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Dynamic pricing offers the potential to increase revenues. At the same time, it creates an incentive for
customers to strategize over the timing of their purchases. A firm should ideally account for this behavior

when making its pricing and stocking decisions. In particular, we investigate whether it is optimal for a firm
to create rationing risk by deliberately understocking products. Then, the resulting threat of shortages creates
an incentive for customers to purchase early at higher prices. But when does such a strategy make sense?
If it is profitable to create shortages, what is the optimal amount of rationing risk to create? We develop a
stylized model to study this problem. In our model, customers have heterogeneous valuations for the firm’s
product and face declining prices over two periods. Customers are assumed to have identical risk preferences
and know the price path and fill rate in each period. Via its capacity choice, the firm is able to control the fill
rate and, hence, the rationing risk faced by customers. Customers behave strategically and weigh the payoff of
immediate purchases against the expected payoff of delaying their purchases. We analyze the capacity choice
that maximizes the firm’s profits. First, we consider a monopoly market and characterize conditions under
which rationing is optimal. We examine how the optimal amount of rationing is affected by the magnitude of
price changes over time and the degree of risk aversion among customers. We then analyze an oligopoly version
of the model and show that competition reduces the firms’ ability to profit from rationing. Indeed, there exists
a critical number of firms beyond which a rationing equilibrium cannot be supported.
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1. Introduction
Varying prices over time is a natural way for firms to
increase revenue in response to uncertain and fluctu-
ating market conditions. Apparel retailing is a canoni-
cal example. Demand for apparel is affected by factors
such as weather, fashion trends, and economic condi-
tions, all of which are highly uncertain; hence, fore-
casting demand is inherently difficult. Moreover, lead
times for design, production, and distribution are nor-
mally longer than the selling season, so retailers must
commit to their order quantities in advance of observ-
ing sales. As a result, they often end up with some
popular products which sell out fast, whereas other
unpopular products languish. In response, retailers
dynamically change prices—maintaining full prices
for their best-selling items while marking down slow
sellers over time.
Although most retailers still make such pricing

decisions manually, many are now deploying sophis-
ticated modeling and optimization software to help
support pricing decisions. (See Talluri and van Ryzin

2004, Chap. 5.) Such systems have proved quite effec-
tive; Ann Taylor, a U.S. women’s apparel retailer with
over 580 stores nationwide, reported a year-on-year
increase in sales by 26% over the Christmas period
of 2003 after it implemented markdown optimiza-
tion software. Success stories like this have led to
increased acceptance of model-based approaches to
pricing among major retailers.
At its core, any dynamic pricing system is based on

a model of demand; that is, a model of how demand
responds to price changes. A typical one is to for-
mulate demand at each point in time as only a func-
tion of the price charged at that time, the implicit
assumption being that customers do not anticipate
future prices; that is, they are myopic and buy if the
current price is less than their reservation price. This
model is pervasive; most commercial pricing software
uses it, and it is common in the research literature
too. For example, see Gallego and van Ryzin (1994),
Feng and Gallego (1995), Federgruen and Heching
(1999), and Chen and Simchi-Levi (2003). The myopic

1115



Liu and van Ryzin: Strategic Capacity Rationing to Induce Early Purchases
1116 Management Science 54(6), pp. 1115–1131, © 2008 INFORMS

customer assumption is reasonable when customers
make impulse purchases and for consumable goods
(food, beverages, etc.). In addition, it has the consider-
able practical advantage of leading to mathematically
tractable models.
Yet it is arguably more realistic to model customers

as behaving strategically. Faced with dynamic prices,
customers may benefit from strategizing over the tim-
ing of their purchases. This is especially true in the
case of durable goods—goods that customers buy once
(or more realistically, infrequently) and use over an
extended period of time. When purchasing durable
goods, customers are more patient and may acceler-
ate or postpone purchasing to obtain a lower price.
In his classic work, Coase (1972) gives real estate as
an example of a durable good; Bulow (1982) gives
the example of diamonds. Even without such extreme
cases of durability, goods with a finite life can also be
categorized as “durable” provided they are purchased
only infrequently. Many important retail categories—
apparel, sporting goods, customer electronics and
appliances—can be considered durable goods in this
sense. Bulow (1982) calls these intermediate durable
goods.
Retailers certainly recognize the fact that customers

often act strategically when purchasing such goods.
Executives at Federated Department Stores, America’s
largest operator of department stores, have lamented
to us that the department store industry’s habit of
running frequent promotional sales has “trained our
customers to only buy on sale.” Such behavior is evi-
dent in aggregate data too; for example, at Wal-Mart,
the world’s largest retailer, holiday season sales—
including after-Thanksgiving and post-Christmas sea-
son sales events—account for close to 20% of total
annual sales (Rozhon 2005).
Some retailers have adopted strategies specifically

aimed at thwarting such strategic behavior. For exam-
ple, Zara, one of the largest Spanish apparel retail-
ers, is known for deliberately setting low stock levels
for its products to encourage customers to buy when
they first see products they like, rather than waiting
for sales (Ferdows et al. 2005). Industry analysts esti-
mate that unsold products at Zara represent less than
10% of stock, compared with the industry average
of almost 20% as a result of this strategy (Ferdows
et al. 2005).
Academic researchers too have investigated the

mistakes that can occur if firms incorrectly model
strategic customers as myopic. Aviv and Pazgal (2008)
report extensive numerical examples showing rev-
enue losses of up to 20% by ignoring strategic behav-
ior. Besanko and Winston (1990) assess that the
lost profit from ignoring customer strategic behavior
could skyrocket to 60%.

1.1. Market and Behaviorial Assumptions
For all of these reasons, understanding strategic cus-
tomer behavior and its impact on pricing and quantity
decisions is important. Yet there are a wide variety
of assumptions one can make in modeling customer
strategic behavior, each of which has important the-
oretical and practical implications. Here we review
these assumptions in detail and relate them to the
body of research on dynamic pricing in the presence
of strategic customers. We also position our work rel-
ative to these assumptions and literature.

1.1.1. Commitment to Prices. One important issue
is whether a seller commits to its price schedule
or whether a subgame perfect equilibrium (SPE) is
a more plausible assumption. The earliest work on
this issue dates back to the classic work of Coase
(1972), who considered a monopolist selling a durable
good over time. Coase argued such a monopolist can-
not implement a price-skimming strategy when cus-
tomers rationally anticipate lower future prices and
are willing to wait. In fact, with the possibility of con-
tinuous price adjustments, he showed that the only
SPE price the monopolist can sustain is a uniform
price equal to marginal cost. Discount factors play
a significant role in the Coase outcome; if the firm
is more patient than customers, it may be able to
sustain price discrimination (c.f. von der Fehr and
Kühn 1995).
Besanko and Winston (1990) show there exist SPE

prices that decline over time when both the firm
and customers discount utility over time; high-value
customers buy early at higher prices whereas low-
value customers delay their purchases to obtain lower
prices. They show that the SPE price in each period
is less than the single-period profit-maximizing price
and the seller is worse-off as the number of peri-
ods increases. Both results show that the SPE out-
come hurts the seller. Other papers that assume
dynamic pricing strategies must follow SPE solu-
tions include Cachon and Swinney (2007), Denicolò
and Garella (1999), Koenigsberg et al. (2008), Gallien
(2006), Elmaghraby et al. (2008), and Su (2007). Aviv
and Pazgal (2008) consider two types of pricing strate-
gies including an inventory-contingent markdown
policy and preannounced fixed-discount policy. They
found that the fixed-discount policy, in general, out-
performs contingent pricing under strategic customer
purchasing behavior. Similarly, Dasu and Tong (2006)
study both contingent pricing and posted pricing
schemes, but their focus is on posted pricing. Their
extensive numerical study shows that the posted pric-
ing scheme with a small number of price changes
is nearly optimal. But the opposite phenomenon is
observed by Cachon and Swinney (2007); they find
that dynamic pricing outperforms a fixed price path
in most cases. One reason in their case is that the firm
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does not mark down the price in the static pricing
setting of their model. To induce strategic customers
to purchase in the full price period, the firm has to
forgo the benefits of salvaging inventory.
Although SPE behavior is often an appropriate

assumption, when a firm has repeated interactions
with its customers SPE predictions may be overly pes-
simistic. Although a firm may have an incentive to
deviate from its announced decisions over time, it
suffers in the long run because customers will then
resort to the SPE and the resulting future losses could
well outweigh any short-term gains. Aviv and Pazgal
(2008) show numerically that price commitment can
increase expected revenues up to 8.32%. With such
significant long-term gains at stake, a firm may be
able to credibly commit to its decisions as a con-
sequence of the folk theorem of infinitely repeated
games (see, for example, Osborne and Rubinstein
1995). To sustain such credible commitment, however,
requires an infinite time horizon and sufficiently low
discount rates.
At a more basic level, prices may simply be

