City Research Online

City, University of London Institutional Repository

Citation: Favara, G., Schroth, E. and Valta, P. (2012). Strategic Default and Equity Risk Across Countries. The Journal of Finance, 67(6), pp. 2051-2095. doi: 10.1111/j.15406261.2012.01781.x

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/13997/

Link to published version: http://dx.doi.org/10.1111/j.1540-6261.2012.01781.x

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Strategic Default and Equity Risk Across Countries

Giovanni Favara, Enrique Schroth and Philip Valta*
Journal of Finance, forthcoming.

Abstract

We show that the prospect of a debt renegotiation favorable to shareholders reduces the firm's equity risk. The equity beta and return volatility are lower in countries where the bankruptcy code favors debt renegotiations and for firms with more shareholder bargaining power relative to debt holders. These relations weaken as the country's insolvency procedure favors liquidations over renegotiations. In the limit, when debt contracts cannot be renegotiated, the equity risk is independent of shareholders' incentives to default strategically. We argue that these findings support the hypothesis that the threat of strategic default can reduce the firm's equity risk.

[^0]When a firm is in financial distress, its shareholders and debt holders may benefit from a debt renegotiation to avoid an inefficient bankruptcy or liquidation. The prospect of a debt reduction through a renegotiation may, however, induce shareholders to default even if the firm is solvent (Hart and Moore (1994)). The view that shareholders may default for strategic, rather than for solvency reasons, has proved useful to understand, among other things, the theoretical determinants of corporate bond spreads (Anderson and Sundaresan (1996)), dividend policies (Fan and Sundaresan (2000)), the optimal debt structure (Berglöf and von Thadden (1994); Bolton and Scharfstein (1996), Hackbarth, Hennessy, and Leland (2007)) and the valuation of debt and equity (Garlappi, Shu, and Yan (2008), Davydenko and Strebulaev (2007), and Garlappi and Yan (2011)).

This paper asks whether the option of shareholders to default strategically on the firm's debt explains differences in firms' equity risk across countries. This question is motivated by the observation that shareholders' expected recovery in default and renegotiation varies substantially across countries, depending on the characteristics of the bankruptcy code (Djankov et al. (2008)). Our claim is that the risk of equity should be lower for firms that operate in countries where the insolvency procedure favors debt renegotiations. The reason is that the prospect of a favorable debt renegotiation not only increases the expected payoff to shareholders in default, but also induces them to anticipate the timing of default. As a result, the equity risk becomes less sensitive to the firm's cash flow risk. We find supporting evidence for this claim in a sample of firms operating in countries with different debt enforcement procedures. Our findings point to a new important and measurable determinant of the cross-country differences in equity risk. While the existing literature relates the cross-country differences in equity risk to the country's rule of law, financial development and corporate governance, we relate equity risk to the shareholders' opportunism induced by the insolvency code.

We carry out our analysis in two steps. First, we use a simple model of strategic default to derive empirical predictions relating the firm's equity risk to the shareholders' payoff in default and the procedure of debt enforcement. In the model, the renegotiation of debt is subject
to frictions related to the bankruptcy law. If the bankruptcy law prevents renegotiations, shareholders have little to gain from the strategic default option. If, instead, the bankruptcy law favors a renegotiation, shareholders have incentives to default strategically in order to extract rents from debt holders. In this case, a higher shareholders' expected payoff in a renegotiation increases the value of the put option to default and decreases the risk of equity. Therefore, the model predicts a negative relation between equity risk and the shareholders' relative advantage in the renegotiation game. As debt renegotiations are less likely, the option value of strategic default falls and the equity value covaries more with the firm's cash flow. In the limit where debt renegotiations are not feasible, the equity risk becomes independent of the shareholders' relative bargaining advantage.

In a second step, we test these predictions in a panel of almost 6,000 firms operating in 38 countries. The main advantage of conducting an international analysis is that the crosscountry variation in debt enforcement procedures is exogenous to firms' decisions. We exploit this exogenous variation to identify firms' strategic default incentives. To measure frictions in the renegotiation of debt contracts, we use data from the Djankov et al. (2008) survey on the characteristics of insolvency procedures around the world. We proxy the shareholders' bargaining advantage relative to debt holders with commonly used firm-specific variables, namely, asset intangibility for the firm's liquidation costs, and the concentration of equity ownership for the shareholders' bargaining power in debt reorganizations. Our main measures of equity risk are the firm's domestic market beta and total return volatility. ${ }^{1}$

After controlling for firm-specific and country-specific characteristics, we find that the average firm's equity beta and return volatility (1) are lower in countries where the bankruptcy code favors a renegotiation of debt, (2) decrease with the shareholders' bargaining advantage relative to debt holders in a renegotiation, and (3) are less sensitive to the shareholders' advantage as the bankruptcy code includes more frictions in the renegotiation process. In terms of cost of capital, our findings imply that firms operating in environments with more debt renegotiation frictions pay, on average, between 23 and 30 basis points per month more than
comparable firms operating in countries with no debt renegotiation frictions. We also find that the prospect of strategic default reduces the systematic but not the idiosyncratic volatility of firms. This finding rules out the possibility that the systematic risk of firms reflects insolvency risk and provides further support to the strategic default hypothesis.

Our results are robust to alternative definitions of beta to account for the fact that many stocks in our sample may be illiquid or may have time-varying degrees of integration to the world market. We also show that our results do not depend on other sources of equity risk that might be simultaneously determined with the strategic default option, including firm's financial leverage. The results are also robust to the exclusion of multinational firms, minimizing the concern that these firms may strategically file for bankruptcy in a more favorable foreign jurisdiction.

Our paper makes three contributions. The first contribution is to clarify the debate on whether or not strategic default is an important factor for the pricing of financial securities. Although several theoretical papers suggests that the prospect of shareholders' strategic default may affect the valuation of debt and equity (Francois and Morellec (2004), Davydenko and Strebulaev (2007), Garlappi, Shu, and Yan (2008)), it is still unclear if this mechanism is empirically important. Davydenko and Strebulaev (2007) find that standard proxies of strategic default behavior do not explain much of the cross-sectional variation of corporate bond prices in the US. Conversely, Garlappi, Shu, and Yan (2008) conclude that the possibility of strategic default helps explain the relation between stock returns and default probabilities in the crosssection of US stocks. These studies measure the shareholders' expected payoff in the event of financial distress using only firm-specific proxies, irrespective of the bankruptcy procedure. Our findings that strategic default affects the equity risk of firms only in countries where the bankruptcy procedure favors debt renegotiations, suggests that the effects associated with strategic default cannot be examined independently of the legal context.

The second contribution is to show that cross-country differences in equity risk are explained by the interaction between firm and country characteristics. The existing literature has
established a robust link between equity risk and country measures of creditor protection (e.g., Morck, Yeung and Yu (2000), Bartram, Brown and Stulz (2011)). We show, instead, that crosscountry differences in equity risk can be explained by the interaction between characteristics of the bankruptcy code and firm-specific determinants of the incentives to default strategically. To our knowledge, this paper is the first to show that firm-specific characteristics can influence the firm's equity risk if they operate in a legal environment with weak protection of creditors' rights.

Finally, our paper contributes to the law and finance literature. This literature has mainly focused on how the system of law affects aggregate outcomes, such as financial development. ${ }^{2}$ Recently, some attention has been given to the role of creditor protection on firms' decisions. Davydenko and Franks (2008) study how international bankruptcy codes affect distressed reorganizations; Acharya, Sundaram and John (2010) and Acharya, Amihud and Litov (2010) examine how bankruptcy codes affect the firms' capital structure and risk taking, respectively; Acharya and Subramanian (2009) investigate how bankruptcy codes affect firms' innovation strategies. In establishing a link between debt enforcement procedures, strategic default, and equity risk, our paper highlights an additional important channel through which the system of law influences corporate decisions, and has implications for firm-level outcomes.

The rest of the paper proceeds as follows. Section I outlines the real options model of strategic default and derives testable predictions. Section II describes the data and develops our measures of renegotiation frictions and equity risk. Section III presents the empirical framework and our main results. Section IV contains robustness checks, and section V tests the model's implications on volatility and stock returns. Section VI concludes.

I. Theory and Testable Implications

In this section we present a simple model of strategic default to derive predictions relating frictions in the renegotiation of debt contracts to the firm's equity risk. The model extends the setup of Fan and Sundaresan (2000) to allow for the possibility that debt renegotiations between
shareholders and debt holders can fail because of frictions introduced by the bankruptcy code.

A. The Model

Managers act in the best interest of shareholders and the investment policy is fixed. Assets are traded continuously in arbitrage free markets and the term structure is flat, with risk free rate r at which investors may borrow and lend. The cash flow from operations, X, is independent of capital structure choices and evolves according to a geometric Brownian motion, with a constant growth rate $\mu>0$ and a constant volatility σ_{X}, i.e.,

$$
d X_{t}=\mu X_{t} d t+\sigma_{X} X_{t} d B_{t}
$$

where B_{t} is a standard Brownian motion. The cash flow uncertainty is the only source of risk in this model.

Because of the tax deductibility of interest payments, the firm has an incentive to issue debt. Debt payments consist of a perpetual coupon payment, c, whose levels remain constant until the firm declares bankruptcy. Shareholders have the option to default on this payment, and will do so when the cash flow falls below an endogenous default threshold, X_{B}. If debt is renegotiated following default, debt holders are offered the firm's equity in exchange, and the value of the firm is split between shareholders and debt holders according to their bargaining powers, η and $1-\eta$, respectively. ${ }^{3}$

To account for renegotiations frictions, we follow Davydenko and Strebulaev (2007), and allow the debt renegotiation to fail with probability $q .{ }^{4}$ If renegotiations fail, the firm is liquidated at a dissipative cost $\alpha \in[0,1]$. Debt holders, who have absolute priority in liquidation, receive $(1-\alpha)$ of the value of the firm at default, while shareholders receive nothing. When q is close to zero, there are few frictions in the debt renegotiation, and there is scope for shareholders to extract firm value from debt holders. In the limit where q equals one, the debt cannot be renegotiated and claims are settled based on absolute priority rules. ${ }^{5}$

B. Optimal Strategic Default

Shareholders choose X_{B} to maximize the value of equity, taking into account the anticipated outcome of the renegotiation. Using contingent claims techniques (see the internet Appendix for the details) the after-tax value of equity, E, and the endogenous default threshold X_{B}, can be written as

$$
\begin{gather*}
E(X ; \alpha, \eta, q)=(1-\tau)\left[\left(\frac{X}{r-\mu}-\frac{c}{r}\right)+\left(\frac{1}{1-\lambda} \frac{c}{r}\right)\left(\frac{X}{X_{B}}\right)^{\lambda}\right], \tag{1}\\
X_{B}=\frac{r-\mu}{r} \frac{\lambda}{\lambda-1} \frac{c}{1-(1-q) \eta \alpha}, \tag{2}
\end{gather*}
$$

where $\left(X / X_{B}\right)^{\lambda}$ is the risk-neutral probability of default and renegotiation, and

$$
\lambda \equiv\left(\frac{1}{2}-\frac{\mu}{\sigma_{X}^{2}}\right)-\sqrt{\left(\frac{1}{2}-\frac{\mu}{\sigma_{X}^{2}}\right)^{2}+\frac{2 r}{\sigma_{X}^{2}}}<0
$$

measures the riskiness of the default option.
In equation (1), the value of equity has two terms. The first term is the present value of cash flow minus outstanding debt. The second term, which depends on the distance from the current cash flow to the default threshold, captures the value of the shareholders' option to default. Because $\lambda<0$, the option to default increases the value of equity and is worth more the higher the firm's leverage, c, and the default threshold, X_{B}.

In equation (2), the default threshold increases with the shareholders' bargaining power, η, and liquidation costs, α, but decreases with the probability of renegotiation failure, q. Intuitively, the strategic default incentives of shareholders increase with their bargaining power or with the liquidations costs because both increase the share of the total assets that debt holders will concede in order to avoid a costly liquidation. Conversely, the strategic default incentives decrease with more renegotiation frictions because, in that case, shareholders are less likely to extract any renegotiation rents. ${ }^{6}$

C. Model Predictions

Our main focus is to study how changes in debt renegotiation frictions, liquidation costs, and shareholders' bargaining power affect the risk of equity. To price the firm's equity and measure its risk, we follow Carlson, Fisher, and Giammarino (2004, 2006) and assume the existence of a risky asset M, which can hedge cash flow uncertainty. We also assume that the returns on M are perfectly correlated with changes in the firm's cash flow. As a consequence, it is possible to replicate the dynamics of the firm's equity value by holding a portfolio with time-varying weights in M satisfying $\frac{d E}{E}=w_{t} \frac{d M}{M}$. A natural way to interpret M is to think of it as an asset that represents the market portfolio. In such a case, shocks to firm's cash flow perfectly correlate with the undiversifiable market risk.

C.1. Equity Beta

Under these assumptions, the firm's equity beta equals w_{t} and, as shown in the internet Appendix, it corresponds to the elasticity of the equity value with respect to X, i.e.,

$$
\begin{equation*}
\beta_{E}=\frac{\partial E}{\partial X} \frac{X}{E}=1+\frac{(1-\tau) \frac{c}{r}}{E}-\frac{(1-\tau) \frac{c}{r}}{E}\left(\frac{X}{X_{B}}\right)^{\lambda} . \tag{3}
\end{equation*}
$$

Therefore, the equity beta depends on q, α and η through X_{B} (see equation (2)).
In equation (3) the firm's equity beta consists of three terms. The first one is the firm's cash flow beta which, for simplicity, is normalized to one. The second term captures the effect of financial leverage on the equity beta. Clearly, a higher leverage increases the equity beta, ceteris paribus. The third term measures the equity's option value to default. Since λ is negative, the more valuable is the option to default relative to the total equity value, the lower is the equity beta.

In equation (3), β_{E} measures the firm's exposure to all the independent risk factors in X. As such, the equity beta in (3) is not necessarily the market (CAPM) beta. However, given the assumption that X correlates perfectly with M, β_{E} captures the priced market risk in X, and we can therefore interpret it as the market beta. ${ }^{7}$

We are interested in the sensitivity of the equity beta to renegotiation frictions and to the shareholders' relative advantage in default. Differentiating β_{E} with respect to q, we get

$$
\frac{\partial \beta_{E}}{\partial q}>0
$$

implying that more frictions in the renegotiation of debt contracts lead to a higher equity beta. Given two identical firms (i.e., keeping η and α constant), which operate in countries with different bankruptcy laws, the firm facing more renegotiation frictions (higher q) has on average a higher equity beta. The reason is that more frictions in the renegotiation of debt increase the firm's undiversifiable cash flow risk.

Next, differentiating (3) with respect to α and η we obtain

$$
\frac{\partial \beta_{E}}{\partial \alpha}<0 \quad \text { and } \quad \frac{\partial \beta_{E}}{\partial \eta}<0 .
$$

Given two firms operating in countries with the same degree of debt enforcement (i.e., keeping q constant) the equity beta is lower for a firm with larger liquidation costs and higher bargaining power (higher α and η). As α and η increase, shareholders are able to extract more rents from debt holders in a renegotiation. In this case, the equity beta decreases because the option value of strategic default increases.

Furthermore, using (2) and (3) we obtain

$$
\frac{\partial^{2} \beta_{E}}{\partial \alpha \partial q}>0, \quad \text { and } \quad \frac{\partial^{2} \beta_{E}}{\partial \eta \partial q}>0
$$

implying that the sensitivity of the firm's equity beta to α or η decreases with q.
These comparative statics are summarized in Figure 1, which plots the equity beta as function of liquidation costs, α, and the frictions in the procedure of debt enforcement, $q \cdot{ }^{8}$ As shown, the equity beta depends negatively on liquidation costs when q is low, and is independent of liquidation costs as q approaches 1 . The intuition is straightforward. When debt contracts can be easily renegotiated, the relative advantage of shareholders increases with liquidation costs. The reason is that debt holders would receive only a small fraction of the assets if the firm is liquidated and therefore prefer to renegotiate the debt contract. This effect reduces the equity
beta. On the other hand, liquidation costs do not affect the equity beta for values of q close to one because, in this case, the bankruptcy law ensures that debt holders' claims are protected.
<INSERT FIGURE 1 ABOUT HERE>

We summarize the comparative statics results in the following hypotheses. Other things equal:

- Firms in legal regimes that favor the renegotiation of debt contracts have a lower equity beta.
- Firms with higher liquidation costs or with higher shareholders' bargaining power in case of debt renegotiations have a lower equity beta.
- The difference in equity beta between firms facing different liquidation costs or shareholders' bargaining power is smaller in countries with more frictions in the renegotiation of debt.

C.2. Equity Returns Volatility

In our model, the total volatility of equity returns is derived in a similar way as the equity beta. As shown in the internet Appendix, total volatility, $\sigma_{E} \equiv \operatorname{Vol}\left(\frac{d E}{E}\right)$, can can be written as follows:

$$
\begin{equation*}
\sigma_{E}=\sigma_{X} \frac{\partial E}{\partial X} \frac{X}{E}=\sigma_{X} \beta_{E} \tag{4}
\end{equation*}
$$

Since σ_{E} is linear in β_{E}, the comparative statics of total volatility with respect to η, α, and q are the same as those derived for β_{E}.

Despite this equivalence, we find it useful to look into total volatility and its decomposition into idiosyncratic and systematic volatility. In our model, shareholders choose only the timing of default but do not control cash flow risk. Thus, if the bankruptcy code favors debt renegotiations, shareholders may reduce the firm's systematic risk by defaulting before insolvency.

However, if the bankruptcy code prevents debt renegotiations, shareholders may also reduce the firm's idiosyncratic risk to avoid bankruptcy. ${ }^{9}$ Because the model excludes this possibility, it is important to ascertain empirically which component of equity risk is most correlated with the shareholders's strategic default option. We expect the bankruptcy code to affect systematic volatility via the strategic default channel, and idiosyncratic volatility via the risk of insolvency. We study these relations in section V.

D. Discussion

The model's predictions are derived under the assumption that leverage, c, is given. A more general setting would allow c to depend also on η, α and q. On one hand, shareholders could lever up and default strategically if they expected high renegotiation payoffs. On the other hand, the firm's ability to raise more debt would be reduced if creditors expected lower renegotiation payoffs. Therefore, in order to take equation (3) to the data, it is important that we control for the variation in leverage that is exogenous to equity risk. We address this concern in section IV.C by instrumenting firms' leverage with the country's statutory corporate tax rate. The country's tax rate is exogenous to the firms' financing decisions and affects their equity beta only through leverage.

In the model, the linearity between the equity beta and expected returns also implies that we can relate α, η and q to the cross-section of returns. Although section V.B presents results for the equity returns, the main focus of our analysis is on the relation between strategic default, the firm's equity beta, and volatility. The reason is that, in our model, expected returns are affected only because the equity beta is affected. Moreover, there is the concern that α, η and q may proxy for additional risk factors unrelated to strategic default, which a regression based on cross-sectional returns may fail to capture. Our approach follows several recent papers that study the equity beta implications of product market competition (Aguerrevere (2009)), corporate investment (Carlson, Fisher, and Giammarino (2004)), seasoned equity offerings (Carlson, Fisher, and Giammarino (2006)), mergers and acquisitions (Hackbarth and Morellec (2008)),
and financial distress (Garlappi and Yan (2011)).

II. Data Description

To test the model's predictions, we construct a data set that combines country and firmspecific characteristics. The country-specific data include characteristics of the insolvency procedures. The firm-specific data include proxies of shareholders' relative advantage in renegotiation, and standard controls to capture determinants of equity risk. Table I contains an overview and definitions of the main variables in our data set. The Appendix contains a more detailed description on the data selection procedure.

<INSERT TABLE I ABOUT HERE>

A. Country-level Data

We construct a panel of 5,958 firms in 38 countries from 1993 to 2006 . We include all countries covered by the Djankov et al. (2008) survey that can be matched to Datastream or CRSP. Djankov et al. (2008) present attorneys and judges in 88 countries an identical case of a hotel about to default on its debt, and ask them to describe in detail how the hotel's debt will be enforced in their countries. Based on these responses, they construct country-specific measures of the quality of debt enforcement, some of which form the basis of our analysis.

The surveys were conducted in 2005. Given the time-series dimension of our analysis, we project all variables into the past, assuming that they have remained stable through time. This assumption is based on the premise that a country's approach to insolvency is deeply rooted in economical, political, and societal values, which are very persistent, if not permanent, features of a country's environment. In section IV.D, we identify those countries that changed their bankruptcy code during our sample period, and check that our main findings continue to hold in the subsample of country-years following the last recorded change in the country's bankruptcy code. ${ }^{10}$
<INSERT TABLE II ABOUT HERE>

A.1. Renegotiation failure, Priority, and Creditors' recovery

In the model, a high value of q means that an attempt by the shareholders to renegotiate their debt is likely to fail, i.e., that debt holders are better protected against shareholders' strategic default. We construct three proxies for q using the Djankov et al. (2008) survey. The first two, Renegotiation failure and Priority, summarize creditors' power to enforce their claims. The third proxy, Creditors' recovery, measures creditors' expected payoff in default. Table II presents these data.

The Renegotiation failure index summarizes a number of characteristics of debt enforcement procedures that protect creditors from shareholders' strategic default. It includes the rights of creditors to seize and sell the debt collateral without court approval; to enforce their claims in an out-of-court procedure; to approve the appointment of an insolvency administrator and dismiss it; and to vote directly on the reorganization plan of a defaulting firm. The Renegotiation failure index includes also information on whether an insolvency procedure cannot be appealed, and whether the management is automatically dismissed during the resolution of the insolvency procedure. The precise definition of this index is in Table I. Essentially, Renegotiation failure is an index of the frictions that shareholders will face if they try to renege the outstanding debt, whether it is through a formal insolvency procedure or outside of court. The index ranges from zero to one: the higher the score, the stronger the protection of creditors' rights. Table II shows that the average value of Renegotiation failure in our sample is 0.54 , with a standard deviation of 0.25 .

Our second proxy, Priority, is narrower than Renegotiation failure because it records only the order in which creditors' claims are paid upon default. The Priority index ranges from one to four and equals four in countries where creditors are ranked first in the distribution of proceeds during the insolvency procedure. In countries where Priority has a value smaller than four, other claimants, such as tax authorities, employees or even shareholders, have priority
over creditors in the distribution of proceeds. In our sample, deviations from absolute priority occur in 14 countries. As expected, Priority varies much less across countries than the index of Renegotiation failure. Moreover, while more than half of the sampled countries exhibit no violations of absolute priority, only five countries have an index of Renegotiation failure equal to one. ${ }^{11}$

The shareholders' strategic default incentives are not only affected by the law's ability to enforce debt repayments, but also by their expected payoff in default. Accordingly, we also use the creditors' recovery rate, which is an inverse measure of the shareholders' benefits to engage in strategic default. The Creditors' recovery index refines Priority because it depends not only on the order in which secured creditors are paid, but also on the time it takes for a creditor to get paid, and on the overall estimated costs of the insolvency procedure. In our model, the creditors' recovery rate, conditional on default, is strictly increasing and concave in $q .{ }^{12}$ Therefore, we expect the same comparative statics as with respect to Renegotiation failure and Priority. Table II shows that in our sample the highest Creditors' recovery rate is in Japan and Singapore, and the lowest in Brazil; the average in our sample is 58%.

A.2. Country-level Controls

In our estimations we use other country level data to control for countries' heterogeneity in legal institutions and financial markets development. In particular, we control for the origin of the country's legal system to account for unobservable characteristics of the insolvency code. We also control for the depth of the financial market because it may influence shareholders' growth opportunities and their outside options, and thus their strategic default incentives. We measure financial development with the ratio of private credit to GDP (Private credit to GDP), and the depth and liquidity of the stock market with the stock market turnover ratio (Stock market turnover) and the stock market capitalization to GDP (Stock market cap to GDP). Finally, we measure Local Growth Opportunities with the price to earnings ratios of industry portfolios, following Bekaert, Harvey, and Lundblad (2007).

B. Firm-level Data

We compute a firm's monthly stock return using share prices from Thomson-Reuters' Datastream and CRSP. We match these monthly returns to the firm's annual financial statements in Thomson-Reuters Worldscope and COMPUSTAT. We follow Fama and French (1992) and match the accounting data ending in calendar year $t-1$ to the twelve monthly stock returns from July of year t to June of year $t+1$.

Given that our cross-section of countries includes several emerging markets, it is likely that many stocks are infrequently traded. Bekaert, Harvey, and Lundblad (2007) propose a measure of trading frequency based on the incidence of observed daily zero returns. Since we use monthly data, we exclude firms that have a sequence of at least three consecutive zero monthly stock returns. We verify that our results hold when using different cutoffs (up to six). ${ }^{13}$

To reduce the impact of outliers, we trim all variables at the 1% level in each tail and exclude observations where the stock price is less than USD 1. Our sample also excludes financial firms because financial firms' accounting data is largely dependent on statutory capital requirements.

To minimize the risk that firms may be subject to insolvency procedures in countries where they cross-list rather than at home, we exclude all firms where the first two characters of the ISIN code do not match with the country of origin. This exclusion, however, does not rule out the possibility that a firm may file for bankruptcy in a foreign jurisdiction with an insolvency law that best protects it from its creditors. Section IV.D discusses to what extent a multinational firm can engage in international forum shopping and confirms the robustness of our results to the exclusion of firms that operate internationally.

The total number of firms in our sample is 5,958 . Table II shows that the number of firms varies substantially across countries. In our sample, the countries with the largest number of firms are Japan $(1,501)$ and the US $(1,225)$. In section IV.E we show that our results are not affected by the predominance of these two countries in the sample.

B.1. Equity Beta

We use the Domestic Market Beta as our first measure of equity risk. Following standard methodology, we estimate monthly firm-specific domestic market betas by regressing each firm's stock return on the contemporaneous domestic stock market index return using 60 historical monthly observations. Domestic market betas are the appropriate measure of the model's equity beta only when the stock is held in a domestic portfolio and the domestic stock market is segmented from the world market.

As an alternative, we define the Overall Market Beta as the sum of the betas in the regression of firms' stock returns on the contemporaneous world market return (MSCI World) and the residual of the orthogonal projection of the domestic market return on the world market return. This definition of beta also corresponds to the equity beta in our model but allows for the risk factor itself to be an arbitrary combination of the world factor and an orthogonal domestic factor. Karolyi and Stulz (2003) derive an upper bound for the asset pricing mistake of the domestic CAPM, when the world CAPM is the correct model. ${ }^{14}$ Accordingly, we use the Overall Market Beta for stocks with an asset pricing mistake larger than 0.5% returns per year, and the Domestic Market Beta for all others stocks.

As a second alternative we use the World Market Beta by regressing firms' stock returns on the contemporaneous world stock market return (MSCI World) using 60 observations. To identify the stocks that are integrated to the world market we construct the country-year segmentation measure suggested by Bekaert et al. (2011). Specifically, we collect annual earnings yields from Datastream and use the 38 Fama-French industries to construct the segmentation measure. Next, we use the World Market Beta for all stocks in a given country for the years where the segmentation index is lower than the country's median. Otherwise, we use the Domestic Market Beta. The advantage of this approach is that it defines segmentation independently of an asset pricing model. We explore the robustness of our results to different segmentation cutoff values in section IV.B.

Table III summarizes the sample distribution of our firm-specific variables. We find that
the distributions of domestic and world betas are very similar. We report the country average Karolyi and Stulz (2003) upper bound mistake in the Appendix (Table A.I). The asset pricing mistakes tend to be high, on average, only in countries where the world market covaries poorly with the firms' returns (e.g., in China, Russia, Taiwan, and Thailand).

