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Abstract

Shopbots are software agents that automatically query
multiple sellers on the Internet to gather information
about prices and other attributes of consumer goods
and services. Rapidly increasing in number and sophis-
tication, shopbots are helping more and more buyers
minimize expenditure and maximize satisfaction. In re-
sponse at least partly to this trend, it is anticipated
that sellers will come to rely on pricebots, automated
agents that employ price-setting algorithms in an at-
tempt to maximize pro�ts. This paper reaches toward
an understanding of strategic pricebot dynamics.

More speci�cally, this paper is a comparative study
of four candidate price-setting strategies that di�er in
informational and computational requirements: game-
theoretic pricing (GT), myoptimalpricing (MY), deriva-
tive following (DF), and Q-learning (Q). In an e�ort to
gain insights into the tradeo�s between practicality and
pro�tability of pricebot algorithms, the dynamic behav-
ior that arises among homogeneous and heterogeneous
collections of pricebots and shopbot-assisted buyers is
analyzed and simulated.

In homogeneous settings | when all pricebots use
the same pricing algorithm | DFs outperform MYs
and GTs. Investigation of heterogeneous collections of
pricebots, however, reveals an incentive for individual
DFs to deviate to MY or GT. The Q strategy exhibits
superior performance to all the others since it learns
to predict and account for the long-term consequences
of its actions. Although the current implementation of
Q is impractically expensive, techniques for achieving
similar performance at greatly reduced computational
cost are under investigation.

1 Introduction

Shopbots | software agents that automatically query
multiple on-line vendors to gather information about
prices and other attributes of consumer goods and ser-
vices | herald a future in which automated agents are
an essential component of electronic commerce [2, 5, 11,
16]. Shopbots outperform and out-inform humans, pro-
viding extensive product coverage in just a few seconds,
far more than a patient and determined human shopper
could ever achieve, even after hours of manual search.
Rapidly increasing in number and sophistication, shop-
bots are helping more and more buyers minimize ex-
penditure and maximize satisfaction.

Since the launch of BargainFinder [12], a CD shop-
bot, on June 30, 1995, the range of products represented
by shopbots has expanded dramatically. A shopbot
available at shopper.com claims to compare 1,000,000
prices on 100,000 computer-oriented products. Another
shopbot, DealPilot.com (formerly acses.com), gath-
ers, collates and sorts prices and expected delivery times
of books, CDs, and movies o�ered for sale on-line. One
of the most popular shopbots, mysimon.com, compares
o�ce supplies, groceries, toys, apparel, and consumer
electronics, just to name a few of the items on its prod-
uct line. As the range of products covered by shopbots
expands to include more complex products such as con-
sumer electronics, the level of shopbot sophistication is
rising accordingly. On August 16th, 1999, mysimon.com
incorporated technology that, for products with multi-
ple features such as digital cameras, uses a series of
questions to elicit multi-attribute utilities from buyers,
and then sorts products according to the buyer's speci-
�ed utility. Also on that day, lycos.com licensed simi-
lar technology from frictionless.com.

Shopbots are clearly a boon to buyers who use them.
Moreover, when shopbots become adopted by a su�-
cient portion of the buyer population, it seems likely
that sellers will be compelled to decrease prices and
improve quality, bene�ting even those buyers who do
not shop with bots. How the widespread utilization of



shopbots might a�ect sellers, on the other hand, is not
quite so apparent. Less established sellers may welcome
shopbots as an opportunity to attract buyers who might
not otherwise have access to information about them,
but more established sellers may feel threatened. Some
larger players have even been known to deliberately
block automated agents from their web sites [4]. This
practice seems to be waning, however; today, sellers like
Amazon.com and BarnesandNoble.com tolerate queries
from agents such as DealPilot.com on the grounds that
buyers take brand name and image as well as price into
account as they shop.