“sticky,” and this may prevent ex post price adjust-
ments. Blinder et al. (1998) discuss twelve theo-
ries about why prices in many industries are sticky.
Among them they note that implicit contracts (both
a firm and customers know that the firm will not
unilaterally change prices) are an important source
of price commitment that is especially relevant with
repeat customers. In addition, many sellers commit to
prices simply because of advertising constraints or to
simplify administration of prices. For example, Broad-
way theaters sell discounted tickets on the day of
performance through TKTS outlets, where their “half-
price tickets” policy is central to the concept. Filene’s
Basement has made a tradition of having automatic
markdowns, in which products are marked down
based on a preset schedule that begins with 25% off
and drops to 75% off after four weeks. Standby airline
fares at fixed discounts off full fares are yet another
example of such price commitments.
We assume that the selling firm commits to prices

and quantities. The assumption is reasonable in many
retail settings because of the repeated interaction
argument given above; most stores sell products year
after year, season after season and are therefore sen-
sitive to future profits and the long-term impact of
their pricing policies. We provide formal conditions
under which the firm’s commitment to prices is cred-
ible when the firm sells products repeatedly over
an infinite horizon in Online Appendix B (provided
in the e-companion).1 In situations where price and

1 An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.

quantity commitment is not a reasonable assumption,
our results are, of course, less relevant.
Recently, Yin et al. (2007) and Elmaghraby et al.

(2008) also considered the case of a prefixed mark-
down price path. However, the focus of the former
paper is how a firm uses different in-store display for-
mats (display all units or display one unit) to affect
customer expectations on the availability. The latter
paper focuses on the impact of an option in the full-
price period to reserve a product in the sale period if
it is not sold yet. Su and Zhang (2007) examine the
impact the strategic behavior has on supply chain per-
formance. They show that price and quantity commit-
ment can be achieved using appropriate contractual
arrangements as coordinating mechanism.
Our model also does not apply to consumable

goods like gasoline, electricity, and groceries, which
are used up steadily and replaced periodically,
although customers may still behave strategically in
purchasing such goods. For example, they may stock-
pile them during promotions to take advantage of low
prices. An extensive stream of research in the mar-
keting science community covers dynamic pricing of
consumer nondurables (see Ho et al. 1998, Assunção
and Meyer 1993, Bell et al. 2002).

1.1.2. Price or Quantity as a Decision Variable.
Our work considers the stocking quantity as the pri-
mary tactical decision variable. One motivation for
this choice is to understand tactical rationing deci-
sions in the case where firms commit to prices, as in
the TKTS and Filene’s Basement examples. On a theo-
retical level, our analysis also provides a complement
to traditional inventory theory, which views stocking
decisions as primarily driven by holding and fixed
costs, overage and underage costs, demand uncer-
tainty, service level constraints, etc. In our model in
contrast, the main motivation for stocking decisions
is to control the rationing risk faced by customers in
order to profitably influence their strategic behavior.
In this sense, it provides a behavioral rather than cost-
based explanation of stocking decisions.
To our knowledge, almost all papers on dynamic

pricing with strategic customers use price as the deci-
sion variable. An exception is the work of Dana and
Petruzzi (2001), who extend the classical newsven-
dor model by considering demand to be affected by
both price and inventory level (fill rate). In their
model, strategic customers face a binary decision—
to purchase or not. Because there is a cost to visit
the store, their choices depend on both price and the
anticipated fill rate. They find that higher fill rates
(compared to the traditional newsvendor) are optimal
when the firm internalizes the effect of its inventory
on demand. Besides the exogenous price case, they
explore the case where both price and stocking quan-
tity are decision variables. Su (2007) also considers
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optimizing over the initial capacity in his model. He
shows the optimal strategy in this case falls into one
of three cases, two of which correspond to selling at
uniform prices (high or low), and one which corre-
sponds to a single-markdown (high-then-low price)
policy. When customers are risk neutral, we find that
a similar strategy of selling to all customers at either a
single high or low price is optimal. The recent paper
by Cachon and Swinney (2007) also allows the firm to
choose the initial stocking level and markdown price
dynamically. Their model considers a mixture of three
types of customers including myopic, strategic, and
bargain-hunting customers. With such heterogeneity
in behavior, they find that a firm can be better off
to adopt a dynamic markdown pricing policy even
if it can commit to prices. Ovchinnikov and Milner
(2005) investigate how much capacity a firm should
allocate for a last minute deal over a series of selling
periods to most profitably influence customers’ future
behavior.
While we focus on capacity decisions, we also add-

ress the situation where a firm optimizes over both
prices and capacity. In this case, we show that if cus-
tomers have any degree of risk aversion, then it is
always beneficial for the firm to sell at different prices
and create some degree of rationing. Thus, we show
that with the ability to fine tune price schedules,
rationing enables the firm to price discriminate and
always emerges as an optimal selling strategy.

1.1.3. Capacity Constraints and Rationing.
Whether capacity is exogenously given or endoge-
nously derived, it has a significant influence on
pricing strategy. Harris and Raviv (1981) find that
the optimal pricing mechanism consists of a uniform
price if capacity is not binding, whereas a differen-
tial, priority pricing scheme becomes optimal once
capacity constraints are binding. In practice, capacity
is frequently limited due to budget constraints, finite
storage space, precommitments due to long procure-
ment lead time, etc. It may also be the case that
capacity is limited deliberately to induce high-value
customers to buy at higher prices to avoid rationing
risk, as in the case of Zara mentioned above. Indeed,
Miguel Diaz Miranda, a Vice President at Zara,
explains their strategy as follows:

Sometimes we make a decision that from an economic
point of view might not seem sound, but we know
that. For example, we might have an item that was
selling very well, but if we think that we are saturating
the market with that look we will stop manufactur-
ing it and create unsatisfied demand on purpose. From
a strictly economic point of view, that is ridiculous.
But the culture we are creating with our customers is:
you better get it today because you might not find it
tomorrow. (Fraiman et al. 2008, p. 6)

But how should a firm balance the costs and benefits
of creating scarcity? This trade-off is a central focus of
our work.
Su (2007) also explicitly considers rationing effects

and in his model they serve the same role of creat-
ing incentives for high-value customers to buy early
at high prices. The main modeling difference is that
in our paper rationing is implicitly determined by
the firm’s initial capacity choice, whereas Su intro-
duces an exogenous rationing fraction as an explicit
decision variable in his model. Denicolò and Garella
(1999) also consider rationing in a model where firms
produce and set prices over two periods. They show
that rationing can be used to support increased prices
over time and improve profits in a durable goods
and Coase-type setting. Similarly, Gallego et al. (2004)
show that “scraping” unsold products can be strate-
gically optimal when customers expect future sales
based on experience. Cachon and Swinney (2007) also
find that a firm stocks less with strategic customers
than without them in the uncertain demand case.
More interestingly, they study the additional value of
quick response to mitigate the negative consequences
of strategic purchase behavior of customers.

