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Abstract 

Background: Post-stroke cognitive impairment (PSCI) occurs in approximately half of ischemic stroke 

survivors. Infarct location is a potential determinant of PSCI, but a comprehensive map of strategic infarct 

locations is lacking. In this large-scale multicenter lesion-symptom mapping study, we aimed to identify 

infarct locations most strongly predictive of PSCI, and use this information to develop a prediction model.  

Methods: We harmonized individual patient data from twelve cohorts through the Meta-VCI-Map 

consortium. Patients with acute symptomatic infarcts on CT/MRI and cognitive assessment <1 year post-

stroke were eligible. PSCI was defined as impairment in ≥1 cognitive domains on neuropsychological 

assessment or impairment on the Montreal Cognitive Assessment. Voxel-based lesion-symptom mapping 

(VLSM) was used to calculate voxel-wise odds ratios for PSCI. For the prediction model, a “location impact 

score” on a five-point scale was derived from the VLSM results. Combined internal-external validation was 

performed using leave-one-cohort-out cross-validation for all twelve cohorts.  

Findings: In our combined sample of 2950 patients (age 67±12 years, 39% female), 44% had PSCI. We 

achieved almost complete lesion coverage of the brain in our analyses (87%). Infarcts in the left 

frontotemporal lobes, left thalamus, and right parietal lobe were strongly associated with PSCI (False 

Discovery Rate corrected q<0·01; voxel-wise odds ratios >20). These strategic regions were mapped onto 

a three-dimensional brain template to visualize PSCI risk per brain region. The location impact score 

showed good correspondence between predicted and observed risk across cohorts after adjusting for cohort-

specific PSCI occurrence.  

Interpretation: This study provides the first comprehensive map of strategic infarct locations associated 

with risk of PSCI. A location impact score was derived from this map that robustly predicted PSCI across 

cohorts and can be applied by clinicians to identify individual patients at risk of PSCI. 

Funding: ZonMw-Vici 918.16.616. 
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Research in Context 

Evidence before this study 

We systematically searched PubMed for original studies (no case reports) and systematic reviews on infarct 

characteristics on brain imaging as predictors of post-stroke cognitive impairment (PSCI), published 

between January 1, 2000, and November 6, 2020, without language restriction, using the terms (“cognitive 

impairment” or “dement$”), (“ischemic stroke” or "ischaemic stroke" or “infarct”), and (“CT” or “MRI”). 

We searched for studies with cognitive impairment or dementia as outcome, rather than studies on 

neuroanatomical correlates of specific cognitive functions. We identified 17 original studies, and one 

systematic review from 2009. Cortical involvement, presence of multiple acute infarcts, total infarct 

volume, and left cerebral hemispheric location (versus right) were consistently associated with PSCI. Seven 

of these studies assessed associations between specific infarct locations and PSCI. Infarct locations 

significantly associated with PSCI included the left thalamus and basal ganglia, but results were not 

consistent. This is likely attributable to different anatomical categorizations, mostly with low spatial 

resolution. Moreover, the two previous studies that evaluated lesion location at voxel level had limited brain 

coverage (i.e. less than 20% of total brain volume), leaving a major proportion of the brain unexplored. 

Added value of this study 

In this pooled analysis of patient data from 2950 patients from 12 cohorts, we were able to include 87% of 

the entire brain, thus essentially covering all possible infarct locations. The large sample size enabled us to 

perform stratified analyses for different stroke subtypes, which is essential considering associated 

differences in lesion size and distribution. We also pinpointed unique patterns for different cognitive 

domains. The large-scale multicenter design enhances generalizability of the results, as supported by our 

leave-one-cohort-out cross-validations. These results formed the basis for a prediction score that allows for 

a robust and individualized PSCI risk assessment in the clinical setting, solely based on a patient’s infarct 

location on brain CT or MRI.   

Implications of all the available evidence 

Building upon the historical notion that infarct location determines cognitive impairment, we now firmly 

established which locations are most strongly predictive of PSCI across almost the entire brain. We provide 

an easy-to-use visual rating scale that can be applied by clinicians to identify patients at risk. This could 

facilitate cognitive prognostication, help to identify patients that should undergo cognitive assessment, and 

allow for timely intervention with rehabilitative treatment strategies. The visual rating scale is freely 

available on our website (https://metavcimap.org/features/software-tools/location-impact-score/).  
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Introduction  

Post-stroke cognitive impairment (PSCI) is a common consequence of ischemic stroke, and a leading cause 

of long-term disability and reduced quality of life.1 PSCI occurs in approximately half of stroke survivors 

within the first year,2,3 yet it is difficult to provide patients with an individualized cognitive prognosis. 

