an
arriving low-priority customer balks if U2(m, n)< 0; oth-
erwise, she prefers to join the Israeli queue. In order to
obtain the unique individual optimal pure strategy of low-
priority customers, we consider the following cases. □

Case 1. *e arriving low-priority customer finds no groups
in the Israeli queue.

(1) If U2(0, 0)< 0, i.e., R2 < μ1c2/μ2(μ1 − λ1), then, an
arriving low-priority customer always balks.

(2) If U2(0, 0)≥ 0, i.e., R2 ≥ μ1c2/μ2(μ1 − λ1), then, there
exists a unique root m∗0 , such that U2(m

∗
0 , 0) � 0.

Solving this equation, we have m∗0 � R2(μ1 −
λ1)/c2 − μ1/μ2, since U2(m, 0) is a decreasing func-
tion of m; an arriving low-priority customer deter-
mines to join the Israeli queue if and only if
m≤m0

e(� ⌊m
∗
0 ⌋).

Case 2. *e arriving low-priority customer finds
k, 1≤ k≤N − 1, groups in the Israeli queue.

(1) If U2(0, k)< 0, i.e., R2 < μ1c2(1 − (1 − θ)k+1)/μ2
θ(μ1 − λ1), then, an arriving low-priority customer
always balks.

(2) If U2(0, k)≥ 0, i.e., R2 ≥ μ1c2(1 − (1 − θ)k+1)/
μ2θ(μ1 − λ1), then, there exists a unique root m

∗
k ,

such that U2(m
∗
k , k) � 0. Solving this equation, we

have m∗k � R2(μ1 − λ1)/c2 − μ1/μ21 − (1 − θ)k+1/θ,
since U2(m, k) is a decreasing function about m; an
arriving low-priority customer determines to join the
Israeli queue if and only if m≤mk

e(� ⌊m
∗
k ⌋).

Case 3. *e arriving low-priority customer finds N groups
in the Israeli queue.

(1) If U2(0, N)< 0, i.e., R2 < μ1c2(1 − (1 − θ)N)/
μ2θ(μ1 − λ1), then, an arriving low-priority customer
always balks.

(2) If U2(0, N)≥ 0, i.e., R≥ μ1c2(1 − (1 − θ)N)/
μ2θ(μ1 − λ1), then, there exists a unique root m

∗
N ,

such that U2(m
∗
N , N) � 0. Solving this equation, we

have m∗N � R2(μ1 − λ1)/c2 − μ1/μ21 − (1 − θ)N/θ,
since U2(m,N) is a decreasing function of m; an
arriving low-priority customer determines to join the
Israeli queue if and only if m≤mN

e [� ⌊m
∗
N⌋].

According to the above analysis, we find that
mN
e � m

N− 1
e ≤mN− 2

e ≤ · · · ≤m0
e .

Remark 1
(1) If the individual optimal threshold strategy of high-

priority customers ne + 1 is greater than the indi-
vidual optimal threshold strategy of low-priority
customers m0

e , i.e., ne + 1>m0
e , then, the individual

optimal threshold strategy of low-priority customers
is the result obtained in *eorem 1.

(2) If there exists k, such that mk
e ≤ ne + 1≤mk− 1

e , then
the result in *eorem 1 should be

qem,j �
1, m≤mj

e,

0, m>mj
e,

 k≤ j≤N,

qem,j �
1, m≤ ne + 1,
0, m> ne + 1,

{ 0≤ j≤ k − 1.
(6)

(3) If ne + 1≤mN
e , then the result in *eorem 1 should

be

qem,j �
1, m≤ ne + 1,
0, m> ne + 1,

{ 0≤ j≤N. (7)

Since ne + 1 is the unique individual optimal pure
strategy of high-priority customers, i.e., the number of high-
priority customers is no more than ne + 1, we could obtain
the results of (6) and (7).

4.3. +e Stationary Distribution under the Observable Case.
In order to solve the optimization problem of subsequent
equilibrium rewards, deriving the steady-state probabilities
on the basis of the threshold strategies is quite crucial.
According to the results in Lemma 1 and *eorem 1, the
equilibrium joining strategies of both types of customers
become threshold policies in the observable case. Each
customer (either high-priority or low-priority customer)
could determine the individual optimal strategy once the
state of the system is observable. Meanwhile, it is not difficult
to find that when the high-priority customers always balk
(R1 < c1/μ1), the model degenerates into a one-dimensional
finite Markov chain, and then the underlying queueing
model reduces to anM/M/1/n queue with only low-priority
customers under a threshold policy; otherwise
(L1(t), L2(t)), t≥ 0{ } forms a nonhomogeneous finite
Quasi-Birth-and-Death (QBD) process. Considering the
variety of situations caused by the threshold policies of high-
priority and low-priority customers, taking the situations
mN
e ≥ 0 and ne >m0

e , for example, then the transition rate
diagram can be shown in Figure 1.

Next, we mainly focus on the general case with the
assumption that the high-priority customers do not balk.
According to the transition rate diagram given in Figure 1,
we refer to Latouche and Ramaswami in [38] to solve the
nonhomogeneous finite QBD with level process L2(t) and
phase process L1(t). *e generator Q0 of the underlying
queueing system has the following forms:
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Q0 �

D0 B0

C1 D1 B1

C2 D2 B2

⋱ ⋱ ⋱

CN− 1 DN− 1 BN− 1

CN DN





, (8)

where the order of each submatrix is ne + 1 by ne + 1 and all
of the block matrices can be easily obtained while the
necessary parameters are given. Next, the following theorem
indicates how to determine the steady-state probability
vector.