1.1.4. Strategic Interaction Among Customers.
A customer’s decision may also be affected by the
purchase behavior of other customers. This sort of
strategic interaction among customers is a key fea-
ture of the theory of auction and optimal mechanism
design (see Myerson 1981). The important modeling
question here is whether strategic interaction among
customers should be taken into account when analyz-
ing dynamic pricing. The answer ultimately depends
on the market size. If the market consists of a small
number of customers whose individual actions signif-
icantly affect each other, then modeling the strategic
interaction among customers is vital for understand-
ing their behavior. However, in markets consisting of
a large number of customers, one customer’s behav-
ior has a negligible impact on the outcomes experi-
enced by others. Hence, strategic interactions among
customers can be reasonably ignored. It is then a mat-
ter of whether one is interested in analyzing a small
or large market; our work assumes a large market.
Strategic interaction among customers is considered

by Elmaghraby et al. (2008), Gallien (2006), Harris
and Raviv (1981), Aviv and Pazgal (2008), Cachon and
Swinney (2007), Koenigsberg et al. (2008), Yin et al.
(2007), and Dasu and Tong (2006). In contrast,
Besanko and Winston (1990), Dana and Petruzzi
(2001), Denicolò and Garella (1999), Ovchinnikov and
Milner (2005), Levin et al. (2006), and Su (2007),
and our work, assume a market consisting of a
large customer population and, thus, strategic inter-
action among customers is ignored. Levin et al. (2006)
assume each customer has his individual shopping
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intensity as a function of prices and each one equally
contributes to the overall shopping intensity, which
induces a homogenous customer population. They
introduce the eagerness of purchase decision as
customer’s response to prices, and derive the opti-
mal dynamic pricing policy in a stochastic game-
theoretical dynamic pricing model.
A large-market assumption simplifies the analy-

sis of customer behavior considerably, because one
can then assume each customer reacts to prices and
quantities without considering the effect their actions
have on other customers. The assumption is also quite
reasonable for most mainstream retail categories; as
customers, most of us do not worry that our indi-
vidual shopping decisions will alter the behavior of
other “competing shoppers,” even though we may
account for the aggregate effect of other customers,
for example when assessing the likelihood of future
shortages. Such behavior is consistent with the large-
market assumption.

1.1.5. Risk Preferences. Risk aversion is a reason-
able assumption when modeling customer behavior,
especially when customers make “large” purchases—
purchases whose cost represents a significant portion
of a customer’s wealth or budget. For example, com-
puters, major household appliances and luxurious
fashion items can be regarded as “large” purchases in
this sense. Different assumptions of risk preferences
can lead to different conclusions about pricing strate-
gies, a fact illustrated by auction theory; a risk-neutral
firm prefers a first-price auction to a second-price auc-
tion in the face of risk-averse bidders, while it is indif-
ferent to these two formats with risk-neutral buyers.
Our work compares stocking decisions in the pres-

ence of risk-neutral and risk-averse customers, respec-
tively. Allowing customers to be risk averse is one
distinct feature of our work and the assumption plays
a key role in our analysis.

1.1.6. Other Assumptions. Besides the assump-
tions discussed thus far, the following are also
worth noting: First, do customers arrive sequentially
or simultaneously? Many papers—including ours—
assume that all customers are present at the beginning
of the sales season. Aviv and Pazgal (2008), Gallien
(2006), Su (2007), Zhou et al. (2006), Yin et al. (2007),
and Elmaghraby et al. (2008), in contrast, consider
sequential arrivals. Zhou et al. (2006) base their model
on that of Gallego and van Ryzin (1994), but allow one
customer to strategize over the timing of purchase.
Their focus is on the optimal purchasing response of
such a strategic customer and its impact on the firm’s
revenue. Generally, achieving price discrimination is
more difficult with simultaneous arrivals because cus-
tomers have more flexibility in their purchase timing
in this case.

Second, is utility constant or discounted over time?
In reality, utility is of course discounted. But to sim-
plify analysis, it is acceptable to regard utility as con-
stant if the time horizon is not too long. In Aviv
and Pazgal’s (2008) work, utility is discounted in the
sense that they assume customer valuations strictly
decline over time. Gallien (2006) studies an online
commerce mechanism design in an infinite time hori-
zon, in which case the use of discounting is natu-
ral. In Besanko and Winston’s (1990) paper, discount
factors play a key role in the SPE; in fact, in their
model if utility is not discounted over time, all cus-
tomers simply purchase in the last period at the low-
est price as in the Coase problem. Our basic model
does not consider discounting, though we include it
as an extension. We ignore discounting partly as a
practical approximation, but more importantly to iso-
late and study the effect that rationing risk alone has
on customer behavior.
Last, is aggregate demand deterministic or stoch-

astic? In the setting of uncertain demand, it becomes
much harder to model customer strategic behavior.
Still, quite a few papers including Aviv and Pazgal
(2008), Cachon and Swinney (2007), Ovchinnikov
and Milner (2005), Zhou et al. (2006), and Dana
and Petruzzi (2001) address dynamic pricing under
uncertain aggregate demand. Our work focuses on
the case of deterministic aggregate demand, but we
address stochastic demand as an extension in Online
Appendix A (provided in the e-companion).

1.2. Overview of Our Paper
The remainder of this paper is organized as follows.
In §2, we formulate a single seller’s stocking deci-
sion problem under deterministic aggregate demand.
In §3, we characterize the firm’s optimal stocking
quantity, and examine how the amount of rationing
risk is affected by the magnitude of price changes
over time and the degree of risk aversion among cus-
tomers. We also provide conditions under which the
firm’s commitment to rationing is credible. In §4, we
extend the model and analysis to the case where the
firm is able to optimize over both prices and capac-
ity, the case where the firm and customers discount
profits and utilities over time, and the case of sym-
metric competing firms in a market where customers
assess the aggregate industry availability (rather than
firm-level availability) in making their decision to buy
early or wait. Conclusions are given in §5. All the
proofs are relegated to Online Appendix C (provided
in the e-companion).

2. The Model
A monopoly firm preannounces a single-markdown
pricing policy over two periods; the unit price in
period 1, denoted by p1, is greater than the unit price
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in period 2, denoted by p2. We assume the seller
is able to commit to this preannounced price path.
We consider a market which consists of a large cus-
tomer population. The market size, denoted by N , is
deterministic. Customers have heterogeneous valua-
tions and unit demand for the good. All customers
are present when sales begin and remain in the mar-
ket until their requests are satisfied or the sales season
is over. Customers behave strategically and take both
the current and the future prices and availability into
consideration when deciding to buy early or late. The
firm seeks to maximize profits by choosing its stock-
ing quantity (capacity) at the beginning of the sales
season. Inventory is not replenishable once sales start.
We assume the firm is risk neutral and customers

are risk averse. (We study risk-neutral customers as a
limiting case.) Customers’ valuations are distributed
independently and identically with cumulative distri-
bution function F �v�, which is common knowledge
to both the firm and customers. Moreover, the distri-
bution of customer valuations is constant over time.
Customers have identical utility functions, denoted by
u�·�, which are time invariant, strictly increasing and
concave, and twice differentiable; and u�0� = 0. We
assume there is no disutility when customer demand
is unsatisfied; that is, the costs of creating rationing in
our model are only lost sales and do not include any
loss of goodwill. This is reasonable if customers have
good outside alternatives, as in many retail settings. It
would not be difficult to add a per unit goodwill cost
to our model, but to keep the model parsimonious we
choose not to include such costs.
All purchase requests in period 1 are filled,

although customers may face a rationing risk in
period 2 due to insufficient supply. (We justify these
assumptions below.) Let q denote the probability of
obtaining a unit in period 2 (the fill rate). Random
(parallel) rationing is assumed; that is, each customer
attempting to purchase in period 2 has an equal
chance of obtaining a unit. The fill rate q is deter-
mined by the firm’s capacity choice, as we show
below. We assume customers can correctly anticipate
the firm’s fill rate; that is, customers have full infor-
mation and rational expectations.

2.1. The Customer’s Decision
As illustrated in Figure 1, a customer weighs the pay-
off of an immediate purchase at a high price against
the expected payoff of a later purchase at a low price
and buys one unit in period 1 if and only if u�v−p1� ≥
qu�v − p2�, and v − p1 ≥ 0. Intuitively, high-valuation
customers are more likely to purchase immediately
because they face a larger loss of utility if they are
rationed out of the market. The following proposition
formalizes this property:

Figure 1 Two-Period Decision Model

Customer value = v

u (v – p1)

u (v – p2)

0

q

1–q

Period 1 Period 2

Buy now at high price

Wait for low price

Proposition 1. ∀ q ∈ �0�1�, there exists the unique
v�q� ≥ p1, such that customers with valuations greater
than v�q� buy in period 1 and those with valuations less
than v�q� wait to buy in period 2.