Stroke characteristics, including lesion burden on brain imaging, have been shown to predict PSCI to a 

greater extent than demographic and vascular risk factors.2,4 However, more specific imaging predictors 

that could identify patients at risk of PSCI are lacking.4,5  

Infarct location is widely recognized as a determinant of PSCI. For example, the left angular gyrus and 

thalamus are considered to be strategic infarct locations for PSCI, but this knowledge was largely based on 

small case series.6,7 In the past two decades, lesion-symptom mapping techniques have emerged that can 

study the relationship between lesion location and cognition in large datasets, with high spatial resolution.8 

These techniques can elucidate the neuroanatomy of cognitive functions, but can also be used for predictive 

modeling.9 Initial studies applying this technique have confirmed the left angular gyrus and thalamus as 

strategic locations for PSCI, and pinpointed additional locations.10,11 However, despite sample sizes of 

several hundred patients, these studies could cover less than 20% of the brain in their analyses.12 To 

overcome this limitation, the Meta-VCI-Map consortium was initiated, to improve lesion coverage by 

pooling data from multiple cohorts . A pilot study showed successful harmonization of clinical and imaging 

data from six cohorts (N=878), achieving 46% brain coverage, indicating that two to three thousand patients 

would be required for complete coverage.12  

In this Meta-VCI-Map consortium study, we performed a large-scale multicenter lesion-symptom mapping 

study in 2950 patients with acute ischemic stroke from 12 cohorts, aiming to identify infarct locations most 

strongly predictive of PSCI and create a comprehensive brain map of strategic infarct locations. 

Furthermore, we derived a ‘location impact score’ from this map to develop a prediction model to identify 

patients at risk of PSCI. 

 

Methods 

Study design and participants 

Eligible cohorts were identified (per January 2019) through the Meta-VCI-Map consortium 

(www.metavcimap.org)12 with the following criteria: (1) cohort of patients with acute ischemic stroke; (2) 

brain CT or MRI (T1/T2/FLAIR/DWI) showing the symptomatic infarct(s); (3) available infarct 

segmentations; and (4) cognitive assessment ≤1 year post-stroke, consisting of either multidomain 

neuropsychological assessment or Montreal Cognitive Assessment (MoCA). Patients with a history of 

stroke could be included. Twelve cohorts from France (N=2), Hong Kong (N=1), the Republic of Korea 

http://www.metavcimap.org/
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(N=2), the Netherlands (N=4), Singapore (N=1), and the United Kingdom (N=2) participated (Table 1). 

Most studies excluded patients with severe dysphasia based on clinical examination prior to inclusion, 

because most cognitive assessment protocols were incompatible with dysphasia (appendix p.20). For the 

combined analysis in the present study, we did not further select on language performance. Central data 

processing and analysis were performed at the University Medical Center Utrecht. 

 

Cognitive data harmonization 

For the nine cohorts with multidomain neuropsychological assessment, PSCI was defined as “cognitive 

impairment in one or more cognitive domains”, in accordance with the VASCOG criteria for Vascular 

Cognitive Disorders.13 Cognitive tests from each cohort were assigned to six domains: attention and 

executive functioning; information processing speed; language; verbal memory; visuospatial 

perception/construction; and visuospatial memory. Only tests with (local) norm-referenced data were used 

(overview per cohort in appendix, p.22-24). Assignment to domains was determined by a neuropsychology 

working group (members: NAW, IMCHW, OG, OKLH, AW, BYKL, JSL, TD, and XX). For each test, 

performance <5th percentile was defined as impaired. Performance on a cognitive domain was impaired if 

>50% of available tests on that domain were impaired, determined on a per-subject basis. Data on a 

minimum of three domains was needed to rule out PSCI.  

For the three cohorts in which only the MoCA was available, PSCI was defined as a performance <5th 

percentile on the total MoCA score, using age- and education-corrected normative data (appendix p.25). 

 

Lesion data harmonization 

Lesion segmentations of acute symptomatic infarcts were provided by participating centers. Both CT and 

MRI scans were used for infarct segmentation, depending on their availability. We adhered to previously 

published protocols regarding suitable time windows for delineating acute infarcts.14 Pre-existing infarcts 

and other vascular lesions were not analyzed. Infarct segmentation methods are listed in the appendix 

(p.26). Lesion maps were registered to the 1-mm MNI-152 brain template for spatial normalization.15 For 

11 cohorts, lesion registration was performed with the RegLSM image processing tool (available at 

www.metavcimap.org).14 RegLSM provides custom-fit settings for CT and MRI (T1/FLAIR/DWI) and can 

reliably process scans from different vendors and field strengths to a uniform output, as was demonstrated 

in the Meta-VCI-Map pilot study,12 allowing lesion data from different sources to be combined into one 

dataset. The GRECogVASC study used the pyramidal block-matching Diffeomorphic Demons algorithm 

in the MedINRIA software package for lesion registration,16 which provides comparable output as 

RegLSM. 
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For nine cohorts, lesion maps were already registered to MNI-152 space as part of previous projects. For 

the remaining three cohorts (CASPER, CROMIS-2 and STROKDEM), registrations were generated in the 

current project, with visual inspection of the registration results by an experienced rater (NAW). Manual 

adaptations were made in case of minor displacements (appendix p.2). Rigorous quality control of fully 

processed lesion data was performed for all 12 cohorts (appendix p.2). 

 

Voxel-based lesion-symptom mapping 

Voxel-based lesion-symptom mapping (VLSM) was performed to relate infarct location to PSCI 

occurrence. Voxels damaged in <5 patients were excluded from all analyses. Voxel-wise odds ratios (OR) 

for PSCI were calculated using the Fisher’s exact test in Python (SciPy 1.4.1). False discovery rate 

correction (FDR; threshold q<0·01) was applied to correct for multiple comparisons. In addition, voxel-

wise absolute risks (i.e. percentage of patients with PSCI for each particular voxel) were calculated.  