<INSERT TABLE III ABOUT HERE>

B.2. Returns Volatility

Our first measure of volatility, Total volatility, is defined as the annualized standard deviation of monthly stock returns over the same rolling five-year window as the betas. We follow Bartram, Brown, and Stulz (2011) and decompose total volatility into systematic risk and idiosyncratic risk using a market model. Specifically, for each firm i we estimate

$$
\begin{equation*}
r_{i t}=\alpha+\beta_{i t-1} r_{t-1}^{M}+\beta_{i t} r_{t}^{M}+\beta_{i t+1} r_{t+1}^{M}+\varepsilon_{i t}, \tag{5}
\end{equation*}
$$

where $r_{i t}$ is the firm's monthly stock return, r_{t}^{M} is the return on the domestic market index, and $\varepsilon_{i t}$ is an error term. We define Idiosyncratic volatility as the annualized standard deviation of $\varepsilon_{i t}$. Our estimate of Systematic volatility is then the square root of the difference between total return variance and the variance of $\varepsilon_{i t}$.

B.3. Liquidation Costs and Bargaining Power

We use two firm-specific proxies of the shareholders' strategic default incentives: the firm's liquidation costs and the shareholders' bargaining power in renegotiations. We measure liquidation costs, α, with the firm's intangibility of assets. The Intangibles measure is defined as 1 minus the average of the expected exit values per dollar of the different tangible assets, i.e., receivables, inventories, net property, plant, and equipment, and cash, weighted by their proportion of total book assets. We use the same exit values for inventories, net property, plant, and equipment as Berger, Ofek, and Swary (1996). As in Garlappi, Shu, and Yan (2008) and Almeida and Campello (2007) we set the exit value of cash to 1, i.e., we consider cash as 100%
tangible. Since there is disagreement as to whether cash should be included or excluded from the definition of tangible assets, we evaluate the robustness of our results with a second variable, Intangibles (with cash), which sets the exit value of cash to 0 . The average Intangibles is 45.9% and the average Intangibles (with cash) is 59.3%. Both variables have a standard deviation of 11%.

As a measure of shareholders' bargaining power, η, we use the proportion of shares held by insiders to total shares outstanding (Insiders' share). This proportion includes shares held by officers, directors and their immediate families; shares held in trust or by pension plans; and shares held by individuals who hold 5% or more of the outstanding shares. Shares held by insiders play an important role in potential renegotiations of debt contracts because larger insider ownership could improve shareholder coordination and increase the insiders' incentives to work in the interest of all shareholders. For instance, Betker (1995) shows that a 10% increase in CEO share holdings increases equity deviations from the absolute priority in Chapter 11 by as much as 1.2% of firm value. Our proxy of shareholders' bargaining power in renegotiations is closely related to similar proxies used for the US only, as for example in Davydenko and Strebulaev (2007). ${ }^{15}$ In our sample, Insiders' share is on average 39.9% and its standard deviation is 22.8%.

B.4. Firm-level Controls

We also control for additional firm-specific variables that can affect equity risk. Firm Size is the logarithm of the market value of equity. The firm's book-to-market ratio (Book-to-market) is the total book value of assets minus the total value of liabilities, divided by the market value of equity. As suggested by Carlson, Fisher, and Giammarino (2004) we control for Size in order to capture differences in firm maturity, and for Book-to-market in order to capture differences in operational leverage. The average firm in the international cross-section has assets worth $\$ 5.95$ billion (median $\$ 5.90$ billion).

We also control for financial leverage, which we expect to affect the firm's systematic risk
not only through the traditional leverage channel but also through its relation with the firm's investment opportunities, as suggested by Gomes and Schmid (2010). Since leverage may be endogenously determined with the default threshold and the equity risk, we follow Lemmon, Roberts, and Zender (2008) in order to identify the exogenous variation in leverage. They show that, in the cross-section of COMPUSTAT firms, the leverage variation is stable over time and largely explained by the initial level of leverage. We apply their analysis to our international sample of firms and perform a first-stage regression of firm i 's leverage at time $t>0$ (Leverage ${ }_{i t}$) on firm i 's initial leverage (Leverage ${ }_{i 0}$), and on country and firm-specific determinants of leverage. Therefore, our variable Leverage projection is the orthogonal projection of leverage on Leverage $_{i 0}$, the country's statutory corporate tax rate, Renegotiation failure, Intangibles, Insiders' share, Size, Book-to-market and yearly dummies. ${ }^{16}$ The country's statutory tax rate is the main instrument in this first-stage regression because it is unlikely that the firms' financing decisions affect the country's statutory tax rate. ${ }^{17}$ The results from this regression are reported in Table A.II in the Appendix.

III. Empirical Analysis

This section and the next one present our empirical method and the results of our tests concerning the equity beta. Section V focuses on volatility and equity returns.

A. Method

Our hypothesis is that the shareholders' risk related to strategic default is higher in countries where debt renegotiations are more likely to fail due to frictions introduced by the insolvency code. The testable implications, derived from equation (3), are that (i) more renegotiation frictions increase the individual firm's equity beta, and (ii) the sensitivity of the equity beta to liquidation costs and shareholders' bargaining power is lower in countries where debt renegotiations are less likely. To test these predictions we regress the Domestic Market Beta on our measures of firm's liquidation costs and shareholders' bargaining power, and on the country
specific measures of debt enforcement.
By construction, our monthly panel of firms is likely to exhibit time-series dependence in firm-specific variables. Therefore, we follow Petersen (2009) and use a pooled OLS estimator with firm-time-clustered standard errors. For robustness, we redo our analysis using a Fama and MacBeth (1973) estimator, which has been shown to produce unbiased inference in the presence of cross-sectional dependence (Petersen (2009)).

All our specifications control for Size and Book-to-market in order to capture cross-sectional differences in the maturity of firms and the operational leverage of the assets in place, respectively. In order to account for the effect of financial leverage on the equity beta, we use Leverage projection. Provided that the instruments for Leverage are exogenous, this projection is orthogonal to the cross-country determinants of equity risk that jointly determine leverage.

B. Direct Effects of Renegotiation failure

We measure the direct effect of debt enforcement on the equity beta through the coefficient δ_{q} in the regression

$$
\begin{align*}
\beta_{i t} & =\underbrace{\mathbf{x}_{i t}^{\prime} \gamma}_{\text {controls }}+\delta_{q} \text { Renegotiation failure }_{C} \tag{6}\\
& +\delta_{\alpha} \text { Intangibles }_{i t}+\delta_{\eta} \text { Insiders' }^{\prime} \text { share }_{i t}+\varepsilon_{i t},
\end{align*}
$$

where $\beta_{i t}$ is month t 's equity beta for firm i in country C. Column 1 of Table IV shows the estimates of this equation. Column 2 reports the results after replacing Intangibles with Intangibles (with cash).

<INSERT TABLE IV ABOUT HERE>

Controlling for Size, Book-to-market, and Leverage, we find that an increase in the likelihood that a debt renegotiation fails is associated, on average, with a higher beta. This effect is statistically significant at the 1% level.

We find that the Insiders' share of equity, used here as a proxy for the shareholders' bargaining power, has a negative and significant effect on the firm's beta. While Intangibles also has the hypothesized negative and significant effect on the equity beta, Intangibles (with cash) has the opposite sign.

Finally, we note that in our international cross-section, value stocks have a larger equity beta, on average, than growth stocks (Book-to-market), although the effect is only significant at the 1% level in column 2. This result is consistent with the prediction by Carlson, Fisher, and Giammarino (2004) that Book-to-market is a close proxy for operational leverage and therefore increases the equity beta. Surprisingly, we find that Size has a positive, although small, effect on beta. One explanation is that, outside the US, the population of listed firms is heavily concentrated on mature ones, and the international cross-section fails to identify the effect of firms' maturity.

C. Interactions Between Liquidation Costs, Shareholders' Bargaining Power and Renegotiation failure

To investigate if the empirical relationship between Renegotiation failure and the equity beta operates through the strategic default channel, we interact Renegotiation failure with our proxies of shareholder's bargaining power,

$$
\begin{align*}
\beta_{i t} & =\underbrace{\mathbf{x}_{i t}^{\prime} \gamma}_{\text {controls }}+\delta_{q} \text { Renegotiation failure }_{C}+\delta_{\eta} \text { Insiders' }^{\prime} \text { share }_{i t} \tag{7}\\
& +\delta_{q \eta} \text { Renegotiation failure }_{C} \times \text { Insiders' }^{\prime} \text { share }_{i t}+\varepsilon_{i t},
\end{align*}
$$

and liquidation costs

$$
\begin{align*}
\beta_{i t} & =\underbrace{\mathbf{x}_{i t}^{\prime} \gamma}_{\text {controls }}+\delta_{q} \text { Renegotiation failure }_{C}+\delta_{\alpha} \text { Intangibles }_{i t} \tag{8}\\
& +\delta_{q \alpha} \text { Renegotiation failure }_{C} \times \text { Intangibles }_{i t}+\varepsilon_{i t} .
\end{align*}
$$

According to the model, the equity beta is decreasing in the bargaining power or liquidation costs but the sensitivity of beta should decrease monotonically as a debt renegotiation is more
likely to fail. Therefore we expect $\delta_{\eta}<0$ and $\delta_{q \eta}>0$, and $\delta_{\alpha}<0$ and $\delta_{q \alpha}>0$.
The results in columns 3 through 5 of Table IV support these hypotheses. The firm's equity beta is decreasing in the shareholders' bargaining power (column 3) and this effect is significant at the 1% level. Moreover, the coefficient of the interaction term between Insiders' share and Renegotiation failure is, as expected, positive and statistically significant. Similarly, column 4 shows that the direct effect of asset intangibility on the equity beta is negative and significant, and that the interaction with Renegotiation failure has a predicted positive and significant coefficient. Column 5 shows that our previous result for the interaction between asset intangibility and Renegotiation failure (column 4) is robust to a measure of liquidation costs that includes cash as an intangible asset.

In summary, the results show that the sensitivity of the equity beta to liquidation costs or shareholders' bargaining power decreases with the probability of renegotiation failure, as predicted by the model.

D. Economic Interpretation

Panel B of Table IV shows the results of further tests regarding the quantitative implications of strategic default on equity beta. The model implies that, in a country where a debt renegotiation is impossible ($q=1$), the strategic default option is worthless. As a consequence, the equity beta should be independent of the shareholders' bargaining power and liquidation costs. Therefore, we test the null hypotheses that $\left.\frac{\partial \beta_{E}}{\partial \eta}\right|_{q=1}$ and $\left.\frac{\partial \beta_{E}}{\partial \alpha}\right|_{q=1}$ are zero. From (7) and (8), the relevant test statistics are $\hat{\delta}_{\eta}+\widehat{\delta}_{q \eta}$ and $\hat{\delta}_{\alpha}+\widehat{\delta}_{q \alpha}$, respectively. To show whether these statistics are economically significant, we multiply them by the sample average market risk premium. Thus, we report the statistics in monthly excess returns, i.e., cost of capital, rather than beta units.

In line with the model's predictions, Column 3 shows that the effect of bargaining power, as measured by the Insiders' share, almost disappears (less than 7 basis points per month) when debt renegotiations are difficult. Column 4 shows, however, that Intangibles has a significant
negative effect on the equity beta, equivalent to 20 basis points excess returns per month, as Renegotiation failure approaches one. Interestingly, we estimate a larger effect (40 basis points, column 5) when we use Intangibles (with cash). Our interpretation is that Intangibles overstates the tangibility of cash (it assumes cash is 100% tangible) whereas Intangibles (with cash) understates it (it assumes cash is 100% intangible). Therefore, the estimates of δ_{α} may be capturing a return premium to cash that is unrelated to the strategic default channel, as in Dittmar and Mahrt-Smith (2007).

We also evaluate the economic significance of the strategic default effect on equity beta by computing the implied difference between the average monthly excess returns in a country where a debt renegotiation is certain $(q=0)$ and in a country where it is impossible $(q=1)$. The test statistics

$$
\begin{aligned}
& \mathbb{E}\left(r_{i}-r \mid q=1\right)-\mathbb{E}\left(r_{i}-r \mid q=0\right)=\left(\hat{\delta}_{q}+\hat{\delta}_{q \eta} \eta\right) \times\left(r^{M}-r\right), \text { and } \\
& \mathbb{E}\left(r_{i}-r \mid q=1\right)-\mathbb{E}\left(r_{i}-r \mid q=0\right)=\left(\hat{\delta}_{q}+\hat{\delta}_{q \alpha} \alpha\right) \times\left(r^{M}-r\right),
\end{aligned}
$$

computed at the sample means of Insiders' share, Intangibles and Intangibles (with cash) are shown in Panel B of Table IV. We find that, ceteris paribus, stock returns in a country with the highest debt renegotiation frictions are, on average, higher by 8 and 12 basis points per month than for similar stocks in countries with no renegotiation frictions. This difference is statistically and economically significant. We also report an upper bound for this difference, by evaluating the statistics above when α or η equal one: the maximum return difference can reach up to 44 basis points per month.

IV. Robustness

So far, our results establish that a country's debt renegotiation procedure has important effects on the firms' beta. The fact that this effect goes through the interaction with our measure of liquidation costs and shareholders' bargaining power suggests that shareholders' strategic default behavior is at play. However, our results also show that q has a direct effect
on beta even if firms have no advantage vis-à-vis creditors in renegotiations. In this section we account for effects on equity risk that are unrelated to strategic default incentives and show that the interaction effects that identify strategic default prevail and are even stronger. We also evaluate the robustness of our results to alternative measures of beta.

A. Additional Cross-country Variation

Following recent studies of the effect of institutions on firm-level outcomes (Bae and Goyal (2009), or Qian and Strahan (2008)), we control for the country's ratio of private credit to GDP (Private credit to GDP), the stock market turnover ratio (Stock market turnover) and the stock market capitalization to GDP (Stock market cap to GDP). We also construct the measure Local Growth Opportunities along the lines of Bekaert, Harvey, and Lundblad (2007) to control for growth opportunities and firms' outside options. In addition, we include dummy variables for the origin of the country's legal system, to account for unobserved country characteristics unrelated to the insolvency code.

The estimates, reported in columns 1 and 2 of Table V are consistent with our previous evidence.

<INSERT TABLE V ABOUT HERE>

Moreover, for average values of Insiders' share or Intangibles, the effect of strategic default on equity risk strengthens: a change in Renegotiation failure from 0 to 1 has an estimated effect on excess stock returns between 29 and 30 basis points per month. We also find that the estimate of δ_{q} is either small relative to $\hat{\delta}_{\eta}$ and $\widehat{\delta}_{q \eta}$ (column 1) or it is zero (column 2). The coefficient δ_{q} measures the effect of q on equity risk when shareholders have no bargaining power or when liquidation costs are zero, i.e., an effect unrelated to the strategic default option. Therefore, an estimate of zero not only is in line with the model's predictions but also suggests that our control variables capture well any residual correlation between institutional characteristics and
the equity beta beyond the strategic default channel. We use this specification for all subsequent tests.

Given that our measures of renegotiation frictions only vary across countries, it is possible that other unobservable country-specific variables affect the estimates of $\delta_{q}, \delta_{\alpha}$, or $\delta_{\eta} .{ }^{18}$ To address this issue we re-estimate (7) and (8) with all variables expressed as deviations from their country's average in the same month. As shown in the Appendix (Table A.III), the results are qualitatively and quantitatively similar to those in Tables IV and V. These results suggest that the effect of renegotiation frictions on the equity beta is not driven by unobservable country determinants of equity risk, but by the interaction between Renegotiation failure and liquidations costs or shareholders' bargaining power.

B. Domestic and World Betas

In columns 3 and 4 of Table V, the dependent variable is the Overall Market Beta for stocks where the Karolyi and Stulz (2003) upper bound for asset pricing mistakes is larger than 0.5% returns per year. For all other stocks, the dependent variable is the Domestic Market Beta. Qualitatively, the results are as in columns 1 and 2. Quantitatively, the effect of Renegotiation failure on equity risk is slightly stronger: between 37 and 38 basis points per month, on average. Our results are also robust to using the World Market Beta for stocks in years where the country is less segmented than the median (columns 5 and 6). Finally, in unreported results we verify the robustness of the estimates to using the Overall Market Beta or the World Market Beta for all stocks.

C. Interactions Between Leverage and Renegotiation failure

C.1. Total Leverage

Our sample includes some firms with very low leverage. With little debt to default on, it is unlikely that debt renegotiation frictions will affect the equity risk of these firms. Indeed, inspection of equation (3) reveals that, for a given cash flow $X>X_{B}$, the lower the firm's lever-
age, c, the later the shareholders will default strategically. As shown in the internet Appendix, the model implies,

$$
\frac{\partial^{2} \beta_{E}}{\partial c \partial q}>0
$$

suggesting that the sensitivity of the equity beta to renegotiation frictions increases with leverage. To test this prediction, we estimate (7) and (8) in two subsamples: High Leverage (HL) and Low Leverage (LL), which contain, respectively, firms in the top and bottom three deciles of the Leverage projection distribution. Table VI shows the estimates of the relevant parameters (the full set of estimates is available in the internet Appendix).

<INSERT TABLE VI ABOUT HERE>

Panel A of Table VI shows that, in general, the model with interactions fits better the subsample of High Leverage firms. The adjusted R^{2} s are equal or higher for the HL than the LL firms. The sensitivity of the equity beta to q is slightly larger in the HL subsample for intermediate values of Intangibles (column 2) but twice as large for the HL subsample at the average of Insiders' share (column 1). When Intangibles or Insiders' share are set to 1, i.e., when the strategic default incentives are maximized, the estimate of $\partial \beta_{E} / \partial q$ is in both cases much larger for the relatively more levered firms (HL). In summary, these results suggest that the strategic default option is unlikely to affect the equity beta for firms with very low leverage, validating the interpretation of our earlier results.

C.2. Short-term Debt

Shareholders can alter equity risk not only by choosing when to strategically default, but also by adjusting leverage. For example, expecting more renegotiations frictions, shareholders may reduce leverage ex-ante or use short-term debt, which can be easily rolled over, rather than attempting a debt renegotiation. In the results above, the strategic default option is less valuable for firms that use less leverage. In this section we explore the sensitivity of the equity beta to the firm's use of short-term debt.

We conjecture that the differences in equity beta across countries is smaller for firms that use relatively more short-term debt. Indeed, firms in countries with more debt renegotiation frictions may not bear much equity risk if they can roll over short-term debt in bad states. We conduct the same analysis as for total leverage, but we divide the sample into firms with high (HSD) and low (LSD) Short-term debt projection. We define Short-term debt as the total debt that is due within one and three years, divided by total debt. As with total leverage, we extract its permanent component from the orthogonal projection of firm i's Short-term debt in $t>0$ on the firm's initial short term debt $(t=0)$, the country's statutory corporate tax rate, Renegotiation failure, and other firm, time and country-specific controls (Table A.II).

We find that the equity beta of firms with relatively more short-term debt is less sensitive to Renegotiation failure (Table VI, Panel B). That is, as q increases, the beta for firms that use more short-term debt does not change significantly. This evidence suggests that, in order to reduce equity risk, firms can use short-term debt as an alternative to strategic default.

D. Issues Regarding the Measurement of Renegotiation failure

D.1. Multinational Firms and Bankruptcy Forum Shopping

One important assumption in our analysis is that the insolvency procedures of national and international corporations follow the law of the firms' home country. This assumption reflects the common practice in cross-border insolvencies that the jurisdiction of the debtor's home country is the one that takes the lead in the bankruptcy procedure (see Bufford et al. (2001) and Westbrook et al. (2010)). For example, in the UNCITRAL Model Law and the European Union Regulation - the two major sources of law for international cooperation of transnational insolvency cases - the home country for the insolvency case is the country where the multinational business' "center of main interests" (COMI) is located. Without proof to the contrary, the COMI is presumed to be the debtor's registered office (UNCITRAL (1997), Article 16(3)). ${ }^{19}$

Our assumption may not hold for multinational corporations that can move their COMI
to shop internationally for a more favorable bankruptcy law. Although we are not aware of any systematic evidence that multinational corporations change their place of incorporation for insolvency reasons, we argue that the possibility of international forum shopping, if anything, would bias the results against our findings. ${ }^{20}$ The reason is that our analysis assigns to a firm the bankruptcy code of the country where it is incorporated. If this firm had the option to open an insolvency case abroad it would choose a country where it is better protected against creditors' actions, i.e., a jurisdiction with a lower q. But then, this firm would appear to have higher q than its "true" one and thus a relatively lower beta than its peers.

To address any residual concern that our results can be affected by the possibility of international forum shopping, we conduct our tests in a smaller sample of firms with a distinctive "domestic" character. Specifically, we exclude multinational firms that have the proportion of foreign sales or assets above a 5% threshold. As shown in Columns 1 and 2 of Table VII our results hold after this exclusion. We obtain the same results if we exclude firms with a proportion of foreign sales or foreign assets above their respective country median.

D.2. Time Variation in the Bankruptcy Code

Our measure of q uses survey data from 2005 imputed to all the years in the sample. We justify this procedure on the basis that this survey is meant to capture permanent features of the country's bankruptcy code. To address the concern that some countries may have introduced bankruptcy code reforms during our sample period, we estimate the same specifications as in Table V using the subsample of country-years following the last recorded change in the bankruptcy code.
<INSERT TABLE VII ABOUT HERE>

Djankov, McLiesh, and Shleifer (2007) track the major changes in the bankruptcy laws of 129 countries between 1978 to 2004. In our sample, the countries that changed the bankruptcy code during the sample period are Israel (1995), Russia (1994, 1998 and 2004), Spain (2004),

Sweden (1995), and Thailand (1993). ${ }^{21}$ Columns 3 and 4 of Panel A in Table VII show the results of excluding all stocks in these countries in the years up to the last bankruptcy code change. The remaining sample is likely to satisfy the condition that the bankruptcy code reflects the one prevailing in Djankov et al.'s (2008) survey. The exclusion of these observations does not significantly affect the results.

D.3. Other Measures of Renegotiation Frictions

If the prospect of strategic default affects firms' equity betas, it is likely that the betas also depend on the expected shareholders' recovery rate. All other things constant, stocks in countries where the shareholders expect a low recovery should have a higher equity beta than stocks in countries where the shareholders expect a high recovery.

To test these conjectures, we estimate equations (7) and (8), using the Priority index and the Creditors' recovery rate instead of the Renegotiation failure index. Panel B of Table VII reports the results. Overall, the predictions of the model are confirmed in columns 1 and 3, where we interact Insiders' share with Priority and Creditors' recovery. For liquidation costs, we see in column 2 that the effect of Creditors' recovery on the equity beta is picked up by its direct effect rather than through its interaction with Intangibles. The fact that the Creditors' recovery rate is concave in the probability that the renegotiation fails may imply that there is not enough variation in the distribution of the recovery rate, allowing only for the identification of its overall effect and not the interaction effect. ${ }^{22}$

E. Further Robustness Checks

We perform four additional robustness checks. The results are available in the internet Appendix. First, we use Scholes and Williams' (1977) betas as the dependent variable, to rule out the possibility that asynchronous trading may affect our monthly return observations. We find that our results are not driven by this possibility.

Second, we ask how Japanese and US stocks, which together represent 46% of the sampled
firms, drive our results. Both Japan and the US have an average Renegotiation failure of 0.54 . The average beta in the US is lower than the overall average (see Table A.I), whereas the sampled Japanese firms' average beta is among the highest. However, our sample also has many firms in (i) countries with high average betas and a high q (UK, Australia, Singapore), (ii) countries with low betas and low q (China, Mexico, Russia) and (iii) countries with both average betas and q (Canada, Korea, Denmark, Sweden). Therefore, we believe that the model is identified by all countries in our sample, and not just by the comparison between either Japan or the US and countries on only one half of the range of q. We have run our regressions in a sample that either excludes Japanese and US stocks, or includes only a random sample of 1,000 stocks for each country. We find that the results are identical to those for the full sample of firms.

Third, we re-estimate equations (7) and (8) using a Fama and MacBeth (1973) estimator, correcting the standard errors for serial correlation using the Newey-West adjustment (Newey and West (1987)). We find that the Fama-MacBeth estimator produces qualitatively identical results.

Finally, to address the concern that the firms in our sample may not be comparable across countries, we match firms by Size, Book-to-market, and Leverage projection across countries using the propensity score approach suggested by Hirano and Imbens (2004). This approach generalizes the matching procedure to the case of a continuous treatment variable. The results using this approach are identical to our main findings.

V. Volatility and Returns

A. Returns Volatility

The results presented so far support a robust relation between the country's debt renegotiation frictions, the firm's strategic default incentives, and the equity beta. The equity beta in our model, however, is not necessarily the CAPM beta. It measures the exposure to any priced risk in X, which need not only be the market risk. Since the volatility of returns captures
the same concept of equity risk in the model, we can test the comparative statics of risk with respect to η, α, and q using total volatility as the dependent variable.

Columns 1 and 2 of Table VIII show the estimates of equations (7) and (8) when the dependent variable is Total volatility. We use the same specification as in Table V. The full set of estimates is available in the internet Appendix. For both specifications, the coefficients of Insider's share and Intangibles are negative and significant. The coefficient of the interaction between Renegotiation failure and Insider's share is also consistent with the theory: positive and significant. The interaction between Renegotiation failure and Intangibles also has the predicted positive sign, although it is not significantly different from zero.
<INSERT TABLE VIII ABOUT HERE>

B. Systematic and Idiosyncratic Volatility

To gain further insight into which component of equity risk is most correlated with strategic default risk, we decompose total volatility into systematic and idiosyncratic volatility. This decomposition is useful because q may also affect total volatility through insolvency risk. Namely, with more debt renegotiation frictions, the value of the strategic default option is lower, and the sensitivity of equity to insolvency risk is higher. Shareholders may then engage in risk-reducing activities to avoid the deadweight costs of bankruptcy, as in, e.g., Acharya, Amihud, and Litov (2010). Although shareholders in our model do not choose cash flow risk, it is important to evaluate this possibility empirically. We expect that as q increases, the equity beta increases because the strategic default option loses value, but the idiosyncratic volatility falls because shareholders reduce the firm's idiosyncratic risk.

In line with our model's prediction, we find that the results for Systematic volatility are similar to those for the equity beta (columns 3 and 4): the sums of coefficients $\delta_{\alpha}+\delta_{\alpha q}$ and $\delta_{\eta}+\delta_{\eta q}$ are both close to zero, and the estimates of δ_{q} are almost zero. Instead, the results for Idiosyncratic volatility (columns 5 and 6) are remarkably different. The estimated coefficients of the interaction terms between Renegotiation failure and Insider's share or Intangibles are
much smaller than for the Systematic volatility model, and they are not significantly different from zero. Interestingly, the direct effect of Renegotiation failure is negative and significant, and almost identical to the one for the Total volatility model (columns 1 and 2). We also evaluate, at the sample means of Insider's share or Intangibles, the volatility of firms in countries with the highest or the lowest debt renegotiation frictions, i.e., $q=1$ or $q=0$, respectively. As expected, in countries where debt renegotiations are impossible, the firm's systematic volatility is higher and the idiosyncratic volatility is lower.

We thus conclude that, empirically, the likelihood that a debt renegotiation fails has two different effects on Total volatility: as creditors' rights strengthen, the firm's systematic risk increases, while the idiosyncratic risk decreases. These findings not only provide further support to the strategic default hypothesis, but also help reconcile the apparent conflicting results in the literature on the cross-country determinants of firms' systematic and idiosyncratic risk. Acharya, Amihud, and Litov (2010) find that a better protection of creditor rights reduces firms' idiosyncratic risk. By contrast, Morck, Yeung and Yu (2000), Jin and Myers (2006) and Bartram, Brown, and Stulz (2011) find that stronger creditor rights increase the systematic risk of firms but do not affect their idiosyncratic risk.

C. Equity Returns

We now test whether the variation in equity betas that is explained by the strategic default incentives also helps explain the cross-sectional variation in stock returns. In the model, the linearity between systematic risk and expected returns suggests the same comparative statics of expected returns with respect to α, η, and q as for the equity beta. Panel A of Table IX shows the average monthly returns of portfolios of stocks sorted into quartiles by the country's index of Renegotiation failure. We report the portfolios' raw returns, the market-adjusted returns, and the Size-Book-to-Market-market adjusted returns. The market-adjusted returns are the raw returns minus the contemporaneous return on the domestic market index. We use two alternative three-by-three Size and Book-to-market sorts: across all countries or within each
country, as in Rouwenhorst (1999) or Bekaert, Hodrick, and Zhang (2009). ${ }^{23}$ Hence, the Size-Book-to-Market-market adjusted returns are the Size-Book-to-Market adjusted returns minus the contemporaneous return on the domestic market index.