Theorem 2. +e stationary probability vector p can be given
by

pj � pNΦj+1, 0≤ j≤N − 1, (9)

where pN satisfies

pN ∑N
n�1

∏n
i�N

ϕi + I  ene+1 � 1,
pNϕN BN− 1 + pNDN � 0,

Φk �∏k
i�N

ϕi, 1≤ k ≤N,

ϕ1 � C1 − D0( )− 1,
ϕi � Ci − ϕi− 1Bi− 2 − Di− 1( )− 1, 2≤ i≤N.

(10)

Groups of low-priority customers

0 1

0

1

2 N – 1 N

λ2

me
N–1

me
2

me
1

me
0

ne + 1

λ2 (1 – θ) λ2 (1 – θ)2 λ2 (1 – θ)N–1

λ1

λ2 λ2 (1 – θ) λ2 (1 – θ)2 λ2 (1 – θ)N–1

λ2 λ2 (1 – θ) λ2 (1 – θ)2

λ2 λ2 (1 – θ)

λ2

λ2

λ2 (1 – θ)

λ2 (1 – θ)2

λ2 (1 – θ)N–1

μ1

μ2

In
d

iv
id

u
al

s 
o

f 
h

ig
h

-p
ri

o
ri

ty
 c

u
st

o
m

er
s

Figure 1: Transition rate diagram of the observable system.
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Proof. *is theorem can be proved by expanding
(p0, p1, . . . , pN)Q0 � 0. We may first obtain pj in terms of
pN by several iterations. *en, by normalizing the vector p,
we could determine pN. *e detailed process is not shown
here.

*e detailed recursive algorithm for calculating the
steady-state probability vectors can be summarized in
Algorithm 1. □

5. Analysis of the Unobservable Case

In this section, we will turn to the analysis of the unob-
servable case. In the unobservable case, the customers could
not receive exact information about the Israeli queue except
the statistical and economic parameters of the system upon
their arrival; i.e., they do not receive any information about
the number of different groups and the number of high-
priority customers in the system. Before analysing the
strategic behavior of customers under this case, we first

derive the steady-state probabilities of the system. We as-
sume that an arriving high-priority customer joins the
system with probability qh and an arriving low-priority
customer joins the system with probability ql. Since
(L1(t), L2(t)), t≥ 0{ } is a continuous-time Markov chain
with state space Ω � (m, n), m≥ 0, 0≤ n≤N{ }, then, by re-
ferring to the continuous-time Markov process, we can
obtain the state-transition-rate matrix as follows:

Q �

C A0 0 0 . . .

A2 A1 A0 0 . . .

0 A2 A1 A0 . . .

0 0 A2 A1 . . .

⋮ ⋮ ⋮ ⋱ ⋱




, (11)

where

C �

− λ1qh + λ2ql( ) λ2ql 0 0 . . . 0 0

μ2 a1 λ2ql(1 − θ) 0 . . . 0 0

0 μ2 a2 λ2ql(1 − θ)2 . . . 0 0

0 0 μ2 a3 . . . 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 . . . aN− 1 λ2ql(1 − θ)N− 1

0 0 0 0 . . . μ2 − λ1qh + μ2( )




, (12)

with ak � − (λ1qh + λ2ql(1 − θ)k + μ2), A0 � λ1qhI,
A2 � μ1 I, and

A1 �

− μ1 + λ1qh + λ2ql( ) λ2ql 0 0 . . . 0 0

0 b1 λ2ql(1 − θ) 0 . . . 0 0

0 0 b2 λ2ql(1 − θ)2 . . . 0 0

0 0 0 b3 . . . 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 . . . bN− 1 λ2ql(1 − θ)N− 1

0 0 0 0 . . . 0 − λ1qh + μ1( )




, (13)

with bk � − (λ1qh + λ2ql(1 − θ)k + μ1), and I is the
identity matrix of order N + 1.

In order to analyse the system effectively by matrix
analytic method, an important matrix in analysing the
process is the rate matrix R, which is the minimal non-
negative solution of

R2A2 + RA1 + A0 � 0. (14)

According to the special structure of matricesA0, A1, A2,
we know that R is an upper triangular matrix and has a
closed-form expression. *e explicit calculation of R can be
seen in [1]. We denote the steady-state probability vector of
the queueing model π � (π0, π1, . . .), where πn � (πn,0,
πn,1, . . . , πn,N), πn,i � limt⟶∞P(L1(t) � n, L2(t) � i), n≥
0, 0≤ i≤N, then, the steady-state probability vector π0 can
be obtained by solving the following linear equations:
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π0 C + RA2( ) � 0,
π0(I − R)

− 1e � 1.
(15)

and the steady-state probability vector πm, m≥ 1, can be
obtained by πm � π0R

m.

5.1. Equilibrium Strategy of High-Priority Customers.
Next, according to the obtained steady-state probability
vectors, we investigate the strategic behavior of customers
under the unobservable case. It is readily seen that the
system is stable if and only if λ1qh < μ1. However, even if
λ1 ≥ μ1, the system may be stable. So, we will analyse this
problem in two cases: λ1 < μ1 and λ1 ≥ μ1. We first derive the
joining strategies of high-priority customers by the following
lemma.