Several supplementary analyses were performed using the same VLSM approach: analyses with each of 

the six cognitive domains as outcome, and stratified analyses for three stroke subtypes (small subcortical 

infarcts, cortical or large subcortical infarcts, and infratentorial infarcts (definitions in appendix, p.2)). 

Sensitivity analyses were performed on patients with cognitive assessment ≥2 weeks post-stroke (i.e. to 

limit the effect of factors in the acute stage (e.g. delirium) on cognition), and patients with multidomain 

neuropsychological assessment (i.e. excluding patients with only MoCA).  

 

Location impact score and prediction models 

A “location impact score” was calculated for each patient based on the mean coefficient (i.e. ln(OR)) of 

voxels from the VLSM results of the patient’s infarct (appendix, p.4). For ease of use and visual rating, we 

re-coded this continuous score into a five-point score based on quintiles. The association between the 

continuous and five-point variants of the location impact score and PSCI was assessed with logistic 

regression analysis in univariate models, and subsequently in multivariate models together with known 

clinical PSCI predictors (based on literature4): age, sex, education level (categories in appendix, p.28), time 

interval between stroke onset and cognitive assessment, history of stroke, and total infarct volume in MNI-

152 space (i.e. corrected for brain volume). 

We performed a combined internal-external validation of the location impact score (continuous and five-

point) using leave-one-cohort-out cross-validation for all twelve cohorts to assess generalizability, 

robustness, and cohort-specific effects.17 Furthermore, we explored the added value of the location impact 

score on top of the known clinical PSCI predictors in multivariate logistic regression models. A base model 

was built using the clinical predictors only, followed by addition of total infarct volume, and finally the 

location impact score.  
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Goodness-of-fit was taken as the main feature of interest, which we assessed by plotting deciles of predicted 

PSCI risks versus observed occurrence in calibration plots. The c-statistic was used to assess model 

discrimination, though it is known to underestimate the prognostic value of individual biomarkers.18 

Prediction models were built using R version 3.6.3 (packages: “glmnet” and “rms”).  

 

Visual rating of the location impact score 

To enable visual assessment of the five-point location impact score, a visual rating scale was created by 

grouping voxels from the VLSM results into five color categories based on continuous location impact 

score quintiles. Three clinicians (two neurologists [GJB/JMB]) and a neurology resident [MC]) tested 

reliability of visual rating of scans against the computer-generated five-point scale. Raters were provided 

with 12 brain template slices showing the scale (appendix, p.5). Raters evaluated a random subset of 36 

MRI scans, selected from 3 cohorts, by estimating the average score of the region affected by the infarct 

(DWI: N=28; FLAIR: N=8), blinded to clinical data. Agreement between the visual rating and the actual 

score and inter and intra-rater agreement were assessed with Cohen’s weighted Kappa (range: 0-1, where 

1 is perfect agreement).19 Disagreements were weighted according to their squared distance from perfect 

agreement.  

 

Ethics statement 

For all cohorts, ethical and institutional approval was obtained as required by local regulations to allow data 

acquisition, including informed consent, and data sharing. All data processed at the coordinating center for 

the pooled analysis was anonymized. 

 

Role of the funding source  

The funders of the study had no role in the study design, data collection, data analysis, data interpretation, 

or writing of the report, and had no involvement in the decision to submit the paper for publication. 

 

Results 

Sample characteristics 

We included 2950 patients from 12 cohorts (Figure 1). Participants had heterogeneous clinical 

characteristics, reflecting the different study designs of the cohorts (Table 1; appendix, p.29). In the total 

study sample, mean age was 67 years (SD 12) and 1157 patients (39%) were female. Approximately half 

of the study population was Korean (47%) and one-third (36%) was European Caucasian. Cognitive 

assessment was generally performed 2-6 months post-stroke (median 105 days, IQR 74-170). MRI DWI 
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(66%) and T2/FLAIR (16%) were most commonly used for infarct segmentation. Imaging was mostly 

performed in the first two weeks post-stroke (median 4 days, IQR 1-9). 

 

Cognitive profile 

Nine cohorts used multidomain neuropsychological assessment (N=2343, 79%), and three cohorts only the 

MoCA (N=607, 21%). PSCI occurrence was 44% in the total sample (appendix p.6, panel 3A), with higher 

occurrence in cohorts with multidomain neuropsychological assessment (range 18-62%) than those with 

MoCA (3-20%). Cohorts that by design excluded patients with severe stroke (STROKDEM and Mild 

Stroke Study 2) had a lower PSCI occurrence. Cognitive domains were affected in variable frequencies 

(range in total sample 12-27%; appendix p.6, panel 3B).  

 

Brain lesion coverage 

In the combined sample, infarct distribution was symmetrical and brain lesion coverage was high: 87% of 

brain voxels were damaged in ≥5 subjects and could therefore be included in the analyses (Figure 2A). Only 

the most distal part of the anterior cerebral artery territories, parts of the midbrain, and temporal poles could 

not be included in the analyses due to infrequent involvement. Lesion prevalence maps for the individual 

cohorts are provided in the appendix (p.7). In the individual cohorts, infarct patterns reflected cohort-

specific inclusion criteria. 