<INSERT TABLE IX ABOUT HERE>

Panel A shows the average stock returns for the low quartile (LQ) and high quartile (HQ) of Renegotiation failure. For all four definitions of returns, the return difference between the high and low quartile is positive and statistically significant. For instance, the difference for raw returns is 12 basis points per month, while the difference for the across-country sorted Size-Book-to-Market-market adjusted returns is 41.5 basis points. This difference is economically large and consistent with our model and with the results using equity beta.

In Panel B we report the average Size-Book-to-Market-market adjusted (within and acrosscountry sorted) stock returns for portfolios of firms sorted by Renegotiation failure and then into within-country terciles of Insiders' share or Intangibles. To be consistent with the model and the previous results, we should observe decreasing average stock returns when we move from tercile 1 (low bargaining power or liquidation costs) to tercile 3 (high shareholders' bargaining power or liquidation costs) in the lowest quartiles of the Renegotiation failure index, but not in highest quartile of Renegotiation failure.

While the results are not so strong for our bargaining power proxy (Insiders' share), we find consistent results with these predictions using our proxy for liquidation costs (Intangibles).

VI. Conclusion

We argue that the prospect of strategic default on the firm's debt affects the firm's equity beta, and that this effect weakens in countries where debt contracts cannot be easily renegotiated. We find evidence supporting these predictions using a recent international survey of insolvency procedures to measure debt renegotiation frictions. We also find that the prospect of strategic default affects the firm's total volatility. Overall, the evidence in this paper suggests
that the bankruptcy code is an important determinant of the differences in cost of capital across countries through its effects on the firms' strategic default incentives.

A natural extension of our analysis is to study cross-country differences in the tax treatment of bankruptcy, in order to identify other important determinants of shareholders' expected payoff in default. The non-linear effects of the strategic default option may also have important implications for the skewness of stock returns, a topic worth studying in future research.

Appendix. Data

We start with all the countries in the paper by Djankov et al. (2008) that are also covered by Worldscope. We match 55 countries, including all OECD, some Latin American, Middle Eastern and Asian countries.

Our main firm identifier is the ISIN (International Security Identification Number) code. We download yearly accounting data and monthly price data for all active and inactive firms between 1989 and 2006. For many countries, there are no accounting and price data available prior to 1989.

Firm-level data. First, we download from Worldscope a comprehensive list of annual accounting variables, in USD, for every firm in each country. From COMPUSTAT, we download annual data for US firms. We merge both, dropping missing or duplicate ISIN and year observations. Second, we download monthly price data, in USD, for every firm in Datastream. For the US, we download price data from the monthly $C R S P$ files. Third, we download a representative stock market index for each country. Where possible, we use the Datastream USD Market index. If this index is not available, we use the respective MSCI country index. If the country's index is not reported in USD in Datastream, we convert it using the exchange rate reported by Datastream on the same closing day of the month. For the US we use the equally weighted CRSP index. We use the MSCI World index in USD as the world market index.

Institutional data. We match the firm-level data with several country-specific institutional variables that comes from Andrei Shleifer's webpage and the World Bank. For every sampled country, we collect variables related to insolvency proceedings and the recovery rate. These variables are not available for India, Pakistan, and Zimbabwe.

Other Data Screens. We remove all non-equity listings. For Datastream, we only keep listings where TYPE is equal to "EQ". For US data, we only keep listings with share codes 10 or 11. This restriction automatically excludes ADRs. We also exclude firms with fewer than five years of monthly returns and with fewer than six monthly observations to compute the 12 -months momentum return. Finally, we exclude observations for which the stock price is less than USD 1 in order to ensure that stocks with very low prices do not drive our results. We end up with a sample of 5,958 firms from 38 countries.

References

Acharya, Viral, Yakov Amihud, and Lubomir Litov, 2010, Creditor rights and corporate risk-taking, Journal of Financial Economics, forthcoming.

Acharya, Viral, and Krishnamurthy Subramanian, 2009, Bankrupcty codes and innovation, Review of Financial Studies 22, 4949-4988.

Acharya, Viral, Rangarajan Sundaram, and Kose John, 2010, Cross-country variations in capital structure: The role of bankruptcy codes, Journal of Financial Intermediation, forthcoming.

Adams, Edward, and Jason Fincke, 2008, Coordinating cross-border bankruptcy: How territorialism saves universalism, Columbia Journal of European Law 15, 43-87.

Aguerrevere, Felipe, 2009, Real options, product market competition, and asset returns, Journal of Finance 64, 957-983.

Almeida, Heitor, and Murillo Campello, 2007, Financial constraints, asset tangibility, and corporate investment, Review of Financial Studies 20, 1429-1460.

Anderson, Ron, and Suresh Sundaresan, 1996, The design and valuation of debt contracts, Review of Financial Studies 9, 37-68.

Ayotte, Kenneth, and Edward Morrison, 2009, Creditor control and conflict in chapter 11, Journal of Legal Analysis 1, 511-551.

Bae, Kee-Hong, and Vidhan Goyal, 2009, Creditor rights, enforcement, and bank loans, Journal of Finance 64, 823-860.

Bartram, Sohnke, Gregory Brown, and René. Stulz, 2011, Why are U.S. stocks more volatile?, Journal of Finance, forthcoming.

Bekaert, Geert, Campbell Harvey, and Christian Lundblad, 2007, Liquidity and expected returns: Lessons from emerging markets, Review of Financial Studies 20, 1783-1031.
——, and Stephan Siegel, 2007, Global growth opportunities and market integration, Journal of Finance 62, 1081-1137.
__, , 2011, What segments equity markets?, Review of Financial Studies, forthcoming.
Bekaert, Geert, Robert Hodrick, and Xiaoyan Zhang, 2009, International stock return comovements, Journal of Finance 64, 2591-2626.

Berger, Philip, Eli Ofek, and Itzhak Swary, 1996, Investor valuation and the abandonment option, Journal of Financial Economics 42, 257-287.

Berglof, Erik, and Ernst-Ludwig von Thadden, 1994, Short-term versus long-term interests: Capital structure with multiple investors, Quarterly Journal of Economics 109, 1055-1084.

Betker, Brian, 1995, Management's incentives, equity's bargaining power and deviations from absolute priority in chapter 11 bankruptcies, Journal of Business 68, 161-184.

Bharath, Sreedhar, Venky Panchapegesan, and Ingrid Werner, 2007, The changing nature of chapter 11, Working Paper, University of Michigan.

Bolton, Patrick, and David Scharfstein, 1996, Optimal debt structure and the number of creditors, Journal of Political Economy 104, 1-25.

Broadie, Mark, Mikhail Chernov, and Suresh Sundaresan, 2007, Optimal debt and equity values in the presence of chapter 7 and chapter 11, Journal of Finance 62, 1341-1377.

Bufford, Samuel, Loiuse DeCarl, Sidney Brooks, and Marcia Krieger, 2001, International Insolvency (Federal Judicial Center).

Carlson, Murray, Adlai Fisher, and Ron Giammarino, 2004, Corporate investment and asset price dynamics: Implications for the cross-section of returns, Journal of Finance 59, 2577-2603.
—_ , 2006, Corporate investment and asset price dynamics: Implications for SEO event studies and long-run performance, Journal of Finance 61, 1009-1034.

Davydenko, Sergei, and Julian Franks, 2008, Do bankruptcy codes matter? A study of defaults in France, Germany, and the U.K., Journal of Finance 63, 565-608.

Davydenko, Sergei, and Ilya Strebulaev, 2007, Strategic actions and credit spreads: An empirical investigation, Journal of Finance 62, 2633-2671.

Dittmar, Amy, and Jan Mahrt-Smith, 2007, Corporate governance and the value of cash holdings, Journal of Financial Economics 83, 599-634.

Djankov, Simeon, Tim Ganser, Caralee McLiesh, Rita Ramalho, and Andrei Shleifer, 2010, The effect of corporate taxes on investment and entrepreneurship, American Economic Journal: Macroeconomics, forthcoming.

Djankov, Simeon, Oliver Hart, Caralee McLiesh, and Andrei Shleifer, 2008, Debt enforcement around the world, Journal of Political Economy 116, 1105-1149.

Djankov, Simeon, Caralee McLiesh, and Andrei Shleifer, 2007, Private credit in 129 countries, Journal of Financial Economics 84, 299-329.

Fama, Eugene, and Kenneth French, 1992, The cross-section of expected stock returns, Journal of Finance 47, 427-465.

Fama, Eugene, and James MacBeth, 1973, Risk, return, and equilibrium: Empirical tests, Journal of Political Economy 81, 607-636.

Fan, Hua, and Suresh Sundaresan, 2000, Debt valuation, renegotiation, and optimal dividend policy, Review of Financial Studies 13, 1057-1099.

François, Pascal, and Erwan Morellec, 2004, Capital structure and asset prices: Some effects of bankruptcy procedures, Journal of Business 77, 387-411.

Garlappi, Lorenzo, Tao Shu, and Hong Yan, 2008, Default risk, shareholder advantage, and stock returns, Review of Financial Studies 21, 2743-2778.

Garlappi, Lorenzo, and Hong Yan, 2011, Financial distress and the cross section of equity returns, Journal of Finance, forthcoming.

Gennaioli, Nicola, and Stefano Rossi, 2011, Contractual resolution of financial distress, Working Paper, Unversitat Pompeu Fabra.

Gertner, Robert, and David Scharfstein, 1991, A theory of workouts and the effects of reorganization law, Journal of Finance 46, 1189-1222.

Gomes, Joao, and Lukas Schmid, 2010, Levered returns, Journal of Finance 65, 467-494.
Hackbarth, Dirk, Christopher Hennessy, and Hayne Leland, 2007, Can the trade-off theory explain debt structure?, Review of Financial Studies 20, 1389-1428.

Hackbarth, Dirk, and Erwan Morellec, 2008, Stock returns in mergers and acquisitions, Journal of Finance 63, 1203-1242.

Hirano, Keisuke, and Guido Imbens, 2004, The propensity score with continuous treatments, in A. Gelman, and X.-L. Meng, ed.: Applied Bayesian Modeling and Causal Inference from IncompleteData Perspectives . pp. 73-84 (Wiley Interscience).

Jin, Li, and Stewart Myers, 2006, R2 around the world: New theory and new tests, Journal of Financial Economics 79, 257-292.

Karolyi, Andrew, and René Stulz, 2003, Are financial assets priced globally or locally?, in G. Constantinides, M. Harris, and R. Stulz, ed.: Handbook of the Economics of Finance (North Holland).

La Porta, Rafael, Florencio Lopez-de Silanes, and Andrei Shleifer, 2008, The economic consequences of legal origins, Journal of Economic Literature 46, 285-332.
——, and Robert Vishny, 1997, Legal determinants of external finance, Journal of Finance 52, 1131-1150.
-_, 1998, Law and finance, Journal of Political Economy 106, 1113-1155.
———, 2000, Agency problems and dividend policies around the world, Journal of Finance 55, 1-33.
———, 2002, Investor protection and corporate valuation, Journal of Finance 55, 1147-1170.
Lemmon, Michael, Michael Roberts, and Jaime Zender, 2008, Back to the beginning: Persistence and the cross-section of corporate capital structure, Journal of Finance 63, 1575-1608.

LoPucki, Lynn M., 2005, Universalism unravels, American Bankruptcy Law Review 79, 143-167.
Morck, Randall, Bernard Yeung, and Wayne Yu, 2000, The information content of stock markets: Why do emerging markets have synchronous stock price movements?, Jounal of Financial Economics 58, 215-260.

Newey, Whitney, and Kenneth West, 1987, A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica 55, 703-708.

Petersen, Mitchell, 2009, Estimating standard errors in finance panel data sets: Comparing approaches, Review of Financial Studies 22, 435-480.

Pottow, John, 2007, The myth (and realities) of forum shopping in transnational insolvency, Brooklyn Journal of International Law 32, 785-817.

Qian, Jun, and Philip Strahan, 2008, How laws and institutions shape financial contracts: The case of bank loans, Journal of Finance 62, 2803-2834.

Rasmussen, Bob, 2007, Where are all the transnational bankruptcies? The puzzling case for universalism, Brooklyn Journal of International Law 32, 983-1003.

Rouwenhorst, Geert, 1999, Local return factors and turnover in emerging stock markets, Journal of Finance 54, 1439-1464.

Scholes, Myron, and Joseph Williams, 1977, Estimating betas from nonsynchronous data, Journal of Financial Economics 5, 309-327.

Westbrook, Jay, Charles Booth, Christoph Paulus, and Harry Rajak, 2010, Law justice and development series, in A Global View of Business Insolvency Systems (The World Bank).
Table I: Description of Variables and Sources
This table describes the independent variables used in the analysis. The data come from Thomson-Reuters Datastream database, the University of Chicago's Center for Research in Security Prices database ($C R S P$), Thomson-Reuters Worldscope database, Standard \& Poors' Compustat database and the database from the paper "Debt Enforcement around the World" by Djankov et al. (2008).

Variable name	Use	Variable description	Source
Intangibiles	Liquidation costs	$1-($ Cash $+0.715 \times$ Receivables $+0.547 \times$ Inventories $+0.535 \times$ PPE) / Total assets	Worldscope, Compustat
Intangibles (with cash)	Liquidation costs	$1-(0.715 \times \text { Receivables }+0.547 \times \text { Inventories }+0.535 \times \mathrm{PPE}) /$ Total assets	Worldscope, Compustat
Insiders' shares	Sharehdolders' bargaining power	Number of shares held by insiders / Total shares	Worldscope
Renegotiation failure	Renegotiation frictions	Measures the probability that shareholders fail to force a renegotiation of debt with creditors. The index is the average of the following binary (0 if no, 1 if yes) indicators: 1) secured creditors may seize and sell their collateral without court approval; 2) secured creditors may enforce their security either in or out of court; 3) the entire business's assets can be pledged as collateral; 4) an insolvency or liquidation order cannot be appealed at all; 5) an insolvency case is suspended until the resolution of the appeal; 6) the firm may enter liquidation without attempting reorganization; 7) secured creditors may enforce their security upon commencement of the insolvency proceedings; 8) a defaulting firm must cease operations upon commencement of insolvency proceedings; 9) management does not remain in control of decisions during insolvency proceedings; 10) secured creditors have the right to approve the appointment of the insolvency administrator; 11) secured creditors may dismiss the insolvency administrator; 12) secured creditors vote directly on the reorganization plan.	Djankov et al. (2008)

Table I: continued

Variable name	Use	Variable description	Source
Priority	Renegotiation frictions	Equals $0,1,2,3$, or 4 to reflect the order in which creditors' claims are served. A value of 4 indicates that creditors' claims are always served first.	Djankov et al. (2008)
Creditors' recovery	Renegotiation frictions	The recovery rate for secured creditors, conditional on default.	Djankov et al. (2008)
Leverage	Control	Total assets minus book equity divided by the market value of the firm.	Datastream, Worldscope, Compustat, CRSP
Leverage projection	Control	Orthogonal projection of the firm's Leverage in year $t>0$ on Renegotiation failure, the firm's initial Leverage (year $t=0$), the country's statutory corporate tax rate, the firm's Intangibles, Insiders' share, Size and Book-to-market, and yearly dummies.	
Short-term debt	Control	Debt with 1 to 3 years maturity, divided by the total debt.	Worldscope, Compustat
Short-term debt projection	Control	Constructed as Leverage projection, except using short-term debt instead of Leverage.	
Domestic Market beta	Equity risk	Beta of the regression of the firm's monthly returns on the contemporaneous domestic market index returns, using 60month rolling windows.	Datastream, CRSP
World Market beta	Equity risk	Beta of the regression of the firm's monthly returns on the contemporaneous MSCI World index returns, using 60-month rolling windows.	Datastream, CRSP
Overall Market beta	Equity risk	Sum of the beta of the regression of the firm's monthly returns on the contemporaneous MSCI World index returns and the residuals of the regression of the domestic market returns on the MSCI returns, using 60 -month rolling windows.	Datastream, CRSP

Table I: continued

Variable name	Use	Variable description	Source
Scholes-Williams beta	Equity risk	Scholes and Williams (1977) betas, using 60-month rolling windows.	Datastream, CRSP
Total return volatility	Equity risk	Standard deviation of the monthly returns, using 60- month rolling windows.	Datastream, CRSP
Idiosyncratic return volatility	Equity risk	Standard deviation of the residuals of the regression of the firm's monthly returns on the lagged, contemporaneous and lead local domestic market index, using 60 -month rolling windows.	Datastream, CRSP
Systematic return volatility	Equity risk	Square root of Total return volatility ${ }^{2}$ minus Idiosyncratic return volatility ${ }^{2}$.	Datastream, CRSP
Size	Control	Logarithm of the market value of equity.	Worldscope, Compustat
Book-to-market	Control	Logarithm of the book-to-market ratio (book value of equity divided by market value of equity).	Datastream, Worldscope, Compustat, CRSP
Momentum	Control	Average stock return over the past 12 months, skipping the most recent month.	Datastream, CRSP
Stock market turnover	Control	Stock market turnover ratio.	World Bank
Private credit to GDP	Control	Total private sector credit / GDP	World Bank
Stock market cap to GDP	Control	Stock market capitalization / GDP	World Bank
Local Growth Opportunities	Control	Harvey, Bekaert, and Lundblad (2007) measure of Local Growth Opportunities.	Datastream, Worldscope
Statutory Tax Rate	Control	The tax rate for the highest bracket of all taxes on corporate income.	Djankov et al. (2010)

Table II: Summary Statistics of Country-Specific Variables

This table summarizes the number of firms by country and our proxies of debt renegotiation frictions. Country-level data come from Djankov et al. (2008) and Andrei Shleifer's website. The sample period is from 1993 to 2006. Sources and definitions of all variables are given in Table I.							
Country	Number of firms	Renegotiation failure	Renegotiation failure ranking	Priority	Priority ranking	Creditors' recovery rate	Creditors' recovery rate ranking
Australia	185	1.00	1	4	1	0.85	10
Austria	34	0.67	3	4	1	0.77	13
Belgium	43	0.62	4	4	1	0.91	6
Brazil	48	0.42	11	2	3	0.08	31
Canada	295	0.67	3	4	1	0.93	4
Chile	36	0.00	16	1	4	0.22	29
China	99	0.00	16	4	1	0.42	23
Denmark	65	0.50	8	4	1	0.74	14
Finland	79	0.69	2	4	1	0.92	5
France	275	0.23	15	3	2	0.47	21
Germany	242	0.45	10	4	1	0.56	19
Greece	64	0.42	11	2	3	0.39	24
Hong Kong	24	1.00	1	4	1	0.86	9
Ireland	22	0.62	4	4	1	0.90	7
Israel	55	0.56	6	4	1	0.51	20
Italy	119	0.23	15	3	2	0.37	25
Japan	1,501	0.54	7	4	1	0.96	1
Korea	154	0.54	7	4	1	0.88	8
Malaysia	63	0.58	5	2	3	0.34	26
Mexico	13	0.27	13	2	3	0.51	20
Netherlands	68	0.25	14	4	1	0.94	3
New Zealand	34	1.00	1	4	1	0.80	12
Norway	31	0.38	12	4	1	0.92	5

Table II: continued

Country	Number of firms	Renegotiation failure	Renegotiation failure ranking	Priority	Priority ranking	Creditors, recovery rate	Creditors' recovery rate ranking
Peru	5	0.54	7	2	3	0.31	28
Philippines	3	0.54	7	4	1	0.18	30
Poland	35	0.42	11	2	3	0.47	21
Portugal	24	0.54	7	2	3	0.61	16
Russia	13	0.25	14	3	2	0.33	27
Singapore	47	1.00	1	4	1	0.95	2
South Africa	92	0.45	10	4	1	0.39	24
Spain	67	0.46	9	2	3	0.59	18
Sweden	91	0.67	3	4	1	0.81	11
Switzerland	109	0.54	7	4	1	0.60	17
Taiwan	123	0.54	7	2	3	0.71	15
Thailand	52	0.69	2	3	2	0.45	22
Turkey	76	0.69	2	4	1	0.07	32
UK	447	1.00	1	4	1	0.91	6
USA	1,225	0.54	7	4	1	0.86	9
Total firms	5,958						
Mean		0.54		3		0.62	
Std. Dev.		0.25		1		0.27	
Median		0.54		4		0.61	
Minimum		0.00		1		0.07	
Maximum		1.00		4		0.96	

Table III: Summary Statistics of Firm-Specific Variables
This table summarizes our firm-level data pooled across countries and time. Monthly stock market data come from Datastream and CRSP, and annual financial statement data are from Worldscope and Compustat. The sample period goes from 1993 to 2006. Sources and definitions of all variables are given in Table I.

Variable	Mean	Std. Dev.	1st percentile	First quartile	Median	Third quartile	99th percentile	Observations
Domestic Market Beta	0.772	0.409	-0.097	0.487	0.763	1.042	1.799	376,884
World Market Beta	0.746	0.545	-0.235	0.363	0.670	1.044	2.354	376,884
Overall Market Beta	1.546	0.865	-0.214	0.943	1.478	2.084	3.817	376,884
Scholes-Williams Beta	0.813	0.516	-0.250	0.456	0.780	1.129	2.193	367,289
Total return volatility (ann.)	0.358	0.108	0.157	0.278	0.346	0.425	0.649	376,846
Systematic return volatility (ann.)	0.175	0.085	0.029	0.112	0.164	0.229	0.412	376,846
Idiosyncratic return volatility (ann.)	0.304	0.096	0.132	0.233	0.292	0.364	0.57	376,846
Book-to-market (level)	0.155	0.779	-1.785	-0.335	0.165	0.654	1.990	376,884
Momentum	1.282	3.023	-5.800	-0.570	1.159	2.978	9.801	376,864
Size (\$ Billions)	5.949	1.664	2.149	4.794	5.904	7.121	9.454	376,884
Leverage	0.274	0.224	0.000	0.079	0.234	0.432	0.820	375,806
Leverage projection	0.275	0.182	-0.088	0.140	0.260	0.399	0.721	376,884
Short-term debt	0.443	1.078	0.000	0.160	0.391	0.664	1.000	330,022
Short-term debt projection	0.456	1.316	-0.026	0.184	0.403	0.661	1.063	348,226
Intangibles	0.459	0.109	0.208	0.392	0.449	0.514	0.784	376,884
Intangibles (with cash)	0.593	0.103	0.417	0.519	0.576	0.650	0.883	376,884
Insiders' share	0.399	0.228	0.002	0.236	0.391	0.558	0.933	376,884

Table IV: Equity Beta and Renegotiation Frictions

Panel A of this table shows the pooled OLS estimates of the regression of the firm's Domestic market beta on proxies of shareholders' bargaining power (Insiders' share), liquidation costs (Intangibles and Intangibles (with cash)), our measure of renegotiation frictions (Renegotiation failure), and firm-specific controls. Sources and definitions for all variables are in Table I. The sample consists of monthly observations from 1993 to 2006. Each firm's domestic market beta is computed each month from the regression of the past 60 monthly returns on the domestic market's contemporaneous return. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses. Panel B reports statistics for the economic significance of the estimates in panel A, expressed in terms of average monthly excess returns.

Panel A: Pooled OLS estimates

	(1)	(2)	(3)	(4)	(5)
Size	$\begin{aligned} & 0.042^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.033^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.035^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.045^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.036^{* * *} \\ & (0.004) \end{aligned}$
Book-to-Market	$\begin{aligned} & 0.022^{* *} \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.055^{* * *} \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.053^{* * *} \\ & (0.011) \end{aligned}$	$\begin{gathered} 0.019^{*} \\ (0.011) \end{gathered}$	$\begin{aligned} & 0.054^{* * *} \\ & (0.011) \end{aligned}$
Leverage projection	$\begin{gathered} 0.096^{* *} \\ (0.048) \end{gathered}$	$\begin{gathered} -0.092^{* *} \\ (0.044) \end{gathered}$	$\begin{gathered} -0.112^{* *} \\ (0.044) \end{gathered}$	$\begin{aligned} & 0.110^{* *} \\ & (0.048) \end{aligned}$	$\begin{gathered} -0.086^{*} \\ (0.044) \end{gathered}$
Renegotiation failure	$\begin{aligned} & 0.118^{* * *} \\ & (0.027) \end{aligned}$	$\begin{aligned} & 0.106^{* * *} \\ & (0.026) \end{aligned}$	$\begin{array}{r} -0.044 \\ (0.049) \end{array}$	$\begin{gathered} -0.305^{* * *} \\ (0.101) \end{gathered}$	$\begin{array}{r} -0.209^{*} \\ (0.114) \end{array}$
Insiders' share	$\begin{gathered} -0.086^{* * *} \\ (0.027) \end{gathered}$	$\begin{gathered} -0.073^{* * *} \\ (0.028) \end{gathered}$	$\begin{gathered} -0.275^{* * *} \\ (0.065) \end{gathered}$		
Intangibles	$\begin{gathered} -0.631^{* * *} \\ (0.054) \end{gathered}$			$\begin{gathered} -1.186^{* * *} \\ (0.140) \end{gathered}$	
Intangibles (with cash)		$\begin{aligned} & 0.217^{* * *} \\ & (0.050) \end{aligned}$			$\begin{gathered} -0.115 \\ (0.127) \end{gathered}$
Insiders' share \times Renegotiation failure			$\begin{aligned} & 0.354^{* * *} \\ & (0.095) \end{aligned}$		
Intangibles \times Renegotiation failure				$\begin{aligned} & 0.959^{* * *} \\ & (0.209) \end{aligned}$	
Intangibles (with cash) \times Renegotiation failure					$\begin{aligned} & 0.576^{* * *} \\ & (0.195) \end{aligned}$
Constant	$\begin{aligned} & 0.750^{* * *} \\ & (0.039) \end{aligned}$	$\begin{aligned} & 0.434^{* * *} \\ & (0.044) \end{aligned}$	$\begin{aligned} & 0.647^{* * *} \\ & (0.046) \end{aligned}$	$\begin{aligned} & 0.940^{* * *} \\ & (0.068) \end{aligned}$	$\begin{aligned} & 0.568^{* * *} \\ & (0.078) \end{aligned}$
Observations	376,884	376,884	376,884	376,884	376,884
Average adjusted R^{2}	0.05	0.03	0.03	0.05	0.03

${ }^{a}$ Estimates followed by ${ }^{* * *},^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.
(Continues)

Table IV: continued

Panel B: Further Tests of the Model's Implications

$$
\begin{equation*}
H_{0}: \frac{\partial \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)}{\partial \text { Intangibles or Insiders' }{ }^{\text {share }}}=0 \tag{3}
\end{equation*}
$$

(4)
(5)

Test statistic	0.067^{*}	-0.195^{*}	0.396^{*}
Standard error	(0.039)	(0.082)	(0.080)

$$
H_{0}: \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)-\mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=0\right)=0
$$

(3) (4)
(5)

Test statistic evaluated at average
Intangibles or Insiders' share $0.083^{* * *} 0.116^{* * *} 0.115^{* * *}$
Standard error
(0.023) (0.022) (0.022)

Test statistic evaluated at maximum
Intangibles or Insiders'share $\quad 0.265^{* * *} 0.444^{* * *} 0.315^{* * *}$
Standard error (0.065) (0.092) (0.093)
a Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels,
respectively.

Table V: Equity Beta, Renegotiation Frictions and Institutional Variables

Panel A of this table shows the pooled OLS estimates of the regression of alternative definitions of firm's beta on proxies for shareholders' bargaining power (Insiders' share), liquidation costs (Intangibles), our measure of renegotiation frictions (Renegotiation Failure), and firm and country controls. Sources and definitions for all variables are in Table I. The sample consists of monthly observations from 1993 to 2006 . In columns 1 and 2 , the dependent variable is the firm's Domestic Market Beta; in columns 3 and 4, the dependent variable is the Overall Market beta for all stocks where the Karolyi and Stulz (2003) upper bound for asset pricing mistakes from using the domestic CAPM when the world CAPM is correct exceeds 0.5% returns per year, otherwise it is the Domestic Market beta; in columns 5 and 6 , the dependent variable is the World Market beta for all stocks in all countries and years where the Bekaert et al. (2011) segmentation measure is lower than the country's median, otherwise it is the Domestic Market beta. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses. Panel B reports statistics for the economic significance of the estimates in panel A, expressed in terms of average monthly excess returns.

