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Abstract: Free and open-source hardware (FOSH) development has been shown to increase innova-
tion and reduce economic costs. This article reviews the opportunity to use FOSH as a sanction to
undercut imports and exports from a target criminal country. A formal methodology is presented for
selecting strategic national investments in FOSH development to improve both national security and
global safety. In this methodology, first the target country that is threatening national security or safety
is identified. Next, the top imports from the target country as well as potentially other importing
countries (allies) are quantified. Hardware is identified that could undercut imports/exports from the
target country. Finally, methods to support the FOSH development are enumerated to support pro-
duction in a commons-based peer production strategy. To demonstrate how this theoretical method
works in practice, it is applied as a case study to a current criminal military aggressor nation, who is
also a fossil-fuel exporter. The results show that there are numerous existing FOSH and opportunities
to develop new FOSH for energy conservation and renewable energy to reduce fossil-fuel-energy
demand. Widespread deployment would reduce the concomitant pollution, human health impacts,
and environmental desecration as well as cut financing of military operations.

Keywords: energy policy; energy conservation; climate change; global safety; open hardware; open
source; photovoltaic; renewable energy; solar energy; national security

1. Introduction

Free and open-source software (FOSS) is released under a license that allows anyone
to use, copy, study, and change it, and the source code is openly shared so that people are
encouraged to voluntarily improve the design in exchange for requiring adaptations to be
re-shared with the same license [1]. This gift economy [2] results in rapid innovation [3,4]
and using FOSS licenses has been widely [5] and repeatedly [6] successful [7]. FOSS has
become a dominant form of technical development in the software industry and now 90% of
cloud servers [8] run open-source operating systems (this includes most internet companies
such as Facebook, Twitter, Yahoo, Google and Amazon) as do 90% of the Fortune Global
500 (e.g., including less-tech-focused companies such as Wal-Mart and McDonalds) [9].
Similarly, 100% of supercomputers [10], over 84% of the global smartphone market [11]
and more than 80% of the internet of things (IOT) market [12] also use FOSS.

The same open-source development paradigm [13,14] has started to democratize [15]
manufacturing of physical products [16]. This is known as free and open-source hardware
(FOSH). The Open Source Hardware Association defines open-source hardware [17] as:

Hardware whose design is made publicly available so that anyone can study, modify,
distribute, make, and sell the design or hardware based on that design. The hardware’s
source, the design from which it is made, is available in the preferred format for making
modifications to it. Ideally, open source hardware uses readily-available components and
materials, standard processes, open infrastructure, unrestricted content, and open-source
design tools to maximize the ability of individuals to make and use hardware. Open source
hardware gives people the freedom to control their technology while sharing knowledge
and encouraging commerce through the open exchange of designs.
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Open hardware uses viral licenses (e.g., CERN [18]) that demand if users make modi-
fications, they must share their improvements with the global community [19]. FOSH is
demonstrating rapid innovation [20–22] and is approximately 15 years behind FOSS in
terms of technical development [23]. Both technologies have followed an exponential rate
of growth in the peer-reviewed literature [23].

One of the core strengths of FOSH is the ability to replicate the hardware from digital
designs [24,25] that themselves can be customized [26] with FOSS [27]. Digital fabrication
of open-source designs enables wealth growth [28–30] and helps even the poor access high-
value products such as state-of-the-art equipment [31]. It is well known that open hardware
can create opportunities for distributed manufacturing that radically undercut commercial
products [32–36]. For scientific hardware, for example, researchers can expect to save
approximately 87% compared to proprietary products [37]. The savings are strongest when
a form of distributed manufacturing is used (e.g., the open-source self-replicating rapid
prototyper (or RepRap) [38–41] dramatically reduces additive manufacturing costs [42] and
increases the number of 3D printing designs exponentially [43] that now number in the
millions). The literature shows that low-cost open-source 3D printers can even reduce costs
for mass-manufactured consumer goods, on average by 90–99% [43,44].

These savings can be scaled to the national level by investing in the development
of new open-source software [45] and hardware of strategic interest to a specific coun-
try [46]. In the analysis completed in Finland, one of the secondary advantages is that
imported products could be offset by manufacturing products internally from open-source
designs [46]. This advantage can be leveraged to act in the same way as a sanction if
applied to undercut imports from a specific country and technology sector to increase
national security and global safety. Although FOSH is becoming well known, the strategic
development of it to meet national goals outside of scientific research has not been explored.