 

Voxel-based lesion-symptom mapping results 

Figure 2B-C shows ORs for PSCI occurrence in the total sample (N=2950). Particularly,infarcts in the left 

frontotemporal lobes, right parietal lobe, and left thalamus were significantly associated with PSCI after 

correction for multiple testing (FDR q<0·01), with high voxel-wise ORs (>20). Over 80% of patients with 

infarcts in these regions had PSCI (appendix, p.8). By contrast, infarcts in the right occipital lobe, brain 

stem and cerebellum conveyed a lower risk of PSCI (OR<1; not statistically significant) relative to infarcts 

elsewhere. Sensitivity analyses limited to patients with cognitive assessment ≥2 weeks post-stroke 

(N=2554) and patients with multidomain neuropsychological assessment (N=2343) showed comparable 

results (appendix, p.9). 

Figure 2D-F shows the VLSM results for the different stroke subtypes (prevalence maps in appendix, p.10). 

In patients with cortical and large subcortical infarcts (N=1488), locations associated with PSCI were the 

same as in the total sample. For patients with small subcortical infarcts (N=901) the highest ORs for PSCI 

(>20) were found in the left thalamus. For patients with infratentorial infarcts, no infratentorial locations 

were associated with elevated PSCI risk (N=708). Based on these results, domain-specific analyses were 

only performed in the subgroup with cortical or large subcortical infarcts. This revealed differential infarct 
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patterns across both hemispheres for different domain-specific impairments (Figure 3). For example, ORs 

for impairment of processing speed showed limited variation across the brain, without clear associations 

with particular infarct locations. By contrast, high ORs for language and verbal memory impairment were 

strongly lateralized to the left hemisphere, whereas impairment of visuospatial functions was associated 

with right parietal infarcts.  

 

Prediction models 

Both the continuous and five-point variants of the location impact score were significantly associated with 

PSCI in the total dataset (Table 2), also independent from other predictors (appendix, p.31). Leave-one-

cohort-out cross-validation of the continuous (appendix, p.11-14) and five-point location impact score 

(Figure 4) revealed good correspondence between predicted and observed risk in four well-powered cohorts 

(Bundang VCI, CU-STRIDE, Hallym VCI, PROCRAS) after adjusting the intercept for cohort-specific 

PSCI occurrence. C-statistics for these four cohorts ranged from 0·55 (95%CI: 0·51-0·60) to 0·62 (0·52-

0·71) and were similar for the continuous and five-point scores. Five cohorts (CASPER, COAST, 

CROMIS-2, STROKDEM, USCOG) showed a similar trend, but they provided less stable estimates most 

likely related to limited sample size and/or low PSCI occurrence. One well-powered cohort showed poor 

model calibration and discrimination (GRECogVASC). Two cohorts (CODECS and MSS-2) could not be 

used as validation sample because of insufficient sample size or low PSCI occurrence (appendix, p.11-14).  

Cross-validation of the multiple logistic regression model containing the known clinical PSCI predictors, 

but without the location impact score, had poor external performance, which was slightly improved by 

addition of total infarct volume (appendix, p.15-18). Addition of the location impact score provided the 

best correspondence between predicted and observed risk, across a much wider range of predicted 

probabilities. Of note, the location impact score by itself showed similar performance as the combined 

model (appendix, p.11-18), therefore the univariate model with only the location impact score was selected 

as final model (Table 2).  

 

Visual rating of the location impact score 

A color map was created of the five-point location impact score for visual assessment (appendix, p.19; 

https://metavcimap.org/features/software-tools/location-impact-score/). Correspondence between visual 

ratings and the actual location impact score was excellent for all three raters (Cohen’s weighted Kappa: 

range 0·88-0·92). Inter-rater agreement (range 0·85-0·87) and intra-rater agreement (0·95) were also 

excellent. Visual rating typically took 1-2 minutes per scan.  
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Discussion 

This large-scale multicenter study provides the first comprehensive map of strategic infarct locations 

predicting PSCI. With data from 2950 patients we achieved almost complete coverage of the brain, and 

showed that infarcts in the left frontotemporal regions, the right parietal lobe and the left thalamus are most 

strongly predictive of PSCI. From the three-dimensional strategic infarct map we derived a location impact 

score and validated a single-variable prediction model for PSCI, which showed robust performance across 

cohorts despite heterogeneity in study populations, supporting generalizability of the findings.  