We assume that all customers have the same esti-
mate of fill rates, which is a consequence of the
assumption that customers have fully rational expec-
tations. Proposition 1, in fact, characterizes the opti-
mal response of each customer to the firm’s capacity
choice. At zero fill rate, all customers with valuations
greater than p1 buy at the high price in period 1; thus,
v�0� = p1. When the fill rate is one (no rationing risk),
no customers purchase in period 1 and we define
v�1� = +�. In the case of finite customer valuations,
v�1� = �U , where �U is the upper bound of valuation.
Intuitively, with a higher fill rate, more customers are
willing to risk purchasing later at low prices. This is
verified by the following proposition:

Proposition 2. The threshold function v�q� is strictly
increasing in q. Moreover, it is convex on q if the associated
utility function u�·� has the nonnegative third derivative.2

Proposition 2 implies that a lower fill rate (larger
rationing risk) induces more customers to buy early
at high prices. While a firm would like to induce cus-
tomers to purchase early at high prices, this increase
comes at the expense of lost sales due to rationing
in period 2. This trade-off between the benefits of
inducing early purchases and the costs of lost sales in
period 2 is key to understanding the firm’s optimal
stocking decisions.

2.2. The Firm’s Stocking Decision
Let C be the firm’s stocking quantity before sales, and
� be the unit procurement cost, � < p2. We assume the
firm’s cost function is linear; hence, �C is the cost of
stocking C units.

2 Nonnegativity of the third derivative of a utility function is called
prudence in the economics literature (see Eeckhoudt et al. 1995). For
example, the power function u�x� = x� (0< � < 1) and the exponen-
tial function u�x� = 1 − e−kx (k > 0) are concave and have positive
third derivatives.
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The fill rate in period 2 is given by the ratio of resid-
ual capacity to residual demand in period 2, namely,

q =min
{(

C − N �F �v�q��

N �F �v�q�� − F �p2��

)+
�1

}
� (1)

where �·�+ = max�·�0	. Equation (1) shows how the
firm is able to influence the fill rate via its capac-
ity choice. The fill rate in turn influences customer
behavior through the threshold function v�q�, defined
(implicitly) by the indifference point:

u�v − p1� = qu�v − p2�
 (2)

The firm would like to choose its capacity to induce
the most profitable demand outcome.
An important fact to note is that, in general, a sin-

gle capacity choice could induce multiple outcomes.
An example is as follows: suppose u�x� = √

x, p1 = 1,
p2 = 0
2, � = 0, C = 3

4N , and customers’ valuations are
distributed according to F �v�, where F �v� = 1

4v
2, v ∈

�0�2�. It is easy to verify that both q = 0, v�q� = 1 and
q = 0
72, v�q� = 1
865 are possible outcomes; that is,
both pairs are solutions satisfying (1) and (2). Intu-
itively, the notion here is that of a “self-fulfilling
prophecy”; in the case q = 0, v�q� = 1, all customers
expect a zero fill rate in period 2 �q = 0� and those
with valuations above one attempt to buy in period 1
as a result �v�q� = 1�. The resulting demand entirely
consumes the capacity in period 1, which indeed pro-
duces a fill rate of zero in period 2. On the other
hand, if all customers expect a high fill rate in period 2
�q = 0
72�, many opt to postpone purchasing (those
with values below v�q� = 1
865�. Demand in period 1
is therefore low; hence, there is excess product left
over for period 2, which indeed produces a high fill
rate of 0.72 in period 2. Just as with multiple equi-
libria in a game theory model, the predictions of our
model are ambiguous in such cases. We will special-
ize the assumptions below to eliminate this ambigu-
ity, though it is worth keeping in mind that multiple
outcomes of this sort could very well be a realistic
phenomenon.
We now specify the firm’s optimization problem.

First, we claim it is optimal for the firm to stock
at least enough to meet potential demand at the high
price, N �F �p1�, and never more than required to satisfy
the potential demand at the low price, N �F �p2�. This
follows because if the supply is not sufficient to meet
demand at the high price, the fill rate in the second
period is zero and there will even be rationing at the
high price in period 1. Profits in this case are always
dominated by choosing C = N �F �p1� and serving the
entire market at the high price. Conversely, if the firm
stocks more than demand at the low price, the fill rate
in period 2 will be one, N �F �p2� customers will buy in
period 2, and there will be positive leftover stock. In

this case, profits are always higher by stocking exactly
C = N �F �p2�. Therefore, the optimal capacity choice of
the firm always satisfies C ∈ �N �F �p1��N �F �p2��, and the
fill rate q defined in (1) can therefore be simplified to

q = C − N �F �v�q��

N �F �v�q�� − F �p2��

 (3)

We assume that customers’ valuations are bounded
above by �U . Then according to (2), the market can be
segmented only if the fill rate is less than q̄, which
is defined by u� �U − p1�/u� �U − p2�. Once the fill rate
exceeds q̄, no customer buys at the high price. As
a result, the firm stocks N �F �p2� exactly serving the
entire low-price market. Therefore, the firm’s stocking
decision problem is separated to two cases—a seg-
mented market with rationing and a nonsegmented
market without rationing. If the market can be seg-
mented, the firm’s profit maximization problem can
be expressed in terms of C and v as follows:

max N�p1 − p2� �F �v� + �p2 − ��C

s.t. u�v − p1� = C − N �F �v�

N �F �v� − F �p2��
u�v − p2��

p1 ≤ v ≤ �U�

(4)

where the first constraint defines the threshold
value v using (2) to define v and (3) to define the fill
rate.
Let �v0�C0� denote the optimal solution to (4), and

�0 be the associated optimal profit for a segmented
market. Denote the profit obtained by serving the
entire market at a low price only by �NS , then �NS =
�p2 − ��N �F �p2�. So, the firm’s optimal stocking quan-
tity corresponds to the one that achieves the maxi-
mum of �0 and �NS . We denote the optimal cutoff
value by v∗, the optimal fill rate by q∗, and the optimal
stocking quantity by C∗.

3. Analysis of the Optimal
Stocking Decision

A key question is whether it is optimal to create
rationing risk or to simply serve the entire market
at one price. If rationing is optimal, what level of
rationing risk should be created? And how do these
answers depend on the factors such as price differ-
ences over time and the level of risk aversion among
customers? These are main questions addressed in
this section.
To facilitate analysis, we assume in the remainder

of this paper, that customers’ valuations are uniformly
distributed over �0� �U�. We also assume customers
have a power utility function u�x� = x� �0 < � < 1�,
which is a common form in the economics literature
and corresponds to the case where customers have
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decreasing absolute risk aversion.3 Lower values of �
correspond to more risk aversion. These assumptions
simplify the analysis and also eliminate the multiple-
outcome problem mentioned above.

3.1. Optimal Stocking Decision
Using the power utility function u�x� = x� (0< � < 1),
the firm’s stocking decision for a segmented market
given in (4) becomes

max
N
�U �p1−p2�� �U −v�+�p2−��C

s.t.
(

v−p1

v−p2

)�

= � �U/N�C− �U +v

v−p2
� �U ≥v≥p1


(5)

The profit can be further expressed only in terms of v
as follows:

max
�U≥v≥p1

��v� = N
�U
(

�p1 − ��� �U − v�

+ �p2 − ���v − p2�

(
v − p1

v − p2

)�)

 (6)

The first order conditions yield(
v − p1

v − p2

)�(
1+ ��p1 − p2�

v − p1

)
− p1 − �

p2 − �
= 0
 (7)

We then have the following lemma:

Lemma 1. The profit function ��v� defined in (6) is
strictly concave in v ≥ p1. Furthermore, the maximizer
of (6) is either the solution to (7) denoted by v0 if v0 ≤ �U
or �U otherwise.

The proof of Lemma 1 establishes that the left-hand
side of (7) strictly decreases in v > p1, and has oppo-
site signs at v → p+

1 and v → +�. Hence, there exists
a unique root v0 > p1 to (7). Notice also that v0 is inde-
pendent of �U . As discussed above, the firm’s profit
is maximized either at the segmented market opti-
mum or at the low-price-only solution. The following
proposition characterizes the optimal solution.

Proposition 3. Let v0 be defined as the solution to (7),
and denote

Uc = �p2 + ��p1 − ���v0 − p2�p1 + ��p2 − ���

v0 − p1 + ��p1 − p2�

 (8)

If �U ≥ Uc, the optimal stocking strategy is to induce seg-
mentation by creating rationing risk. The optimal solution
in this case is v∗ = v0, q∗ = q0 = ��v0−p1�/�v0−p2��

� , and
C∗ = C0 = �N/ �U�� �U − v0 + �v0 − p2�q

0�. Otherwise, it is
optimal to serve the entire market at the low price; namely,
v∗ = �U , q∗ = 1, and C∗ = �N/ �U�� �U − p2�.