As more and more buyers are relying on shopbots to
increase their awareness about products and prices, it is
becoming advantageous for sellers to increase exibility
in their pricing strategies, perhaps by using pricebots|
automated agents that employ price-setting algorithms
in an attempt to maximize pro�ts. A primitive exam-
ple of a pricebot is available at books.com, an on-line
bookseller. When a prospective buyer expresses inter-
est in a given book, books.com automatically queries
Amazon.com, Borders.com, and BarnesandNoble.com

to determine the price that is being o�ered at those
sites. books.com then slightly undercuts the lowest of
the three quoted prices, typically by 1% of the retail
price. Such dynamic pricing on millions of titles is vir-
tually impossible to achieve manually, yet can easily be
implemented with a modest amount of programming.

As more and more sellers automate price-setting,
pricebots are going to interact with one another, yield-
ing unexpected price and pro�t dynamics. This pa-
per reaches toward an understanding of strategic price-
bot dynamics via analysis and simulation of four can-
didate price-setting algorithms that di�er in their in-
formational and computational needs: game-theoretic
pricing (GT), myoptimal pricing (MY), derivative fol-
lowing (DF), and Q-learning (Q). Previously, we studied
the price and pro�t dynamics that ensue when shopbot-
assisted buyers interact with homogeneous collections
of pricebots that utilize these algorithms [9, 10, 15]. In
this work, we �rst establish that our previous results are
not signi�cantly altered when buyers' valuations are in-
homogeneous rather than identical. Later, we examine
the behavior that ensues when pricebots employing dif-
ferent strategies are pitted against one another.

This paper is organized as follows. The next sec-
tion presents our model of an economy that consists of
shopbots and pricebots. This model is analyzed from
a game-theoretic point of view in Sec. 3. In Sec. 4, we
discuss the price-setting strategies of interest: game-
theoretic, myoptimal pricing, derivative following, and
Q-learning. Secs. 5 and 6 describe simulations of homo-
geneous and heterogeneous collections of pricebots that
implement these algorithms. Finally, Sec. 7 presents
our conclusions and discusses ideas for future work.

2 Model

We study an economy in which there is a single homo-
geneous good o�ered for sale by S sellers and of interest
to B buyers, with B � S. Each buyer b generates pur-
chase orders at random times, at rate �b, and each seller
s reconsiders (and potentially resets) its price ps at ran-
dom times, at rate �s. The value of the good to buyer
b is vb, and the cost of production for seller s is rs.

A buyer b's utility for a good is a risk-neutral func-
tion of its price as follows:

ub(p) =

�
vb � p if p � vb
0 otherwise

(1)

We do not assume that buyers are necessarily utility
maximizers. Instead, we assume that they use one of
a set of �xed sample size search rules in selecting the
seller from whom to purchase. A buyer of type i (where
0 � i � S) searches for the lowest price among i sellers
chosen at random from the set of S sellers, and pur-
chases the good if that seller's price is less than the
buyer's valuation vb. (Price ties are broken randomly.)

A few special cases are worth mentioning. A buyer
of type i = 0 simply opts out of the market without
checking any prices. Buyers of types i = 1, i = 2, and
i = S have been referred to in previous work [9, 10] as
employing the Any Seller, Compare Pair and Bargain

Hunter strategies, respectively; the latter corresponds
to buyers who take advantage of shopbots. 1 The buyer
population is assumed to consist of a mixture of buyers
employing one or another of these strategies. Specif-
ically, a �xed, exogenously determined fraction wi of
buyers employs strategy i, and

P
i wi = 1.

The pro�t function �s for seller s per unit time is
determined by the price vector ~p, which describes all
seller's prices: �s(~p) = (ps � rs)Ds(~p), where Ds(~p) is
the rate of demand for the good produced by seller s.
This rate of demand is determined by the overall buyer
rate of demand, the likelihood that the chosen seller's
price ps will not exceed the buyer's valuation vb, and
the likelihood of buyers selecting seller s as their po-
tential seller. If � =

P
b �b, and if hs(~p) denotes the

probability that seller s is selected, while g(ps) denotes
the fraction of buyers whose valuations satisfy vb � ps,
then Ds(~p) = �Bhs(~p)g(ps). Note that the function
g(p) can be expressed as g(p) =

R
1

p
(x)dx, where (x)

is the probability density function describing the likeli-
hood that a given buyer has valuation x.