The relationship between brain lesion location and cognition has been widely studied, dating back to early 

case series from the 19th century that described individuals with a specific deficit who had a lesion at a 

particular location.7 Although these historical observations are clearly of value, their generalizability is 

uncertain due to potential selection and publication bias. In the past two decades, over one-hundred studies 

applied modern lesion-symptom mapping techniques to analyze associations between infarct locations and 

cognition at a group level.20 The vast majority of these studies aimed to elucidate the neuroanatomical 

correlates of specific cognitive functions. By contrast, only few studies assessed the predictive value of 

infarct location for PSCI as clinical outcome, which requires a different analytical approach. A large meta-

analysis found that left hemisphere lateralization was a significant predictor of PSCI, but this provided little 

anatomical precision.4 Only one study thus far combined VLSM with predictive modelling and found that 

infarcts in left frontotemporal regions, hippocampus, and thalamus were predictive of PSCI9, in line with 

our findings. However, this study lacked brain coverage due to the modest sample size (N=267), and results 

were not externally validated. We overcame these limitations in our pooled dataset achieving 87% brain 

coverage, allowing us to evaluate and externally validate the predictive value of almost every infarct 

location across the brain. 

Previous lesion-symptom mapping studies mostly used  cognitive functioning, often on a single domain, as 

a continuous outcome measure. Our PSCI definition, in concordance with internationally established 

diagnostic criteria,13 was chosen to be compatible with PSCI diagnosis in daily clinical care, which is by 

nature a dichotomous outcome (i.e. PSCI is present or absent). Availability of multidomain cognitive data 

also allowed us to also zoom in on infarct locations associated with specific domains. We established that 

strategic infarct locations that predict PSCI were representative for various cognitive domains (Figure 5), 

showing that these strategic infarct locations indeed predict PSCI in a broad sense. Domain-specific 

analyses also revealed distinct patterns compatible with prior knowledge (e.g.11,12,21), which can be used for 

domain-specific prediction.  

Stroke etiology (e.g. small versus large vessel disease) and lesion size and volume (e.g. lacunar versus non-

lacunar) are also related to PSCI,4 yet are inextricably linked to lesion location. For supratentorial infarcts, 

small subcortical infarcts inherently had a different infarct distribution than cortical and large subcortical 
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infarcts. The left thalamus was predictive of PSCI in both stroke subtypes, while other subcortical regions 

(e.g. left basal ganglia) were only predictive of PSCI as part of a larger infarct.  

When interpreting our findings, it is important to consider that infarct locations predictive of PSCI  do not 

necessarily imply causality. When lesion-symptom mapping is used to determine neuroanatomical 

correlates of cognitive deficits, it is important to take confounding factors such as the interdependency 

between infarct locations (i.e. infarct patterns are not random but follow the vascular tree), clinical history 

(e.g. pre-stroke cognition, depression), and other brain lesions (e.g. white matter hyperintensities, previous 

infarcts) into account.8 Meanwhile, for prediction, adding variables to a model can improve predictive 

ability, but confounding is by definition not an issue. We did explore if a combined model with other known 

predictors of PSCI would perform better than the univariate model with the location impact score only, but 

found that the univariate model was equally robust in cross-validations. The final model, consisting of the 

location impact score only, allows for easy clinical implementation due to its simplicity. It is likely that 

with future developments of harmonization and quantification of imaging markers, such as white matter 

hyperintensities4,10,22 previous infarcts,4 and brain atrophy,4,10  more elaborate PSCI prediction models can 

be developed, although clinical implementation may be more challenging.  

The location impact score is the first-ever prediction tool for PSCI based solely on clinically available brain 

images. While awaiting further testing in prospective studies, this score appears promising for direct 

application in clinical practice for cognitive prognostication. Visual ratings were fast and reliable, even 

without prior training. We envision that this tool can be applied upon hospital admission for an early 

assessment of PSCI risk, by using either a printed (appendix, p.5) or digital version 

(https://metavcimap.org/features/software-tools/location-impact-score/) and comparing this to the patient’s 

brain scan. This could help with early identification of patients at risk of PSCI, prioritize patients for 

cognitive assessment where resources are restricted, provide better information to patients and caregivers 

during planning of aftercare, and allow for timely intervention with rehabilitative treatment strategies. The 

location impact score could also be used to identify high-risk patients for intervention trials. Of note, in 

patients who according to the location impact score are at relatively low risk, PSCI occurrence was still up 

to 30% (Table 2). This implies that the score should not be used to rule out PSCI, and that even in locations 

with relatively low predicted PSCI risk (e.g. the cerebellum) PSCI is not uncommon. On the other hand, 

the location impact score might also underestimate PSCI risk in some patients: the predicted PSCI 

occurrence for score 5 is 66% (Table 2), while >80% of patients with infarcts in certain locations actually 

had PSCI (appendix, p.8).   

We included multicenter data that enabled a much larger sample size and geographical coverage than 

individual studies to date. This inherently resulted in heterogeneity. Lesion data was based on different 

modalities and sequences, acquired at different post-stroke time intervals. Our processing pipeline was 
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adapted to deal with this heterogeneity, although timing and modality of imaging might affect lesion 

features such as size and resolution. Neuropsychological test batteries also differed between cohorts, but 

our PSCI definition did allow us to cover a broad range of cognitive profiles and deficits. To account for 

cohort-specific effects in our analyses and determine the external validity and generalizability, we 

performed extensive cross-validations that showed robust prediction of PSCI across heterogeneous cohorts. 

Notably, model fit was mainly influenced by differences in PSCI occurrence, related to differences between 

cohorts in the sensitivity of cognitive measures and preselection of patients (e.g. exclusion of dementia).  