Lemma 2. In the unobservable Israeli queue with priorities
under the condition λ1 < μ1, there exists a unique equilibrium
mixed strategy qeh of high-priority customers, which has the
following forms:

qeh �

0, R1 ≤
c1
μ1
,

μ1 − c1/R1
λ1

,
c1
μ1
<R1 <

c1
μ1 − λ1

,

1, R1 ≥
c1

μ1 − λ1
.



(16)

Remark 2. For the case λ1 ≥ μ1, the analog of Lemma 2 is that
a unique equilibrium mixed strategy qeh of high-priority
customers exists, which has the following form:

qeh �

0, R1 ≤
c1
μ1
,

μ1 − c1/R1
λ1

, R1 >
c1
μ1
.


(17)

5.2. Equilibrium Strategy of Low-Priority Customers.
Next, we aim to obtain the joining strategies of low-priority
customers. For the low-priority customers, the expected
utility of a low-priority customer while all the other low-
priority customers follow the strategy ql is

Uunl qh, ql( ) � R2 − c2E Wl[ ] � R2 − c2 ∑∞
m�0

∑N

n�0
πm,nE Sm,n[ ],

(18)
where E[Wl] represents the expected sojourn time of a low-
priority customer who decides to join the system, which is a
function with regard to qh and ql. According to the equilibrium
strategies of high-priority customers, we then derive the
equilibrium strategies of low-priority customers. Next, we first
assume λ1 < μ1 and consider the following three scenarios to
investigate the equilibrium strategies of low-priority customers.

(1) Scenario 1: all of the high-priority customers balk,
i.e., qeh � 0.

(2) Scenario 2: a fraction of the high-priority customers
joins the priority queue, i.e., qeh � μ1 − c1/R1/λ1.

(3) Scenario 3: all of the high-priority customers join,
i.e., qeh � 1.

Scenario 1. All of the high-priority customers balk, i.e.,
qeh � 0. Under this scenario, the system reduces to an M/M/
1/N type Israeli queue without priorities; we then have the
following theorem.

Theorem 3. When all of the high-priority customers balk
qeh � 0, R1 ≤ c1/μ1, then, there exists a unique equilibrium
mixed strategy qel of low-priority customers, which has the
following forms:

qel �

0, R2 ≤
c2
μ2
,

qe
∗

l ,
c2
μ2
<R2 <

c2
μ2θ

−
c2(1 − θ) 1 − π0(1)( )

λ2θ
+ πN(1)(1 − θ)N( ),

1, R2 ≥
c2
μ2θ

−
c2(1 − θ) 1 − π0(1)( )

λ2θ
+ πN(1)(1 − θ)N( ),


(19)

Input: {λ1, λ2, μ1, μ2, θ, N}
Output: {π1, π2, . . . , πN}
Step 1: set ϕ1 � C1(− D0)

− 1

Step 2: for i from 2 to N, set ϕi � Ci(− ϕi− 1 Bi− 2 − Di− 1)
− 1

Step 3: for j from 1 to N, set Φj � ∏j
i�N ϕi

Step 4: solve πNϕNBN− 1 + πNDN � 0 and πN[∑N
n�1∏n

i�N ϕi + I]ene+1 � 1
Step 5: compute the steady-state probability vectors, πj � πNΦj+1 for 0≤ j≤N − 1
Step 6: output
where ene+1 in the above algorithm is a column vector of 1’s with the order ne + 1 by 1.

ALGORITHM 1: A recursive algorithm to calculate the steady-state probability vectors.
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where

πN(1) � π0
λ2
μ2

( )n(1 − θ)n(n− 1)/2, 1≤ n≤N,

π0(1) � ∑N

n�0

λ2
μ2

( )n(1 − θ)n(n− 1)/2( )− 1,
(20)

and qe
∗
l ∈ (0, 1) is the unique solution of the following

equation:

R2 −
c2
μ2θ

+
c2
μ2θ

μ2(1 − θ)

λ2ql
1 − π0 ql( )( ) + πN ql( )(1 − θ)N( ) � 0.

(21)

Proof. When all of the high-priority customers balk, i.e.,
qeh � 0, the system reduces to an M/M/1/N type Israeli queue

without priorities.
Under this scenario, the stationary distribution

πn � limt⟶∞P(L2(t) � n) is easily given by (we can also
refer to Perel and Yechiali in [12])

πn � π0
λ2ql
μ2

( )n(1 − θ)n(n− 1)/2, 1≤ n≤N,

π0 � ∑N

n�0

λ2ql
μ2

( )n(1 − θ)n(n− 1)/2( )− 1.
(22)

*en, we have the following expression of Uunl(0, ql):

Uunl 0, ql( ) � R2 − c2E Wl[ ] � R2 − c2∑N

n�0
πnE Wn[ ],

(23)
where

E W0[ ] � 1

μ2
,

E Wn[ ] � θ

μ2
+ · · · +

nθ(1 − θ)n− 1

μ2
+
(n + 1)(1 − θ)n

μ2
�
1 − (1 − θ)n+1

μ2θ
, 1≤ n≤N − 1,

E WN[ ] � θ

μ2
+ · · · +

(N − 1)θ(1 − θ)N− 2

μ2
+
(N)(1 − θ)N− 1

μ2
�
1 − (1 − θ)N

μ2θ
.