1In this framework, it is also possible to consider buyers as util-
ity maximizers, with the additional cost of searching for the lowest
price expressed explicitly in the utility functions. In doing so, the
search cost for bargain hunters is taken to be zero, while for those
buyers who use the any seller strategy, its value is greater than vb.
The relationship between exogenously determined buyer behavior and
the endogenous approach which incorporates the cost of information
acquisition and explicitly allows for buyer decision-making is further
explored in computational settings in Kephart and Greenwald [10]; in
the economics literature, see, for example, Burdett and Judd [1].



Without loss of generality, de�ne the time scale s.t.

�B = v. Now �s(~p) is interpreted as the expected pro�t
for seller s per unit sold systemwide. Moreover, seller
s's pro�t is such that �s(~p) = v(ps � rs)hs(~p)g(ps). We
analyze the functions hs(~p) and g(p) in the next section.

3 Analysis

We now present a game-theoretic analysis of the pre-
scribed model viewed as a one-shot game. 2 Assuming
sellers are utility maximizers, we derive the symmetric
mixed strategy Nash equilibrium. A Nash equilibrium
is a vector of prices at which sellers maximize their indi-
vidual pro�ts and from which they have no incentive to
deviate [13]. There are no pure strategy Nash equilib-
ria in our economic model whenever 0 < wA < 1 [8, 9].
There does, however, exist a symmetric mixed strategy
Nash equilibrium, which we derive presently.

Let f(p) denote the probability density function ac-
cording to which sellers set their equilibrium prices, and
let F (p) be the corresponding cumulative distribution
function. Following Varian [17], we note that in the
range for which it is de�ned, F (p) has no mass points,
since otherwise a seller could decrease its price by an
arbitrarily small amount and experience a discontinu-
ous increase in pro�ts. Moreover, there are no gaps in
the said distribution, since otherwise prices would not
be optimal | a seller charging a price at the low end of
the gap could increase its price to �ll the gap while re-
taining its market share, thereby increasing its pro�ts.
The cumulative distribution function F (p) is computed
in terms of the quantity hs(~p).

Recall that hs(~p) represents the probability that buy-
ers select seller s as their potential seller. This function
is expressed in terms of the probabilistic demand for
seller s by buyers of type i, namely hs;i(~p), as follows:

hs(~p) =
SX
i=0

hs;i(~p) (2)

The �rst component hs;0(~p) = 0. Consider the next
component, hs;1(~p). Buyers of type 1 select sellers at
random; thus, the probability that seller s is selected
by such buyers is simply hs;1(~p) = 1=S. Now consider
buyers of type 2. In order for seller s to be selected by
a buyer of type 2, s must be included within the pair
of sellers being sampled, which occurs with probability

2The analysis presented in this section applies to the one-shot ver-
sion of our model, although the simulation results reported in Sec. 5
focus on repeated settings. We consider the Nash equilibrium of the
one-shot game, rather than its iterated counterpart, for at least two
reasons, including (i) the Nash equilibrium of the stage game played
repeatedly is in fact a Nash equilibrium of the repeated game, and
(ii) the Folk Theorem of repeated game theory (see, for example, Fu-
denberg and Tirole [7]) states that virtually all payo�s in a repeated
game correspond to a Nash equilibrium, for su�ciently large values
of the discount parameter. Thus, we isolate the stage game Nash
equilibrium as an equilibrium of particular interest.

(S � 1)=
�
S
2

�
= 2=S, and s must be lower in price than

the other seller in the pair. Since, by the assumption
of symmetry, the other seller's price is drawn from the
same distribution, this occurs with probability 1�F (p).
Hence, hs;2(~p) = (2=S) [1� F (p)]. In general, seller s is

selected by a buyer of type i with probability
�
S�1
i�1

�
=
�
S
i

�
= i=S, and seller s is the lowest-priced among the i
sellers selected with probability [1�F (p)]i�1, since these
are i�1 independent events. Therefore, we have derived
hs;i(~p) = (i=S)[1 � F (p)]i�1, and3

hs(p) =
1

S

SX
i=0

iwi[1� F (p)]i�1 (3)