Some potential limitations must also be noted. First, cohort studies on PSCI tend to be selective. For 

example, to be eligible for cognitive testing, (severe) dysphasia was generally an exclusion criterion. Hence, 

patients with language impairment are relatively underrepresented in our sample, and the association with 

language-related brain regions might be attenuated. Despite this selectivity, our results still indicated a 

major contribution of left hemispheric regions that are associated with language ability, therefore exclusion 

of these patients is unlikely to have caused missing of key brain regions. Second, post-stroke cognitive 

trajectories differ between patients and may change over time. Therefore variation in timing of assessment 

might influence our results.5 Third, information on pre-stroke cognitive status was not available for a 

substantial number of cohorts, therefore we could not take this into account in our analyses. Finally, our 

pooled sample only includes Caucasian and Asian patients, thus generalizability to other ethnicities remains 

undetermined.  

In summary, this study provides the first comprehensive map of strategic infarct locations associated with 

a high risk of PSCI. A location impact score was derived from this map that robustly predicted PSCI across 

cohorts and can be applied by clinicians to identify individual stroke patients at risk of PSCI.  

 

Data availability 

The Meta-VCI-Map consortium is dedicated to data sharing. The combined dataset of the present study, 

including deidentified participant data and lesion maps in MNI space, can be used for additional analyses, 

upon reasonable request. This requires approval of the project group, consisting of representatives of all 

participating cohorts. Participating cohorts have shared their data with the consortium under the agreement 

that the source data remains property of the group that supplied the data. Source data are stored at the 

participating centers and can be requested there. 
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Figure captions and legends 

Figure 1. Flow chart of patient selection 

Patient selection is shown for each cohort separately. Cohorts could join at any given step of data 

processing. The dark blue boxes indicate at which processing stage the imaging data was provided. The 

starting number for each cohort indicates how many patients fulfilled the inclusion criteria for the present 

study. a Minimal required clinical data for inclusion were: age, sex, level of education, and either 

multidomain neuropsychological assessment (with data on 3 or more cognitive domains) or Montreal 

Cognitive Assessment (MoCA) performed within the first year (maximum: 456 days). Other variables were 

not essential for inclusion, and missing data has been noted in Table 1. b Data previously used for the Meta 

VCI Map pilot study; selection steps for these datasets have been described previously.12  

Figure 2. Lesion prevalence maps and voxel-based lesion-symptom mapping results for PSCI 

A: Lesion prevalence map of infarcts in the total sample (N=2950), only including voxels damaged in ≥5 

subjects. The color indicates how many patients had an infarct in a particular voxel. B-C: Voxel-wise odds 

ratios (ORs) for post-stroke cognitive impairment (PSCI) occurrence are shown for the total sample 

(N=2950), calculated using the Fisher’s exact test. The color indicates the OR per voxel: dark green to blue 

indicates that presence of an infarct in that voxel is associated with an increased OR for cognitive 

impairment compared to absence of an infarct in that voxel, lime green indicates no association (OR=1), 

and yellow indicates a decreased OR. Panel B shows the ORs for all tested voxels (i.e. damaged in N≥5; 

no threshold for statistical significance). Panel C only shows voxels with q<0·01 after False Discovery Rate 

correction. D-F: Voxel-wise odds ratios (ORs) for PSCI occurrence are shown for subgroups of patients 

with small subcortical infarcts (panel D; PSCI occurrence: 37%), large subcortical or cortical infarcts (panel 

E; PSCI occurrence: 49%); and infratentorial infarcts (panel F; PSCI occurrence: 43%). Small subcortical 

infarcts were defined as single supratentorial infarcts without cortical involvement, with lesion volume of 

≤4.19 ml (i.e. a sphere of ≤2 cm diameter). Other supratentorial infarcts were categorized as large 

subcortical (>4.19 ml) or cortical infarcts (any volume). Infratentorial infarcts included brain stem and 

cerebellar infarcts (any volume). If a patient had both supra- and infratentorial infarcts (in 147 cases), the 

entire infarcted area was included; hence, some supratentorial regions were included in the infratentorial 

subgroup analysis (panel F), and vice versa (panel E). The “plasma” and “viridis” scale from the viridis 

color palette was used for visualization of lesion prevalence and ORs respectively (based on https://cran.r-

project.org/web/packages/viridis/index.html). Coordinates of the MNI-152 template (Z; axial orientation) 

are indicated at the top of the figure. FDR = false discovery rate, L = left, R = right, PSCI = post-stroke 

cognitive impairment.  
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Figure 3. Voxel-based lesion-symptom mapping results for domain-specific impairment 

This supplementary analysis was performed with domain-specific impairment in six cognitive domains as 

outcome, to determine to what extent the strategic infarct locations identified for PSCI (i.e. as overarching 

construct) would represent individual cognitive domains. Voxel-wise odds ratios (ORs) for domain-specific 

impairment are shown, calculated using the Fisher’s exact test. Panel A shows the ORs for all tested voxels 

(i.e. damaged in N≥5; no threshold for statistical significance). The color indicates the OR per voxel: dark 

green to blue indicates that presence of an infarct in that voxel is associated with an increased OR for 

cognitive impairment compared to absence of an infarct in that voxel, lime green indicates no association 