(24)

Next, we will derive the variation trend of the function
Uunl(0, ql) on ql. Define an � (λ2/μ2)

n(1 − θ)n(n− 1)/2; then
the expression of Uunl(0, ql) can be rewritten as

Uunl 0, ql( ) � R2 − c2∑
N

n�0
anE Wn( )qnl∑N

n�0
anq

n
l

. (25)

Differentiating Uunl(0, ql) with respect to ql, we have

zUunl 0, ql( )
zql

� − c2

∑N

n�0
nanE Wn( )qn− 1l( ) ∑N

n�0
anq

n
l( ) − ∑N

n�0
anE Wn( )qnl( ) ∑N

n�0
nanq

n− 1
l( )

∑N

n�0
anq

n
l( )2 . (26)

We next focus on the analysis of

A ql( ) � ∑N
n�0

nanE Wn( )qnl  ∑N
n�0

anq
n
l

  − ∑N
n�0

anE Wn( )qnl  ∑N
n�0

nanq
n
l

 , (27)
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whose sign is exactly contrary to (26) (seeWang and Sun
in [39] and Wang et al. in [40]). Expanding the terms

∑N
n�0

nanE Wn( )qnl  ∑N
n�0

anq
n
l

  and ∑N
n�0

anE Wn( )qnl  ∑N
n�0

nanq
n
l

 , (28)

into polynomial functions of ql respectively, we have

∑N
n�0

nanE Wn( )qnl  ∑N
n�0

anq
n
l

  � ∑2N
k�0

∑min(k,N)

i�max(0,k− N)

si,kq
k
l ,

∑N
n�0

anE Wn( )qnl  ∑N
n�0

nanq
n
l

  � ∑2N
k�0

∑min(k,N)

i�max(0,k− N)

di,kq
k
l ,

(29)

where si,k � iaiak− iE(Wi) and di,k � (k − i)aiak− iE(Wi). Fixing the value of k, for any feasible i, it is not difficult to
find that

si,k + sk− i,k( ) − di,k + dk− i,k( ) � aiak− i(i − (k − i)) E Wi( ) − E Wk− i( )( )≥ 0, (30)

which leads to A(ql)≥ 0; thus we have
zUunl(0, ql)/zql ≤ 0. *en, the result shows that Uunl(0, ql) is
a decreasing function of ql. Next, we consider the following
three cases to obtain the equilibrium strategies of low-pri-
ority customers under this scenario. □

Case 1. If Uunl(0, 0)≤ 0, i.e., R2 − c2/μ2θ + c2(1 − θ)/μ2θ≤ 0,
we have R2 ≤ c2/μ2; then Uunl(0, ql) is nonpositive for every
ql; the best response of an arriving low-priority customer is
balking and the unique equilibrium point is qel � 0.

Case 2. If Uunl(0, 0)> 0 and Uunl(0, 1)< 0, i.e.,
c2
μ2
<R2 <

c2
μ2θ

−
c2(1 − θ) 1 − π0(1)( )

λ2θ
+ πN(1)(1 − θ)N( ),

(31)
then, there exists a unique solution qe

∗
l that lies in (0, 1),

such thatUunl(0, q
e∗
l ) � 0. By solving the following equation:

R2 −
c2
μ2θ

+
c2
μ2θ

μ2(1 − θ)

λ2ql
1 − π0( ) + πN(1 − θ)N( ) � 0,

(32)
we could obtain the unique solution qe∗l .

Case 3. If Uunl(0, 1)≥ 0, i.e., R2 ≥ c2/μ2θ − (c2(1 − θ)(1−
π0(1))/λ2θ + πN(1)(1 − θ)N), then Uunl(0, ql) is nonnega-
tive for every ql and the best response is 1. So, joining the
Israeli queue is the unique equilibrium strategy.

Based on the above analysis, we can derive the result of
this theorem.

Next, we consider the other two scenarios that high-
priority customers join the priority queue; i.e., qeh � μ1 −
c1/R1/λ1 and q

e
h � 1. Under the two scenarios, we first give

the expression of Uunl(q
e
h, ql) by referring to the results in

Perel and Yechiali in [1]. From [1], we have

∑N
k�0

π0,k � 1 −
λ1q

e
h

μ1
. (33)

According to the two results, the expression Uunl(q
e
h, ql)

can be written as

Uunl q
e
h, ql( ) � R2 − c2E Wl[ ] � R2 − c2 ∑∞

m�0

∑N

n�0
πm,nE Sm,n[ ],

(34)

where E[Wl] � ∑∞m�0∑Nn�0πm,nE[Sm,n] is the function with
regard to qeh and ql, which can be rewritten as follows:
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∑∞
m�0

∑N
n�0

πm,nE Sm,n[ ] � ∑∞
m�0

∑N− 1
n�0

πm,nE Sm,n[ ] + ∑∞
m�0

πm,NE Sm,N[ ]

� ∑∞
m�0

∑N− 1
n�0

πm,n
1

μ1 − λ1q
e
h

m +
μ1
μ2

1 − (1 − θ)n+1

θ
( ) + ∑∞

m�0

πm,N
1

μ1 − λ1q
e
h

m +
μ1
μ2

1 − (1 − θ)N

θ
( )

�
1

μ1 − λ1q
e
h

∑∞
m�0

mπm,· +
μ1
μ2θ

∑N− 1
n�0

π·,n 1 − (1 − θ)n+1[ ] + μ1
μ2θ

π·,N 1 − (1 − θ)N[ ] 

�
1

μ1 − λ1q
e
h

λ1q
e
h

μ1 − λ1q
e
h

+
μ1
μ2θ

∑N− 1
n�0

π·,n 1 − (1 − θ)n+1[ ] + μ1
μ2θ

π·,N 1 − (1 − θ)N[ ] 

�
1

μ1 − λ1q
e
h

λ1q
e
h

μ1 − λ1q
e
h

+
μ1
μ2θ

−
μ1

λ2qlθ
(1 − θ) 1 −

λ1q
e
h

μ1
− π0,0( ) − μ1

μ2θ
π·,N(1 − θ)N( ).