A Nash equilibrium in mixed strategies requires that
all prices assigned positive probability yield equal pay-
o�s | otherwise, it would not be optimal to randomize.
Thus, assuming rs = r for all sellers s, the equilibrium
payo� � � �s(p) = v(p � r)hs(p)g(p), for all prices p.
The precise value of � can be derived by considering
the maximum price that sellers are willing to charge,
say pm. At this price, F (pm) = 1, which by Eq. 3 im-
plies that hs(pm) = w1=S. Identifying the expression
v(p� r)g(p) as the pro�t function of a monopolist, this
function attains its maximal value �m (the monopolist's
pro�t) at price pm. Therefore, for all sellers s,

� = v(pm � r)hs(pm)g(pm) =
w1�m
S

(4)

and hence,

v(p � r)g(p) =
w1�mPS

i=0 iwi[1� F (p)]i�1
(5)

implicitly de�nes p and F (p) in terms of one another,
and in terms of g(p), for all p such that 0 � F (p) � 1.

In previous work, all buyer valuations were taken
to be equal (i.e., for all buyers b, vb = v), and hence
g(p) = �(v � p) (see [9] and [10]). In this paper, we
assume (x) is a uniformdistribution over interval [0; v],
with v > 0, in which case the integral yields a step
function as follows:

g(p) =

�
1� p=v if p � v
0 otherwise

(6)

For this uniform distribution of buyer valuations, the
monopolist's pro�t function is simply (p� r)(v�p), for
p � v, which is maximized at the price pm = (v + r)=2.
At this price, the monopolist's pro�t �m = [(v� r)=2]2.
Inserting these values into Eq. 5 and solving for p in
terms of F yields:

p(F ) = pm �p�m
(
1� w1PS

i=0 iwi[1� F (p)]i�1

)1=2

(7)
3In Eq. 3, hs(p) is expressed as a function of seller s's scalar price

p, given that probability distribution F (p) describes the other sellers'
expected prices.



Eq. 7 has several important implications. First of
all, in a population in which there are no buyers of type
1 (i.e., w1 = 0) the sellers charge the production cost
r and earn zero pro�ts; this is the traditional Bertrand
equilibrium. On the other hand, if the population con-
sists of just two buyer types, 1 and some i 6= 1, then it
is possible to invert p(F ) to obtain:

F (p) = 1�
��

w1

iwi

��
(pm � p)2

2(v � p)(p � r)

�� 1

i�1

(8)

The case in which i = S and vb = v for all buyers b
was studied previously by Varian [17]; in this model,
buyers either choose a single seller at random (type 1)
or search all sellers and choose the lowest-priced among
all sellers (type S) and all buyers have equal valuations.

Since F (p) is a cumulative probability distribution,
it is only valid in the domain for which its valuation is
between 0 and 1. The upper boundary is p = pm, since
prices above this threshold leads to decreases in mar-
ket share that exceed the bene�ts of increased pro�ts
per unit. The lower boundary p� can be computed by
setting F (p�) = 0 in Eq. 7, which yields:

p� = pm �p
�m

(
1� w1PS

i=0 iwi

)1=2

(9)

In general, Eq. 7 cannot be inverted to obtain an ana-
lytic expression for F (p). It is possible, however, to plot
F (p) without resorting to numerical root �nding tech-
niques. We use Eq. 7 to evaluate p at equally spaced
intervals in F 2 [0; 1]; this produces unequally spaced
values of p ranging from p� to pm.

Fig. 1(a) and 1(b) depict the CDFs in the prescribed
model under varying distributions of buyer strategies
| in particular, w1 2 f0:1; 0:25;0:5; 0:75; 0:9g| when
S = 2 and S = 5, respectively. In Fig. 1(a), most of
the probability density is concentrated just above p�,
where sellers expect low margins but high volume. In
contrast, in Fig. 1(b), the probability density is con-
centrated either just above p�, where sellers expect low
margins but high volume, or just below pm, where they
expect high margins but low volume. In both �gures,
the lower boundary p� increases as the fraction of ran-
dom shoppers increases; in other words, p� decreases as
the fraction of shopbot buyers increases. Moving from
S = 2 to S = 5 further decreases p�, which is consistent
with Eq. 9. These relationships have a straightforward
interpretation: shopbots catalyze competition among
sellers, and moreover, small fractions of shopbot users
induce competition among large numbers of sellers.