(OR=1), and yellow indicates a decreased OR.  Panel B only shows odds ratios for voxels with q<0·01 after 

False Discovery Rate correction. Infarct locations associated with PSCI (top row of each panel) 

corresponded with infarct locations associated with individual cognitive domains, for example the left 

frontotemporal lobes and left thalamus for language and verbal memory, and the right parietal lobe for 

visuoconstruction/-perception and visuospatial memory. This shows that our measure for PSCI represents 

multiple cognitive domains, and associated infarct locations are not driven by a single domain. Meanwhile, 

each cognitive domain was associated with a unique infarct pattern; for example, verbal memory was the 

only domain with a significant association with medial temporal lobe infarcts, which strengthens the face 

validity of this approach. The “viridis” color scale was used for visualization (based on https://cran.r-

project.org/web/packages/viridis/index.html). FDR = False Discovery Rate, L = left, R = right.   

Figure 4. Calibration plots for five-point location impact score as predictor for post-stroke cognitive 

impairment based on leave-one-cohort-out cross-validation 

Calibration plots of predicted probabilities (x-axis) versus actual post-stroke cognitive impairment (PSCI) 

occurrence (y-axis) for the logistic regression model with the five-point location impact score as predictor. 

Each row indicates the cohort that was left out of the model derivation in the leave-one-cohort-out cross-

validation and served as external validation sample. Cohorts are listed in descending order based on sample 

size. Distributions of actual 0 and 1 values are shown at the bottom of the graph; the loess smoother (with 

95% confidence band) is shown in black; the ideal 45 degree line is shown in red. The actual outcomes, 

stratified according to risk groups (20% of validation sample per stratum), are indicated by triangles. 

Calibration and discrimination measures are shown in the upper left corner of the plots. The top row shows 

the original results, and the bottom row shows the results after adjusting for cohort-specific PSCI 

occurrence (i.e. to match the 44% in the total sample). For two cohorts (Hallym VCI and COAST) this 

adjustment was not needed because PSCI occurrence matched the overall occurrence (45% and 42% 

respectively). Two cohorts are not included in this figure (CODECS and Mild Stroke Study 2), because 

model validation was unsuccessful due to insufficient sample size or low PSCI occurrence.   
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Table 1. Demographics and clinical characteristics of individual cohorts and the total sample 
 Bundang 

VCI 

(N=753)23,24 

CASPER 

(N=104)25 

COAST 

(N=74)26 

CODECS  

(N=27)12 

CROMIS-

2 

(N=97)27 

CU-

STRIDE 

(N=410)11 

GRECogV

ASC 

(N=316)10 

Hallym 

VCI 

(N=641)23,24 

MSS-2 

(N=100)28 

PROCRA

S 

(N=177)29 

STROKD

EM 

(N=138)30 

USCOG 

(N=113)21 

All studies 

(n = 2950) 

Demographics              

Country of inclusion Republic of 

Korea 

NL Singapore NL UK Hong 

Kong 

France Republic of 

Korea 

UK NL France NL  

Ethnicity Korean Caucasian
* 

Singapore
an Chinese 

(70%), 

Malay 
(22%), 

Indian 
(8%) 

Caucasian Caucasian*
* 

Chinese Caucasian Korean Caucasian Caucasian Caucasian Caucasian 36% 
Caucasian; 

47% 

Korean; 
16% 

Chinese; 
1% other 

Age in years, mean (SD) 69·8 (10·8) 64·1 

(10·8) 

58·4 

(10·5) 

59·2 

(16·5) 

73·7 (9·2) 68·6 

(10·4) 

63·7 (10·6) 65·1 (11·9) 65·7 

(11·5) 

69·6 (9·4) 64·9 

(12·1) 

60·0 

(14·9) 

66·8 (11·6) 

Female, n (%) 306 (40·6) 27 (26·0) 21 (28·4) 12 (44·4) 43 (44·3) 163 (39·8) 121 (38·3) 268 (41·8) 38 (38·0) 58 (32·8) 53 (38·4) 47 (41·6) 1157 (39·2) 

Education category,a n (%) 
- Less than high school 

- High school 

- Technical/college  

- University or higher 

 
402 (53·4) 

146 (19·4) 

37 (4·9) 

168 (22·3) 

 
42 (40·4) 

19 (18·3) 

35 (33·7) 

8 (7·7) 

 
52 (70·3) 

14 (18·9) 

7 (9·5) 

1 (1·4) 

 
8 (29·5) 

4 (14·8) 

5 (18·5) 

10 (37·0) 

 
6 (6·2) 

78 (80·4) 

N/A 

13 (13·4) 

 
381 (92·9) 

5 (1·2) 

8 (2·0) 

16 (3·9) 

 
233 (73·7) 

30 (9·5) 

35 (11·1) 

18 (5·7) 

 
351 (54·8) 

154 (24·0) 

31 (4·8) 

105 (16·4) 

 
19 (19·0) 

62 (62·0) 

N/A 

19 (19·0) 

 
79 (44·6) 

53 (29·9) 

39 (22·0) 

6 (3·4) 

 
86 (62·3) 

16 (11·6) 