(35)

πm,·, � ∑Nn�0πm,n , m≥ 0, π·,n � ∑∞m�0πm,n, 0≤ n≤N, and
π0,0 and π·,N are the functions with regard to ql. Due to the
complexity of the expression E[Wl], it is difficult to derive
the variation trend of the function E[Wl] on ql as q

e
h �

μ1 − c1/R1/λ1 and q
e
h � 1. Due to the lack of analytic results

on the monotonicity, we may use the numerical results to
show the monotonicity of E[Wl] on ql. To this end, we use a
numerical example to show themonotonicity of the function
E[Wl] on ql. We assume that λ1 � 2, λ2 � 5, μ1 � 3, μ2 � 4,
θ � 0.2, N � 10, R2 � 4, and c2 � 1.

According to Figure 2, we find that while
qeh � μ1 − c1/R1/λ1 and qeh � 1, E[Wl] is an increasing
function of ql. Intuitively, higher arrival rate λ2ql leads to
more low-priority customers staying in the system, which
will necessarily increase the sojourn time of low-priority
customers. SinceUunl(q

e
h, ql) � R2 − c2E[Wl], we obtain that

Uunl(q
e
h, ql) is a decreasing function of ql. In order to derive

the equilibriummixed strategy of low-priority customers, we
next consider the other two scenarios.

Scenario 2. A fraction of the high-priority customers joins
the priority queue; i.e., qeh � μ1 − c1/R1/λ1. Under this sce-
nario, we have the following theorem.

Theorem 4. A fraction of the high-priority customers joins
the priority queue qeh � μ1 − c1/R1/λ1; if c1/μ1
<R1 < c1/μ1 − λ1, then there exists a unique equilibrium
mixed strategy qel of low-priority customers, which has the
following forms:

qel �

0, R2 ≤ c2E Wl[ ] qeh, 0( ),
qe
∗

l , c2E Wl[ ] qeh, 0( )<R2 < c2E Wl[ ] qeh, 1( ),
1, R2 ≥ c2E Wl[ ] qeh, 0( ),

 (36)

where E[Wl](q
e
h, 0) � lim

ql⟶0
E[Wl](q

e
h, ql) and q

e∗
l ∈ (0, 1) is

the unique solution of the following equation:

Uunl q
e
h, q

e∗

l( ) � R2 − c2E Wl[ ] qeh, qe∗l( ) � 0,
E Wl[ ] qeh, ql( ) � 1

μ1 − λ1q
e
h

λ1q
e
h

μ1 − λ1q
e
h

+
μ1
μ2θ

−
μ1

λ2qlθ
(1 − θ) 1 −

λ1q
e
h

μ1
− π0,0 ql( )( ) − μ1

μ2θ
π·,N ql( )(1 − θ)N( ). (37)

Proof. In this scenario, we consider the following three
cases. □

Case 1. Uunl(q
e
h, 0)≤ 0; i.e., R2 − c2E[Wl](q

e
h, 0)≤ 0; then

Uunl(q
e
h, ql) is nonpositive for every ql; the best response of

an arriving low-priority customer is balking and the unique
equilibrium point is qel � 0.

Case 2. Uunl(q
e
h, 0)> 0 and Uunl(qeh, 1)< 0; i.e.,

c2E[Wl](q
e
h, 0)<R2 < c2E[Wl](q

e
h, 1); then, there exists a

unique solution qe
∗
l that lies in (0, 1), such that

Uunl(q
e
h, q

e∗
l ) � 0. By solving the following equation:

Uunl q
e
h, q

e∗

l( ) � R2 − c2E Wl[ ] qeh, qe∗l( ) � 0, (38)
we could obtain the unique solution qe∗l .

Case 3. Uunl(q
e
h, 1)≥ 0; i.e., R2 ≥ c2E[Wl](q

e
h, 1); then Uunl

(qeh, ql)is nonnegative for every ql; i.e., the best response is 1.
So, joining the Israeli queue is the unique equilibrium strategy.
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Scenario 3. All of the high-priority customers join the
priority queue, i.e., qeh � 1.

*e analysis of this scenario is similar to that of Scenario
2, and we will show the results directly in the following
theorem.

Theorem 5. All of the high-priority customers join the pri-
ority queue qeh � 1; if R1 ≥ c1/μ1 − λ1, then there exists a
unique equilibrium mixed strategy qel of low-priority cus-
tomers, which has the following forms:

qel �

0, R2 ≤ c2E Wl[ ](1, 0),
qe
∗

l , c2E Wl[ ](1, 0)<R2 < c2E Wl[ ](1, 1),
1, R2 ≥ c2E Wl[ ](1, 1),

 (39)

where E[Wl](1, 0) � limql⟶ 0E[Wl](1, ql) and q
e∗
l ∈ (0, 1)

is the unique solution of the following equation:

Uunl 1, q
e∗

l( ) � R2 − c2E Wl[ ] 1, qe∗l( ) � 0,
E Wl[ ] 1, ql( ) � 1

μ1 − λ1

λ1
μ1 − λ1

+
μ1
μ2θ

−
μ1

λ2qlθ
(1 − θ) 1 −

λ1
μ1
− π0,0 ql( )( ) − μ1

μ2θ
π
•,N ql( )(1 − θ)N( ). (40)

Remark 3. For the case λ1 > μ1, we can obtain the same
results as in *eorem 2 and similar results as in *eorem 3;
the difference of the results between *eorem 3 and the
underlying case is that, under the case λ1 > μ1, the condition
of*eorem 3 “a fraction of high-priority customers joins the
priority queue qeh � μ1 − c1/R1/λ1 if c1/μ1 <R1 < c1/μ1 − λ1”
should be replaced by “a fraction of high-priority customers
joins the priority queue qeh � μ1 − c1/R1/λ1 if R1 > c1/μ1”
without changing the conclusion.