Recall that the pro�t earned by each seller is 1
S
�mw1,

which is strictly positive so long as w1 > 0. It is as
though only buyers of type 1 are contributing to sellers'
pro�ts, although the actual distribution of contributions
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Figure 1: CDFs for w1 2 f0:1; 0:25; 0:5;0:75;0:9g.

from buyers of type 1 vs. buyers of type i > 1 is not as
one-sided as it appears. In reality, buyers of type 1 are
charged less than pm on average, and buyers of type
i > 1 are charged more than r on average, although
total pro�ts are equivalent to what they would be if the
sellers practiced perfect price discrimination. In e�ect,
buyers of type 1 exert negative externalities on buyers
of type i > 1, by creating surplus pro�ts for sellers.

4 Pricebot Strategies

When su�ciently widespread adoption of shopbots by
buyers forces sellers to become more competitive, it
is likely that sellers will respond by creating pricebots

that automatically set prices in attempt to maximize
pro�tability. It seems unrealistic, however, to expect
that pricebots will simply compute a Nash equilibrium
and �x prices accordingly. The real business world is
fraught with uncertainties, undermining the validity of
traditional game-theoretic analyses: sellers lack perfect
knowledge of buyer demands, and have an incomplete
understanding of competitors' strategies. In order to
be deemed pro�table, pricebots will need to learn from
and adapt to changing market conditions.

We now introduce four pricebot strategies, each of
which places di�erent requirements on the type and
amount of information available to the agent and upon
the agent's computational power.

GT The game-theoretic strategy is designed to repro-
duce the mixed strategy Nash equilibrium that was
computed in the previous section. It makes use of
full information about the buyer population, and
it assumes its competitors utilize game-theoretic
pricing as well.

GT is a constant function since it makes no use of
historical observations. Nonetheless, it is of inter-
est in our simulation studies in part because there
exist learning algorithms that converge to stage
game-theoretic equilibria over repeated play (see
Foster and Vohra [6] and Greenwald [8]).



MY The myopically optimal, or myoptimal , 4 pricing
strategy (see, for example, [11]) uses information
about all the buyer characteristics that factor into
the buyer demand function, as well as competitors'
prices, but makes no attempt to account for com-
petitors' pricing strategies. Instead, it is based on
the assumption of static expectations: even if one
seller is contemplating a price change under my-
optimal pricing, this seller does not assume that
this will elicit a response from its competitors; it
assumes that competitors' prices will remain �xed.

The myoptimal seller s uses all available informa-
tion and the assumption of static expectations to
perform an exhaustive search for the price p�s that
maximizes its expected pro�t �s. The computa-
tional demands can be reduced greatly if the price
quantum � (the smallest amount by which one
seller may undercut another) is su�ciently small.
Under such circumstances, the optimal price p�s is
guaranteed to be either the monopolistic price pm
or � below some competitor's price, limiting the
search for p�s to S possible values. In our simula-
tions, we choose � = 0:002.

DF The derivative-following strategy is less informa-
tionally intensive than either the myoptimal or the
game-theoretic pricing strategies. In particular,
this strategy can be used in the absence of any
knowledge or assumptions about one's competi-
tors or the buyer demand function. A derivative
follower simply experiments with incremental in-
creases (or decreases) in price, continuing to move
its price in the same direction until the observed
pro�tability level falls, at which point the direc-
tion of movement is reversed. The price increment
� is chosen randomly from a speci�ed probability
distribution; in the simulations described here the
distribution was uniform between 0.01 and 0.02.