3 We also numerically tested other distributions of valuations, such
as normal and log normal, and other utility functions, including
exponential and log. The results are presented in §4.3.

Proposition 3 shows that whether it is optimal to
create rationing risk or not depends on the num-
ber of high-value customers in the market. When
there are a large number of high-value customers
� �U ≥ Uc�, the incremental demand induced in period 1
more than compensates for the lost sales cost of
rationing in period 2. If there are relatively few high-
value customers ( �U < Uc), the opposite is true; the
incremental demand induced in period 1 by creat-
ing rationing risk does not compensate for the lost
sales in period 2. Also, note that, it is never opti-
mal to serve the market only at the high price; the
proof of Proposition 3 indicates that the segmented
solution �v0� q0�C0� always dominates the high-price-
only solution. However, if the firm is able to opti-
mally choose prices for each period, the results are
different. Proposition 9 in §4.1 shows that when prices
are selected optimally, rationing is always an optimal
strategy for any value �U .
One can check Uc defined by (8) decreases in v0. As

shown in the proof of Proposition 3, we know p1 <
v0 < p1 + ��p2 − ��; therefore, p1 + ��p2 − �� < Uc <
p1 + p2 − �. This establishes sufficient conditions for
creating rationing risk:

Corollary 1. When �U ≥ p1 + p2 − �, creating
rationing characterized by �v0� q0�C0� is always opti-
mal. When �U ≤ p1 + ��p2 − ��, the optimal strategy is to
serve the entire market only at the low price.

Note that �U ≥ p1 + p2 − � implies �N/ �U�� �U − p1� ·
�p1 −�� ≥ �N/ �U�� �U −p2��p2 −��, which says the profit
gained at the high-price-only solution is larger than
that at the low-price-only solution. Because it is never
optimal to serve customers only at the high price in
the risk-averse case, this implies when �U ≥ p1 +p2 −�
it is always optimal to create rationing risk.
We next consider the limiting case of risk aversion

(when � approaches 1), which corresponds to the case
of risk-neutral customers. The result is established in
Proposition 4 below.

Proposition 4. Let v0 be the solution to (7), and
q0 = ��v0 − p1�/�v0 − p2��

� . Then lim�→1 q0 = 0, and
lim�→1 v0 = p1.

The above proposition says an extremely high
rationing risk is required to induce segmentation as
customers become much less risk averse (i.e., � → 1).
Again, however, whether rationing is optimal or not
hinges on the market composition, specifically the
number of high-value customers; the above limits
only apply to the optimal rationing solution. In sum-
mary, for risk-neutral customers, when the market
consists of a sufficiently large number of high-value
customers � �U ≥ p1 + p2 − ��, it is optimal for the firm
to serve the market only at the high price in period 1;
otherwise, the firm serves the entire market at the low
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price only. Because the high-price-only profit values
are the same for both the risk-neutral and risk-averse
customers, this shows the firm is strictly better off
with risk-averse customers.

3.2. Comparative Statics
In this section, we examine how the optimal fill rate
is affected by prices for each period and the degree of
risk aversion. We first require the following result:

Proposition 5. The capacity C increases in the cutoff
value v and fill rate q.

Proposition 5 is intuitively obvious; to produce a
higher fill rate (equivalently, a higher cutoff value)
requires the firm to stock more. The total sales volume
is then increased, but customers’ incentive to delay
purchasing is increased as well. Again, the firm’s deci-
sion is to create the “right” rationing risk, balancing
the trade-off between benefits of inducing segmenta-
tion and costs of lost sales. Proposition 6 and 7 below
establish how the optimal amount of rationing risk is
influenced by prices for both periods and the degree
of risk aversion among customers.

Proposition 6. The optimal fill rate q∗ in the rationing
case decreases in the first-period price p1, while increases
in the second-period price p2.

This result too is intuitive. As price differences over
time decrease (increase the second-period price given
that the first-period price is fixed, or reduce the first-
period price given that the second-period price is
fixed), the opportunity cost of rationing (i.e., the cost
of lost sales) increases. On the other hand, a smaller
price difference reduces customers’ incentive to post-
pone their purchases. Both effects reduce the benefits
of creating rationing in period 2, and drive fill rates
up. Note that the optimal fill rate q∗ is not necessarily
continuous in p1 and p2. At some level of p1 (or p2),

Figure 2 Optimal Fill Rates vs. Prices for Each Period
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the optimal fill rate jumps to one. This implies induc-
ing segmentation cannot compensate for the lost sales
cost at that point.
Another question is how the degree of risk aver-

sion impacts the optimal amount of rationing. Intu-
itively, the more risk-averse customers are, the more
incentive they have to purchase early. Hence, the firm
should be able to use a higher fill rate. This is verified
in the following proposition:

Proposition 7. The more risk-averse customers are
(smaller �), the larger the optimal fill rate q∗ as long as
inducing segmentation via rationing is optimal.

Proposition 7 implies more rationing risk is needed
to induce segmentation as customers become less
risk averse. However, at some point, the opportunity
cost of rationing may become too great and it then
becomes optimal to serve the entire market at the low
price. Below we provide the precise condition under
which the optimal stocking decision switches from a
segmented market to a nonsegmented market, which
is established in Proposition 8.

Proposition 8. Let v0 be the solution to (7), and

q0 =
(

v0 − p1

v0 − p2

)�

� q̂ =
(

��p1 + p2 − � − �U�

� �U − p2��1− ��

)�




When p1 + ��p2 − �� < �U < p1 + p2 − �, q0 is the optimal
fill rate if q0 ≥ q̂; otherwise, the optimal fill rate is 1.

3.3. Numerical Examples
In this section, we present several examples to illus-
trate how the optimal stocking decision is affected by
prices for each period (p1 and p2) and the degree of
risk aversion ���. We also give examples on the sensi-
tivity of profits to errors in capacity and prices to get
a sense of which variable most affects profits.
The left graph in Figure 2 shows that the optimal fill

rate q∗ decreases in the first-period price p1 as long as
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Figure 3 Optimal Fill Rate vs. Degree of Risk Aversion
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rationing is optimal; and the right one shows the opti-
mal fill rate q∗ increases in the second-period price p2.
In both examples, we set �U = 1
5, � = 0
2, and �
takes values over �0
25�0
5�0
75�1	. The second-
period price is set p2 = 0
45 when examining the effect
of the first-period price in the left graph, and the
first-period price is fixed at p1 = 1 when changing the
second-period price in the right graph. Observe that
for risk-neutral customers (� = 1), the optimal strat-
egy is either a high-price-only solution (when p1 ≤
1
25 in the left graph; p2 ≤ 0
7 in the right graph) or
a low-price-only solution (when p1 > 1
25 in the left
graph and p2 > 0
7 in the right graph) as our theory
predicts. Also, we note that the optimal fill rate is not
necessarily continuous in prices. At some point, the
optimal strategy switches from inducing segmenta-
tion to a low-price-only strategy, which, again, reflects
the trade-off between benefits of rationing and costs
of lost sales.
Figure 3 shows how the optimal fill rate changes

with the degree of risk aversion. In this example, we
test p1 = 1, p2 = 0
7, � = 0
2, �U = 1
4 or 1.5. Observe
that when customers are highly risk averse (i.e., �
is small), optimal fill rates are the same for differ-
ent ranges of valuations. This is because the opti-
mal segmenting point v0 (or q0) does not depend on
the range of valuations, provided inducing segmenta-
tion is an optimal strategy. But, as customers become
less risk averse (� increases), differences emerge. For
�U = 1
5, a larger rationing risk continues to be created
as customers become less risk averse; in contrast, for
�U = 1
4, the firm switches to a low-price-only strat-
egy at some level of risk aversion. In the limiting
case (� → 1), the former converges to a fill rate of
zero, whereas the latter converges to a fill rate of one,
exactly the results for risk-neutral customers.
While price is not a variable in our analysis, one

might question whether profits are more sensitive to

the firm’s pricing or capacity decisions. To investi-
gate this question, we consider the situation where
the first-period price is given but the firm can choose
the discount price in the second period. For example,
a manufacturer’s suggested retailer price is applied
when products are first released to the market, but
the firm is able to choose the clearance price on its
own. We ran examples on different settings of param-
eters, and numerically optimized over prices as well
as capacities. Given the first-period price, we first
found the optimal discount price p∗