This article reviews this opportunity by formalizing a methodology for selecting
strategic national investments in open hardware development to improve national security
and global safety. In the methodology, first the target criminal country that is threatening
national security is identified. Next, the top imports from the target criminal country as
well as potentially other importing countries (allies) are quantified. Then, hardware is
identified that could undercut those imports as well as potentially other strategic exports
from the target criminal country. Finally, methods to support the FOSH development are
enumerated. The FOSH are designed in a way that facilitates distributed manufacturing
from digital designs using local materials and tools. Thus, in addition to sanctions or
instead of sanctions, supporting FOSH development can undercut the export market for the
target criminal countries. To demonstrate how this theoretical method works in practice,
it is applied as a case study to a current military aggressor nation. It is classified as a
fossil-fuel exporter. Thus, how the development of energy conservation and renewable
energy-based open hardware could reduce fossil-fuel-energy demand and the concomitant
pollution, human health impacts, environmental desecration as well as financing of military
operations is discussed.

2. Methods

The method used to determine strategic investments in open hardware is summarized
in Figure 1.
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Figure 1. Flow diagram of method to determine strategic investments in open hardware.

As shown in Figure 1, first, the target criminal country is identified for disruption
with strategic investment in FOSH. The target criminal country can be a political rival, an
enemy or a country threatening the stability or safety of a region or the world. Next, both
the major exports for the target criminal country are identified from public data as well as
the imports to the country doing the analysis are identified. These imports and exports are
quantified in economic terms for specific products. Then, the highest-value exports (and/or
imports) are evaluated for the technical capacity to be disrupted by innovation. This can be
determined using three approaches. First, direct competition is producing the same product
at lower costs. For example, a USD $20,000 potentiostat/galvanostat for characterizing
thin-film batteries can be replaced with a USD $100 open-source model [47]. With such
opportunities, products can be directly open sourced to undercut the existing market for
the product. Second, substitution is replacing a product with a different one that serves the
same function. For example, a study of a single open hardware toy repository found that
users were offsetting USD $60 million purchases per year by 3D printing 100 FOSH toy
designs rather than purchasing similar proprietary toys [48]. For toys that were functionally
equivalent, the most common savings fell by 40–90%, which represents savings expected for
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open-source design replications of low-value products. Third, elimination of the demand
for an existing product by producing a new product that makes the need for the target
product obsolete. For example, Wikipedia, an open-source digital encyclopedia running
on open-source Wikimedia software, made the 244-year-old paper-based Encyclopedia
Britannica obsolete and it is no longer produced [49]. Wikipedia did this by creating
enormous laterally scaled value, as for example, the images on Wikimedia alone have been
valued at more than USD $28.9 billion [50]. Wikipedia has essentially eliminated the market
for hard-copy encyclopedias. Finally, after the target products and innovations are selected,
specific open hardware is identified to reach the goal of reducing or eliminating the export
of the products from the target criminal nation. Imports into one’s own nation are likely the
easiest to offset, but open hardware can be used to out innovate and thus reduce costs or
increase functionality faster than the target criminal country’s existing system (or companies
within it) can innovate on its own. In addition to the imports into one’s own nation, these
same sources can determine other countries (allies) that are importing goods from the
target criminal nation. These allies could form alliances to open hardware and leverage
digital technologies [51] to use the do-it-together (DIT) methodology [52] to accomplish
more than possible by going alone [53]. Since the industrial revolution, a conventional
centralize manufacturing model has held sway (Figure 2a), where all intellectual property
is held by an organization that manufactures products and ships it to consumers. DIT
consists of participatory design and collaborative production (e.g., global design and home
or local manufacturing), as shown in Figure 2b. As can be seen in Figure 2, rather than
have the design ideas only come from large companies, communities and individuals can
assist in developing open-source designs and then community organizations (e.g., fablabs,
makerspaces as well as small- and medium-sized businesses) can manufacture the products
locally. DIT encourages local production in a commons-based peer production strategy.
Such social manufacturing generates positive externalities for all the involved stakeholders
including customers, professionals and the local producers [54]. DIT is well suited for
small-scale production on local sites, offering significant potential for new businesses and
employment as DIT can provide competitive advantages while limiting costs and risks
associated with innovation [55]. These imports, which can be converted to distributed
local production, need to be quantified and hardware is identified that could undercut
those imports. Thus, in addition to sanctions (or instead of sanctions), supporting FOSH
development can undercut the market for the target countries by enabling distributed
manufacturing of products that reduce or eliminate exported products from a targeted
criminal nation.
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3. Case Study