Panel A: Pooled OLS estimates

	(1)	(2)	(3)	(4)	(5)	(6)
Stock market turnover	$\begin{gathered} -0.163^{* * *} \\ (0.009) \end{gathered}$	$\begin{gathered} -0.138^{* * *} \\ (0.01) \end{gathered}$	$\begin{gathered} -0.376^{* * *} \\ (0.027) \end{gathered}$	$\begin{gathered} -0.326^{* * *} \\ (0.027) \end{gathered}$	$\begin{gathered} -0.112^{* * *} \\ (0.011) \end{gathered}$	$\begin{gathered} -0.088^{* * *} \\ (0.011) \end{gathered}$
Stock market cap to GDP	$\begin{aligned} & -0.092^{* * *} \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.092^{* * *} \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.318^{* * *} \\ & (0.025) \end{aligned}$	$\begin{gathered} -0.320^{* * *} \\ (0.025) \end{gathered}$	$\begin{aligned} & -0.151^{* * *} \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.152^{* * *} \\ & (0.012) \end{aligned}$
Private credit to GDP	$\begin{aligned} & 0.077^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.082^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.616^{* * *} \\ & (0.045) \end{aligned}$	$\begin{aligned} & 0.622^{* * *} \\ & (0.044) \end{aligned}$	$\begin{aligned} & 0.235^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.242^{* * *} \\ & (0.017) \end{aligned}$
Local Growth Opportunities	$\begin{gathered} -0.030^{* *} \\ (0.012) \end{gathered}$	$\begin{gathered} -0.022^{*} \\ (0.011) \end{gathered}$	$\begin{gathered} -0.055^{* *} \\ (0.024) \end{gathered}$	$\begin{gathered} -0.047^{* *} \\ (0.024) \end{gathered}$	$\begin{aligned} & -0.062^{* * *} \\ & (0.013) \end{aligned}$	$\begin{gathered} -0.053^{* * *} \\ (0.013) \end{gathered}$
French	$\begin{aligned} & 0.230^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.174^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.780^{* * *} \\ & (0.063) \end{aligned}$	$\begin{aligned} & 0.666^{* * *} \\ & (0.062) \end{aligned}$	$\begin{aligned} & 0.287^{* * *} \\ & (0.037) \end{aligned}$	$\begin{aligned} & 0.229^{* * *} \\ & (0.036) \end{aligned}$
German	$\begin{aligned} & 0.203^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.156^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.416^{* * *} \\ & (0.039) \end{aligned}$	$\begin{aligned} & 0.327^{* * *} \\ & (0.038) \end{aligned}$	$\begin{aligned} & 0.098^{* * *} \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.057^{* * *} \\ & (0.02) \end{aligned}$
Scandinavian	$\begin{gathered} -0.037 \\ (0.025) \end{gathered}$	$\begin{gathered} -0.056^{* *} \\ (0.025) \end{gathered}$	$\begin{aligned} & 0.409^{* * *} \\ & (0.061) \end{aligned}$	$\begin{aligned} & 0.368^{* * *} \\ & (0.061) \end{aligned}$	$\begin{aligned} & 0.146^{* * *} \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.133^{* * *} \\ & (0.031) \end{aligned}$
Socialist	$\begin{aligned} & 0.238^{*} \\ & (0.13) \end{aligned}$	$\begin{gathered} 0.13 \\ (0.127) \end{gathered}$	$\begin{aligned} & 1.173^{* * *} \\ & (0.326) \end{aligned}$	$\begin{aligned} & 0.960^{* * *} \\ & (0.33) \end{aligned}$	$\begin{aligned} & 0.408^{* * *} \\ & (0.112) \end{aligned}$	$\begin{aligned} & 0.288^{* * *} \\ & (0.111) \end{aligned}$
Size	$\begin{aligned} & 0.021^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.034^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.071^{* * *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.094^{* * *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.046^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.057^{* * *} \\ & (0.004) \end{aligned}$
Book-to-market	$\begin{aligned} & -0.01 \\ & (0.011) \end{aligned}$	$\begin{array}{r} -0.019^{*} \\ (0.011) \end{array}$	$\begin{aligned} & -0.054^{* * *} \\ & (0.02) \end{aligned}$	$\begin{gathered} -0.082^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} -0.005 \\ (0.01) \end{gathered}$	$\begin{gathered} -0.013 \\ (0.011) \end{gathered}$
Leverage projection	$\begin{gathered} -0.018 \\ (0.041) \end{gathered}$	$\begin{aligned} & 0.105^{* *} \\ & (0.045) \end{aligned}$	$\begin{gathered} 0.057 \\ (0.079) \end{gathered}$	$\begin{aligned} & 0.364^{* * *} \\ & (0.087) \end{aligned}$	$\begin{gathered} -0.03 \\ (0.041) \end{gathered}$	$\begin{gathered} 0.083^{*} \\ (0.046) \end{gathered}$
Renegotiation failure	$\begin{aligned} & 0.222^{* * *} \\ & (0.052) \end{aligned}$	$\begin{gathered} -0.038 \\ (0.1) \end{gathered}$	$\begin{aligned} & 0.539^{* * *} \\ & (0.12) \end{aligned}$	$\begin{gathered} 0.201 \\ (0.203) \end{gathered}$	$\begin{gathered} 0.049 \\ (0.064) \end{gathered}$	$\begin{gathered} -0.109 \\ (0.115) \end{gathered}$
Insiders' share	$\begin{aligned} & -0.422^{* * *} \\ & (0.063) \end{aligned}$		$\begin{gathered} -0.907^{* * *} \\ (0.125) \end{gathered}$		$\begin{aligned} & -0.532^{* * *} \\ & (0.065) \end{aligned}$	
Insiders' share \times Renegotiation failure	$\begin{aligned} & 0.328^{* * *} \\ & (0.096) \end{aligned}$		$\begin{aligned} & 1.036^{* * *} \\ & (0.195) \end{aligned}$		$\begin{aligned} & 0.575^{* * *} \\ & (0.101) \end{aligned}$	
Intangibles		$\begin{gathered} -0.813^{* * *} \\ (0.137) \end{gathered}$		$\begin{gathered} -1.788^{* * *} \\ (0.256) \end{gathered}$		$\begin{gathered} -0.763^{* * *} \\ (0.141) \end{gathered}$
Intangibles \times Renegotiation failure		$\begin{aligned} & 0.872^{* * *} \\ & (0.201) \end{aligned}$		$\begin{aligned} & 1.602^{* * *} \\ & (0.382) \end{aligned}$		$\begin{aligned} & 0.842^{* * *} \\ & (0.212) \end{aligned}$
Constant	$\begin{aligned} & 0.717^{* * *} \\ & (0.063) \end{aligned}$	$\begin{aligned} & 0.779^{* * *} \\ & (0.081) \end{aligned}$	$\begin{gathered} 0.257 \\ (0.172) \end{gathered}$	$\begin{aligned} & 0.474^{* *} \\ & (0.187) \end{aligned}$	$\begin{aligned} & 0.552^{* * *} \\ & (0.083) \end{aligned}$	$\begin{aligned} & 0.558^{* * *} \\ & (0.099) \end{aligned}$
Observations	351,099	351,099	351,099	351,099	347,211	347,211
Average adjusted R^{2}	0.14	0.13	0.18	0.18	0.11	0.10

[^1]
Table V: continued

Panel B: Further Tests of the Model's Implications

$$
H_{0}: \frac{\partial \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)}{\partial \text { Intangibles or Insiders'share }}=0
$$

Test statistic evaluated at average						
Intangibles or Insiders' share	$0.294^{* * *}$	0.299***	0.385 ***	0.374***	0.232***	$0.228^{* * *}$
Standard error	(0.030)	(0.030)	(0.036)	(0.035)	(0.040)	(0.039)
Test statistic evaluated at maximum						
Intangibles or Insiders' share	$0.456^{* * *}$	0.588***	0.631***	0.630***	0.515***	$0.506^{* * *}$
Standard error	(0.057)	(0.072)	(0.058)	(0.068)	(0.063)	(0.074)

${ }^{a}$ Estimates followed by ${ }^{* * *}$, ${ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

Table VI: Equity Beta, Renegotiation Frictions and Leverage

This table shows the pooled OLS estimates of the regression of the firm's Domestic market beta on proxies of liquidation costs (Intangibles), shareholders' bargaining power (Insiders' share), and our measure of renegotiation frictions (Renegotiation failure). Sources and definitions for all variables are in Table I, and the full set of estimates is available in the online appendix. The sample consists of monthly observations from 1993 to 2006. Each firm's Domestic Market Beta is computed each month from the regression of the past 60 monthly returns on its country's contemporaneous market return. The estimates in Panel A are for the two subsamples of High Leverage (HL) and Low Leverage (LL) firms. The HL and the LL subsample includes, respectively, the top and bottom three deciles of the distribution of Leverage projection. Leverage projection is the orthogonal projection of the firm's Leverage in year $t>0$ on Renegotiation failure, the firm's initial Leverage (year $t=0$), the country's statutory corporate tax rate, the firm's Intangibles, Insiders' share, Size and Book-tomarket, and yearly dummies. Standard errors adjusted for correlation within firms and time are reported in parentheses. This panel also reports statistics for the sensitivity of the equity beta to Renegotiation failure implied by the parameter estimates and evaluated at different values of the proxies for liquidation costs and shareholder's bargaining power. In Panel B, (HSD) and (LSD) contain firms in the top and bottom three deciles of the distribution of Short-term debt projection, which is defined following the same method as for Leverage projection.

Panel A: Estimates conditional on subsamples defined by Leverage

	(1)		(2)	
	LL	HL	LL	HL
Renegotiation failure	$\begin{gathered} -0.111 \\ (0.087) \end{gathered}$	$\begin{gathered} -0.042 \\ (0.084) \end{gathered}$	$\begin{gathered} -0.154 \\ (0.158) \end{gathered}$	$\begin{gathered} -0.814^{* * *} \\ (0.197) \end{gathered}$
Insiders' share	$\begin{aligned} & -0.485^{* * *} \\ & (0.107) \end{aligned}$	$\begin{gathered} -0.170 \\ (0.108) \end{gathered}$		
Insiders' share \times Renegotiation failure	$\begin{aligned} & 0.416^{* *} \\ & (0.164) \end{aligned}$	$\begin{aligned} & 0.433^{* * *} \\ & (0.159) \end{aligned}$		
Intangibles			$\begin{gathered} -1.015^{* * *} \\ (0.231) \end{gathered}$	$\begin{gathered} -1.849^{* * *} \\ (0.268) \end{gathered}$
Intangibles \times Renegotiation failure			$\begin{gathered} 0.692^{*} \\ (0.366) \end{gathered}$	$\begin{aligned} & 1.931^{* * *} \\ & (0.392) \end{aligned}$
Observations	113,284	112,837	113,284	112,837
Average adjusted R^{2}	0.04	0.04	0.04	0.07

Further Tests of the Model's Implications

$$
H_{0}:\left.\frac{\partial \beta}{\partial \text { Renegotiation failure }}\right|_{H L}-\left.\frac{\partial \beta}{\partial \text { Renegotiation failure }}\right|_{L L}=0
$$

$$
\frac{\partial \beta}{\partial \text { Renegotiation failure }} \text { evaluated at: }
$$

| Average Intangibles or | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Insiders' share | 0.063 | $0.126^{* * *}$ | $0.131^{* * *}$ | $0.134^{* * *}$ |
| Standard error | (0.044) | (0.047) | (0.044) | (0.045) |
| Intangibles or | | | | |
| Insiders' share $=1$ | $0.305^{* * *}$ | $0.391^{* * *}$ | $0.539^{* *}$ | $1.117^{* * *}$ |
| Standard error | (0.099) | (0.101) | (0.219) | (0.205) |

[^2]
Table VI: continued

Panel B: Estimates conditional on subsamples defined by Short-term debt

	(1)		(2)	
	LSD	HSD	LSD	HSD
Renegotiation failure	$\begin{gathered} 0.085 \\ (0.080) \end{gathered}$	$\begin{gathered} -0.272^{* * *} \\ (0.095) \end{gathered}$	$\begin{gathered} *-0.450^{* * *} \\ (0.163) \end{gathered}$	$\begin{gathered} -0.100 \\ (0.199) \end{gathered}$
Insiders' share	$\begin{gathered} -0.146 \\ (0.110) \end{gathered}$	$\begin{gathered} -0.601^{* * *} \\ (0.116) \end{gathered}$		
Insiders' share \times Renegotiation failure	$\begin{gathered} 0.299^{* *} \\ (0.161) \end{gathered}$	$\begin{aligned} & 0.772^{* * *} \\ & (0.179) \end{aligned}$		
Intangibles			$\begin{gathered} -1.255^{* * *} \\ (0.210) \end{gathered}$	$\begin{gathered} -1.023^{* * *} \\ (0.299) \end{gathered}$
Intangibles \times Renegotiation failure			$\begin{aligned} & 1.297^{* * *} \\ & (0.308) \end{aligned}$	$\begin{gathered} 0.531 \\ (0.450) \end{gathered}$
Observations	104,669	104,255	104,669	104,255
Average adjusted R^{2}	0.02	0.05	0.05	0.06

Further Tests of the Model's Implications

$$
H_{0}:\left.\frac{\partial \beta}{\partial \text { Renegotiation failure }}\right|_{H L}-\left.\frac{\partial \beta}{\partial \text { Renegotiation failure }}\right|_{L L}=0
$$

$\frac{\partial \beta}{\partial \text { Renegotiation failure }}$ evaluated at:
Average Intangibles or

Insiders' share	$0.201^{* * *}$	0.059	$0.176^{* * *}$	$0.129^{* *}$
Standard error	(0.045)	(0.051)	(0.044)	(0.051)

Intangibles or
Insiders'share $=1 \quad 0.384^{* * *} \quad 0.500^{* * *} \quad 0.847^{* * *} \quad 0.432$
Standard error (0.104) (0.111) (0.157) (0.263)

[^3]
Table VII: Robustness Analysis

This table presents robustness results of pooled OLS estimates of the regression of the firm's Domestic Market Beta on proxies for shareholders' bargaining power (Insiders' share), liquidation costs (Intangibles), and alternative measures of renegotiation frictions. Sources and definitions for all variables are in Table I, and the full set of estimates is available in the online appendix. The sample period consists of monthly observations from 1993 to 2006. The firm's Domestic Market Beta is computed for every month from the regression of the latest 60 historical monthly returns on its country's contemporaneous market return. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses. In Panel A, our measure of renegotiation frictions is Renegotiation failure. Columns 1 and 2 report estimates for a subsample of firms with the proportion of foreign sales or foreign assets below a 5% threshold. Columns 3 and 4 report the results for a subsample of countries that have never changed their bankruptcy code between 1993 and 2005. Panel B reports estimates for the full sample of firms and countries, but uses the index of priority at which creditors are served in default (Priority), and the creditors' recovery rate (Creditors' recovery) as alternative measures of debt renegotiation frictions.

Panel A: Excluding multinational firms or years before last bankruptcy code change

	(1)	(2)	(3)	(4)
Renegotiation failure	$\begin{gathered} 0.323^{* *} \\ (0.098) \end{gathered}$	$\begin{array}{r} *-0.209 \\ (0.209) \end{array}$	$\begin{aligned} & 0.245^{* * *} \\ & (0.053) \end{aligned}$	$\begin{gathered} -0.009 \\ (0.102) \end{gathered}$
Insiders' share	$\begin{gathered} -0.324^{* *} \\ (0.136) \end{gathered}$		$\begin{gathered} -0.434^{* * *} \\ (0.064) \end{gathered}$	
Intangibles		$\begin{gathered} -1.219^{* * *} \\ (0.271) \end{gathered}$		$\begin{gathered} -0.828^{* * *} \\ (0.139) \end{gathered}$
Insiders'share \times Renegotiation failure	$\begin{gathered} 0.328 \\ (0.206) \end{gathered}$		$\begin{aligned} & 0.330^{* * *} \\ & (0.096) \end{aligned}$	
Intangibles \times Renegotiation failure		$\begin{aligned} & 1.474^{* * *} \\ & (0.414) \end{aligned}$		$\begin{aligned} & 0.848^{* * *} \\ & (0.204) \end{aligned}$
Observations	101,827	101,827	342,672	342,672
Adjusted R^{2}	0.22	0.22	0.14	0.13
Panel B: Creditors' priority and recovery				
	(1)	(2)	(3)	(4)
Priority	$\begin{gathered} -0.103^{* *} \\ (0.023) \end{gathered}$	$\begin{aligned} & 0.169^{* * *} \\ & (0.042) \end{aligned}$		
Recovery			$\begin{gathered} -0.719^{* * *} \\ (0.090) \end{gathered}$	$\begin{gathered} 0.166 \\ (0.115) \end{gathered}$
Insiders' share	$\begin{gathered} -0.920^{* *} \\ (0.132) \end{gathered}$		$\begin{aligned} & -0.791^{* * *} \\ & (0.082) \end{aligned}$	
Intangibles		$\begin{aligned} & 1.079^{* * *} \\ & (0.351) \end{aligned}$		$\begin{gathered} 0.449^{* *} \\ (0.195) \end{gathered}$
Insiders' share \times Priority	$\begin{gathered} 0.174^{* *} \\ (0.035) \end{gathered}$			
Intangibles \times Priority		$\begin{gathered} -0.362^{* * *} \\ (0.091) \end{gathered}$		
Insiders'share \times Creditors' recovery			$\begin{aligned} & 0.739^{* * *} \\ & (0.103) \end{aligned}$	
Intangibles \times Creditors' recovery				$\begin{gathered} -0.890^{* * *} \\ (0.237) \end{gathered}$
Observations	351,099	351,099	351,333	351,333
Adjusted R^{2}	0.12	0.11	0.14	0.13

[^4]This table shows the pooled OLS estimates of the regression of the firm's volatility on proxies for shareholders' bargaining power (Insiders' share), liquidation costs (Intangibles), and our measure of renegotiation frictions (Renegotiation Failure). Sources and definitions for all variables are in Table I, and the full set of estimates is available in the online appendix. The sample period consists of all monthly observations from 1993 to 2006. In columns 1 and 2 , the dependent variable is Total return volatility, defined as the annualized standard deviation of monthly stock returns over the past $60-$ month window. In columns 3 and 4 , the dependent variable is Systematic return volatility, defined as the annualized square root of the difference between the variance of monthly stock returns and the variance of residuals from a regression of monthly returns on the lagged, contemporaneous, and lead domestic market index. In columns 5 and 6 , the dependent variable is Idiosyncratic return volatility, defined as the annualized standard deviation of the residuals from a regression of monthly returns on the lagged, contemporaneous, and lead domestic market index. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses.

	(1)	(2)	(3)	(4)	(5)	(6)
Renegotiation failure	$\begin{gathered} -0.073^{* * *} \\ (0.013) \end{gathered}$	$\begin{gathered} *-0.069^{* * *} \\ (0.026) \end{gathered}$	$\begin{array}{r} -0.012 \\ (0.012) \end{array}$	$\begin{gathered} -0.031 \\ (0.022) \end{gathered}$	$\begin{gathered} -0.078^{* * *} \\ (0.011) \end{gathered}$	$\begin{gathered} -0.069^{* * *} \\ (0.021) \end{gathered}$
Insiders' share	$\begin{gathered} -0.080^{* * *} \\ (0.017) \end{gathered}$		$\begin{gathered} -0.106^{* * *} \\ (0.014) \end{gathered}$		$\begin{gathered} -0.030^{* *} \\ (0.013) \end{gathered}$	
Insiders' share \times Renegotiation failure	$\begin{aligned} & 0.105^{* * *} \\ & (0.024) \end{aligned}$		$\begin{aligned} & 0.145^{* * *} \\ & (0.02) \end{aligned}$		$\begin{gathered} 0.031 \\ (0.02) \end{gathered}$	
Intangibles		$\begin{gathered} -0.149^{* * *} \\ (0.033) \end{gathered}$		$\begin{gathered} -0.176^{* * *} \\ (0.029) \end{gathered}$		$\begin{gathered} -0.073^{* * *} \\ (0.027) \end{gathered}$
Intangibles \times Renegotiation failure		$\begin{gathered} 0.076 \\ (0.049) \end{gathered}$		$\begin{aligned} & 0.159^{* * *} \\ & (0.042) \end{aligned}$		$\begin{gathered} 0.005 \\ (0.04) \end{gathered}$
$\operatorname{Volatility}(q=1)-\operatorname{Volatility}(q=0)$	-2.50\%	-3.82\%	5.42\%	3.34%	-6.38\%	-6.70\%
Observations	351,082	351,082	351,082	351,082	351,082	351,082
Average adjusted R^{2}	0.08	0.09	0.11	0.11	0.17	0.18

[^5]
Table IX: Stock Returns and Renegotiation Frictions

This table shows average monthly returns for portfolios of stocks sorted by our measure of renegotiation frictions (Renegotiation failure) and by proxies of shareholders' bargaining power (Insiders' share) and liquidation costs (Intangibles). Panel A shows the average raw, marketadjusted, and BM-size-market-adjusted returns for firms in the low quartile (LQ, where Renegotiation failure <0.42) and the high quartile (HQ, where Renegotiation failure >0.67). The market-adjusted returns are computed by subtracting the contemporaneous domestic market return from the firm's individual stock return. The BM-size-market-adjusted returns are computed by subtracting the contemporaneous domestic market return from the firms' BM-size-adjusted returns. The BM-size-adjusted returns take into account the premia associated with book-to-market and size. We compute these adjustments across all countries and within each country using a three-by-three sort. Panel B shows the average BM-size-market-adjusted stock returns for portfolios of firms sorted into the within-country terciles of Insiders' share or Intangibles. Difference of means tests are based on Student's t tests. The sample period consists of monthly observations from 1993 to 2006. Sources and definitions for all variables are in Table I.

Panel A: Monthly stock returns for Renegotiation failure quartiles

	LQ		HQ		$\mathrm{HQ}-\mathrm{LQ}$
Raw (Mean/Std. Error)	1.708	(0.043)	1.831	(0.036)	$0.123^{* *}$
Market adjusted (Mean/Std. Error)	0.122	(0.039)	0.535	(0.034)	$0.412^{* * *}$
BM-size-mkt across adj. (Mean/Std. Error)	-1.286	(0.044)	-0.871	(0.038)	$0.415^{* * *}$
BM-size-mkt within adj. (Mean/Std. Error)	-1.578	(0.043)	-1.340	(0.037)	$0.238^{* * *}$

Panel B: Monthly stock returns across terciles for Insiders'share and Intangibiles

	LQ			HQ		
Insiders' Share	Tercile 1	T3	T1-T3	T1	T3	T1-T3
BM-size-market across adjusted	-1.159	-1.189	-0.03	-0.798	-0.978	-0.179^{*}
BM-size-market within adjusted	-1.075	-1.079	-0.004	-1.245	-1.412	-0.167^{*}
Intangibles	Tercile 1	T3	T1-T3	T1	T3	T1-T3
BM-size-market across adjusted	-1.091	-1.256	$-0.165^{* *}$	*-0.930	-0.887	0.043
BM-size-market within adjusted	-0.961	-1.163	$-0.202^{* *}$	*-1.397	-1.369	0.029

[^6]Table A I: Domestic vs. World Betas
This table summarizes the means of beta estimates and other statistics by country. The $R_{w d}^{2}$ is the R -squared of the regression of world market returns on domestic market returns. $\frac{\operatorname{Var}\left(r_{i}\right)}{\operatorname{Var}\left(r_{w}\right)}$ is the average ratio of individual firms' variance to the variance of world returns. Upper bound is the Karolyi and Stulz (2003) upper bound for the asset pricing mistake of using the domestic CAPM, when the world CAPM is the correct model. $\beta_{i d}$ is the domestic market beta, $\beta_{i w}$ is the world market beta, and $\beta_{i d}^{S W}$ is the Scholes and Williams (1977) beta using the domestic market index. The sample period goes from 1993 to 2006.

	$R_{w d}^{2}$	$\frac{\operatorname{Var}\left(r_{i}\right)}{\operatorname{Var}\left(r_{w}\right)}$	Upper bound	Proportion of significant $\beta_{i w}$	$\beta_{i d}$	$\beta_{i w}$	$\frac{\left\|\beta_{i d}\right\|}{\left\|\beta_{i d}\right\|+\left\|\beta_{i w}\right\|}$	$\beta_{i d}^{S W}$
Australia	0.564	5.426	0.688	0.692	0.923	0.771	0.572	0.706
Austria	0.241	4.943	0.893	0.346	0.831	0.426	0.642	0.457
Belgium	0.390	4.657	0.802	0.564	0.784	0.666	0.519	0.745
Brazil	0.509	11.454	0.898	1.000	0.867	1.721	0.329	1.679
Canada	0.655	6.805	0.732	0.533	0.756	0.726	0.522	0.743
Chile	0.318	6.648	0.892	0.542	0.891	0.624	0.597	0.827
China	0.074	7.061	1.281	0.017	0.347	0.119	0.618	0.256
Denmark	0.407	5.832	0.917	0.291	0.567	0.450	0.561	0.538
Finland	0.441	6.104	0.893	0.517	0.340	0.738	0.249	0.779
France	0.675	6.317	0.685	0.404	0.634	0.630	0.563	0.767
Germany	0.609	5.582	0.700	0.314	0.494	0.508	0.525	0.475
Greece	0.263	10.389	1.181	0.436	0.993	0.766	0.595	0.904
Hong Kong	0.432	5.976	0.750	0.665	0.699	0.804	0.485	0.801
Ireland	0.523	5.684	0.778	0.609	0.760	0.728	0.501	1.059
Israel	0.257	7.777	0.934	0.802	1.067	1.110	0.488	1.391
Italy	0.497	6.321	0.775	0.649	0.850	0.866	0.479	0.975
Japan	0.398	8.110	0.948	0.448	0.926	0.809	0.595	1.214
Korea	0.469	11.309	1.109	0.665	0.727	1.106	0.413	1.073

Table AI: Continued

	$R_{w d}^{2}$	$\frac{\operatorname{Var}\left(r_{i}\right)}{\operatorname{Var}\left(r_{w}\right)}$	Upper bound	Proportion of significant $\beta_{i w}$	$\beta_{\text {id }}$	$\beta_{i w}$	$\frac{\left\|\beta_{i d}\right\|}{\left\|\beta_{i d}\right\|+\left\|\beta_{i w}\right\|}$	$\beta_{i d}^{S W}$
Malaysia	0.121	5.867	0.857	0.333	0.747	0.556	0.594	0.586
Mexico	0.480	7.872	0.843	0.558	0.716	0.947	0.424	1.100
Netherlands	0.682	5.170	0.603	0.527	0.717	0.669	0.559	0.763
New Zealand	0.357	4.601	0.732	0.731	0.881	0.715	0.560	0.570
Norway	0.467	6.970	0.849	0.750	0.874	0.983	0.452	1.023
Peru	0.124	4.582	0.896	0.243	0.359	0.361	0.427	0.526
Philippines	0.155	6.823	0.944	0.602	0.800	0.887	0.540	1.346
Poland	0.345	8.262	1.004	0.723	0.798	1.070	0.406	1.058
Portugal	0.338	4.989	0.824	0.410	0.755	0.545	0.611	0.610
Russia	0.228	12.308	1.398	0.378	0.741	0.960	0.420	1.199
Singapore	0.382	5.603	0.788	0.668	0.861	0.809	0.530	0.764
South Africa	0.271	8.231	1.097	0.430	0.810	0.670	0.569	0.681
Spain	0.590	5.167	0.655	0.657	0.760	0.777	0.525	0.927
Sweden	0.587	7.195	0.758	0.713	0.709	0.987	0.399	0.885
Switzerland	0.500	5.544	0.801	0.492	0.772	0.649	0.551	1.000
Taiwan	0.278	9.140	1.126	0.359	0.794	0.702	0.571	0.815
Thailand	0.239	6.131	1.042	0.365	0.370	0.514	0.457	0.449
Turkey	0.373	17.700	1.157	0.901	0.816	1.862	0.320	1.812
UK	0.717	6.120	0.644	0.441	0.758	0.634	0.572	0.845
USA	0.510	7.867	0.951	0.464	0.625	0.739	0.432	0.843
Average	0.489	7.302	0.868	0.473	0.772	0.746	0.533	0.951

Table A II: First-stage Leverage Regressions

This table shows the OLS estimates of the regressions

$$
\text { Leverage }_{i t}=\phi_{0}+\phi_{1} \times \text { Leverage }_{i 0}+\phi_{\mathbf{z}}^{\prime} \mathbf{z}_{i t}+\phi_{\mathbf{x}}^{\prime} \mathbf{x}_{C}+v_{i t}^{L},
$$

and

$$
{\text { Short }- \text { term } \operatorname{debt}_{i t}=\omega_{0}+\omega_{1} \times \text { Short }- \text { term }^{2} \operatorname{debt}_{i 0}+\omega_{\mathbf{z}}^{\prime} \mathbf{z}_{i t}+\omega_{\mathbf{x}}^{\prime} \mathbf{x}_{C}+v_{i t}^{S T}, ~}_{\text {, }}
$$

${\text { where } \text { Leverage }_{i t} \text { is the firm } i \text { 's market leverage at time } t>0 \text {, }_{\text {Leverage }}^{i 0}}$ is firm i 's initial leverage, Short-term debt ${ }_{i t}$ is firm i 's short-term debt to total debt at time $t>0$ and Short-term debt ${ }_{i 0}$ is firm i 's initial short term debt ratio. The vectors \mathbf{x}_{c} and $\mathbf{z}_{i t}$ include all country-specific and firm-month specific variables, respectively, which are listed below. All these variables are defined in Table I. The sample period is from 1993 to 2006.