2 numerically, then
calculated the corresponding optimal stocking quan-
tity and profit at p∗

2. Next, we computed relative profit
losses under various deviations from p∗

2 and from the
associated optimal capacity at p∗

2, respectively.
Figure 4 illustrates the results for the case of

N = 1�000, � = 0
5, �U = 1
5, p1 = 1, and � = �0
2�
0
5�0
8	. In this example, a 40% “error” in the opti-
mal second-period price results in only a 5% rel-
ative profit loss (i.e., 1 − ��the optimal profit at p2�/
�the optimal profit at p∗

2�� ∗ 100%), whereas the same
40% “error” in the optimal capacity results in rela-
tive profit losses up to 25%.4 Profits here are therefore
much more sensitive to errors in capacity decisions
than errors in pricing decisions. This suggests that
inventory policies can be more important than pric-
ing when faced with strategic customers. Why? First,
customers make decisions by comparing the current
utility, u�v − p1�, with their expected future utility,
qu�v − p2�. With a concave utility function, the thresh-
old v may change slowly with changes in p2; in con-
trast, a given percentage change in fill rate translates
directly into the same percentage change in expected
utility in period 2. Second, because fill rate is deter-
mined by residual capacity in period 2, a small per-
centage change in capacity choice can result in a large
change in fill rate, thus leading to a large change in
the threshold.
Figure 4 also shows that when the price and capac-

ity are chosen poorly, the resulting profit losses can
be quite large indeed. Although ideally a firm is able
to optimize both prices and capacity, the sensitivity
of profit to errors in these decisions illustrates how
challenging it is to manage strategic consumers.

4 The kink in the graph is because the transition from a segmented
market to a nonsegmented market induces a jump in capacity. Take
the case of � = 0
2 for instance, when the deviation from the opti-
mal capacity at p∗

2 is less than 7% approximately, the market can be
segmented. In this case, the percentage profit relative to the opti-
mal profit increases as a function of the deviation from the opti-
mal capacity, then decreases after the optimal capacity is reached.
However, once the percentage deviation from the optimal capac-
ity is larger than 7%, the market cannot be segmented and, hence,
the relative profit is increasing in the deviation from the optimal
capacity. But after the capacity exceeds the potential demand at the
low price, the relative profit decreases again because of the excess
supply in period 2.
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Figure 4 Sensitivity of Profits to Errors in Discount Price and Capacity
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4. Extensions to the Basic Problem
We next examine several extensions of our basic prob-
lem. The first is to consider the situation where the
firm is able to use the optimal prices for each period;
that is, the firm optimizes over both prices and capac-
ity and commit to them upfront. We show that a
uniform pricing policy is optimal with risk-neutral
customers; it is always beneficial for the firm to cre-
ate rationing if customers are risk averse. Second, we

address the case in which the firm and customers dis-
count profits and utilities over time. In general, we
show that discounting creates an exogenous incentive
to buy early, which adds to the incentive created by
rationing risk. Third, we study the robustness of the
results by numerically testing other valuation distri-
butions (e.g., normal and log normal) and other util-
ity functions (e.g., exponential and log). We show the
main results on the optimal rationing strategy still
qualitatively hold for these cases. We also look at the
effect of competition, specifically, the case where there
are several stores in the market and customers assess
the fill rate at the market level rather than the indi-
vidual store/firm level. We analyze the equilibrium
capacity strategies among the firms and show that,
in general, competition reduces the industry’s ability
to profitably use rationing risk to segment customers.
Last, we consider the effect of aggregate uncertainty
in demand. Though our model of aggregate uncer-
tainty is somewhat artificial, it is amenable to analy-
sis. The general result here is that demand uncertainty
reduces a firm’s optimal fill rates. The analysis on this
case is provided in Online Appendix A.

4.1. Optimizing Over Both Prices and Capacity
When the firm has the ability to choose prices for each
period, we solve the optimization problem (6) for a
segmented market with p1 and p2 as decision variables
as well; that is,

max
�U≥v≥p1≥p2≥�

N
�U
(

�p1 − ��� �U − v�

+ �p2 − ���v − p2�

(
v − p1

v − p2

)�)

 (9)

Note that (6) describes the case in which a market is
segmented. If a market is unsegmented, one can easily
show that the optimal single price, denoted by pu, is
� �U + ��/2, and the associated profit, denoted by �u,
is equal to N� �U − ��2/4 �U .
We first show that with risk-averse customers

rationing is always beneficial if the firm is able to use
an optimal price schedule. In other words, the value
given by (9) is strictly greater than �u, the largest
profit gained via a single-price market. This is estab-
lished in Proposition 9 below.

Proposition 9. The optimal value determined by (9)
is strictly greater than �u when 0 < � < 1. This implies
with risk-averse customers, the optimal pricing strategy is
a high–low pricing policy �p1 > p2� and the optimal stock-
ing decision is to create a fill rate of strictly less than 1
�q < 1�.

Note that with risk-neutral customers (i.e., � = 1),
a uniform price of � �U +��/2 is optimal and the associ-
ated profit �u is strictly less than the profit under risk-
averse customers. In essence, Proposition 9 shows that



Liu and van Ryzin: Strategic Capacity Rationing to Induce Early Purchases
1126 Management Science 54(6), pp. 1115–1131, © 2008 INFORMS

price flexibility and rationing enable the firm to price
discriminate and capture surplus from customers who
value the product more and prefer to pay to avoid the
risk of rationing. It shows that prices can be designed
such that the extra revenue from these high-value cus-
tomers always offsets the cost of rationing. In this
sense, the proposition shows rationing is a quite gen-
eral strategy for extracting surplus and maximizing
profits.
Moreover, this result can be generalized to any dis-

tribution of valuations under a power utility func-
tion. That is, rationing (i.e., to create a fill rate of
strictly less than 1) is always an optimal stocking
strategy regardless of customer valuation distribution
F �·� when u�x� = x� and 0< � < 1.5

We ran numerical examples for the endogenous
price case similar to those for the basic model. For
conciseness we omit the detailed graphs, but the
results are qualitatively the same. When prices are
endogenous, our numerical examples showed that the
optimal fill rate and the optimal first period price
decrease in the degree of risk aversion �; whereas the
optimal second period price increases in �. Recall that
when prices are fixed, the optimal fill rate decreases
in � as long as rationing is optimal. We also observed
that the relative profit losses under capacity devia-
tions are larger than those under the same percentage
of discount price deviations. Therefore, again profits
in our numerical tests were more sensitive to errors
in capacity than in price.

4.2. Discounted Utility
Even without the risk of rationing, discounting of util-
ities over time creates an incentive for customers to
buy early at high prices. When both discounted util-
ities and rationing risk are considered, we show that
the results are qualitatively the same as those in our
basic model without discounting, though characteriz-
ing the optimal strategies becomes more complex.
For seasonal, fashionable and durable goods, such

as sporting goods, apparel and consumer electronics,
it is natural to assume that customers discount the
value of such products faster than the firm. We denote
the discount factors for the firm and customers by 1
and 2, respectively, and 1 ≥ 2. To avoid trivialities,
we assume 1 > �/p2 to guarantee a positive margin
at the low price. The firm maximizes its total profit,

5 To see this, replace p1 by p1 = p2z + v�1 − z� where 0 ≤ z ≤ 1,
then the firm’s profit function can be expressed as �v − ��N �F �v� +
�p2 − ��N�F �v� − F �p2��z

� − �v − p2�N �F �v�z. When � = 1, z∗ = 0 or
z∗ = 1. This implies no rationing is required (a uniform price is opti-
mal) with risk-neutral customers. When customers are risk averse
(0 < � < 1), one can check that �ṽ� p̃2� z̃� generates a strictly higher
profit than a uniform price does, where ṽ = argmaxv�v − �� �F �v�,
p̃2 = � + �, z̃ = ����F �ṽ� − F �p̃2��/�ṽ − p̃2� �F �ṽ��1/�1−��, and � is a small
positive number.