5.3. Sensitivity Analysis. In this subsection, we illustrate
some numerical results to study the impact of different
parameters on the equilibrium joining probabilities of both
types of customers. Without loss of generality, we assume
that λ1 � 3, λ2 � 10, μ1 � 5, μ2 � 1, R1 � 10, R2 � 10, c1 � 5,
c2 � 1, θ � 0.2, N � 4 and conduct the sensitivity analysis by
setting a series of values of the target parameters. *e exact
numerical results are presented in Figure 3.

According to the model assumption, high-priority
customers have a preemptive priority than low-priority
customers; then, with the change of the parameters related
to low-priority customers, there are no impacts on the
strategies of high-priority customers, and the exact results
are confirmed in Figures 3(b), 3(d)–3(f ). In Figure 3(a), we
could easily find that both of qeh and q

e
l are monotonically

decreasing in the parameter λ1; the difference is that q
e
l

decreases faster than qeh, which can be attributed to the
preemptive priority of high-priority customers. *e ob-
servations also reveal that, for low values of λ1, both of the
high-priority and low-priority customers have an incen-
tive to join the system because of a shorter waiting time.
For high values of λ1, the system becomes congested; since
the high-priority customers have preemptive priority than
the low-priority customers, it is plausible that the waiting
time of low-priority customers is significantly longer than
the high-priority customers, and then the low-priority
customers are more willing to balk than the high-priority
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Figure 2: E[Wl] versus ql of different cases for different values q
e
h. (a) E[Wl] vs. ql(q

e
h � 0.5). (b) E[Wl] vs. ql(q

e
h � 1).
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customers. In addition, Figures 3(b) and 3(d) vividly
demonstrate the relationship between the equilibrium
joining probability of low-priority customers and their
potential arrival rate as well as the corresponding service
rate. Figure 3(c) illustrates the following facts: (1) for very

low values of μ1, q
e
l is equal to one, and q

e
h has a low value.

(2) For intermediate values of μ1, q
e
l is equal to zero, and q

e
h

gradually increases with the increase of μ1. (3) For very
high values of μ1, both of q

e
h and q

e
l are equal to one. In

short, qel is not a monotonous function of μ1, and q
e
h is an
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Figure 3: qeh and q
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l versus different parameters. (a) q
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increasing function of μ1. *e interesting results are
clearly related to the waiting time of joining customers.
*e low-rate service of high-priority customers causes the
high-priority customers to balk, which could reduce the
waiting time of low-priority customers and lead the low-
priority customers to join the system with a higher
probability. And then, as the service rate of high-priority
customers gradually increases, the high-priority cus-
tomers are more willing to join the system due to the
reduction of the waiting time, which indirectly affects the
joining strategies of low-priority customers. When the
service rate of high-priority customers is large enough, the
service time of high-priority customers is quite short, and
their expected waiting time tends to be zero; that is, the
waiting time of high-priority customers has a smaller
effect on the low-priority customers, which exactly pro-
motes the low-priority customers to join the system. From
Figure 3(e), it is shown that as θ increases, an arriving low-
priority customer knows a group leader with a higher
probability, and it is more likely to join the group which
locates in front of the Israeli queue. So, based on this, there
are fewer groups in the system, which also leads to the
reduction of the low-priority customers’ waiting time and
the increase of qel . Figure 3(f ) actually indicates that, with
the increase ofN, the low-priority customers may queue at
the back of the Israeli queue, which may increase the
expected waiting time of low-priority customers (since
more groups exist in the system); at the same time, the
low-priority customers are more reluctant to join the
system.

6. Optimal Pricing Strategy

In service systems, it is evident that customers are usually
heterogeneous in many aspects, such as the evaluation of
delay and the waiting cost. Due to the heterogeneity of
delay-sensitive customers, the service provider often
adopts classification of service through setting priority.
However, the classification of service with uniform price
will produce the difference of waiting time and service
value, which may cause the unfairness psychology for the
low-priority customers with longer waiting time. Hence,
the service provider needs to adopt the differential pricing
so as to eliminate low-priority customers unfairness
psychology, where high-priority customers expect to be
served as soon as possible and need to pay a high price to
save their time in queueing and waiting. Under the
specific application background, we will analyse the op-
timal pricing strategy for both of the high-priority and
low-priority customers, so that we could give some
management suggestions for the special batch service
polling system with priorities. Next, in this section, on the
basis of a new assumption that the service provider can set
the prices for the two kinds of service, we will deal with the
service provider’s revenue maximization problem. Hence,
the linear utility function of high-priority customers (low-
priority customers) U1 � R1 − c1E[Wh] (U2 � R2−
c2E[Wl]) should be converted to U1 � R1 − ph − c1E[Wh]