	Leverage		$\begin{gathered} \text { Short - term } \\ \text { debt } \end{gathered}$	
	Estimates	Standard Errors	Estimates	Standard Errors
Leverage $_{i 0}$	$0.604^{* * *}$	* (0.001)		
Short-term debt ${ }_{\text {i0 }}$			$1.042^{* * *}$	(0.001)
Renegotiation failure	$0.013^{* * *}$	* (0.001)	$-0.034^{* * *}$	(0.004)
Statutory Tax Rate	$0.001 * * *$	* (0.000)	$0.004^{* * *}$	(0.000)
Size	$0.001^{* * *}$	* (0.000)	$-0.007^{* * *}$	(0.001)
Book-to-Market	$0.001^{* * *}$	* (0.000)	$0.008^{* * *}$	(0.001)
Insiders' share	$-0.022^{* * *}$	* (0.002)	0.059***	(0.004)
Intangibility	$0.281^{* * *}$	* (0.002)	$-0.268^{* * *}$	(0.008)
Constant	$-0.071^{* * *}$	* (0.002)	$0.022^{* * *}$	(0.009)
Year Dummies	yes		yes	
F statistic	38, 665.751		83, 868.371	
Observations	370,518		325,426	
Average adjusted R^{2}	0.65		0.83	

[^7]
Table A III: Equity Beta and Renegotiation Frictions

This table shows the estimates of the regression of the difference between the firm's beta and the average beta of all firms in the same country-month on proxies for shareholders' bargaining power (Insiders' share) and liquidation costs (Intangibles). All firm-specific variables are in deviation from the average of all firms in the same country-month. Sources and definitions for all variables are in Table I, and the full set of estimates is available in the online Appendix. The sample period consists of monthly observations from 1993 to 2006 . In columns 1 and 2 , the dependent variable is the firm's Domestic Market Beta computed for every month from the regression of the latest 60 historical monthly returns on the contemporaneous domestic market return; in columns 3 and 4 it is either the Domestic Market Beta or the Overall Market Beta depending on whether the Karolyi and Stulz (2003) upper bound for asset pricing mistakes of using the domestic CAPM when the world CAPM is the correct model is larger than 0.5% returns per year; in columns 5 and 6 it is either the Domestic Market Beta or the World Market Beta depending on whether the Bekaert et al. (2011) country-year segmentation measure of stocks that are not integrated to the world market is lower than the country's median. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses. The table also reports statistics for the economic significance of the estimates, expressed in terms of average monthly excess returns, evaluated at the average and maximum values of the proxies for firm's liquidation costs and shareholder's bargaining power.

	(1)	(2)	(3)	(4)	(5)	(6)
Δ Insiders' share	$\begin{gathered} -0.310^{* * *} \\ (0.064) \end{gathered}$		$\begin{gathered} -0.787^{* * *} \\ (0.113) \end{gathered}$		$\begin{gathered} -0.454^{* * *} \\ (0.065) \end{gathered}$	
Δ Intangibles		$\begin{gathered} -0.608^{* * *} \\ (0.126) \end{gathered}$		$\begin{gathered} -1.144^{* * *} \\ (0.234) \end{gathered}$		$\begin{gathered} -0.608^{* * *} \\ (0.133) \end{gathered}$
Δ (Insiders' share \times Renegotiation failure)	$\begin{gathered} 0.162 \\ (0.102) \end{gathered}$		$\begin{aligned} & 0.617^{* * *} \\ & (0.181) \end{aligned}$		$\begin{aligned} & 0.361^{* * *} \\ & (0.101) \end{aligned}$	
$\begin{aligned} & \Delta(\text { Intangibles } \times \\ & \quad \text { Renegotiation failure }) \end{aligned}$		$\begin{aligned} & 0.547^{* * *} \\ & (0.196) \end{aligned}$		$\begin{aligned} & 0.887^{* *} \\ & (0.348) \end{aligned}$		$\begin{aligned} & 0.591^{* *} \\ & (0.201) \end{aligned}$
Observations	376,884	376,884 37	376,884	376,884	376,884	376,884
Average adjusted R^{2}	0.03	0.02	0.04	0.03	0.06	0.05
$H_{0}: \frac{\partial \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)}{\partial \text { Intangibles or Insiders' }{ }^{\text {a }} \text { (}{ }^{\text {are }}}=0$						
Test statistic Standard error	$\begin{gathered} -0.125^{* * *} \\ (0.040) \end{gathered}$	$\begin{gathered} -0.051 \\ (0.076) \end{gathered}$	$\begin{gathered} -0.072^{*} \\ (0.037) \end{gathered}$	$\begin{gathered} -0.108 \\ (0.070) \end{gathered}$	$\begin{gathered} -0.079^{* *} \\ (0.040) \end{gathered}$	$\begin{gathered} -0.014 \\ (0.079) \end{gathered}$
$H_{0}: \mathbb{E}\left(r_{i}-r \mid\right.$ Renegotiation failure $\left.=1\right)-\mathbb{E}\left(r_{i}-r \mid\right.$ Renegotiation failure $\left.=0\right)=0$						
Test statistic evaluated at average						
Intangibles or Insiders' share	0.055	$0.211^{* * *}$	0.104***	0.171**	$0.121^{* * *}$	$0.228^{* * *}$
Standard error	(0.034)	(0.076)	(0.031)	(0.067)	(0.034)	(0.077)
Test statistic evaluated at maximum						
Intangibles or Insiders' share	0.137	$0.395^{* * *}$	0.259***	0.320**	0.304***	0.426**
Standard error	(0.086)	(0.141)	(0.076)	(0.126)	(0.085)	(0.145)

[^8]

Figure 1: This figure shows the model's simulated market beta as a function of the liquidation costs, α, and the probability of renegotiation failure, q in the model with debt-equity swap. The model's parameters have been set to $\tau=0.35, X=10, c=6, r=0.06, \mu=$ $0.01, \sigma=0.4, \eta=0.6$.

Notes

${ }^{1}$ The main drawback of a cross-country analysis is that our measures of equity risk may depend on factors besides the bankruptcy code and firms' incentives to default strategically. In our analysis we sample firms from both developed and emerging countries, and in these countries capital markets differ substantially in terms of liquidity and integration with respect to the world capital market. To overcome this drawback we follow the international asset pricing literature in order to control for the standard determinants of cross-country equity risk.
${ }^{2}$ See for example, La Porta et al. (1997, 1998, 2000, 2002) and Djankov, McLiesh and Shleifer (2007). A comprehensive survey is in La Porta, Lopez-de-Silanes, and Shleifer (2008).
${ }^{3}$ Fan and Sundaresan (2000) discuss an alternative reorganization procedure. Under a "strategic debt service", debt payments are suspended until the firm's cash flow recovers above X_{B}. In exchange, debt holders accept a fraction of the firm's assets upon recovery. As discussed in Appendix 1, our results and testable hypotheses hold under this alternative bargaining formulation.
${ }^{4}$ See Francois and Morellec (2004) and Broadie, Chernov, and Sundaresan (2007) for alternative specifications to incorporate such frictions.
${ }^{5}$ Note that q summarizes frictions during both formal bankruptcy and out-of-court renegotiations. Typically, shareholders first attempt an informal workout and then resort to formal bankruptcy. Ex ante, shareholders' payoffs from defaulting strategically depend on frictions to renegotiations that they expect to meet through both stages. In theory, private contracts may undo these frictions by a proper allocation of control rights over reorganization and liquidation decisions (Gennaioli and Rossi (2011)). Here we assume that private contracts cannot fully over-ride bankruptcy regimes - a plausible assumption in a world in which contracts are incomplete and enforcement is not perfect.
${ }^{6}$ The mechanism in our paper is similar to the one in Gertner and Scharfstein (1991) and Bolton and Sharsftein (1996), where a dispersed debt structure impedes renegotiations and deters strategic default due to free-rider problems. The crucial difference is that in our paper renegotiation frictions are tied to bankruptcy procedures which are exogenous to the firms' capital structure.
${ }^{7}$ If the firm's cash flow had an additional risk component orthogonal to M, e.g., idiosyncratic risk, the market beta would be proportional to the the model's overall equity beta, scaled by the correlation
coefficient between X and the market portfolio M (see Garlappi and Yan (2011)).
${ }^{8}$ The relation between the equity beta, q and η, is qualitatively identical, and thus not shown.
${ }^{9}$ For example, Acharya, Amihud and Litov (2010) find that in countries with stronger creditor rights, firms choose investments with lower cash flow risk.
${ }^{10}$ An alternative approach to identify the effect of the bankruptcy code on equity risk is to do a difference-in-differences analysis around changes in the bankruptcy code within countries. The paucity of such changes in our sample, however, renders this alternative approach infeasible.
${ }^{11}$ For the US, the maximum Priority score is consistent with the fact that absolute priority violations, conditional on filing for Chapter 11, have become extremely rare since the 90s (Bharath, Panchapegesan, and Werner (2007) and Ayotte and Morrison (2009)). The fact that the US has a Renegotiation failure index equal to the sample mean confirms that this index more broadly captures what shareholders can expect from a renegotiation in or out-of-court. The relatively average Renegotiation failure value for the US is explained by a combination of strong creditor's rights in Chapter 11 (e.g., the creditors' rights to vote on a reorganization) but relatively strong manager's rights (e.g., automatic stay of management) and shareholders' rights during out-of-court workouts (e.g., a reorganization must be attempted).
${ }^{12}$ The creditors' expected recovery rate, conditional on default, is

$$
R \equiv \frac{(1-q)(1-\eta \alpha) X_{B}+q(1-\alpha) X_{B}}{\frac{c}{r}}=\frac{\lambda}{\lambda-1}\left[1-\frac{\alpha q}{1-(1-q) \eta \alpha}\right] .
$$

It thus follows that $\frac{\partial R}{\partial q}>0$ and $\frac{\partial^{2} R}{\partial q^{2}}<0$. Intuitively, conditional on default, an increase in q makes liquidation more likely but delays the default timing, decreasing the value of assets upon liquidation.
${ }^{13}$ Bartram, Brown, and Stulz (2011) exclude stocks with more than 30% zero weekly returns. None of our findings are affected when we apply this less stringent filter.
${ }^{14}$ The authors show that the asset pricing mistake is small when (i) the domestic market portfolio is strongly correlated with the world portfolio and (ii) the stock's volatility is low relative to the world market portfolio's.
${ }^{15}$ Due to data limitations we are not able to construct proxies for shareholders' bargaining power based on the tenure of managers, the investment of human capital, and the concentration of creditors, as Davydenko and Strebulaev (2007) do.
${ }^{16}$ The results of using Leverage instead of Leverage projection are qualitatively identical. However, the sensitivity of the equity beta to q is higher when we use Leverage projection. Our interpretation is that the endogenous component of Leverage is a substitute for strategic default in countries where q is high. If it is not removed, it biases downward the estimated sensitivity of beta to q.
${ }^{17}$ We use the countries' statutory tax rates reported by Djankov et al. (2010).
${ }^{18}$ Such unobservable characteristics could include, for example, the treatment of tax carry-forwards in bankruptcy or the costs of renegotiation outside a formal insolvency procedure.
${ }^{19}$ Adams and Fincke (2008) argue that these two model laws have been adopted by many countries outside the European Union, including the United States, Australia, Canada, India, New Zealand, Japan, Eritrea, Montenegro, Mexico, South Africa and many others.
${ }^{20}$ The prevailing view in the legal literature is that changing the COMI is a complicated procedure (Pottow (2007)), because it requires not only that the firm moves its place of incorporation, but also that third parties consider the new location as the place where the firm conducts its main business (see, however, LoPucki (2005)). Furthermore, there is evidence that other factors, such as business reasons or tax laws affect the choice of incorporation of a firm (Rasmussen (2007)).
${ }^{21}$ Japan also went through two important reforms in 2000 and 2002. However, the 2002 reform undid the changes introduced in 2000. Thus, for the purpose of our paper, we take that Japan has not changed its bankruptcy code.
${ }^{22}$ Identification of the strategic default effect may be complicated by the possibility of significant covariance between the recovery rate and the country's business cycle. In a boom, creditors could expect a higher recovery rate than in a recession, ceteris paribus. We control for the interaction between the recovery rate and the Hodrick-Prescott filtered GDP series. We find a strong positive and significant coefficient, confirming this conjecture.
${ }^{23}$ In July of each year, we sort the firms in our sample into size terciles, and within each Size tercile into Book-to-Market terciles. We subtract the average returns within each of these nine portfolios from the firm's individual stock return. We do these sorts either within each country, or across all countries.

Internet Appendix for "Strategic Default and Equity Risk Across Countries"*

This internet appendix contains supplemental material to the paper 'Strategic Default and Equity Risk Across Countries'. Part A contains the derivation of the model from the main text. Part B shows results not reported in the main text due to space constraints. We present the results in order they appear in the main text. All variables are defined in Table I of the paper.

The figures and tables in part B represent:

- Figure IA. 1: illustrates the predicted relation between the equity beta and liquidation costs, α, under the alternative "strategic debt service" arrangement.
- Table IA.1: displays the robustness of Table IV in the paper to changing the criterion to drop firms with at least six consecutive zero returns.
- Table IA.2: displays the robustness of Table IV in the paper to changing the beta.
- Table IA.3: displays the full set of estimates corresponding to the abridged Table A. 3 in the paper.
- Table IA.4: displays the full set of estimates corresponding to the abridged Table VI in the paper.

[^9]- Table IA.5: displays the full set of estimates corresponding to the abridged Table VII in the paper.
- Table IA.6: displays the full set of estimates corresponding to the abridged Table VIII in the paper.
- Table IA.7: displays the robustness of Table V in the paper to dropping firms which, under different criteria, may have the choice to file for bankruptcy in a different country than where it is incorporated.
- Table IA.8: displays the robustness of Table IV in the paper to dropping observations in the US or Japan.
- Table IA.9: displays the robustness of Table V in the paper to using the Scholes and Williams (1977) betas as a dependent variable.
- Table IA.10: displays the robustness of Table IV in the paper to a Fama and MacBeth (1973) estimator.
- Table IA.11: displays the robustness of Table IV in the paper to matching firms using a Generalized Propensity Score matching estimator.

Internet Appendix A. Proofs and Derivations

Case 1: Debt-for-Equity Swap

The firm's assets in place generate an operating cash flow X that evolves according to a geometric Brownian motion with constant growth rate $\mu>0$ and constant volatility σ_{X},

$$
d X_{t}=\mu X_{t} d t+\sigma_{X} X_{t} d B_{t} .
$$

The instantaneous profit is $X_{t}-c$, where c is the coupon payment. No-arbitrage implies that after-tax cash flow $(1-\tau)\left(X_{t}-c\right)$ plus capital gains equal the risk free return. Thus, the value of equity $E(X)$ satisfies the following differential equation:

$$
\frac{1}{2} \sigma_{X}^{2} X^{2} E_{X X}+\mu X E_{X}+(1-\tau)(X-c)=r E
$$

with boundary conditions:

$$
\begin{gathered}
\lim _{X \uparrow \infty} E(X) / X \leq \infty \\
\lim _{X \downarrow X_{B}} E(X)=(1-q) \eta \alpha \frac{X_{B}}{r-\mu}(1-\tau), \\
\lim _{X \downarrow X_{B}} E_{X}(X)=(1-q) \eta \alpha \frac{1}{r-\mu}(1-\tau) .
\end{gathered}
$$

The general solution to this ordinary differential equation is

$$
E(X)=A X^{\lambda_{1}}+B X^{\lambda}+(1-\tau)\left(\frac{X}{r-\mu}-\frac{c}{r}\right),
$$

with constants A and B determined by boundary conditions, and λ_{1} and λ given by

$$
\begin{aligned}
& \lambda_{1}=\left(\frac{1}{2}-\frac{\mu}{\sigma_{X}^{2}}\right)+\sqrt{\left(\frac{1}{2}-\frac{\mu}{\sigma_{X}^{2}}\right)^{2}+\frac{2 r}{\sigma_{X}^{2}}}>0, \\
& \lambda_{2}=\left(\frac{1}{2}-\frac{\mu}{\sigma_{X}^{2}}\right)-\sqrt{\left(\frac{1}{2}-\frac{\mu}{\sigma_{X}^{2}}\right)^{2}+\frac{2 r}{\sigma_{X}^{2}}}<0 .
\end{aligned}
$$

The first and second boundary condition imply that $A=0$ and

$$
B=\left[(1-q) \eta \alpha \frac{X_{B}}{r-\mu}(1-\tau)-(1-\tau)\left(\frac{X_{B}}{r-\mu}-\frac{c}{r}\right)\right]\left(\frac{1}{X_{B}}\right)^{\lambda} .
$$

Moreover, using the fact that

$$
\lim _{X \downarrow X_{B}} E(X)=\lim _{X \downarrow X_{B}} E_{X}(X) X,
$$

the endogenous default threshold X_{B} can be written as

$$
\begin{equation*}
X_{B}=\frac{r-\mu}{r} \frac{\lambda}{\lambda-1} \frac{c}{1-(1-q) \alpha \eta} . \tag{A1}
\end{equation*}
$$

Finally, replacing X_{B} into $E(X)$, the value of equity simplifies to

$$
\begin{equation*}
E(X)=(1-\tau)\left[\left(\frac{X}{r-\mu}-\frac{c}{r}\right)+\left(\frac{c}{r} \frac{1}{1-\lambda}\right)\left(\frac{X}{X_{B}}\right)^{\lambda}\right] \tag{A2}
\end{equation*}
$$

Equity Beta

To price equity, we apply Ito's lemma to (A2), obtaining

$$
d E_{t}=\left(\mu X_{t} \frac{\partial E}{\partial X}+\frac{1}{2} \sigma_{X}^{2} X_{t}^{2} E_{X X}\right) d t+\sigma X_{t} \frac{\partial E}{\partial X} d_{t} .
$$

These dynamics can be continuously replicated by holding a portfolio with a time-varying weight in X, w_{t}, satisfying

$$
\begin{equation*}
\frac{d E}{E}=w_{t} \times \frac{d X}{X} . \tag{1}
\end{equation*}
$$

By inspection, $w_{t}=\frac{\partial E}{\partial X} \frac{X_{t}}{E_{t}}$. The equity beta, defined as $\beta_{E} \equiv \frac{\operatorname{Cov}\left(\frac{d E}{E}, \frac{d X}{X}\right)}{\operatorname{Var}\left(\frac{(X X}{X}\right)}$, simplifies to

$$
\begin{aligned}
\beta_{E} & =\frac{\operatorname{Cov}\left(w_{t} \times \frac{d X}{X}, \frac{d X}{X}\right)}{\operatorname{Var}\left(\frac{d X}{X}\right)}=w_{t} \\
& =\frac{\partial E}{\partial X} \frac{X_{t}}{E_{t}} .
\end{aligned}
$$

From (A1) and (A2) we get

$$
\begin{aligned}
\beta_{E} & =\frac{\partial E}{\partial X} \frac{X_{t}}{E_{t}}=\frac{(1-\lambda) X_{t} /(r-\mu)-\lambda c / r}{E_{t} /(1-\tau)}+\lambda \\
& =1+\frac{(1-\tau)}{E_{t}} \frac{c}{r}-\frac{(1-\tau)}{E_{t}} \frac{c}{r}\left(\frac{X_{t}}{X_{B}}\right)^{\lambda} .
\end{aligned}
$$

If the market portfolio is perfectly correlated with X_{t}, then β_{E} is equal to the market beta. Alternatively, if the market portfolio, M_{t}, is not perfectly correlated with X_{t} then the market beta is

$$
\beta_{E}^{M} \equiv \frac{\operatorname{Cov}\left(\frac{d E}{E}, \frac{d M}{M}\right)}{\operatorname{Var}\left(\frac{d M}{M}\right)}=\frac{\operatorname{Cov}\left(w_{t} \times \frac{d X}{X}, \frac{d M}{M}\right)}{\operatorname{Var}\left(\frac{d M}{M}\right)}=\beta_{E} \times \beta_{X},
$$

where β_{X} is the firm's asset beta.

Return volatility

Define the total return variance as $\sigma_{E}^{2} \equiv \operatorname{Var}\left(\frac{d E}{E}\right)$. Using (1), we have

$$
\sigma_{E}^{2}=\operatorname{Var}\left(w_{t} \times \frac{d X}{X}\right)=w_{t}^{2} \sigma_{X}^{2}=\left(\beta_{E} \sigma_{X}\right)^{2}
$$

and the total volatility is $\sigma_{E}=\beta_{E} \sigma_{X}$.

Comparative Statics

Substituting for the optimal default threshold in (A1) into (A2), the after-tax value of equity becomes

$$
E=(1-\tau)\left[\left(\frac{X}{r-\mu}-\frac{c}{r}\right)+\left(\frac{c}{r} \frac{1}{1-\lambda}\right)\left(\frac{X r(\lambda-1)(1-(1-q) \eta \alpha))}{(r-\mu) \lambda c}\right)^{\lambda}\right] .
$$

Since $\lambda<0$, it follows that

$$
\frac{\partial E}{\partial \alpha}=\underbrace{\frac{c}{r} \frac{\lambda}{1-\lambda}}_{-} \underbrace{\left(\frac{X r(\lambda-1)(1-(1-q) \eta \alpha)}{(r-\mu) \lambda c}\right)^{\lambda}}_{+} \underbrace{\frac{(-(1-q) \eta)(r-\mu) \lambda c}{X r(\lambda-1)(1-(1-q) \eta \alpha)}}_{-}>0
$$

and

$$
\lim _{q \rightarrow 1} \frac{\partial E}{\partial \alpha}=0
$$

Also

$$
\frac{\partial E}{\partial \eta}=\underbrace{\frac{c}{r} \frac{\lambda}{1-\lambda}}_{-} \underbrace{\left(\frac{X r(\lambda-1)(1-(1-q) \eta \alpha)}{(r-\mu) \lambda c}\right)^{\lambda}}_{+} \underbrace{\frac{(-(1-q) \alpha)(r-\mu) \lambda c}{X r(\lambda-1)(1-(1-q) \eta \alpha)}}_{-}>0
$$

and

$$
\lim _{q \rightarrow 1} \frac{\partial E}{\partial \eta}=0
$$

Finally

$$
\frac{\partial E}{\partial q}=\underbrace{\frac{c}{r} \frac{\lambda}{1-\lambda}}_{-} \underbrace{\left(\frac{X r(\lambda-1)(1-(1-q) \eta \alpha)}{(r-\mu) \lambda c}\right)^{\lambda} \frac{\eta \alpha(r-\mu) \lambda c}{X r(\lambda-1)(1-(1-q) \eta \alpha)}}_{+}<0
$$

Notice also that

$$
\begin{aligned}
\frac{\partial^{2} E}{\partial \alpha \partial q} & =\underbrace{\frac{c}{r} \frac{1}{1-\lambda} \frac{\lambda^{2}(r-\mu) c}{r X(\lambda-1)}}_{-} \underbrace{\left.\frac{X r(\lambda-1)(1-(1-q) \eta \alpha)}{(r-\mu) \lambda c}\right)^{\lambda}}_{+}\{\underbrace{\frac{\eta \alpha(r-\mu) \lambda^{2} c}{\frac{-(1-q) \alpha}{X r(\lambda-1)(1-(1-q) \eta \alpha)} \frac{-(1-q) \eta \alpha}{1-(1-q)}}}_{-} \begin{array}{r}
\underbrace{\frac{\eta q(1-(1-q) \eta \alpha)+(1-q) \eta^{2} \alpha}{(1-(1-q) \eta \alpha)^{2}}}_{-}
\end{array}\} \\
& <0,
\end{aligned}
$$

$$
\frac{\partial^{2} E}{\partial \eta \partial q}=\underbrace{\frac{c}{r} \frac{1}{1-\lambda} \frac{\lambda^{2}(r-\mu) c}{r X(\lambda-1)}}_{-} \underbrace{\left.\frac{X r(\lambda-1)(1-(1-q) \eta \alpha)}{(r-\mu) \lambda c}\right)^{\lambda}}_{+}\left\{\begin{array}{c}
\underbrace{\frac{\eta \alpha(r-\mu) \lambda^{2} c}{X r(\lambda-1)(1-(1-q) \eta \alpha)} \frac{-(1-q) \alpha}{1-(1-q) \eta \alpha}}_{+} \\
+\underbrace{\frac{\alpha q(1-(1-q) \eta \alpha)+(1-q) \alpha^{2} \eta}{(1-(1-q) \eta \alpha)^{2}}}_{-}
\end{array}\right\}
$$

$$
<0
$$

and

$$
\frac{\partial^{2} E}{\partial c \partial q}=\underbrace{\left(\frac{X r(\lambda-1)(1-(1-q) \eta \alpha}{(r-\mu) \lambda c}\right)^{\lambda}}_{+} \underbrace{\frac{\eta \alpha(r-\mu) \lambda^{2} c}{X r(\lambda-1)(1-(1-q) \eta \alpha) r(1-\lambda)}}_{-} \underbrace{(2-\lambda)}_{+}
$$

$$
<0
$$

Using the fact that,

$$
\beta_{E}=\frac{\Omega(1-\tau)}{E}+\lambda,
$$

where

$$
\Omega=X /(r-\mu)-\lambda(X /(r-\mu)-c / r)>0
$$

we have

$$
\begin{aligned}
& \frac{\partial \beta_{E}}{\partial \alpha}=\frac{\partial \beta_{E}}{\partial E} \frac{\partial E}{\partial \alpha}=\underbrace{-\frac{\Omega(1-\tau)}{E^{2}}}_{-} \underbrace{\frac{\partial E}{\partial \alpha}}_{+}<0 \\
& \frac{\partial \beta_{E}}{\partial \eta}=\frac{\partial \beta_{E}}{\partial E} \frac{\partial E}{\partial \eta}=\underbrace{-\frac{\Omega(1-\tau)}{E^{2}}}_{-} \underbrace{\frac{\partial E}{\partial \eta}}_{+}<0,
\end{aligned}
$$

$$
\frac{\partial \beta_{E}}{\partial q}=\frac{\partial \beta_{E}}{\partial E} \frac{\partial E}{\partial q}=\underbrace{-\frac{\Omega(1-\tau)}{E^{2}}}_{-} \underbrace{\frac{\partial E}{\partial q}}_{-}>0,
$$

Moreover,

$$
\begin{aligned}
& \frac{\partial^{2} \beta_{E}}{\partial \alpha \partial q}=\frac{\partial \beta_{E}}{\partial E} \frac{\partial^{2} E}{\partial \alpha \partial q}=\underbrace{-\frac{\Omega(1-\tau)}{E^{2}}}_{-} \underbrace{\frac{\partial^{2} E}{\partial \alpha \partial q}}_{-}>0, \\
& \frac{\partial^{2} \beta_{E}}{\partial \eta \partial q}=\frac{\partial \beta_{E}}{\partial E} \frac{\partial^{2} E}{\partial \eta \partial q}=\underbrace{-\frac{\Omega(1-\tau)}{E^{2}}}_{-} \underbrace{\frac{\partial^{2} E}{\partial \eta \partial q}}_{-}>0 .
\end{aligned}
$$

Further, $\frac{\partial \Omega}{\partial c}>0$ and $\frac{\partial E}{\partial c}<0$ imply that

$$
\begin{aligned}
\frac{\partial^{2} \beta_{E}}{\partial c \partial q} & =\frac{\partial \beta_{E}}{\partial E} \frac{\partial^{2} E}{\partial c \partial q}+\frac{\partial E}{\partial q} \frac{\partial^{2} \beta_{E}}{\partial E \partial c} \\
& =\underbrace{-\frac{\Omega(1-\tau)}{E^{2}}}_{-} \underbrace{\frac{\partial^{2} E}{\partial c \partial q}}_{-}+\underbrace{\frac{\partial}{\partial c}\left\{-\frac{\Omega(1-\tau)}{E^{2}}\right\}}_{-} \underbrace{\frac{\partial E}{\partial q}}_{-}>0 .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& \lim _{q \rightarrow 1} \frac{\partial \beta_{E}}{\partial \alpha}=\lim _{q \rightarrow 1} \frac{\partial \beta_{E}}{\partial E} \frac{\partial E}{\partial \alpha}=-\frac{\Omega(1-\tau)}{E^{2}} \frac{\partial E}{\partial \alpha}=0 \\
& \lim _{q \rightarrow 1} \frac{\partial \beta_{E}}{\partial \eta}=\lim _{q \rightarrow 1} \frac{\partial \beta_{E}}{\partial E} \frac{\partial E}{\partial \eta}=-\frac{\Omega(1-\tau)}{E^{2}} \frac{\partial E}{\partial \eta}=0
\end{aligned}
$$

Summarizing,

Lemma IA1: The equity beta is:

1. increasing in q,
2. decreasing in α and η,
3. less sensitive (in absolute value) to α and η as q increases,
4. insensitive to α and η for $q=1$,
5. more sensitive to q as c increases.