In order to illustrate this method, Russia was selected as an example country (step 1)
for the case study. Russia, a country of 142 million citizens, has a gross domestic product
per capita of $26,500 [56]. Russia also possesses thousands of nuclear weapons [57] and
has continued to reproduce existing nuclear warhead designs even as it has reduced stock-
piles [58]. Thus, Russia still controls enough nuclear weapons to be past the rational limit
(e.g., where using them would hurt Russians even in the best-case scenario by aggravating
food shortages) and worse, plunge the world into nuclear winter single handedly, which
would result in mass starvation throughout the world [59]. Despite its inflated military,
Russia is an otherwise developing country, where the average wage is only 51,100 Russian
rubles per month or USD $7284/year [60] (e.g., the average Russia is below the poverty line
in the U.S.). Note, these figures were taken prior to the 2022 sanctions. Russia, however,
is described as an energy superpower due only to its fossil-fuel reserves [61]. Russia has
the largest natural gas reserves in the world (followed by Iran) [62]. Still lamenting the
loss of the USSR, Russian leadership has ambitions to expand its control over regions
near it [63]. This was most clearly seen by several recent acts of aggression towards its
neighboring countries that came in the form of invasions. First in 2008 the Russo–Georgian
War, the European Court of Human Rights ruled that Russia maintained direct control over
Abkhazia and South Ossetia [64] and was responsible for grave human rights abuses [65].
In 2014, Russia invaded and annexed Crimea [66,67]; the UN General Assembly con-
demned the occupation of the Autonomous Republic of Crimea and part of the territory
of Ukraine [68]. Finally, most recently, Russia is the clear illegal aggressor in the 2022
full-scale invasion of Ukraine [69]. A full-scale war with Russia would be catastrophic even
if nuclear war is prevented, so the U.S. and allies have retaliated with a long and growing
list of sanctions [70,71]. The sanctions are meant to apply economic pressure on Russia to
stop aggression, the destabilization of Europe and the rest of the world; but even as these
sanctions are in place, they do not permanently disable the economic engine that makes
Russia’s threat to global safety a reality: exporting fossil fuels. Not only do fossil-fuel sales
finance Russia’s military [72], but fossil-fuel pollution is destabilizing the global climate,
with severe impacts of climate change [73]. These risks include forcing 1/3 of global food
production outside of a safe climate space [74] and creating human health risks [75]; and
climate change also threatens the global economy [76].

4. Results
4.1. Case Study Risks from Exports

To complete steps 2 and 3, the top Russian exports are identified—(1) crude petroleum
(USD $123B), (2) refined petroleum (USD $66.2B), (3) petroleum gas (USD $26.3B), and (4)
coal briquettes (USD $17.6B) [77]. All of the top exports from Russia are fossil fuels, which is
a serious threat to global safety if combusted, resulting in greenhouse gas (GHG) emissions
and concomitant climate change [78,79]. Such human-caused global climate destabilization
is established with a 95% confidence [80] as are the overwhelmingly detrimental repercus-
sions on the environment as well as human social systems [81]. The impacts of burning
Russia’s fossil-fuel exports resulting in further climate change include

(1) Increased global temperatures and heat waves, which are already responsible for
thousands of human deaths [82–84];

(2) Increased crop failures throughout the world [85,86], which aggravates global hunger
and starvation [87–89];

(3) Increased electric grid failures and intermittent power outages [90,91];
(4) Increased droughts [92–94];
(5) Increased number and severity of forest fires [95–97];
(6) Increased sea level rise, which submerges low-lying coastal areas and increases shore-

line erosion [98,99];
(7) Increased saltwater intrusion [99,100], which can threaten drinking water supplies [101];
(8) Increased storm damage to coast lines and increased flood risks [102–106].
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4.2. Case Study FOSH Targets
4.2.1. FOSH for Electric Vehicles

For step 4, the profit centers of Russia’s fossil-fuel industry will be targeted systemati-
cally with open hardware (step 5). As the first two profit centers for Russia focus on both
crude and refined petroleum, targeted investments in open-source development revolve
around those that antiquate the internal combustion engine that burns gasoline or diesel
fuel. Any hardware that reduces the need for gas-based automobiles could be of some
help (e.g., improved public transportation and equipment for telecommuting). Currently,
however, electric vehicles (EV) offer the best potential for elimination of fossil-fuel-based
land transport and are already gaining in market share [107], having more than doubled in
2021 [108]. Despite this growth, there are still several technical challenges to overcome [109]
to reduce EV costs (and their batteries [110]) to accelerate the obsolesce of the use of oil for
internal combustion engines altogether.