composed of a base profit and an extra profit margin
via sales at the high price provided that the market is
segmented:

max
N
�U �p1−1p2�� �U −v�+�1p2−��C

s.t. �v−p1�
� =2

C−�N/ �U�� �U −v�

�N/ �U��v−p2�
�v−p2�

��

�U ≥v≥p1

6

(10)

If the market cannot be segmented, the firm stocks
�N/ �U�� �U − p2� to serve the entire market at one
price p2.
The firm’s decision problem for a segmented mar-

ket given by (10) can be further written in terms of v
as follows:

max
p1≤v≤ �U

��v� = N
�U
{

�p1 − ��� �U − v� + 1
2

�1p2 − ��

· �v − p2�

(
v − p1

v − p2

)�}

 (11)

Following the same approach as in Lemma 1 for the
undiscounted case, one can show that the profit func-
tion ��v� defined in (11) is strictly concave in v ≥ p1.
The first order conditions yield:

(
v − p1

v − p2

)�(
1+ ��p1 − p2�

v − p1

)
− 2�p1 − ��

1p2 − �
= 0
 (12)

Applying the same argument as the undiscounted-
utility case, one can show there exists a unique
solution, denoted by vD > 1 to the Equation (12).
Moreover, vD increases in 1 but decreases in 2. This
result is intuitive. As the firm discounts future profits
more (i.e., a smaller 1), it has a larger incentive to
induce more customers to purchase early; thus, lead-
ing to a lower fill rate (note qD increases in vD); as
the discount factor of customers, 2, becomes smaller,
future utility becomes less important and more cus-
tomer have incentive to purchase early; thus, only
a smaller rationing risk (i.e., a larger fill rate qD) is
needed.
The precise characterization of the optimal stock-

ing decisions with discounts can be derived using the
same approach as in Proposition 3. The results are
algebraically complex; specifically,

6 We discount utilities here (i.e., a customer with valuation v has
a utility in the second period 2�v − p2�

� ) rather than customers’
valuations (i.e., the utility in the second period for this customer is
�2v − p2�

� ). We are mainly concerned with the time valuation not
the value of the product per se. However, it is quite plausible that
the product value declines sharply over time too, in which case
having different valuations would be a more natural assumption.
We would expect that qualitatively the results would be similar in
this case.
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Proposition 10. Let vD be the solution to the Equa-
tion (12), and denote

U D
c = ����p1 − p2��p1 − �� + p2�p1 − 1p2��v

D

− p1p2�p1 − 1p2� − �p2�p1 − p2��1p2 − ���

· ��p1 − 1p2�v
D − �p1 − 1p2��p1 − ��p1 − p2���

−1


1. If �U ≥max�vD�U D
c 	, inducing segmentation is opti-

mal, namely, v∗ = vD, q∗ = �1/2���v
∗ − p1�/�v∗ − p2��

� ,
and C∗ = �N/ �U�� �U − v∗ + �v∗ − p2�q

∗�;
2. Otherwise, a low-price-only solution is optimal,

that is, v∗ = �U , q∗ = 1, and C∗ = �N/ �U�� �U − p2�.

The results parallel the undiscounted case. For a
large high-value segment, rationing is optimal; for a
market with a small number of high-value customers,
it is optimal to produce a 100% fill rate.
One can easily show that with risk-neutral cus-

tomers, the optimal stocking decision is either to
serve the market at the high price only when �U ≥
�p1�p1 − �� − p2�1p2 − ���/�p1 − 1p2�, or to serve the
entire market at the low price when �U < �p1�p1 −��−
p2�1p2 − ���/�p1 − 1p2�. This result, again, parallels
the undiscounted case of risk-neutral customers.

4.3. Other Valuation Distributions and
Utility Functions

In our basic model, we assume that customer val-
uations are uniformly distributed and customers
have power utility functions. One may question to
what extent the results depend on these particular
assumptions. Are the results robust to a general dis-
tribution of valuations? Does the form of the utility
function matter? Unfortunately, it seems difficult to
obtain clean analytical results for more general distri-
butions and utility functions. Yet it is straightforward
to analyze these cases numerically. Therefore to assess
the robustness of our results, we tested normal and
log-normal distributions for customer valuations and
exponential and log utility functions. The results indi-
cate that the qualitative behavior of the optimal fill
rate as a function of the degree of risk aversion and
the second-period price remains the same.
In the interest of space, we illustrate only one case

here for the normal distribution of valuation and
exponential utility. In this example, customer valua-
tions follow a truncated normal distribution ����2�
on the support of �0� �U�, and the exponential utility
function has the form of u�x� = 1 − e−�x. Note that
the exponential utility function u�x� has an Arrow-
Pratt measure of absolute risk aversion7 equal to �
regardless of the value x. The larger the �, the more
risk averse the customers. Figure 5 illustrates how

7 For a twice-differential utility function u�x�, the Arrow-Pratt mea-
sure of absolute risk aversion at x is defined by −u′′�x�/u′�x�.

Figure 5 Numerical Examples Under Normal Distribution of
Valuations and Exponential Utility Functions
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optimal fill rates change with the mean value of cus-
tomer valuations, the second-period price and the
degree of risk aversion, respectively. The results show
that the optimal fill rate decreases in the mean value,
implying that with a larger high-valuation segment
more rationing is optimal as in the case of uniform
distribution and power utility. The optimal fill rate
increases in the second-period price. Again, this is
the same as in the uniform case. The last graph
shows that a smaller rationing risk is required as cus-
tomers become more risk averse; again, this is the
same behavior as in the case of uniform valuation and
power utility function.
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Although these tests of course do not constitute a
general proof, we did test all combinations of these
distributions and utility functions and found qualita-
tively identical behavior to the example above. This
is good evidence that the basic insights about when
rationing is optimal and how the optimal amount of
rationing changes as a function of model parameters
is robust to our functional assumptions.

4.4. Oligopolistic Competition
When the same product is carried by multiple retail-
ers, it is unlikely that customers base their strate-
gic behavior on the product’s availability in any one
store. Rather, it is more plausible that they assess
availability across the entire market. In doing so,
they will consider the aggregate supply and aggre-
gate demand among all stores in the market. Here,
we analyze a model of this situation.
Consider an oligopoly market of n firms provid-

ing the same product. We assume customers exhibit
no preference over the source of supply and with
equal probability, a customer buys a product from
any firm as long as there is inventory. Capacity
choice in the market is a vector, denoted by C =
�C1� 
 
 
 �Ci� 
 
 
 �Cn�. We assume all suppliers set the
same prices for both periods and have the same unit
of procurement cost. This obviously helps keep the
model tractable, but is not unreasonable in a com-
petitive retail market, where retailers frequently stock
identical products, sell them at the same suggested
retail prices, and at nearly identical costs from man-
ufacturers. All the other notations are the same as in
a monopoly case. Moreover, two additional assump-
tions are made to simplify the analysis of stocking
decisions under competition: (i) sales in period 1 are
equally shared by all firms; and (ii) a buyer will try
other firms in period 2 if the firm he initially selects is
out of stock until his request is accepted or the mar-
ket supply is exhausted. Those assumptions are direct
consequences of the assumption that customers ran-
domly select suppliers and they have no preference of
one specific supplier over another. These assumptions
are reasonable in a commodity market.
Using the same argument as in the monopoly case,

one can show that the aggregate equilibrium capac-
ity is always greater than the potential demand at the
high price, that is N �F �p1�, and less than the poten-
tial demand at the low price equal to N �F �p2�. Hence,
the aggregate fill rate is determined by q = �

∑n
i=1 Ci −

N �F �v��/N�F �v� − F �p2��. Note that each firm’s capac-
ity choice contributes to aggregate fill rate and thus
impacts not only its own market share, but also that
of all its competitors. This creates a strategic inter-
action among the stocking decisions of the n firms
in the market. Determining optimal stocking quanti-
ties under competition therefore becomes a problem

of finding equilibria in their capacity choices. Given
the perfect symmetry among firms, in what follows
we focus only on symmetric equilibria.
Given the capacity choices of other firms’, denoted

by C−i = �C1� 
 
 
 �Ci−1�Ci+1� 
 
 
 �Cn�, firm i maximizes
its total profit, which, according to the two assump-
tions made above, consists of an extra margin on an
equal share (1/n) of first period sales plus a base mar-
gin of p2 − � on each unit, Ci, firm i stocks:

max �i�Ci�C−i�=
N

n �U � �U −v��p1−p2�+�p2−��Ci

s.t. �v−p1�
� =

∑n
i=1Ci −�N/ �U�� �U −v�

�N/ �U��v−p2�
�v−p2�

��

�U ≥v≥p1


(13)