Case 2: Strategic Debt Service

As discussed in Fan and Sundaresan (2000), an alternative to the equity-swap procedure is the "strategic debt service", in which debt holders (at the endogenously determined trigger point) accept a
reduced level of debt payment but let the firm continue operations. The reduced debt payment enables shareholders to get potential tax benefits in the future, and the present value of such tax benefits is included in the bargaining process with debt holders. Following Fan and Sundaresan (2000), and using the same steps as above, the value of equity for $X>X_{B}$ and the endogenous default threshold X_{B} can be written as

$$
\begin{gathered}
E(X)=(1-\tau)\left(\frac{X}{r-\mu}-\frac{c}{r}\right)+\left[\frac{(1-\tau) c}{(1-\lambda) r}-\eta(1-q) \frac{\lambda\left(1-\lambda_{1}\right)}{\left(\lambda_{1}-\lambda\right)(1-\lambda)} \frac{\tau c}{r}\right]\left(\frac{X}{X_{B}}\right)^{\lambda_{1}} \\
X_{B}=\frac{r-\mu}{1-\tau} \frac{\lambda}{\lambda-1} \frac{c}{r}\left(\frac{1-\tau+\tau \eta(1-q)}{1-\alpha \eta(1-q)}\right)
\end{gathered}
$$

The equity beta is derived as in the model with debt-for-equity swap. The implications of this alternative set-up are thus identical the ones discussed in the main text. They are illustrated in Figure IA. 1

Internet Appendix B. Figures and Tables

Figure IA. 1: This figure shows the model's simulated market beta as a function of the liquidation costs, α, and the probability of renegotiation failure, q in the model with strategic debt service. The model's parameters have been set to $\tau=0.35, X=10, c=6, r=$ $0.06, \mu=0.01, \sigma=0.4, \eta=0.6$.

Table IA.1: Equity Beta and Renegotiation Frictions: Dropping Firms

Panel A of this table shows the pooled OLS estimates of the regression of the firm's Domestic market beta on proxies of shareholders' bargaining power (Insiders' share), liquidation costs (Intangibles and Intangibles (with cash)), our measure of renegotiation frictions (Renegotiation failure), and firm-specific controls. Sources and definitions for all variables are in Table I. The sample consists of monthly observations from 1993 to 2006. In this Table, we drop firms that have more than six consecutive zero returns. Each firm's domestic market beta is computed each month from the regression of the past 60 monthly returns on the domestic market's contemporaneous return. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses. Panel B reports statistics for the economic significance of the estimates in panel A, expressed in terms of average monthly excess returns.

Panel A: Pooled OLS estimates

	(1)	(2)	(3)	(4)	(5)
Size	$\begin{aligned} & 0.041^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.032^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.034^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.044^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & * \quad 0.035^{* * *} \\ & (0.004) \end{aligned}$
Book-to-Market	$\begin{gathered} 0.021^{*} \\ (0.011) \end{gathered}$	$\begin{aligned} & 0.054^{* * *} \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.052^{* * *} \\ & (0.011) \end{aligned}$	$\begin{gathered} 0.018^{*} \\ (0.011) \end{gathered}$	$\begin{aligned} & 0.053^{* * *} \\ & (0.011) \end{aligned}$
Leverage projection	$\begin{gathered} 0.101^{* *} \\ (0.047) \end{gathered}$	$\begin{gathered} -0.086^{* *} \\ (0.043) \end{gathered}$	$\begin{gathered} -0.106^{* *} \\ (0.043) \end{gathered}$	$\begin{aligned} & 0.115^{* *} \\ & (0.047) \end{aligned}$	$\begin{gathered} -0.080^{*} \\ (0.044) \end{gathered}$
Renegotiation failure	$\begin{aligned} & 0.116^{* * *} \\ & (0.027) \end{aligned}$	$\begin{aligned} & 0.104^{* * *} \\ & (0.026) \end{aligned}$	$\begin{gathered} -0.046 \\ (0.049) \end{gathered}$	$\begin{gathered} -0.296^{* * *} \\ (0.101) \end{gathered}$	$\begin{array}{r} * \quad-0.205^{*} \\ (0.114) \end{array}$
Insiders' share	$\begin{gathered} -0.088^{* * *} \\ (0.027) \end{gathered}$	$\begin{gathered} -0.075^{* * *} \\ (0.028) \end{gathered}$	$\begin{gathered} -0.276^{* * *} \\ (0.064) \end{gathered}$		
Intangibles	$\begin{gathered} -0.632^{* * *} \\ (0.053) \end{gathered}$			$\begin{gathered} -1.172^{* * *} \\ (0.140) \end{gathered}$	
Intangibles (with cash)		$\begin{aligned} & 0.211^{* * *} \\ & (0.049) \end{aligned}$			$\begin{gathered} -0.115 \\ (0.126) \end{gathered}$
Insiders' share \times Renegotiation failure			$\begin{aligned} & 0.353^{* * *} \\ & (0.095) \end{aligned}$		
Intangibles \times Renegotiation failure				$\begin{aligned} & 0.935^{* * *} \\ & (0.210) \end{aligned}$	
Intangibles (with cash) \times Renegotiation failure					$\begin{gathered} 0.567^{* * *} \\ (0.195) \end{gathered}$
Constant	$\begin{aligned} & 0.758^{* * *} \\ & (0.038) \end{aligned}$	$\begin{aligned} & 0.444^{* * *} \\ & (0.044) \end{aligned}$	$\begin{aligned} & 0.654^{* * *} \\ & (0.046) \end{aligned}$	$\begin{aligned} & 0.939^{* * *} \\ & (0.068) \end{aligned}$	$\begin{aligned} & 0.573^{* * *} \\ & (0.078) \end{aligned}$
F statistic	3, 017.734	1,536.369	1,559.617	3, 024.600	1,521.461
Observations	384,511	384,511	384,511	384,511	384,511
Average adjusted R^{2}	0.05	0.03	0.03	0.05	0.03

[^10] respectively.
(Continues)

Table IA.1: continued

Panel B: Further Tests of the Model's Implications

$$
\begin{equation*}
H_{0}: \frac{\partial \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)}{\partial \text { Intangibles or Insiders' share }}=0 \tag{3}
\end{equation*}
$$

(4)
(5)

Test statistic	0.066^{*}	$-0.202^{* *}$	$0.385^{* * *}$
Standard error	(0.039)	(0.082)	(0.080)

$$
\begin{equation*}
H_{0}: \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)-\mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=0\right)=0 \tag{3}
\end{equation*}
$$

(5)

Test statistic evaluated at average
Intangibles or Insiders' share $0.081^{* * *} 0.113^{* * *} 0.112^{* * *}$
Standard error
(0.023) (0.022) (0.022)

Test statistic evaluated at maximum
Intangibles or Insiders' share $\quad 0.262^{* * *} 0.431^{* * *} 0.310^{* * *}$
Standard error $\quad(0.051) \quad(0.074) \quad(0.074)$
a Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels,
respectively.

Table IA. 2: Robustness to Alternative Definitions of Beta
Panel A of this table shows the pooled OLS estimates of the regression of alternative definitions of firm's beta on proxies of shareholders' bargaining power (Insiders' share), liquidation costs (Intangibles and Intangibles (with cash)), our measure of renegotiation frictions (Renegotiation failure), and firm-specific controls. Sources and definitions for all variables are in Table I. The sample consists of monthly observations from 1993 to 2006. In columns 1 to 3 , the dependent variable is the firm's Overall Market beta for all stocks, computed as the sum of the beta of the regression of the firm's monthly returns on the contemporaneous MSCI World index returns and the residuals of the regression of the domestic market returns on the MSCI World returns, using 60 months rolling windows. In columns 4 to 6 , the dependent variable is the World Market beta for all stocks, computed from the regression of the past 60 monthly returns on the contemporaneous MSCI World index returns. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses. Panel B reports statistics for the economic significance of the estimates in panel A, expressed in terms of average monthly excess returns.

Panel A: OLS estimates

	(1)	(2)	(3)	(4)	(5)	(6)
Size	$\begin{aligned} & 0.069^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & * \quad 0.090^{* * *} \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.069^{* * *} \\ & (0.008) \end{aligned}$	$\begin{aligned} & * \quad 0.061^{* * *} \\ & (0.005) \end{aligned}$	$\begin{aligned} & * \quad 0.075^{* * *} \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.064^{* * *} \\ & (0.005) \end{aligned}$
Book-to-market	$\begin{aligned} & 0.073^{* * *} \\ & (0.023) \end{aligned}$	$\begin{gathered} -0.009 \\ (0.023) \end{gathered}$	$\begin{aligned} & 0.077^{* * *} \\ & (0.023) \end{aligned}$	$\begin{gathered} -0.022^{*} \\ (0.012) \end{gathered}$	$\begin{gathered} -0.059^{* * *} \\ (0.014) \end{gathered}$	$\begin{array}{r} -0.021^{*} \\ (0.012) \end{array}$
Leverage projection	$\begin{gathered} -0.131 \\ (0.091) \end{gathered}$	$\begin{aligned} & 0.411^{* * *} \\ & (0.110) \end{aligned}$	$\begin{gathered} -0.087 \\ (0.091) \end{gathered}$	$\begin{gathered} 0.037 \\ (0.053) \end{gathered}$	$\begin{aligned} & 0.288^{* * *} \\ & (0.072) \end{aligned}$	$\begin{gathered} 0.090^{*} \\ (0.052) \end{gathered}$
Renegotiation failure	$\begin{gathered} -0.235^{* *} \\ (0.092) \end{gathered}$	$\begin{gathered} -0.665^{* * *} \\ (0.190) \end{gathered}$	$\begin{gathered} -0.406^{*} \\ (0.222) \end{gathered}$	$\begin{gathered} -0.356^{* * *} \\ (0.051) \end{gathered}$	$\begin{gathered} -0.388^{* * *} \\ (0.112) \end{gathered}$	$\begin{gathered} -0.226^{*} \\ (0.127) \end{gathered}$
Insiders' share	$\begin{gathered} -0.562^{* * *} \\ (0.063) \end{gathered}$			$\begin{gathered} -0.592^{* * *} \\ (0.065) \end{gathered}$		
Insiders' share \times Renegotiation failure	$\begin{aligned} & 0.864^{* * *} \\ & (0.179) \end{aligned}$			$\begin{aligned} & 0.780^{* * *} \\ & (0.107) \end{aligned}$		
Intangibles		$\begin{gathered} -2.654^{* * *} \\ (0.297) \end{gathered}$			$\begin{gathered} -1.185^{* * *} \\ (0.178) \end{gathered}$	
Intangibles \times Renegotiation failure		$\begin{aligned} & 1.837^{* * *} \\ & (0.395) \end{aligned}$			$\begin{aligned} & 0.888^{* * *} \\ & (0.232) \end{aligned}$	
Intangibles (with cash)			$\begin{aligned} & -0.140 \\ & (0.256) \end{aligned}$			$\begin{gathered} 0.111 \\ (0.153) \end{gathered}$
Intangibles (with cash) \times Renegotiation failure			$\begin{aligned} & 0.950^{* * *} \\ & (0.377) \end{aligned}$			$\begin{gathered} 0.411^{*} \\ (0.224) \end{gathered}$
Constant	$\begin{aligned} & 1.332^{* * *} \\ & (0.098) \end{aligned}$	$\begin{aligned} & 2.014^{* * *} \\ & (0.135) \end{aligned}$	$\begin{aligned} & 1.144^{* * *} \\ & (0.155) \end{aligned}$	$\begin{aligned} & 0.646^{* * *} \\ & (0.053) \end{aligned}$	$\begin{aligned} & 0.761^{* * *} \\ & (0.079) \end{aligned}$	$\begin{aligned} & 0.268^{* * *} \\ & (0.087) \end{aligned}$
F statistic	1,289.95	3,174.24	1,286.10	4, 030.99	4, 241.21	3, 614.19
Observations	376,890	376,890	376,890	376,890	376,890	376,890
Average adjusted R^{2}	0.02	0.05	0.02	0.06	0.06	0.05

${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

Table IA.2: continued

Panel B: Further Tests of the Model's Implications

$$
H_{0}: \frac{\partial \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)}{\partial \text { Intangibles or Insiders' share }}=0
$$

Table IA. 3: Equity Beta and Renegotiation Frictions

This table shows the full set of estimates of the regression of the difference between the firm's beta and the average beta of all firms in the same country-month on proxies for shareholders' bargaining power (Insiders' share) and liquidation costs (Intangibles and Intangibles (with cash)) (see Table A. 3 in the paper). All firm-specific variables are in deviation from the average of all firms in the same country. Sources and definitions for all variables are in Table I. The sample period consists of monthly observations from 1993 to 2006. In Panel A, the dependent variable is the firm's Domestic Market Beta computed for every month from the regression of the latest 60 historical monthly returns on the contemporaneous domestic market return. In Panel B the dependent variable is either the Domestic Market Beta or the Overall Market Beta depending on whether the Karolyi and Stulz (2003) upper bound for asset pricing mistakes of using the domestic CAPM when the world CAPM is the correct model is larger than 0.5% returns per year. In Panel C, the dependent variable is either the Domestic Market Beta or the World Market Beta depending on whether the Bekaert, Harvey, Lundblad, and Siegel (2011) country-year segmentation measure of stocks that are not integrated to the world market is lower than the country's median. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses. The table also reports statistics for the economic significance of the estimates, expressed in terms of average monthly excess returns.

Panel A: Domestic Market Betas

	(1)	(2)	(3)	(4)	(5)
Δ Size	$\begin{aligned} & 0.020^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.014^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.016^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.028^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.023^{* * *} \\ & (0.003) \end{aligned}$
Δ Book-to-Market	$\begin{gathered} -0.019^{*} \\ (0.010) \end{gathered}$	$\begin{gathered} -0.007 \\ (0.010) \end{gathered}$	$\begin{gathered} -0.010 \\ (0.010) \end{gathered}$	$\begin{gathered} -0.018^{*} \\ (0.010) \end{gathered}$	$\begin{gathered} -0.004 \\ (0.010) \end{gathered}$
Δ Leverage projection	$\begin{gathered} 0.100^{* *} \\ (0.042) \end{gathered}$	$\begin{gathered} 0.028 \\ (0.039) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.039) \end{gathered}$	$\begin{aligned} & 0.124^{* * *} \\ & (0.043) \end{aligned}$	$\begin{gathered} 0.042 \\ (0.040) \end{gathered}$
Δ Insiders' share	$\begin{gathered} -0.214^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} -0.217^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} -0.310^{* * *} \\ (0.064) \end{gathered}$		
Δ Intangibles	$\begin{gathered} -0.275^{* * *} \\ (0.048) \end{gathered}$			$\begin{gathered} -0.608^{* * *} \\ (0.126) \end{gathered}$	
Δ Intangibles (with cash)		$\begin{aligned} & 0.211^{* * *} \\ & (0.050) \end{aligned}$			$\begin{gathered} -0.039 \\ (0.126) \end{gathered}$
Δ (Insiders' share \times Renegotiation failure)			$\begin{gathered} 0.162 \\ (0.102) \end{gathered}$		
Δ (Intangibles \times Renegotiation failure)				$\begin{gathered} 0.547^{* * *} \\ (0.196) \end{gathered}$	
$\begin{aligned} & \Delta(\text { Intangibles (with cash) } \times \\ & \text { Renegotiation failure }) \end{aligned}$					$\begin{gathered} 0.436^{* *} \\ (0.197) \end{gathered}$
Constant	$\begin{aligned} & 0.025^{* * *} \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.028^{* * *} \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.027^{* * *} \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.023^{* * *} \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.026^{* * *} \\ & (0.005) \end{aligned}$
F statistic	1,994.513	1,857.725	1,729.677	1,237.884	1,062.013
Observations	376,884	376,884	376,884	376,884	376,884
Average adjusted R^{2}	0.03	0.03	0.03	0.02	0.02

[^11]Table IA.3: continued

Table IA.3: continued

Panel B: Domestic Market Betas or Overall Market Betas

	(1)	(2)	(3)	(4)	(5)
Δ Size	$\begin{aligned} & 0.063^{* * *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.052^{* * *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.055^{* * *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.080^{* * *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.068^{* * *} \\ & (0.007) \end{aligned}$
Δ Book-to-Market	$\begin{gathered} -0.032^{*} \\ (0.019) \end{gathered}$	$\begin{gathered} -0.007 \\ (0.019) \end{gathered}$	$\begin{gathered} -0.0102 \\ (0.019) \end{gathered}$	$\begin{gathered} -0.029 \\ (0.019) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.019) \end{gathered}$
Δ Leverage projection	$\begin{aligned} & 0.125^{* *} \\ & (0.081) \end{aligned}$	$\begin{gathered} -0.038 \\ (0.075) \end{gathered}$	$\begin{gathered} -0.067 \\ (0.076) \end{gathered}$	$\begin{aligned} & 0.172^{* *} \\ & (0.083) \end{aligned}$	$\begin{gathered} -0.009 \\ (0.076) \end{gathered}$
Δ Insiders' share	$\begin{gathered} -0.428^{* * *} \\ (0.042) \end{gathered}$	$\begin{gathered} -0.435^{* * *} \\ (0.042) \end{gathered}$	$\begin{gathered} -0.787^{* * *} \\ (0.113) \end{gathered}$		
Δ Intangibles	$\begin{gathered} -0.600^{* * *} \\ (0.096) \end{gathered}$			$\begin{gathered} -1.144^{* * *} \\ (0.234) \end{gathered}$	
Δ Intangibles (with cash)		$\begin{aligned} & 0.367^{* * *} \\ & (0.103) \end{aligned}$			$\begin{gathered} -0.037 \\ (0.237) \end{gathered}$
Δ (Insiders' share \times Renegotiation failure)			$\begin{aligned} & 0.617^{* * *} \\ & (0.181) \end{aligned}$		
Δ (Intangibles \times Renegotiation failure)				$\begin{gathered} 0.887^{* *} \\ (0.348) \end{gathered}$	
Δ (Intangibles (with cash) \times Renegotiation failure)					$\begin{gathered} 0.706^{*} \\ (0.362) \end{gathered}$
Constant	$\begin{aligned} & 0.042^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.047^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.045^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.038^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.042^{* * *} \\ & (0.009) \end{aligned}$
F statistic	2,814.119	2, 669.291	2,643.600	2,078.636	1,915.123
Observations	376,884	376,884	376,884	376,884	376,884
Average adjusted R^{2}	0.04	0.04	0.04	0.03	0.03

${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

Table IA.3: continued

| Further Tests of the Model's Implications | | |
| :--- | :--- | :--- | :--- | :--- |
| $H_{0}: \frac{\partial \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)}{\partial \text { Intangibles or Insiders' share }}=0$ | | |

Table IA.3: continued

Panel C: Domestic Market Betas or World Market Betas

	(1)	(2)	(3)	(4)	(5)
Δ Size	$\begin{aligned} & 0.046^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.040^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.043^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.055^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.050^{* * *} \\ & (0.003) \end{aligned}$
Δ Book-to-Market	$\begin{gathered} -0.009 \\ (0.019) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.019) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.019) \end{gathered}$	$\begin{gathered} -0.008 \\ (0.019) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.019) \end{gathered}$
Δ Leverage projection	$\begin{gathered} 0.030 \\ (0.044) \end{gathered}$	$\begin{gathered} -0.031 \\ (0.041) \end{gathered}$	$\begin{gathered} -0.050 \\ (0.042) \end{gathered}$	$\begin{gathered} 0.060 \\ (0.045) \end{gathered}$	$\begin{gathered} -0.013 \\ (0.042) \end{gathered}$
Δ Insiders' share	$\begin{gathered} -0.246^{* * *} \\ (0.025) \end{gathered}$	$\begin{gathered} -0.248^{* * *} \\ (0.025) \end{gathered}$	$\begin{gathered} -0.454^{* * *} \\ (0.065) \end{gathered}$		
Δ Intangibles	$\begin{gathered} -0.247^{* * *} \\ (0.053) \end{gathered}$			$\begin{gathered} -0.608^{* * *} \\ (0.133) \end{gathered}$	
Δ Intangibles (with cash)		$\begin{aligned} & 0.225^{* * *} \\ & (0.058) \end{aligned}$			$\begin{gathered} -0.007 \\ (0.132) \end{gathered}$
Δ (Insiders' share \times Renegotiation failure)			$\begin{aligned} & 0.361^{* * *} \\ & (0.101) \end{aligned}$		
Δ (Intangibles \times Renegotiation failure)				$\begin{aligned} & 0.591^{* * *} \\ & (0.201) \end{aligned}$	
Δ (Intangibles (with cash) \times Renegotiation failure)					$\begin{gathered} 0.406^{* *} \\ (0.196) \end{gathered}$
Constant	$\begin{aligned} & 0.016^{* * *} \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.018^{* * *} \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.017^{* * *} \\ & (0.005) \end{aligned}$	$\begin{gathered} 0.014^{* * *} \\ (0.005) \end{gathered}$	$\begin{aligned} & 0.016^{* * *} \\ & (0.005) \end{aligned}$
F statistic	4, 106.079	4, 029.733	4,031.270	3, 301.814	3,201.306
Observations	372,714	372,714	372,714	372,714	372,714
Average adjusted R^{2}	0.06	0.06	0.06	0.05	0.05

${ }^{a}$ Estimates followed by ${ }^{* * *},^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.
(Continues)

Table IA.3: continued

Further Tests of the Model's Implications

$$
H_{0}: \frac{\partial \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)}{\partial \text { Intangibles or Insiders'share }}=0
$$

(3) (4) (5)

		(3)	(4)	(5)
Test statistic		$-0.079^{* *}$	-0.014	$0.335^{* * *}$
Standard error		(0.040)	(0.079)	(0.083)

$$
H_{0}: \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)-\mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=0\right)=0
$$

(3)
(4)
(5)

Test statistic evaluated at average
Intangibles or Insiders' share
$0.121^{* * *} 0.228^{* * *} 0.203^{* *}$
Standard error
(0.034) (0.077) (0.098)

Test statistic evaluated at maximum
Intangibles or Insiders' share
$0.304^{* * *} \quad 0.426^{* *} \quad 0.341^{* *}$
Standard error
(0.085) (0.145) (0.165)

Table IA. 4: Equity Beta, Renegotiation Frictions and Leverage
This table shows the full set of estimates of the regression of the firm's Domestic market beta on proxies of liquidation costs (Intangibles and Intangibles with cash), shareholders' bargaining power (Insiders' share), and our measure of renegotiation frictions (Renegotiation failure) (see Table VI in the paper). Sources and definitions for all variables are in Table I. The sample consists of monthly observations from 1993 to 2006. Each firm's Domestic Market Beta is computed each month from the regression of the past 60 monthly returns on its country's contemporaneous market return. The estimates in Panel A are for the two subsamples of High Leverage (HL) and Low Leverage (LL) firms. The HL and the LL subsamples include, respectively, the top and bottom three deciles of the distribution of Leverage projection. Leverage projection is the orthogonal projection of the firm's Leverage in year $t>0$ on Renegotiation failure, the firm's initial Leverage $(t=0)$, the country's statutory corporate tax rate, the firm's Intangibles, Insiders' share, Size and Book-tomarket, and yearly dummies. Standard errors adjusted for correlation within firms and time are reported in parentheses. This panel also reports statistics for the sensitivity of the equity beta to Renegotiation failure implied by the parameter estimates and evaluated at different values of the proxies for liquidation costs and shareholder's bargaining power. In Panel B, (HSD) and (LSD) contain firms in the top and bottom three deciles of the distribution of Short-term debt projection, which is defined following the same method as for Leverage projection.