There is already some FOSH development revolving around EVs. Support for open-
source development to support EV charging stations [111] exists. In addition, Tesla un-
locked its EV patents [112]. Shortly after, Ford also announced opening its portfolio of
previously patented EV technologies in an effort to accelerate industry-wide develop-
ment [113]. Open-source battery management has been developed [114]. FOSH has also
been developed for in situ monitoring of Li-ion cells [115], a maintenance tool for light-
electric-vehicle batteries [116] and research has been performed on a line of open-source
all-iron batteries [117,118].

Further open-source development of batteries and electronics could all be expected
to reduce the capital and operating costs of EVs, helping to expand the diffusion of the
technology and for eliminating oil for transportation. In addition, there is an opportunity
for distributed manufacturing of EV components and potentially entire vehicles in high-
population-density regions.

4.2.2. FOSH for Energy Conservation

The third profit center is petroleum gas or natural gas, which is primarily used to heat
buildings in Europe although it is also burned to generate electric power. There are several
areas that could benefit from open-source development that would reduce natural gas use
for heating and some are already underway. Open hardware that is part of the internet
of things (IOT) [119,120] is used for low-energy-consumption devices [121], monitoring
power quality and energy savings [122]. There are numerous FOSH methods that have
been developed for power monitoring [123–126], and smart meters [127–129] including
those for institutional buildings (i.e., schools) [130]. FOSH is also used to improve energy
efficiency and demand response [131] as well as smart converters [132] and microgrid
communications [133]. There are also opportunities to develop open-source smart sockets,
programmable thermostats, and high-efficiency LED lighting.

Related to conservation, development of open-source technologies could also take
the form of those that help improve energy efficiency for physical testing such as an open-
source blower door [134] to help identify air leaks in buildings. This technology could
enable library-check out style of the device to help retrofit homes in an area. Other devices
in this class would be thermal imaging cameras to detect improper insulation or faulty
windows. Similarly, reducing heat loss can also be reduced with insulation. So open-
source development could reduce the cost of insulation by providing the tools to turn local
materials into insulating materials. The clearest opportunity would be the machinery at the
fablab scale [135,136] to convert newspaper and fire retardant into cellulose insulation [137].
However, it should be pointed out that the costs of all of the types of insulation may benefit
from open-source distributed manufacturing such as FOSH methods to make fibers [138].

4.2.3. FOSH for Heat Pumps

With the invasion of the Ukraine, the EU has already unveiled a strategy to eliminate
their dependence on Russian natural gas [139]. Energy conservation, however, is not going
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to be enough to do it and the other approach is to electrify heating to not only cut down
on natural gas, but to eliminate its use (and thus the demand for natural gas from Russia)
all together. One promising upcoming technology to do this is heat pumps—both ground
source and air source. Heat pump systems are often uneconomic unless coupled with solar
power for offsetting natural gas or propane fuels [140,141]. Open-source development
for a heat pump is already underway [142]. Future work could focus on FOSH for local
fabrication of heat exchangers, pumps, motors, and piping. Ground source heat pumps
would benefit from open hardware development of bore hole drilling units, such as an
open-source ecology tractor [143] attachment.

4.2.4. FOSH for Renewable Energy

The fourth profit center for Russia is exporting coal, which is most commonly com-
busted for electricity. It should be pointed out here that even if EV scaling eliminates
internal combustion engine-based vehicles and heat pumps offset the need for burning
natural gas for heat, to completely eliminate the need for fossil fuels from Russia, electricity
from other sources must be generated. According to the International Energy Agency,
wind and solar are the fastest-growing sources of energy [144]. Choi et al. developed a
renewable energy monitoring system [145], which is a start towards FOSH development in
the renewable energy space. Although there are now FOSH-based hardware in the loop
simulators for wind turbine testing [146] and there is some potential for open-source small
wind turbines [147], there is less of an opportunity for small-scale distributed production
with wind than solar.

Solar photovoltaic (PV) is particularly promising because it is more geographically
diverse—available to most of humanity and growing rapidly [148,149]. PV is sustain-
able [150], a net energy producer [151] with an excellent ecological balance sheet [152,153].
The capital costs for PV are dropping rapidly (60% in the last decade) [154–157]. Because
of this, already large-scale PV is generally the lowest-cost option for generating electric-
ity [158]. Despite the lifetime economic benefits of PV, capital costs are the primary barrier
to faster deployment, in the developing [159] and developed nations [160]. There are several
approaches to reducing upfront PV costs including small-scale do it yourself (DIY) [161],
which can cut more than half of the cost by eliminating most labor and soft costs.