11 (8·0) 

25 (18·1) 

 
44 (38·9) 

27 (23·9) 

26 (23·0) 

16 (14·2) 

 
1703 (57·7) 

608 (20·6) 

234 (7·9) 

405 (13·7) 

Clinical characteristics              

NIHSS baseline, median 

(IQR) 

3 (2-5) N/A 3 (1-7) 0 (0) 3 (2-6) 4 (2-6) 3 (1-6) 2 (1-4)** 1 (0-2) 3 (2-4) 0 (0-1) N/A 3 (1-5)*** 

IQCODE, median (IQR) 3·3 (3·1-

3·7)** 

3·1 (3·0-

3·3)** 

3·0 (3·0-

3·1) 

N/A 3·0 (3·0-

3·3) 

N/A 0% 

impaired 

3·1 (3·0-

3·3)*** 

N/A 3·0 (3·0-

3·1)** 

3·0 (3·0-

3·1) 

N/A 3·1 (3·0-

3·4)*** 

Cognitive assessment 

timing, n days after event, 
median (IQR) 

104 (10-170) 87 (81-

99) 

121 (105-

152) 

90 (N/A) 4 (2-9) 154 (129-

176) 

178 (161-

186) 

98 (90-105) 142 (53-

383) 

35 (29-40) 189 (178-

199) 

6 (4-9) 105 (74-

170)* 

Clinical history of stroke 104 (13·8) 5 (4·8) 10 (13·5)b 0 (0·0) 6 (6·2)* 50 (12·2) 22 (7·0) 85 (13·5)** 10 (10·0) 23 (13·0) 12 (8·7) 0 (0·0) 327 (11·1)* 

Brain imaging              

Scan sequence/modality 

used for infarct 

segmentation 

 

DWI (97%), 

FLAIR (3%) 

FLAIR DWI 

(41%), T2 

(5%), CT 

(54%)  

DWI 

(19%), 

FLAIR 

(63%), CT 
(19%) 

DWI DWI 

(75%), CT 

(25%) 

T1 DWI (98%), 

FLAIR 

(2%) 

FLAIR FLAIR DWI FLAIR 

(34%), 

CT (66%) 

DWI 

(66%), 

T2/FLAIR 

(16%), CT 
(8%), T1 

(11%) 

Normalized acute infarct 
volume in ml, median 

(IQR) 

3·8 (1·2-
16·5) 

3·4 (0·9-
13·2) 

6·8 (2·0-
32·6) 

10·3 (1·1-
26·2) 

4·5 (1·5-
16·1) 

2·3 (0·9-
12·9) 

1·3 (0·3-
5·7) 

2·0 (0·9-
11·3) 

2·6 (1·2-
11·3) 

4·4 (1·3-
21·0) 

1·6 (0·6-
8·6) 

19·6 (3·5-
51·9) 

2·7 (1·0-
14·1) 

Imaging timing, n days 

after event, median (IQR) 

5 (4-6) 87 (81-

99) 

2 (1-4) 34 (5-

98)** 

5 (3-9) 1 (0-2) 178 (161-

186) 

1 (1-2) 4 (2-9) 33 (27-40) 3 (3-3) 5 (3-8) 4 (1-9)* 

 

* Missing in <1%; ** Missing in 1-10%; *** Missing in >10%; a Education categorization per cohort is shown in the appendix (appendix, p.28). b Combined variable 

for stroke and/or TIA.  

Abbreviations: CT, computed tomography; DWI, diffusion-weighted imaging; FLAIR, fluid attenuated inversion recovery; IQR, interquartile range; NL, the 

Netherlands; SD, standard deviation; TIA, transient ischemic attack; UK, United Kingdom 
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Table 2. Univariate logistic regression results for the continuous and five-point location impact score in the total sample (N=2950)  

 OR per point (95% 

confidence interval) 

Predicted probability PSCIa  

Location impact score – continuous (max. range: -1·25 to 2·44)  

 

2·36 (2·06-2·70)*** 

 

P5 (score=-0·21): 25% 

P50 (score=0·68): 43% 

P95 (score=1·77): 65% 

Location impact score – five-point (reference = 1, 0-20th percentile; 

includes cont. score range -1·25 to 0·25) 

 30% 

2 (20-40th percentile; includes cont. score range 0·25 to 0·54) 1·30 (1·02-1·66)* 36% 

3 (40-60th percentile; includes cont. score range 0·54 to 0·83) 1·48 (1·16-1·88)** 39% 

4 (60-80th percentile; includes cont. score range 0·83 to 1·22) 2·08 (1·64-2·65)*** 47% 

5 (80-100th percentile; includes cont. score range 1·22 to 2·44) 4·40 (3·45-5·62)*** 66% 

 

Statistically significant variables: *p<0·05; **p<0·01; ***p<0·001. a Compared to overall PSCI occurrence of 44%. For the continuous score, probabilities for the 

5th/50th/95th percentiles are shown.. OR = odds ratio, PSCI = post-stroke cognitive impairment. The visual rating scale of the location impact score is available 

online: https://metavcimap.org/features/software-tools/location-impact-score/ 

 

 

https://metavcimap.org/features/software-tools/location-impact-score/