Panel A: Estimates conditional on subsamples defined by Leverage

	(1)		(2)		(3)	
	LL	HL	LL	HL	LL	HL
Size	$\begin{aligned} & 0.032^{* * *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.046^{* * *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.042^{* * *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.052^{* * *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.037^{* * *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.043^{* * *} \\ & (0.006) \end{aligned}$
Book-to-Market	$\begin{aligned} & 0.043^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.106^{* * *} \\ & (0.018) \end{aligned}$	$\begin{array}{r} -0.030 \\ (0.019) \end{array}$	$\begin{aligned} & 0.073^{* * *} \\ & (0.019) \end{aligned}$	$\begin{gathered} 0.029 \\ (0.018) \end{gathered}$	$\begin{aligned} & 0.108^{* * *} \\ & (0.018) \end{aligned}$
Leverage projection	$\begin{gathered} -0.256^{*} \\ (0.137) \end{gathered}$	$\begin{gathered} 0.007 \\ (0.087) \end{gathered}$	$\begin{aligned} & 0.348^{* *} \\ & (0.164) \end{aligned}$	$\begin{gathered} 0.172^{*} \\ (0.089) \end{gathered}$	$\begin{gathered} -0.128 \\ (0.139) \end{gathered}$	$\begin{gathered} 0.086 \\ (0.086) \end{gathered}$
Renegotiation failure	$\begin{gathered} -0.111 \\ (0.087) \end{gathered}$	$\begin{gathered} -0.042 \\ (0.084) \end{gathered}$	$\begin{gathered} -0.154 \\ (0.158) \end{gathered}$	$\begin{gathered} -0.814^{* * *} \\ (0.197) \end{gathered}$	$\begin{gathered} -0.069 \\ (0.200) \end{gathered}$	$\begin{gathered} -0.477^{* *} \\ (0.191) \end{gathered}$
Insiders' share	$\begin{aligned} & -0.485^{* * *} \\ & (0.107) \end{aligned}$	$\begin{gathered} -0.170 \\ (0.108) \end{gathered}$				
Insiders' share \times Renegotiation failure	$\begin{aligned} & 0.416^{* *} \\ & (0.164) \end{aligned}$	$\begin{aligned} & 0.433^{* * *} \\ & (0.159) \end{aligned}$				
Intangibles			$\begin{gathered} -1.015^{* * *} \\ (0.231) \end{gathered}$	$\begin{aligned} & -1.849^{* * *} \\ & (0.268) \end{aligned}$		
Intangibles \times Renegotiation failure			$\begin{gathered} 0.692^{*} \\ (0.366) \end{gathered}$	$\begin{aligned} & 1.931^{* * *} \\ & (0.392) \end{aligned}$		
Intangibles (with cash)					$\begin{gathered} 0.097 \\ (0.213) \end{gathered}$	$\begin{gathered} -0.539^{* *} \\ (0.223) \end{gathered}$
Intangibles (with cash) \times Renegotiation failure					$\begin{gathered} 0.359 \\ (0.330) \end{gathered}$	$\begin{aligned} & 1.025^{* * *} \\ & (0.341) \end{aligned}$
Constant	$\begin{aligned} & 0.810^{* * *} \\ & (0.076) \end{aligned}$	$\begin{aligned} & 0.422^{* * *} \\ & (0.087) \end{aligned}$	$\begin{aligned} & 0.838^{* * *} \\ & (0.104) \end{aligned}$	$\begin{aligned} & 1.163^{* * *} \\ & (0.139) \end{aligned}$	$\begin{aligned} & 0.446^{* * *} \\ & (0.131) \end{aligned}$	$\begin{aligned} & 0.672^{* * *} \\ & (0.137) \end{aligned}$
F statistic	712.658	861.805	810.469	1,412.098	489.482	809.369
Observations	113,284	112,837	113,284	112,837	113,284	112,837
Average adjusted R^{2}	0.04	0.04	0.04	0.07	0.03	0.04

${ }^{a}$ Estimates followed by ${ }^{* * *},^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.
(Continues)

Table IA.4: continued

Further Tests of the Model's Implications						
H_{0} :	$-\left.\right\|_{H L}-\frac{\partial \beta}{\partial \text { Reneaotiation foa }}$				(3)	
	(1)		(2)			
	LL	HL	LL	HL	LL	HL
$\partial \beta$ evaluated at:						
Average Intangibles or						
Insiders' share	0.063	$0.126^{* * *}$	0.131***	0.134***	0.156***	0.111***
Standard error	(0.044)	(0.047)	(0.044)	(0.045)	(0.047)	(0.043)
Intangibles or						
Insiders' share $=0.5$	0.097**	0.175 ${ }^{* * *}$	0.192***	0.151***	0.111***	0.035
Standard error	(0.044)	(0.047)	(0.054)	(0.045)	(0.049)	(0.048)
Intangibles or						
Insiders' share $=1$	0.305***	0.391***	0.539**	$1.117^{* * *}$	0.291*	$0.548^{* * *}$
Standard error	(0.099)	(0.101)	(0.219)	(0.205)	(0.152)	(0.150)

Table IA.4: continued

Panel B: Estimates conditional on subsamples defined by Short-term leverage

	(1)		(2)		(3)	
	LSD	HSD	LSD	HSD	LSD	HSD
Size	$\begin{aligned} & 0.021^{* * *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.042^{* * *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.026^{* * *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.057^{* * *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.018^{* *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.047^{* * *} \\ & (0.007) \end{aligned}$
Book-to-Market	$\begin{aligned} & 0.063^{* * *} \\ & (0.018) \end{aligned}$	$\begin{gathered} 0.014 \\ (0.019) \end{gathered}$	$\begin{gathered} 0.033^{*} \\ (0.019) \end{gathered}$	$\begin{gathered} -0.018 \\ (0.018) \end{gathered}$	$\begin{aligned} & 0.069^{* * *} \\ & (0.018) \end{aligned}$	$\begin{gathered} 0.014 \\ (0.019) \end{gathered}$
Short term leverage projection	$\begin{aligned} & -0.309^{* * *} \\ & (0.079) \end{aligned}$	$\begin{gathered} 0.082 \\ (0.084) \end{gathered}$	$\begin{gathered} -0.110 \\ (0.090) \end{gathered}$	$\begin{aligned} & 0.304^{* * *} \\ & (0.085) \end{aligned}$	$\begin{gathered} -0.315^{* * *} \\ (0.080) \end{gathered}$	$\begin{gathered} 0.133 \\ (0.086) \end{gathered}$
Renegotiation failure	$\begin{gathered} 0.085 \\ (0.080) \end{gathered}$	$\begin{aligned} & -0.272^{* * *} \\ & (0.095) \end{aligned}$	$\begin{aligned} & -0.450^{* * *} \\ & (0.163) \end{aligned}$	$\begin{gathered} -0.100 \\ (0.199) \end{gathered}$	$\begin{gathered} -0.084 \\ (0.184) \end{gathered}$	$\begin{gathered} -0.126 \\ (0.225) \end{gathered}$
Insiders' share	$\begin{gathered} -0.146 \\ (0.110) \end{gathered}$	$\begin{gathered} -0.601^{* * *} \\ (0.116) \end{gathered}$				
Insiders' share \times Renegotiation failure	$\begin{aligned} & 0.299^{* *} \\ & (0.161) \end{aligned}$	$\begin{aligned} & 0.772^{* * *} \\ & (0.179) \end{aligned}$				
Intangibles			$\begin{gathered} -1.255^{* * *} \\ (0.210) \end{gathered}$	$\begin{gathered} -1.023^{* * *} \\ (0.299) \end{gathered}$		
Intangibles \times Renegotiation failure			$\begin{aligned} & 1.297^{* * *} \\ & (0.308) \end{aligned}$	$\begin{gathered} 0.531 \\ (0.450) \end{gathered}$		
Intangibles (with cash)					$\begin{gathered} -0.015 \\ (0.200) \end{gathered}$	$\begin{gathered} -0.018 \\ (0.249) \end{gathered}$
Intangibles (with cash) \times Renegotiation failure					$\begin{gathered} 0.483^{*} \\ (0.290) \end{gathered}$	$\begin{gathered} 0.425 \\ (0.393) \end{gathered}$
Constant	$\begin{aligned} & 0.652^{* * *} \\ & (0.078) \end{aligned}$	$\begin{aligned} & 0.764^{* * *} \\ & (0.087) \end{aligned}$	$\begin{aligned} & 1.125^{* * *} \\ & (0.119) \end{aligned}$	$\begin{aligned} & 0.770^{* * *} \\ & (0.135) \end{aligned}$	$\begin{aligned} & 0.616^{* * *} \\ & (0.136) \end{aligned}$	$\begin{aligned} & 0.432^{* * *} \\ & (0.148) \end{aligned}$
F statistic	452.405	848.595	783.303	1,017.959	504.056	607.852
Observations	104,669	104,255	104,669	104,255	104,669	104,255
Average adjusted R^{2}	0.02	0.05	0.05	0.06	0.03	0.04

${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

Table IA.4: continued

Further Tests of the Model's Implications						
H_{0} :	$\partial \beta$					
	(1)		(2)		(3)	
$\frac{\partial \beta}{\partial \text { Renegotiotion }}$ evaluated at:						
Average Intangibles or						
Insiders' share	0.201***	0.059	$0.176^{* * *}$	0.129**	0.212***	0.121**
Standard error	(0.045)	(0.051)	(0.044)	(0.051)	(0.042)	(0.050)
Intangibles or						
Insiders' share $=0.5$	$0.234^{* * *}$	0.114**	0.198***	0.166***	$0.158^{* * *}$	0.086
Standard error	(0.047)	(0.052)	(0.043)	(0.061)	(0.054)	(0.054)
Intangibles or						
Insiders' share $=1$	$0.384^{* * *}$	0.500***	0.847***	0.432	0.400***	0.299*
Standard error	(0.104)	(0.111)	(0.157)	(0.263)	(0.118)	(0.181)

Table IA. 5: Robustness Analysis

This table presents the full set of estimates of the regression of the firm's Domestic Market Beta on proxies for shareholders' bargaining power (Insiders' share), liquidation costs (Intangibles), and alternative measures of renegotiation frictions (see Table VII in the paper). Sources and definitions for all variables are in Table I. The sample period consists of monthly observations from 1993 to 2006. The firm's Domestic Market Beta is computed for every month from the regression of the latest 60 historical monthly returns on its country's contemporaneous market return. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses. In Panel A, our measure of renegotiation frictions is Renegotiation failure. Columns 1 and 2 report estimates for a subsample of firms with the proportion of foreign sales or foreign assets below a 5% threshold. Columns 3 and 4 report the results for a subsample of countries that have never changed their bankruptcy code between 1993 and 2005. Panel B reports estimates for the full sample of firms and countries, but uses the index of priority at which creditors are served in default (Priority), and the creditors' recovery rate (Creditors' recovery) as alternative measures of debt renegotiation frictions.

Panel A: Excluding multinational firms or years before last bankruptcy code change

	(1)	(2)	(3)	(4)
Stock market turnover	$\begin{gathered} -0.187^{* * *} \\ (0.016) \end{gathered}$	$\begin{gathered} -0.165^{* * *} \\ (0.016) \end{gathered}$	$\begin{gathered} -0.150^{* * *} \\ (0.009) \end{gathered}$	$\begin{gathered} -0.127^{* * *} \\ (0.009) \end{gathered}$
Stock market cap to GDP	$\begin{gathered} -0.126^{* * *} \\ (0.023) \end{gathered}$	$\begin{aligned} & -0.130^{* * *} \\ & (0.024) \end{aligned}$	$\begin{gathered} -0.090^{* * *} \\ (0.014) \end{gathered}$	$\begin{gathered} -0.092^{* *} \\ (0.014) \end{gathered}$
Private credit to GDP	$\begin{aligned} & 0.103^{* * *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.098^{* * *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.071^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.077^{* * *} \\ & (0.015) \end{aligned}$
French	$\begin{aligned} & 0.254^{* * *} \\ & (0.049) \end{aligned}$	$\begin{aligned} & 0.188^{* * *} \\ & (0.048) \end{aligned}$	$\begin{aligned} & 0.251^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.185^{* * *} \\ & (0.024) \end{aligned}$
German	$\begin{aligned} & 0.251^{* * *} \\ & (0.029) \end{aligned}$	$\begin{aligned} & 0.211^{* * *} \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.208^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.155^{* * *} \\ & (0.018) \end{aligned}$
Scandinavian	$\begin{gathered} -0.003 \\ (0.063) \end{gathered}$	$\begin{gathered} -0.023 \\ (0.061) \end{gathered}$	$\begin{gathered} -0.066^{* *} \\ (0.031) \end{gathered}$	$\begin{gathered} -0.092^{* *} \\ (0.031) \end{gathered}$
Socialist	$\begin{gathered} 0.314^{*} \\ (0.181) \end{gathered}$	$\begin{gathered} 0.237 \\ (0.175) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \end{gathered}$
Size	$\begin{gathered} -0.007 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.007) \end{gathered}$	$\begin{aligned} & 0.019^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.033^{* * *} \\ & (0.004) \end{aligned}$
Book-to-Market	$\begin{gathered} -0.018 \\ (0.016) \end{gathered}$	$\begin{array}{r} -0.031^{*} \\ (0.017) \end{array}$	$\begin{gathered} -0.010 \\ (0.011) \end{gathered}$	$\begin{gathered} -0.020^{*} \\ (0.011) \end{gathered}$
Leverage projection	$\begin{gathered} -0.167^{* *} \\ (0.067) \end{gathered}$	$\begin{gathered} -0.012 \\ (0.074) \end{gathered}$	$\begin{gathered} -0.031 \\ (0.041) \end{gathered}$	$\begin{aligned} & 0.105^{* *} \\ & (0.045) \end{aligned}$
Renegotiation failure	$\begin{aligned} & 0.323^{* * *} \\ & (0.098) \end{aligned}$	$\begin{gathered} -0.209 \\ (0.209) \end{gathered}$	$\begin{aligned} & 0.245^{* * *} \\ & (0.053) \end{aligned}$	$\begin{gathered} -0.009 \\ (0.102) \end{gathered}$
Insiders' share	$\begin{gathered} -0.324^{* *} \\ (0.136) \end{gathered}$		$\begin{aligned} & -0.434^{* * *} \\ & (0.064) \end{aligned}$	
Intangibles		$\begin{gathered} -1.219^{* * *} \\ (0.271) \end{gathered}$		$\begin{gathered} -0.828^{* * *} \\ (0.139) \end{gathered}$
Insiders'share \times Renegotiation failure	$\begin{gathered} 0.328 \\ (0.206) \end{gathered}$		$\begin{aligned} & 0.330^{* * *} \\ & (0.096) \end{aligned}$	
Intangibles \times Renegotiation failure		$\begin{aligned} & 1.474^{* * *} \\ & (0.414) \end{aligned}$		$\begin{aligned} & 0.848^{* * *} \\ & (0.204) \end{aligned}$
Constant	$\begin{aligned} & 0.652^{* * *} \\ & (0.094) \end{aligned}$	$\begin{aligned} & 0.996^{* * *} \\ & (0.149) \end{aligned}$	$\begin{aligned} & 0.619^{* * *} \\ & (0.054) \end{aligned}$	$\begin{aligned} & 0.708^{* * *} \\ & (0.075) \end{aligned}$
F statistic	2,243.042	2,288.909	5,179.640	4,752.762
Observations	101,827	101,827	342,672	342,672
Average adjusted R^{2}	0.22	0.22	0.14	0.13

${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

Table IA.5: continued

Panel B: Creditors' priority and recovery

	(1)	(2)	(3)	(4)
Stock market turnover	$\begin{gathered} -0.189^{* * *} \\ (0.010) \end{gathered}$	$\begin{gathered} -0.162^{* * *} \\ (0.010) \end{gathered}$	$\begin{gathered} -0.153^{* * *} \\ (0.009) \end{gathered}$	$\begin{gathered} -0.133^{* * *} \\ (0.009) \end{gathered}$
Stock market cap to GDP	$\begin{gathered} -0.071^{* * *} \\ (0.013) \end{gathered}$	$\begin{gathered} -0.070^{* * *} \\ (0.014) \end{gathered}$	$\begin{aligned} & -0.040^{* * *} \\ & (0.014) \end{aligned}$	$\begin{gathered} -0.035^{* *} \\ (0.014) \end{gathered}$
Private credit to GDP	$\begin{aligned} & 0.044^{* * *} \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.039^{* * *} \\ & (0.015) \end{aligned}$	$\begin{gathered} -0.461^{* * *} \\ (0.052) \end{gathered}$	$\begin{gathered} -0.420^{* * *} \\ (0.050) \end{gathered}$
French	$\begin{aligned} & 0.051^{* * *} \\ & (0.021) \end{aligned}$	$\begin{gathered} -0.004 \\ (0.022) \end{gathered}$	$\begin{aligned} & 0.054^{* * *} \\ & (0.020) \end{aligned}$	$\begin{gathered} 0.022 \\ (0.021) \end{gathered}$
German	$\begin{aligned} & 0.144^{* * *} \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.089^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.120^{* * *} \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.077^{* * *} \\ & (0.015) \end{aligned}$
Scandinavian	$\begin{gathered} -0.097^{* * *} \\ (0.024) \end{gathered}$	$\begin{gathered} -0.128^{* * *} \\ (0.025) \end{gathered}$	$\begin{gathered} -0.124^{* * *} \\ (0.025) \end{gathered}$	$\begin{gathered} -0.139^{* * *} \\ (0.025) \end{gathered}$
Socialist	$\begin{gathered} 0.015 \\ (0.128) \end{gathered}$	$\begin{gathered} -0.110 \\ (0.126) \end{gathered}$	$\begin{gathered} -0.096 \\ (0.129) \end{gathered}$	$\begin{gathered} -0.199 \\ (0.127) \end{gathered}$
Size	$\begin{aligned} & 0.019^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.033^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.020^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.030^{* * *} \\ & (0.004) \end{aligned}$
Book-to-Market	$\begin{gathered} -0.008 \\ (0.011) \end{gathered}$	$\begin{gathered} -0.017 \\ (0.011) \end{gathered}$	$\begin{gathered} -0.010 \\ (0.010) \end{gathered}$	$\begin{array}{r} -0.019^{*} \\ (0.011) \end{array}$
Leverage projection	$\begin{gathered} -0.038 \\ (0.041) \end{gathered}$	$\begin{gathered} 0.084^{*} \\ (0.045) \end{gathered}$	$\begin{gathered} -0.030 \\ (0.040) \end{gathered}$	$\begin{gathered} 0.076^{*} \\ (0.044) \end{gathered}$
Priority	$\begin{gathered} -0.103^{* * *} \\ (0.023) \end{gathered}$	$\begin{aligned} & 0.169^{* * *} \\ & (0.042) \end{aligned}$		
Recovery			$\begin{aligned} & -0.719^{* * *} \\ & (0.090) \end{aligned}$	$\begin{gathered} 0.166 \\ (0.115) \end{gathered}$
Insiders' share	$\begin{gathered} -0.920^{* * *} \\ (0.132) \end{gathered}$		$\begin{gathered} -0.791^{* * *} \\ (0.082) \end{gathered}$	
Intangibles		$\begin{aligned} & 1.079^{* * *} \\ & (0.351) \end{aligned}$		$\begin{gathered} 0.449^{* *} \\ (0.195) \end{gathered}$
Insiders' share \times Priority	$\begin{aligned} & 0.174^{* * *} \\ & (0.035) \end{aligned}$			
Intangibles \times Priority		$\begin{aligned} & -0.362^{* * *} \\ & (0.091) \end{aligned}$		
Insiders' share \times Creditors' recovery			$\begin{aligned} & 0.739^{* * *} \\ & (0.103) \end{aligned}$	
Intangibles \times Creditors' recovery				$\begin{aligned} & -0.890^{* * *} \\ & (0.237) \end{aligned}$
Recovery \times GDP growth			$\begin{aligned} & 0.520^{* * *} \\ & (0.060) \end{aligned}$	$\begin{aligned} & 0.472^{* * *} \\ & (0.057) \end{aligned}$
Constant	$\begin{aligned} & 1.404^{* * *} \\ & (0.096) \end{aligned}$	$\begin{gathered} 0.277^{*} \\ (0.162) \end{gathered}$	$\begin{aligned} & 1.478^{* * *} \\ & (0.079) \end{aligned}$	$\begin{aligned} & 0.711^{* * *} \\ & (0.094) \end{aligned}$
F statistic	4, 006.603	3,501.730	4,513.083	4,009.880
Observations	351,099	351,099	351,333	351,333
Average adjusted R^{2}	0.12	0.11	0.14	0.13

[^12]
Table IA. 6: Volatility, Renegotiation Frictions and Institutional Variables

This table shows the full set of estimates of the regression of the firm's volatility on proxies for shareholders' bargaining power (Insiders'share), liquidation costs (Intangibles), and our measure of renegotiation frictions (Renegotiation Failure) (see Table VIII in the paper). Sources and definitions for all variables are in Table I. The sample period consists of all monthly observations from 1993 to 2006. In columns 1 and 2, the dependent variable is Total return volatility, defined as the annualized standard deviation of monthly stock returns over the past 60 -months window. In columns 3 and 4, the dependent variable is Systematic return volatility, defined as the annualized square root of the difference between the variance of monthly stock returns and the variance of residuals from a regression of monthly returns on the lagged, contemporaneous, and lead domestic market index returns. In columns 5 and 6 , the dependent variable is Idiosyncratic return volatility, defined as the annualized standard deviation of the residuals from a regression of monthly returns on the lagged, contemporaneous, and lead domestic market index returns. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses.

Panel A: Pooled OLS estimates

	(1)	(2)	(3)	(4)	(5)	(6)
Stock market turnover	$\begin{aligned} & 0.040^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.045^{* * *} \\ & (0.003) \end{aligned}$	$\begin{gathered} -0.012^{* * *} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.007^{* *} \\ (0.003) \end{gathered}$	$\begin{aligned} & 0.054^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.057^{* * *} \\ & (0.002) \end{aligned}$
Stock market cap to GDP	$\begin{gathered} -0.002 \\ (0.004) \end{gathered}$	$\begin{gathered} -0.003 \\ (0.004) \end{gathered}$	$\begin{gathered} -0.021^{* * *} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.022^{* * *} \\ (0.003) \end{gathered}$	$\begin{aligned} & 0.012^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.011^{* * *} \\ & (0.003) \end{aligned}$
Private credit to GDP	$\begin{gathered} -0.002 \\ (0.004) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.004) \end{gathered}$	$\begin{aligned} & 0.023^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.023^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & -0.021^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.021^{* * *} \\ & (0.003) \end{aligned}$
Growth options	$\begin{aligned} & 0.023^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.024^{* * *} \\ & (0.004) \end{aligned}$	$\begin{gathered} 0.003 \\ (0.003) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.003) \end{gathered}$	$\begin{aligned} & 0.025^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.025^{* * *} \\ & (0.003) \end{aligned}$
French	$\begin{gathered} -0.016^{* *} \\ (0.008) \end{gathered}$	$\begin{gathered} -0.027^{* * *} \\ (0.008) \end{gathered}$	$\begin{aligned} & 0.051^{* * *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.039^{* * *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0.052^{* * *} \\ & (0.006) \end{aligned}$	$\begin{gathered} -0.058^{* * *} \\ (0.006) \end{gathered}$
German	$\begin{gathered} 0.008 \\ (0.005) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.005) \end{gathered}$	$\begin{aligned} & 0.047^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.039^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & -0.017^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & -0.023^{* * *} \\ & (0.004) \end{aligned}$
Scandinavian	$\begin{gathered} -0.024^{* * *} \\ (0.008) \end{gathered}$	$\begin{aligned} & -0.029^{* * *} \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.019^{* * *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0.016^{* *} \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0.041^{* * *} \\ & (0.006) \end{aligned}$	$\begin{gathered} -0.044^{* * *} \\ (0.006) \end{gathered}$
Socialist	$\begin{aligned} & 0.194^{* * *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.175^{* * *} \\ & (0.032) \end{aligned}$	$\begin{aligned} & 0.167^{* * *} \\ & (0.047) \end{aligned}$	$\begin{aligned} & 0.145^{* * *} \\ & (0.046) \end{aligned}$	$\begin{aligned} & 0.107^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.098^{* * *} \\ & (0.017) \end{aligned}$
Size	$\begin{gathered} -0.014^{* * *} \\ (0.001) \end{gathered}$	$\begin{aligned} & -0.011^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.003^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.005^{* * *} \\ & (0.001) \end{aligned}$	$\begin{gathered} -0.018^{* * *} \\ (0.001) \end{gathered}$	$\begin{gathered} -0.017^{* * *} \\ (0.001) \end{gathered}$
Book-to-market	$\begin{aligned} & -0.014^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.018^{* * *} \\ & (0.003) \end{aligned}$	$\begin{gathered} -0.001 \\ (0.002) \end{gathered}$	$\begin{gathered} -0.004 \\ (0.002) \end{gathered}$	$\begin{aligned} & -0.015^{* * *} \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.018^{* * *} \\ & (0.003) \end{aligned}$
Leverage projection	$\begin{aligned} & 0.040^{* * *} \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.076^{* * *} \\ & (0.012) \end{aligned}$	$\begin{gathered} 0.006 \\ (0.009) \end{gathered}$	$\begin{aligned} & 0.035^{* * *} \\ & (0.01) \end{aligned}$	$\begin{aligned} & 0.036^{* * *} \\ & (0.01) \end{aligned}$	$\begin{aligned} & 0.060^{* * *} \\ & (0.01) \end{aligned}$
Renegotiation failure	$\begin{gathered} -0.073^{* * *} \\ (0.013) \end{gathered}$	$\begin{aligned} & -0.069^{* * *} \\ & (0.026) \end{aligned}$	$\begin{gathered} -0.012 \\ (0.012) \end{gathered}$	$\begin{gathered} -0.031 \\ (0.022) \end{gathered}$	$\begin{aligned} & -0.078^{* * *} \\ & (0.011) \end{aligned}$	$\begin{gathered} -0.069^{* * *} \\ (0.021) \end{gathered}$
Insiders' share	$\begin{gathered} -0.080^{* * *} \\ (0.017) \end{gathered}$		$\begin{gathered} -0.106^{* * *} \\ (0.014) \end{gathered}$		$\begin{gathered} -0.030^{* *} \\ (0.013) \end{gathered}$	
Insiders' share \times Renegotiation failure	$\begin{aligned} & 0.105^{* * *} \\ & (0.024) \end{aligned}$		$\begin{aligned} & 0.145^{* * *} \\ & (0.02) \end{aligned}$		$\begin{gathered} 0.031 \\ (0.02) \end{gathered}$	
Intangibles		$\begin{gathered} -0.149^{* * *} \\ (0.033) \end{gathered}$		$\begin{gathered} -0.176^{* * *} \\ (0.029) \end{gathered}$		$\begin{gathered} -0.073^{* * *} \\ (0.027) \end{gathered}$
Intangibles \times Renegotiation failure		$\begin{gathered} 0.076 \\ (0.049) \end{gathered}$		$\begin{aligned} & 0.159^{* * *} \\ & (0.042) \end{aligned}$		$\begin{gathered} 0.005 \\ (0.04) \end{gathered}$
Constant	$\begin{aligned} & 0.378^{* * *} \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.393^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.135^{* * *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.152^{* * *} \\ & (0.022) \end{aligned}$	$\begin{aligned} & 0.362^{* * *} \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.370^{* * *} \\ & (0.018) \end{aligned}$
F statistic	1,968.48	2, 032.53	3,478.95	3, 361.64	4, 867.89	4,981.82
Observations	351,082	351,082	351,082	351,082	351,082	351,082
Average adjusted R^{2}	0.08	0.09	0.11	0.11	0.17	0.18

[^13]
Table IA. 7: Robustness to Dropping Firms Based on their Foreign Activity

This table presents the estimates of the regression of the firm's Domestic Market Beta on proxies for shareholders' bargaining power (Insiders' share), liquidation costs (Intangibles), and our measure of renegotiation frictions. Sources and definitions for all variables are in Table I. The sample period consists of monthly observations from 1993 to 2006. The firm's Domestic Market Beta is computed for every month from the regression of the latest 60 historical monthly returns on its country's contemporaneous market return. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses. In columns 1 and 2 of Panel A we report estimates for a subsample of firms with the proportion of foreign sales to total sales below the sample average; and in columns 3 and 4 we keep firms with foreign sales below the median. Panel B reports statistics for the economic significance of the estimates in Panel A, expressed in terms of average monthly excess returns.