The majority of PV system cost declines were caused by the $/W declines in the
cost of PV modules, but racking, electronics, and wiring have seen far lower rates of cost
decline [162]. PV costs can be more manageable if broken in small components that can be
purchased over time, rather than all at once. For example, plug-and-play solar, where PV
modules are connected with microinverters directly to the household circuits by consumers
is technically possible [163–167], but regulations have stalled scaling of the technology in
much of the world even though it allows the poor to enter the PV market [168]. There are
currently no FOSH based microinverters, which is a large opportunity to reduce solar costs.
Such microinverters would need to be developed for all of the world’s standard voltages.

Secondly, racking is focused proprietary and costly designs, and racking costs domi-
nate the cost of small PV systems [161]. There are, however, FOSH designs that substantially
reduce racking costs for low-tilt-angle ground mounts, which result in 85% and 92% savings
from proprietary alternatives [169], large-scale ground mounts with low-concentration
reflectors [170], tensegrity structures (saved up to 77%) [171], and small-scale agrivoltaic
cold frames [172]. For buildings, there are also FOSH designs for flat roofs that save over
80% [173], RV rooftops mounts [174], and post-market module retrofits for building inte-
grated PV [175]. In addition to fixed mounts, FOSH solar trackers [176–178] and dual axis
trackers [179] have been developed. Far more work is needed to develop the lowest-cost
FOSH designs for PV racks based on the availability of materials locally for all parts of the
world so that all communities can take advantage of these generally >75% savings.

Research into improving the PV industry can also benefit from open-source de-
sign [180]. Currently, no PV manufacturer is able to use all the known improvements
to device performance and opportunities exist for opening up patents in the PV space
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similar to what Tesla and Ford have done for EVs. Open-source is mature, however, in part
of the PV technical ecosystem: software. There is already extensive open-source software to
assist in PV system design including PVLib [181,182] and the National Renewable Energy
Lab’s Systems Advisory Model (SAM) [183,184] as well as a module emulator [185] and
FOSS for modeling advanced inverters [186]. FOSS has also been developed to determine
the PV potential in urban areas [187] or over entire regions with open-source geographic
information system software [188].

In addition, the Open Source Outdoors Testing Facility provides open access data
on PV systems in northern environments [189] and could be replicated in other parts
of the world. Any outdoor testing facility can reduce capital cost for monitoring using
open-source systems for real time measurement of the sunlight incident angle [190], for
UV–Vis-NIR radiation measurements [191] and radiation shields for environmental sen-
sors [192]. Modules can be tested on site or in the lab with a solar simulator using an
open-source IV curve tracer for solar [193]. There is also considerable FOSH developed for
monitoring PV systems including data logging [194] and those for monitoring PV device
performance [195], in situ monitoring of smart PV modules [196], system monitoring [197],
monitoring PV plants [198], and remote monitoring [199,200]. FOSH has also been devel-
oped to monitor PV integrated into microgrid [201,202], agrivoltaic weather stations [203]
and smart monitoring [204]. All of these solar-related FOSH can be further improved to be
completely digitally manufactured so that communities could locally manufacture as much
of the system as possible from local materials.

5. Discussion
5.1. Countries Positioned to Use the FOSH Model

Russia primarily exports to the EU (USD $188), China (USD $58.1B), the Netherlands
(USD $41.7B), Belarus (USD $20.5B), Germany (USD $18.9B), and Italy (USD $16.7B) [205].
Thus, these countries are in the best position to spearhead the FOSH development recom-
mended from the results of this study. Europe is particularly well endowed with fablabs
and makerspaces as shown in Figure 3 [206]. Thus, they are well prepared to follow a dis-
tributed manufacturing (e.g., DIT) model to fabricate EVs, energy conservation equipment
and renewable energy such as PV FOSH. In addition, China is already a major open-source
technology proponent [207]. China, for example, developed the open-source Kylin operat-
ing system, and by 2019, a NeoKylin variant was compatible with more than 4000 software
and hardware products and ships pre-installed on most computers sold in China [208].
Combined, Kylin and Neokylin dominate the domestic Chinese market with over 90% of
the operating system market share in the government sector [209]. In addition, China is
already the leading manufacturer of solar photovoltaics modules, and thus appears well
positioned to benefit from FOSH development of peripheral technologies (e.g., racking and
electronics) that would increase the size of their market throughout the world faster than it
is already increasing.