(U2 � R2 − pl − c2E[Wl]), where ph and pl are the setting

prices for the high-priority and low-priority service, re-
spectively. *at is to say, the symbols R1 and R2 in the
previous sections should be replaced by R1 − ph and
R2 − pl. In order to maximize the service provider’s
revenue (denoted by Π) in our model, the most common
way for the revenue-maximizing service provider is to
adjust the prices for both types of services. Owing to the
preemptive priority of high-priority customers, setting ph
will affect not only the arrival rate of high-priority cus-
tomers, but also the arrival rate of low-priority customers,
and setting pl only affects the low-priority customers’
joining decisions. So, the decision problem can be for-
mulated as

max
ph ,pl( )
Π � λeh ph( )ph + λel pl, ph( )pl, (41)

where λeh and λel are the actual arrival rates. It should be
noted that either λeh or λ

e
l has different representations in the

observable and unobservable cases. In the observable case,
the two types of customers adopt each equilibrium threshold
strategy; i.e., λeh and λel are the effective arrival rates.
However, in the unobservable case, both of the high-priority
and low-priority customers access the system with each
equilibrium joining probability, i.e., λeh � λ1q

e
h and λ

e
l � λ2q

e
l .

Due to the monotonicity of low-priority customers’ utility
function, we apply dichotomy method to obtain qel when
there exists an intersection between the utility function and
x-axis. Meanwhile, qeh could be obtained in accordance with
Lemma 2 and Remark 2.

However, in most cases, due to the computational
complexity, it is quite difficult to obtain the explicit ex-
pressions of the effective arrival rates with respect to the
corresponding prices. Hence, we aim to search for the
numerical optimal solution (p∗h , p

∗
l ) of

max(ph ,pl)Π � λeh(ph)ph + λel (pl, ph)pl through PSO algo-
rithm which will be introduced briefly.

6.1. Particle Swarm Optimization Algorithm. PSO algorithm
was firstly presented by Kennedy and Eberhart in [41], which
is devoted to solving some continuous nonlinear optimi-
zation problems. *e algorithm is exempt from the analy-
ticity of the objective function; it does not use the gradient of
the optimization problem; that is to say, unlike the classical
gradient descent method and quasi-Newton method, PSO
algorithm does not require that the optimization problem is
differentiable. Due to its simplicity and convenience, this
algorithm is frequently applied to search for the global
optimal solution. Certainly, PSO is undoubtedly applicable
to this two-dimensional optimization problem
max(ph ,pl)Π � λeh(ph)ph + λel (pl, ph)pl. To seek the optimal
price combination (p∗h , p

∗
l ), the procedure of applying PSO

algorithm to this two-dimensional optimization problem is
presented as follows: (Algorithm 2)

6.2. Optimal Pricing in the Observable Case. *rough Al-
gorithm 1, we can obtain the steady-state probability vectors,
and the optimization problem can be formulated as
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max
ph ,pl( )
Π � λ1 ph( )ph + λ2 pl, ph( )pl, (42)

where λ1(ph) � λ1(1 − πne+1,·) and λ2(pl, ph) is an effective
arrival rate with a complex expression while high-priority
customers do not take the balk strategy.

Similarly, PSO algorithm can be also applied to solve the
optimization problem (see, e.g., Wang et al. [42], Zhang et al.
[43], and Yang et al. [44]). To keep with the above analysis,
we consider a numerical example under the observable case
with the assumption that λ1 � 4, λ2 � 10, R1 � 10, R2 � 10,
c1 � 5, c2 � 1, θ � 0.2, N � 4 and illustrate how the param-
eters μ1 and μ2 affect the optimal revenue of the service
provider in Table 1, where μ1 changes from 5 to 10 and μ2
changes from 1 to 6.

*e present results in Table 1 are intuitive and
straightforward. As μ1 or μ2 is fixed, the optimal value of the
service provider’s revenue increases with the increase of μ1
or μ2. *is phenomenon is consistent with the reality; the
faster the service is delivered, the more willing the customers
are to join the system, which leads to the increasing
monotonicity of service provider’s revenue.

6.3. Optimal Pricing in the Unobservable Case. We have seen
that, for any given price combination (ph, pl), there exist the
equilibrium joining strategies for both types of customers in
the unobservable case. *e equilibrium joining probability
of high-priority customers can be obtained from the results
in Lemma 2 and Remark 2, and the equilibrium joining
probability of low-priority customers can only be calculated
through numerical algorithm. Hence, we next use PSO al-
gorithm to obtain the numerical results. We first show a
numerical example with parameters

λ1 � 4, λ2 � 10, μ1 � 5, μ2 � 1, R1 � 10, R2 � 10, c1 � 5,
c2 � 1, θ � 0.2, N � 4; then, the revenue function has a
maximum value, with the optimal price combination and the
corresponding maximum revenue (p∗h , p

∗
l ,Π∗ ) �

(8.92, 6.79, 71.39). *e result reveals that high-priority
service price should be greater than low-priority service
price; it is reasonable that the difference in waiting time

between high-priority and low-priority customers will cause
the sense of injustice to the low-priority customers; there-
fore, the service provider should set a higher price for the
high-priority customers to ease the low-priority customers’
sense of injustice.