Panel A: Pooled OLS estimates

	(1)	(2)	(3)	(4)
Stock market turnover	$\begin{gathered} -0.178^{* * *} \\ (0.014) \end{gathered}$	$\begin{gathered} -0.156^{* * *} \\ (0.014) \end{gathered}$	$\begin{gathered} -0.191^{* * *} \\ (0.016) \end{gathered}$	$\begin{gathered} -0.170^{* * *} \\ (0.017) \end{gathered}$
Stock market cap to GDP	$\begin{aligned} & -0.104^{* * *} \\ & (0.017) \end{aligned}$	$\begin{gathered} -0.104^{* * *} \\ (0.018) \end{gathered}$	$\begin{aligned} & -0.101^{* * *} \\ & (0.024) \end{aligned}$	$\begin{gathered} -0.101^{* * *} \\ (0.025) \end{gathered}$
Private credit to GDP	$\begin{aligned} & 0.085^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.090^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.092^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.088^{* * *} \\ & (0.019) \end{aligned}$
French	$\begin{aligned} & 0.282^{* * *} \\ & (0.036) \end{aligned}$	$\begin{aligned} & 0.221^{* * *} \\ & (0.035) \end{aligned}$	$\begin{aligned} & 0.269^{* * *} \\ & (0.048) \end{aligned}$	$\begin{aligned} & 0.215^{* * *} \\ & (0.048) \end{aligned}$
German	$\begin{aligned} & 0.230^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.196^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 0.252^{* * *} \\ & (0.029) \end{aligned}$	$\begin{aligned} & 0.215^{* * *} \\ & (0.029) \end{aligned}$
Scandinavian	$\begin{gathered} 0.021 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.035) \end{gathered}$	$\begin{gathered} -0.017 \\ (0.054) \end{gathered}$	$\begin{gathered} -0.036 \\ (0.053) \end{gathered}$
Socialist	$\begin{gathered} 0.294^{*} \\ (0.161) \end{gathered}$	$\begin{gathered} 0.203 \\ (0.159) \end{gathered}$	$\begin{gathered} 0.288 \\ (0.178) \end{gathered}$	$\begin{gathered} 0.220 \\ (0.173) \end{gathered}$
Size	$\begin{aligned} & 0.013^{* *} \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.022^{* * *} \\ & (0.005) \end{aligned}$	$\begin{gathered} -0.003 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.006) \end{gathered}$
Book-to-market	$\begin{gathered} -0.008 \\ (0.014) \end{gathered}$	$\begin{gathered} -0.019 \\ (0.014) \end{gathered}$	$\begin{gathered} -0.014 \\ (0.016) \end{gathered}$	$\begin{gathered} -0.025 \\ (0.016) \end{gathered}$
Leverage projection	$\begin{gathered} -0.144^{* *} \\ (0.057) \end{gathered}$	$\begin{gathered} -0.011 \\ (0.062) \end{gathered}$	$\begin{gathered} -0.018^{* * *} \\ (0.066) \end{gathered}$	$\begin{gathered} 0.035 \\ (0.073) \end{gathered}$
Renegotiation failure	$\begin{aligned} & 0.216^{* * *} \\ & (0.080) \end{aligned}$	$\begin{gathered} -0.010 \\ (0.156) \end{gathered}$	$\begin{aligned} & 0.344^{* * *} \\ & (0.092) \end{aligned}$	$\begin{gathered} -0.302 \\ (0.192) \end{gathered}$
Insiders' share	$\begin{aligned} & -0.476^{* * *} \\ & (0.096) \end{aligned}$		$\begin{gathered} -0.281^{* *} \\ (0.131) \end{gathered}$	
Insiders' share \times Renegotiation failure	$\begin{aligned} & 0.529^{* * *} \\ & (0.147) \end{aligned}$		$\begin{gathered} 0.246 \\ (0.194) \end{gathered}$	
Intangibles		$\begin{gathered} -0.879^{* * *} \\ (0.203) \end{gathered}$		$\begin{gathered} -1.298^{* * *} \\ (0.251) \end{gathered}$
Intangibles \times Renegotiation failure		$\begin{aligned} & 0.982^{* * *} \\ & (0.310) \end{aligned}$		$\begin{aligned} & 1.635^{* * *} \\ & (0.379) \end{aligned}$
Constant	$\begin{aligned} & 0.634^{* * *} \\ & (0.076) \end{aligned}$	$\begin{aligned} & 0.738^{* * *} \\ & (0.111) \end{aligned}$	$\begin{aligned} & 0.622^{* * *} \\ & (0.091) \end{aligned}$	$\begin{aligned} & 1.025^{* * *} \\ & (0.139) \end{aligned}$
F statistic	2,380.41	2, 275.27	2,069.38	2, 119.59
Observations	142,151	142,151	103,120	103,120
Average adjusted R^{2}	0.17	0.17	0.20	0.21

[^14]
Table IA.7: continued

Table IA. 8: Robustness to Dropping US and Japanese Firms

This table shows the pooled OLS estimates of the regression of the firm's Domestic market beta on proxies of shareholders' bargaining power (Insiders' share), liquidation costs (Intangibles), our measure of renegotiation frictions (Renegotiation failure), and firm-specific controls. Sources and definitions for all variables are in Table I. The sample consists of monthly observations from 1993 to 2006. In columns 1 and 2 of Panel A we exclude US firms; and in columns 3 and 4 we exclude Japanese firms. In columns 1 and 2 of Panel B we exclude both US and Japanese firms; in columns 3 and 4 we use a random sample of 1000 US and Japanese firms each. Each firm's Domestic market beta is computed each month from the regression of the past 60 monthly returns on the domestic market's contemporaneous return. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses.

	(1)	(2)	(3)	(4)
Size	$\begin{aligned} & 0.048^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.063^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.036^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.043^{* * *} \\ & (0.004) \end{aligned}$
Book-to-Market	$\begin{gathered} 0.011 \\ (0.011) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.044^{* * *} \\ & (0.013) \end{aligned}$	$\begin{gathered} 0.027^{* *} \\ (0.013) \end{gathered}$
Leverage projection	$\begin{gathered} 0.085^{* *} \\ (0.041) \end{gathered}$	$\begin{aligned} & 0.238^{* * *} \\ & (0.047) \end{aligned}$	$\begin{gathered} -0.323^{* * *} \\ (0.060) \end{gathered}$	$\begin{gathered} -0.197^{* * *} \\ (0.066) \end{gathered}$
Renegotiation failure	$\begin{gathered} -0.266^{* * *} \\ (0.047) \end{gathered}$	$\begin{gathered} -0.143 \\ (0.092) \end{gathered}$	$\begin{gathered} 0.113^{* *} \\ (0.051) \end{gathered}$	$\begin{gathered} -0.189^{* *} \\ (0.095) \end{gathered}$
Insiders' share	$\begin{gathered} -0.676^{* * *} \\ (0.059) \end{gathered}$		$\begin{gathered} -0.095 \\ (0.066) \end{gathered}$	
Intangibles		$\begin{gathered} -0.725^{* * *} \\ (0.132) \end{gathered}$		$\begin{gathered} -0.673^{* * *} \\ (0.139) \end{gathered}$
Insiders'share \times Renegotiation failure	$\begin{gathered} 0.667^{* * *} \\ (0.087) \end{gathered}$		$\begin{gathered} 0.022 \\ (0.095) \end{gathered}$	
Intangibles \times Renegotiation failure		$\begin{aligned} & 0.574^{* * *} \\ & (0.190) \end{aligned}$		$\begin{aligned} & 0.733^{* * *} \\ & (0.201) \end{aligned}$
Constant	$\begin{aligned} & 0.789^{* * *} \\ & (0.046) \end{aligned}$	$\begin{aligned} & 0.629^{* * *} \\ & (0.065)) \end{aligned}$	$\begin{aligned} & 0.521^{* * *} \\ & (0.050) \end{aligned}$	$\begin{aligned} & 0.712^{* * *} \\ & (0.068) \end{aligned}$
F statistic	5, 061.31	3, 771.84	1,885.36	1,965.15
Observations	301,374	301,374	243,817	243,817
Average adjusted R^{2}	0.09	0.07	0.04	0.05

[^15](Continues)

Table IA.8: continued

	(1)	(2)	(3)	(4)
Size	$\begin{aligned} & 0.067^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.075^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.044^{* * *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.054^{* * *} \\ & (0.004) \end{aligned}$
Book-to-Market	$\begin{gathered} 0.001 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.013) \end{gathered}$	$\begin{aligned} & 0.048^{* * *} \\ & (0.011) \end{aligned}$	$\begin{gathered} 0.021^{*} \\ (0.012) \end{gathered}$
Leverage projection	$\begin{gathered} 0.014 \\ (0.058) \end{gathered}$	$\begin{gathered} 0.011 \\ (0.068) \end{gathered}$	$\begin{gathered} -0.145^{* * *} \\ (0.050) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.055) \end{gathered}$
Renegotiation failure	$\begin{gathered} -0.083^{*} \\ (0.046) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.085) \end{gathered}$	$\begin{gathered} -0.015 \\ (0.048) \end{gathered}$	$\begin{gathered} -0.221^{* *} \\ (0.096) \end{gathered}$
Insiders' share	$\begin{gathered} -0.459^{* * *} \\ (0.059) \end{gathered}$		$\begin{gathered} -0.271^{* * *} \\ (0.065) \end{gathered}$	
Intangibles		$\begin{gathered} -0.080 \\ (0.133) \end{gathered}$		$\begin{gathered} -0.925^{* * *} \\ (0.139) \end{gathered}$
Insiders' share \times Renegotiation failure	$\begin{aligned} & 0.337^{* * *} \\ & (0.087) \end{aligned}$		$\begin{aligned} & 0.278^{* * *} \\ & (0.092) \end{aligned}$	
Intangibles \times Renegotiation failure		$\begin{gathered} 0.212 \\ (0.179) \end{gathered}$		$\begin{aligned} & 0.792^{* * *} \\ & (0.201) \end{aligned}$
Constant	$\begin{aligned} & 0.503^{* * *} \\ & (0.051) \end{aligned}$	$\begin{aligned} & 0.240^{* * *} \\ & (0.065)) \end{aligned}$	$\begin{aligned} & 0.577^{* * *} \\ & (0.048) \end{aligned}$	$\begin{aligned} & 0.757^{* * *} \\ & (0.068) \end{aligned}$
F statistic	5,107.61	3, 988.00	2,156.62	2, 683.70
Observations	168,307	168,307	280,146	280,146
Average adjusted R^{2}	0.09	0.07	0.15	0.13

[^16]
Table IA. 9: Robustness to Scholes-Williams Betas

Panel A of this table shows the pooled OLS estimates of the regression of the firm's Domestic market beta on proxies of shareholders' bargaining power (Insiders' share), liquidation costs (Intangibles and Intangibles (with cash)), our measure of renegotiation frictions (Renegotiation failure), and firm-specific controls. In this table we compute the Domestic market beta using the Scholes and Williams (1977) methodology to take into account asynchronous trading, using 60 monthly return observations. Sources and definitions for all variables are in Table I. The sample consists of monthly observations from 1993 to 2006. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses. Panel B reports statistics for the economic significance of the estimates in panel A, expressed in terms of average monthly excess returns.

Panel A: Pooled OLS estimates					
	(1)	(2)	(3)	(4)	(5)
Stock market turnover	$\begin{gathered} -0.184^{* * *} \\ (0.012) \end{gathered}$	$\begin{gathered} -0.195^{* * *} \\ (0.012) \end{gathered}$	$\begin{gathered} -0.192^{* * *} \\ (0.012) \end{gathered}$	$\begin{aligned} & -0.173^{* * *} \\ & (0.012) \end{aligned}$	$\begin{gathered} -0.184^{* * *} \\ (0.012) \end{gathered}$
Stock market cap to GDP	$\begin{gathered} -0.125^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} -0.123^{* * *} \\ (0.018) \end{gathered}$	$\begin{aligned} & -0.124^{* * *} \\ & (0.018) \end{aligned}$	$\begin{gathered} -0.123^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} -0.124^{* * *} \\ (0.018) \end{gathered}$
Private credit to GDP	$\begin{aligned} & 0.236^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.237^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.238^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.241^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.243^{* * *} \\ & (0.017) \end{aligned}$
French	$\begin{aligned} & 0.447^{* * *} \\ & (0.034) \end{aligned}$	$\begin{aligned} & 0.459^{* * *} \\ & (0.034) \end{aligned}$	$\begin{aligned} & 0.459^{* * *} \\ & (0.035) \end{aligned}$	$\begin{aligned} & 0.419^{* * *} \\ & (0.034) \end{aligned}$	$\begin{aligned} & 0.431^{* * *} \\ & (0.034) \end{aligned}$
German	$\begin{aligned} & 0.191^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.203^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.204^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.164^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.177^{* * *} \\ & (0.023) \end{aligned}$
Scandinavian	$\begin{aligned} & 0.009^{* * *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.010^{* * *} \\ & (0.032) \end{aligned}$	$\begin{aligned} & 0.099^{* * *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.082^{* * *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.094^{* * *} \\ & (0.032) \end{aligned}$
Socialist	$\begin{aligned} & 0.539^{* * *} \\ & (0.150) \end{aligned}$	$\begin{aligned} & 0.553^{* * *} \\ & (0.152) \end{aligned}$	$\begin{aligned} & 0.555^{* * *} \\ & (0.151) \end{aligned}$	$\begin{aligned} & 0.487^{* * *} \\ & (0.150) \end{aligned}$	$\begin{aligned} & 0.490^{* * *} \\ & (0.152) \end{aligned}$
Size	$\begin{gathered} -0.006 \\ (0.005) \end{gathered}$	$\begin{gathered} -0.011^{* *} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.009^{*} \\ (0.005) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.005) \end{gathered}$	$\begin{gathered} -0.003 \\ (0.004) \end{gathered}$
Book-to-Market	$\begin{gathered} -0.054^{* * *} \\ (0.014) \end{gathered}$	$\begin{gathered} -0.045^{* * *} \\ (0.014) \end{gathered}$	$\begin{gathered} -0.047^{* * *} \\ (0.014) \end{gathered}$	$\begin{aligned} & -0.053^{* * *} \\ & (0.014) \end{aligned}$	$\begin{gathered} -0.041^{* * *} \\ (0.014) \end{gathered}$
Leverage projection	$\begin{gathered} 0.026 \\ (0.051) \end{gathered}$	$\begin{gathered} -0.026 \\ (0.048) \end{gathered}$	$\begin{gathered} -0.038 \\ (0.048) \end{gathered}$	$\begin{gathered} 0.055 \\ (0.052) \end{gathered}$	$\begin{gathered} -0.016 \\ (0.048) \end{gathered}$
Renegotiation failure	$\begin{aligned} & 0.558^{* * *} \\ & (0.051) \end{aligned}$	$\begin{aligned} & 0.565^{* * *} \\ & (0.051) \end{aligned}$	$\begin{aligned} & 0.534^{* * *} \\ & (0.074) \end{aligned}$	$\begin{gathered} -0.004 \\ (0.149) \end{gathered}$	$\begin{gathered} 0.007 \\ (0.178) \end{gathered}$
Insiders' share	$\begin{gathered} -0.182^{* * *} \\ (0.030) \end{gathered}$	$\begin{gathered} -0.188^{* * *} \\ (0.030) \end{gathered}$	$\begin{gathered} -0.228^{* * *} \\ (0.085) \end{gathered}$		
Intangibles	$\begin{gathered} -0.222^{* * *} \\ (0.065) \end{gathered}$			$\begin{gathered} -0.986^{* * *} \\ (0.191) \end{gathered}$	
Intangibles (with cash)		$\begin{aligned} & 0.188^{* * *} \\ & (0.133) \end{aligned}$			$\begin{gathered} -0.415^{* *} \\ (0.186) \end{gathered}$
Insiders'share \times Renegotiation failure			$\begin{gathered} 0.072 \\ (0.133) \end{gathered}$		
Intangibles \times Renegotiation failure				$\begin{aligned} & 1.245^{* * *} \\ & (0.296) \end{aligned}$	
Intangibles (with cash) \times Renegotiation failure					$\begin{aligned} & 1.005^{* * *} \\ & (0.297) \end{aligned}$
Constant	$\begin{aligned} & 0.729^{* * *} \\ & (0.079) \end{aligned}$	$\begin{aligned} & 0.555^{* * *} \\ & (0.083) \end{aligned}$	$\begin{aligned} & 0.668^{* * *} \\ & (0.084) \end{aligned}$	$\begin{aligned} & 0.927^{* * *} \\ & (0.111) \end{aligned}$	$\begin{aligned} & 0.734^{* * *} \\ & (0.129) \end{aligned}$
F statistic	3, 088.37	3, 082.04	3, 050.41	2, 988.64	2,928.28
Observations	343,190	343,190	343,190	343,190	343,190
Average adjusted R^{2}	0.09	0.09	0.09	0.09	0.09

[^17]Table IA.9: continued

Panel B: Further Tests of the Model's Implications

$$
H_{0}: \frac{\partial \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)}{\partial \text { Intangibles or Insiders' }{ }^{\text {share }}}=0
$$

| | (3) | (4) | (5) |
| :--- | :---: | :---: | :---: | :---: |
| | | | |
| Test statistic | $-0.127^{* *}$ | 0.212^{*} | $0.482^{* * *}$ |
| Standard error | (0.050) | (0.109) | (0.115) |

$$
H_{0}: \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)-\mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=0\right)=0
$$

(3) (4)
(5)

Test statistic evaluated at average
Intangibles or Insiders' share $0.460^{* * *} 0.461^{* * *} 0.489^{* * *}$
Standard error
(0.042) (0.042) (0.042)

Test statistic evaluated at maximum
Intangibles or Insiders' share

$$
\begin{aligned}
& 0.495^{* * *} 0.867^{* * *} \\
& \left(0.826^{* * *}\right. \\
& (0.077) \quad(0.101) \quad(0.111)
\end{aligned}
$$

Standard error
${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

Table IA. 10: Robustness to Fama and MacBeth Estimator

This table shows the Fama and MacBeth estimates of the regression of the Domestic Market Beta on proxies for shareholders' bargaining power (Insiders' share), liquidation costs (Intangibles, and Intangibles (with cash)), and our measure of renegotiation frictions (Renegotiation failure). Sources and definitions for all variables are in Table ??. The sample period consists of monthly observations from 1993 to 2006. Each firm's Domestic Market Beta is computed for every month from the regression of the latest 60 historical monthly returns on its contemporaneous domestic market return. Standard errors adjusted for serial correlation (Newey-West) are in parentheses.

	(1)	(2)	(3)	(4)	(5)
Size	$\begin{aligned} & 0.041^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.034^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.036^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.044^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.037^{* * *} \\ & (0.001) \end{aligned}$
Book-to-Market	$\begin{aligned} & 0.027^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.062^{* * *} \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.059^{* * *} \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.024^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.060^{* * *} \\ & (0.008) \end{aligned}$
Leverage projection	$\begin{aligned} & 0.151^{* * *} \\ & (0.029) \end{aligned}$	$\begin{array}{r} *-0.039^{*} \\ (0.022) \end{array}$	$\begin{gathered} -0.056^{* *} \\ (0.022) \end{gathered}$	$\begin{aligned} & 0.162^{* * *} \\ & (0.028) \end{aligned}$	$\begin{array}{r} -0.035 \\ (0.022) \end{array}$
Renegotiation failure	$\begin{aligned} & 0.113^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.106^{* * *} \\ & (0.008) \end{aligned}$	$\begin{array}{r} -0.014 \\ (0.019) \end{array}$	$\begin{gathered} -0.271^{* * *} \\ (0.025) \end{gathered}$	$\begin{gathered} -0.145^{* * *} \\ (0.025) \end{gathered}$
Insiders' share	$\begin{gathered} -0.070^{* * *} \\ (0.012) \end{gathered}$	$\begin{gathered} -0.059^{* * *} \\ (0.013) \end{gathered}$	$\begin{gathered} -0.227^{* * *} \\ (0.027) \end{gathered}$		
Intangibles	$\begin{gathered} -0.609^{* * *} \\ (0.028) \end{gathered}$			$\begin{gathered} -1.115^{* * *} \\ (0.04) \end{gathered}$	
Intangibles (with cash)		$\begin{aligned} & 0.192^{* * *} \\ & (0.016) \end{aligned}$			$\begin{aligned} & -0.070^{* * *} \\ & (0.02) \end{aligned}$
Insiders' share \times Renegotiation failure			$\begin{aligned} & 0.295^{* * *} \\ & (0.032) \end{aligned}$		
Intangibles \times Renegotiation failure				$\begin{aligned} & 0.870^{* * *} \\ & (0.051) \end{aligned}$	
Intangibles (with cash) \times Renegotiation failure					$\begin{aligned} & 0.456^{* * *} \\ & (0.05) \end{aligned}$
Constant	$\begin{aligned} & 0.718^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.420^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.601^{* * *} \\ & (0.022) \end{aligned}$	$\begin{aligned} & 0.897^{* * *} \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.526^{* * *} \\ & (0.012) \end{aligned}$
Observations	376,884	376,884	376,884	376,884	376,884
Number of months	139	139	139	139	139
Average adjusted R^{2}	0.07	0.05	0.05	0.07	0.04

[^18]
Table IA. 11: Robustness to Matching Firms by Generalized Propensity Score

Panel A of this table shows the estimates of the regression of the firm's Domestic market beta on proxies of shareholders' bargaining power (Insiders' share), liquidation costs (Intangibles and Intangibles (with cash)), our measure of renegotiation frictions (Renegotiation failure), and estimated generalized propensity scores (GPS). Sources and definitions for all variables are in Table I. The sample consists of monthly observations from 1993 to 2006. Firms are matched by Size, Book-to-Market, and Leverage projection using the propensity score approach proposed by Hirano and Imbens (2004), which generalizes the matching procedure to the case of a continuous treatment. This parametric approach consists of two steps. In the first step, we estimate the parameters of the conditional distribution of Renegotiation failure given Size, Book-to-Market, and Leverage projection by maximum likelihood. The generalized propensity score is the predicted conditional density of Renegotiation failure given the covariates. In the second step, we include the estimated GPS as a control variable in our baseline regression, and estimate the parameters with OLS. Each firm's domestic market beta is computed each month from the regression of the past 60 monthly returns on the domestic market's contemporaneous return. Standard errors are adjusted for correlation within firms and time, and are reported in parentheses. Panel B reports statistics for the economic significance of the estimates in panel A, expressed in terms of average monthly excess returns.

Panel A: Pooled OLS estimates

	(1)	(2)	(3)	(4)	(5)
Estimated GPS	$\begin{aligned} & 0.030^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.031^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.025^{* * *} \\ & (0.010) \end{aligned}$	$\begin{aligned} & 0.038^{* * *} \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.035^{* * *} \\ & (0.009) \end{aligned}$
Renegotiation failure	$\begin{aligned} & 0.098^{* * *} \\ & (0.027) \end{aligned}$	$\begin{aligned} & 0.106^{* * *} \\ & (0.026) \end{aligned}$	$\begin{array}{r} -0.011 \\ (0.049) \end{array}$	$\begin{gathered} -0.325^{* * *} \\ (0.101) \end{gathered}$	$\begin{gathered} -0.148 \\ (0.114) \end{gathered}$
Insiders' share	$\begin{gathered} -0.149^{* * *} \\ (0.027) \end{gathered}$	$\begin{gathered} -0.110^{* * *} \\ (0.028) \end{gathered}$	$\begin{gathered} -0.268^{* * *} \\ (0.071) \end{gathered}$		
Intangibles	$\begin{gathered} -0.466^{* * *} \\ (0.049) \end{gathered}$			$\begin{gathered} -1.019^{* * *} \\ (0.145) \end{gathered}$	
Intangibles (with cash)		$\begin{aligned} & 0.258^{* * *} \\ & (0.051) \end{aligned}$			$\begin{gathered} -0.012 \\ (0.131) \end{gathered}$
Insiders'share \times Renegotiation failure			$\begin{aligned} & 0.260^{* * *} \\ & (0.106) \end{aligned}$		
Intangibles \times Renegotiation failure				$\begin{aligned} & 1.013^{* * *} \\ & (0.222) \end{aligned}$	
Intangibles (with cash) \times Renegotiation failure					$\begin{aligned} & 0.498^{* * *} \\ & (0.203) \end{aligned}$
Constant	$\begin{aligned} & 0.941^{* * *} \\ & (0.036) \end{aligned}$	$\begin{array}{ll} * & 0.553^{* * *} \\ (0.041) \end{array}$	$\begin{aligned} & 0.788^{* * *} \\ & (0.048) \end{aligned}$	$\begin{aligned} & 1.099^{* * *} \\ & (0.069) \end{aligned}$	$\begin{aligned} & 0.639^{* * *} \\ & (0.079) \end{aligned}$
F statistic	2, 251.988	1,251.646	988.949	1,828.295	1,059.504
Observations	376,884	376,884	376,884	376,884	376,884
Average adjusted R^{2}	0.03	0.01	0.01	0.02	0.01

a Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

Table IA.11: continued

Panel B: Further Tests of the Model's Implications

$$
\begin{equation*}
H_{0}: \frac{\partial \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)}{\partial \text { Intangibles or Insiders' }{ }^{\text {share }}}=0 \tag{3}
\end{equation*}
$$

Test statistic

-0.007	-0.0 .05	$0.409^{* * *}$
(0.041)	(0.083)	(0.082)

Standard error
(0.041) (0.083) (0.082)

$$
H_{0}: \mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=1\right)-\mathbb{E}\left(r_{i}-r \mid \text { Renegotiation failure }=0\right)=0
$$

(3) (4)
(5)

Test statistic evaluated at average
Intangibles or Insiders' share $0.078^{* * *} 0.116^{* * *} 0.124^{* * *}$
Standard error
(0.024) (0.025) (0.023)

Test statistic evaluated at maximum
Intangibles or Insiders' share $\quad 0.210^{* * *} 0.457^{* * *} 0.94^{* * *}$
Standard error (0.054) (0.078) (0.076)

[^19]
References

Fama, Eugene, and James MacBeth, 1973, Risk, return, and equilibrium: Empirical tests, Journal of Political Economy 81, 607-636.

Fan, Hua, and Suresh Sundaresan, 2000, Debt valuation, renegotiation, and optimal dividend policy, Review of Financial Studies 13, 1057-1099.

Hirano, Keisuke, and Guido Imbens, 2004, The propensity score with continuous treatments, in A. Gelman, and X.-L. Meng, ed.: Applied Bayesian Modeling and Causal Inference from IncompleteData Perspectives . pp. 73-84 (Wiley Interscience).

Scholes, Myron, and Joseph Williams, 1977, Estimating betas from nonsynchronous data, Journal of Financial Economics 5, 309-327.

[^0]: *Favara is from International Monetary Fund. Schroth is from the University of Amsterdam. Valta is from HEC Paris. The authors thank Viral Acharya, Albert Chun, Stijn Claessens, Engelbert Dockner, Laurent Frésard, Erasmo Giambona, Ron Giammarino, Amit Goyal, Nishad Kapadia, Ernst Maug, Erwan Morellec, Stefano Rossi, Ilya Strebulaev, René Stulz, Kenichi Ueda, Andrea Vedolin, Elu Von Thadden, an anonymous referee, the Adisory Editor and Cam Harvey (the Editor) for valuable suggestions that improved the paper. The authors also thank seminar participants at the Cass Business School, the University of Mannheim, the 2010 WFA Meeting (Victoria), the 2010 FIRS Meeting (Florence), the 2009 EFA Meeting (Bergen) and the 2008 Swiss Doctoral Workshop (Gerzensee).

[^1]: ${ }^{a}$ Estimates followed by ${ }^{* * *}$, ${ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^2]: ${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.
 (Continues)

[^3]: ${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^4]: ${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^5]: ${ }^{a}$ Estimates followed by ${ }^{* * *}$, ${ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1
 significance levels, respectively.

[^6]: ${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^7]: ${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^8]: ${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^9]: *Citation format: Favara, Giovanni, Enrique Schroth, and Philip Valta, [Year], Internet Appendix to "Strategic Default and Equity Risk Across Countries", Journal of Finace [Vol], [pages], http://www.afajof.org/IA/[Year].asp. Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the authors of the article.

[^10]: ${ }^{a}$ Estimates followed by ${ }^{* * *},^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels,

[^11]: ${ }^{a}$ Estimates followed by ${ }^{* * *}$, ${ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^12]: ${ }^{a}$ Estimates followed by ${ }^{* * *}$, ${ }^{* *}$ and * are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^13]: ${ }^{a}$ Estimates followed by ${ }^{* * *}$, ${ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively. 26

[^14]: ${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^15]: ${ }^{a}$ Estimates followed by ${ }^{* * *}$, ${ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^16]: ${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^17]: ${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^18]: ${ }^{a}$ Estimates followed by ${ }^{* * *}$, ${ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

[^19]: ${ }^{a}$ Estimates followed by ${ }^{* * *},{ }^{* *}$ and ${ }^{*}$ are statistically different from zero with $0.01,0.05$ and 0.1 significance levels, respectively.