5.2. Target Response

If a wave of FOSH was developed that made energy conservation, heat pumps, EVs
and PV extremely inexpensive to manufacture locally, and countries that import Russia’s
goods adopted the ‘design global—manufacture local’ system, Russia’s current fossil-fuel-
export model would be made obsolete. If Russia attempted to maintain business as usual,
it would be economically devastating. As this would be a distributed method of resistance
and any retaliation would be against customers, such retaliation would be futile. Instead of
maintaining the status quo as an aggressor nation and fossil-fuel exporter, Russia has the
opportunity to lift its own citizens out of poverty [210] by leveraging the FOSH funded
by external countries to manufacture fossil-fuel-conserving products to meet their own
domestic demand and help transition them to a sustainable more diversified economy. This
would not only help improve climate stability, but it would also directly improve domestic
economic security and thus the perceived need for militarization and aggression.
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5.3. Funding National Strategic FOSH Development

There are several ways the open hardware development identified in Section 4 could be
funded. First, federal governments can use standard calls for proposals (CFPs) specifically
requiring open-source licensing of the FOSH technologies listed. Already, for example,
the U.S. National Science Foundation (NSF) is investing USD $20 million in the Pathways
to Enable Open-Source Ecosystems (POSE) program [211]. The NSF aims to “harness
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the power of open-source development for the creation of new technology solutions to
problems of national and societal importance” [211]. Prior work has shown that open-source
investment should result in an extremely high return on investment (ROI) in FOSH [29].
The funding would work as normal university or industry grants/contracts, with the
exception that rather than fund researchers and allow them to gain a monopoly on the
intellectual property, instead there would be an open-source license agreement mandate. In
this way, the researchers are still funded, but the benefits of the research accrue to society
more directly. Surveys indicate that the vast majority of faculty would be amenable to open-
source development as they would accept an open-source-endowed chair requiring them
to open source all of their work [212]. Additionally, national and international funding
agencies may wish to sponsor challenges or contests such as the XPRIZE to promote
development of FOSH toward specific technical goals by offering “bounties”, scholarships,
tax breaks, national park passes, lottery entries, awards or even citizenship. The latter
rewarding of innovators of citizenship could be a particularly strong incentive to innovate
given the current demand in some countries.

In addition to funding and incentivizing FOSH development, governments can also
use their purchasing power to accelerate the adoption of FOSH developed in the national
interest. This can be achieved by having purchasing policy preferences for open-source
technologies. This would include prioritizing funding for open-source technologies over
purchasing proprietary commercial products. The government could also make bulk
purchases of materials or provide tax breaks for those manufacturing or purchasing FOSH
that supports the national interests. Lastly, national governments have the opportunity of
creating a free online database of tested, vetted, and validated FOSH to further national
interests. It could act as an equivalent to a digital twin model being used in industry [213].
The database would include the bill of materials (BOMs), digital designs files (e.g., CAD),
instructions for assembly and operation, and raw source code for all software and firmware.
In order to vet designs, governments could provide funding to universities, companies,
and/or utilize technical staff at government labs. Already, the U.S. National Institute
of Health maintains an open design database called the 3D Print Exchange [214] and
the United Nations is evaluating starting an open hardware database for appropriate
technology to meet its sustainable development goals [215].

6. Conclusions

This article has reviewed the opportunity to take advantage of the innovation ac-
celeration and economic savings provided by open-source design coupled to distributed
manufacturing by formalizing a methodology for selecting strategic national investments
in open hardware development to improve national security and global safety. The method
was explained in detail, along with a summary of ways to support the FOSH development.
For this method to work and scale, FOSH are designed in a way that facilitates distributed
manufacturing from digital designs and then made using local materials and tools. Thus,
in addition to sanctions or instead of sanctions, nations now have the option of supporting
FOSH development to undercut the export market for target criminal countries.

Some of the largest current threats to humanity come from both acts of military
aggression and climate destabilization. As the case study results in this review show, by
investing in FOSH development of technologies for energy conservation, EVs, heat pumps
and renewable energy technologies, nations of good will have the opportunity to radically
reduce costs and thus accelerate the diffusion of these technologies that can move humanity
towards a sustainable state. With freely available open-source designs of these technologies
able to be manufactured locally, as for example in makerspaces and fablabs, the adoption
of these technologies can play a strategic role in economically limiting criminal fossil-fuel
states, while also helping to limit the negative impacts of global warming.
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