When the market cannot be segmented, the firms pro-
vide �N/ �U�� �U − p2� to serve the entire market at the
low price.
Given C−i, the optimization problem for a seg-

mented market (13) can be expressed only in terms
of v:

max
�U≥v≥p1

�i�v� = N
�U
(

p2 − � + p1 − p2

n

)
� �U − v�

+ N
�U �p2 − ���v − p2�

(
v − p1

v − p2

)�

− �p2 − ��
n∑

j=1� j �=i

Cj 


Again, it is easy to show that firm i’s profit function,
�i�v�, is strictly concave in v ≥ p1. The first order con-
ditions yield:
(
1+ ��p1−p2�

v−p1

)(
v−p1

v−p2

)�

−
(
1+ p1−p2

n�p2−��

)
=0
 (14)

Using the same argument as for (7), we conclude there
exists a unique solution v̄0 > p1 to (14).

A precise characterization of symmetric Nash equi-
libria is presented in Proposition 11 below. In a
nutshell, as in the monopoly case, the equilibrium
involves rationing and segmentation if the market
consists of a sufficiently large high-value population,
whereas the equilibrium has no rationing or segmen-
tation if the market has a small number of high-
value customers. However, both equilibria may be
supportable.

Proposition 11. Let v̄0 be the solution to (14) and
q̄0 = ��v̄0 − p1�/�v̄0 − p2��

� . Let

U 1
c = n�p2 − ���v̄0 − p2��1− q̄0�

p1 − p2
+ v̄0�

U 2
c = p1 − �

1− ��n − 1�/n�1/�
+ p2
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1. If �U ≥ U 1
c , there exists a symmetric segmented

Nash equilibrium; namely, v∗ = v̄0, q∗ = q̄0, and C∗
i =

�N/n �U�� �U − v̄0 + �v̄0 − p2�q
0�� ∀ i = 1� 
 
 
 �n.

2. If �U ≤ U 1
c , or U 1

c ≤ �U ≤ U 2
c and q̄0 < 1 − 1/n,

there exists a symmetric low-price-only Nash equilibrium;
namely, v∗ = �U , q∗ = 1, and C∗

i = �N/n �U�� �U −p2�� ∀ i =
1� 
 
 
 �n.

When customers are risk neutral (i.e., � = 1),
the equilibrium is either a high-price-only solution
or a low-price-only one. In particular, when �U ≤
n�p1 − ��+p2, a symmetric low-price-only Nash equi-
librium exists; that is, no rationing is created, each
firm produces �N/n �U�� �U − p2� and the entire mar-
ket is served only at the low price with a 100% fill
rate. When �U ≥ p1 + n�p2 − ��, a symmetric high-
price-only Nash equilibrium exists; that is, the mar-
ket is served only at the high price and each firm
stocks �N/n �U�� �U − p1�. Note in an oligopoly market
(n > 1), it is always true that p2 + n�p1 − �� > p1 +
n�p2 − ��. Hence, multiple equilibria may exist. Specif-
ically, when �U > p2 + n�p1 − ��, the symmetric Nash
equilibrium is uniquely attained at a high-price-only
market; when �U < p1 +n�p2 − ��, the unique symmet-
ric Nash equilibrium is a low-price-only strategy; oth-
erwise, both equilibria are attainable outcomes.
Sufficient conditions of uniqueness of symmetric

equilibrium are provided in the following corollary:

Corollary 2. If �U ≥ p1 + n�p2 − �� and q0 ≥ 1 −
1/n, the symmetric Nash equilibrium exists uniquely at a
segmented market. If �U ≤ p1 + n��p2 − ��, the symmet-
ric Nash equilibrium exists uniquely at a low-price-only
solution.

Intuitively, competition should make a segmenta-
tion strategy more difficult to sustain. This is because,
with large numbers of competitors, restricting sup-
ply has only a negligible impact on the overall mar-
ket availability but the lost-sales cost of rationing is
incurred entirely by firms that are restricting their
supply. Indeed, the following corollary shows that
there exists a critical number of firms beyond which
creating rationing risk is never as sustainable equilib-
rium. This implies increased competition eventually
eliminates the industry’s ability to support segmenta-
tion via rationing.

Corollary 3. When the number of firms n becomes
sufficiently large, specifically, n ≥ � �U − p1�/��p2 − ��,
there exists the unique symmetric low-price-only Nash
equilibrium.

One can also compare the outcomes of the oli-
gopoly market with those in the monopoly market.
The first difference is that more competition leads to
higher aggregate capacity and higher fill rates relative
to the monopoly case and these differences increase

Figure 6 Optimal Aggregate Fill Rates Under Competition
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in the level of competition. However, firms generate
lower aggregate profits compared to the monopoly
market under more competition, and the difference
increases in the level of competition as well.

Proposition 12. The optimal aggregate fill rate, opti-
mal cutoff value, and optimal aggregate capacity in an
oligopoly market are larger than those in a monopoly mar-
ket, whereas the optimal aggregate profit obtained in an
oligopoly market is less than that in a monopoly market.
Moreover, the optimal aggregate capacity, optimal cutoff
value and optimal aggregate fill rate are all increasing in
the number of competing firms n; however, the optimal
aggregate profit is decreasing in n.

4.4.1. Numerical Examples. We next illustrate the
impact of competition over combinations of the fol-
lowing parameter ranges of � ∈ �0
2�0
5�0
8	, �U ∈
�1
25�1
5�1
75�2	, and p1 = 1, � = 0
5. The examples
show that a symmetric segmented Nash equilibrium
is more likely to be attained when the marketplace
has a small number of competing suppliers. Second,
as the number of high-value customers increases (i.e.,
�U becomes larger), the equilibrium tends to create
rationing risk. For example, at � = 0
8 and �U = 2,
a segmented Nash equlibrium exists uniquely even at
n = 10. Figure 6 illustrates how the number of sup-
pliers influences the optimal aggregate fill rate in the
case of � = 0
5 and �U = 2.

5. Conclusions
Our model shows that rationing can be a profitable
strategy to influence the strategic behavior of cus-
tomers. It also provides a behavioral explanation for
stocking and inventory service level decisions that
are normally explained in terms of holding and lost-
sales cost trade-offs. In our case, the trade-off is
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between the benefits of inducing customers to pur-
chase early at high prices and the cost of lost sales due
to rationing. Our assumptions—a large market of cus-
tomers who are strategic and risk averse, the ability
of the firm to commit to prices and quantities, limited
capacity, and a finite selling season—are reasonable as
a stylized model for big-ticket, seasonal, and durable
goods such as autos, sporting goods, apparel, and
consumer electronics. (Albeit our oligopoly model
assumes commodity products, which only fit some of
these categories.)
Under our assumptions, rationing is not profitable

when customers are risk neutral. But even when cus-
tomers are risk averse, rationing may not be opti-
mal if the number of high-valuation customers is too
small. In general, a large high-value customer seg-
ment, high levels of risk aversion and large differ-
ences in price over time all tend to favor rationing
as an optimal strategy. Numerical examples suggest
that capacity decisions can be even more important
than price in terms of influencing strategic customer
behavior. When the firm has the ability to choose
prices, however, rationing is always an optimal strat-
egy. Last, our oligopoly analysis shows that competi-
tion makes it more difficult to support segmentation
using rationing, and when the number of competitors
is sufficiently large, a low-price-only equilibrium is
the only sustainable outcome. Thus, rationing is more
likely to be used in cases where a firm has some rea-
sonable degree of market power.
As for future work, we have a forthcoming

paper investigating the case where customers do
not perfectly anticipate fill rates, but rather update
their estimates over time based on experience. The
issue here is understanding how the firm should
respond to most profitably influence these expecta-
tions over time, whether the market converges to
an equilibrium and, if so, how the equilibrium is
related to the rational-expectations outcome derived
here.

6. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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