Moreover, under the two levels of information (ob-
servable and unobservable), we also find that, for the same
parameters, the optimal revenue of the unobservable case is
much greater than the one of the observable case; i.e., there is
a big gap between the two cases. For this interesting phe-
nomenon, there may be several reasons for explaining this.
*e setting parameters could lead to a high service intensity
of high-priority customers; thus the system is prone to
congestion of high-priority customers. In addition, the ar-
rival rate of high-priority customers is greater than the
service rate of low-priority customers, which could also
increase the possibility of low-priority customers being
preempted. So, based on the same parameters λ1 � 4, λ2 �
10, μ1 � 5, μ2 � 1, R1 � 10, R2 � 10, c1 � 5, c2 � 1, θ � 0.2,
N � 4, for the unobservable case, low-priority customers
always join the system with a certain probability, while, for
the observable case, the low-priority customers will join the
system with pure strategy only when a few of high-priority
customers exist in the system. *us, in an extremely un-
favorable situation for low-priority customers, it is more
likely to cause the loss of low-priority customers in the
observable case. Finally, based on the above intuitive
analysis, when there is service intensity of high-priority
customers, the potential arrival rate of low-priority and
high-priority customers is large, such as the case

λ1 � 4, λ2 � 10, μ1 � 5, μ2 � 1, R1 � 10, R2 � 10, c1 � 5,
c2 � 1, θ � 0.2, N � 4; the optimal revenue of the unob-
servable case is greater than the one of the observable case.

In order to verify the accuracy of PSO algorithm, Figure 4
shows the service provider’s revenue versus the prices ph and
pl. Besides, in order to intuitively illustrate the accuracy and
rapidity of PSO method, we give the graph of PSO iteration
process. From Figure 5, we can observe that, by using PSO
algorithm, it just takes 10 iterations to reach an accurate result,
which exactly implies the superiority of the PSO algorithm.

Input: {R1, λ1, c1, μ1, R2, λ2, c2, μ2, N}
Out: (p∗h , p

∗
l )

Set the number of particles n, the range of (ph, pl), and maximum number of iterations.
Generate the number of particles n randomly, denoted by X1, X2, . . . , Xn{ }, where Xi � (ph(i), pl(i)).
while the number of iterations< the maximum number of iterations do
Calculate the fitness value (the profit of service provider) of each particle.
Update the coordinates of the local optimal value {Pbest1, Pbest2, ... Pbestn} and the coordinates of the global optimal value Gbest.
Update the coordinates of each particle by the following formulas:
vki � v

k− 1
i + a1 ∗ rand∗ (Pbestki − Xk− 1

i ) + a2 ∗ rand∗ (Gbestki − Xk− 1
i ).

Xk
i � X

k− 1
i + vki

where k stands for kth iteration, i represents ith particle, a1 and a2 are acceleration constants, and $rand$ is a random variable in the
range of [0, 1].

ALGORITHM 2: Solve the optimization problem max(ph ,pl)Π � λe1(ph)ph + λe2(pl, ph)pl by PSO.
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Table 1: *e optimal revenue of service provider versus μ1 and μ2.

μ 2 /μ 1 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

1 25.81 27.91 30.16 43.09 52.64 59.92 65.69 70.45 74.02 76.49 79.13
1.5 28.26 41.74 57.52 68.09 74.57 80.89 85.03 88.91 91.35 93.93 95.75
2 39.72 60.17 72.38 80.92 86.82 91.71 95.13 97.81 100.61 101.66 103.98
2.5 50.61 70.67 81.46 88.54 93.65 97.93 101.36 103.62 105.71 106.96 109.05
3 60.45 77.88 87.3 93.75 98.6 102.19 105 106.93 109.24 110.85 112.06
3.5 67.23 82.95 91.43 97.09 101.81 105.4 107.61 109.84 110.66 113.32 114.84
4 73.02 86.89 94.5 99.47 104.27 107.43 109.99 111.58 113.83 115.15 116.29
4.5 76.9 90.21 97.19 101.87 106.12 109.02 111.26 113 115.31 116.22 117.96
5 79.97 92.66 99.03 103.85 107.81 110.19 112.54 114.89 115.98 117.73 119.09
5.5 83.09 94.25 100.28 105.43 109.07 111.77 113.91 115.31 117.32 118.68 119.43
6 84.64 95.98 101.67 106.35 109.75 112.64 114.77 116.8 117.96 119.23 120.51
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7. Conclusions and Future Research

In this study, we considered a special batch service
polling system with priorities and investigated the
strategic behavior of high-priority and low-priority
customers, regarding the joining or balking dilemma,
under the two levels of information. We first derived the
equilibrium joining strategies of both types of customers,
and then we illustrated some numerical results to study
the impact of different parameters on the equilibrium
probabilities of both types of customers. Based on the
customer equilibrium analysis, we further analysed the
service provider’s pricing decisions by employing the
PSO algorithm to search for the maximum point of
service provider’s revenue and showed the optimal price
combination for the high-priority and low-priority
services under the observable and unobservable cases.
We hope that the derived results could bring some
management implications to the service provider and
expect that the results can be applied to more practical
queueing systems.

Apart from the results derived by the present paper, a lot
of interesting directions on this topic have not been fully
investigated. *erefore, it would be interesting to consider
further extensions of the present queueing model. One
direction is that the batch service size is a fixed value rather
than an unlimited size. *en, we could investigate the in-
fluences of the different levels of information and the fixed
batch size on the strategic behavior of customers and the
service provider’s pricing decisions; meanwhile, we could
discuss the optimal admission control problem, i.e., how to
set the optimal batch size of each group so as tomaximize the
service provider’s revenue.

Another interesting direction for future research is that
the strategic customers exhibit bounded rationality rather
than full rationality and study the impact of bounded ra-
tionality from a profit-maximizing service provider’s per-
spective under different levels of information. We think that
it would be an interesting and important direction for future
research.
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