Q The Q-learning price-setting strategy is based on a
reinforcement learning procedure called Q-learning
[18], which can learn optimal pricing policies for
Markov Decision Problems (MDPs). It does so
by learning the function Q(x; a) representing the
cumulative discounted payo� of taking action a
in state x. The discounted payo� is expressed asP

n 
nrn, where rn is the expected reward n time

steps in the future, and  is a constant \discount
parameter" lying between 0 and 1. The optimal
policy for a given state is the action that maxi-
mizes the Q-function for that state. Q-learning
yields a deterministic policy, and is therefore un-
able to represent equilibrium play in games where

4In the game-theoretic literature, this strategy is often referred to
as Cournot best-reply dynamics [3]; however, price is being set, rather
than quantity.

the equilibria are composed solely of randomized
strategies. Q-learning �nds the optimal policy in
cases where the Q-learner's opponents use station-
ary Markovian strategies. Situations that deviate
from this, such as history-dependent opponents or
non-stationary learning opponents (e.g., another
Q-learner), constitute an interesting and open re-
search topic that is touched upon here and in some
of our prior work (see Tesauro and Kephart [15]).

5 GT, MY, and DF Simulations

We simulated an economy with 1000 buyers and ini-
tially 2, and later 5, pricebots employing various mix-
tures of pricing strategies. In the simulations depicted,
buyer valuations are uniformly distributed in the inter-
val [0; 1], and each seller's production cost r = 0. The
mixture of buyer types is set at w1 = 0:25, w2 = 0:25,
and wS = 0:5; when S = 2, w2 = wS = 0:75. The
simulation is asynchronous: at each time step, a buyer
or seller is randomly selected to either make a purchase
or reset a price. The chance that a given agent is se-
lected to act is determined by its rate; the rate �b at
which a given buyer b attempts to purchase the good
is set to 0.000999, while the rate �s at which a given
seller reconsiders its price is 0.00005. Each simulation
was iterated for 100 million time steps.

5.1 Homogeneous Simulations

Here, we augment our previous work (see [9]) on sim-
ulations of 2 pricebots of matching types by assuming
the uniformly distributed buyer valuations introduced
in Section 3. If we consider 2 GT pricebots, simulations
verify that the cumulative distribution of prices closely
resembles the derived F (p), to within statistical error.
The time-averaged pro�ts for each seller were 0:0319,
nearly the theoretical value of 0.03125. When 2 price-
bots use the myoptimal pricing strategy, cyclical price
wars result (see [9]). The myoptimal sellers' expected
pro�ts averaged over one price-war cycle are given by
�mys = 1=vS[pm � p�]

R pm
p�

(v � p)(p � r) dp, which is
equal to 0.0893. Simulation results closely match this
theoretical value with an average pro�t per time step for
MYs of 0.0892, nearly thrice the average pro�t obtained
via the game-theoretic pricing strategy.

In related work (see [9]), assuming all buyer valua-
tions to be equal, the behavior of DF pricebots tended
towards what is in e�ect a collusive state in which all
prices approached the monopolistic price. In this study,
2 DF pricebots once again track one another closely; in
doing so they accumulate greater pro�ts than either 2
myoptimal or 2 game-theoretic pricebots. The e�ect
of uniformly distributed buyer valuations is nonetheless
apparent in substantial uctuations in price, ranging



from approximately 0.15 to 0.55 | the upper bound
of which is above the monopolistic price pm = 0:5 |
rather than remain in the neighborhood of the monop-
olistic price. Speci�cally, DF pricebots achieved time-
averaged pro�ts of 0.1127.

5.2 Heterogeneous Simulations

Fig. 2(a) and Fig. 2(b) portray simulations of hetero-
geneous play. Consider the price dynamics of Fig 2(a),
which depicts 1GT vs. 1DF. In this scenario, the game-
theoretic pricebot outperforms the derivative follower
by more often than not capturing greater market share
with its lower price. In response, the derivative follower
charges relatively high prices, although it does not oscil-
late precisely around the monopolistic price pm = 0:5;
instead, it prices in a range slightly below this optimum,
since in doing so it more frequently �nds itself to be the
lower-priced of the two pricebots. The average pro�ts
of GT were 0.0682, while DF's average pro�ts were less
than half this value at 0.0334.

In contrast, Fig 2(b) depicts the price dynamics of
1GT vs. 1MY. Unlike the derivative follower, the my-
optimal pricebot outperforms the game-theoretic price-
bot; speci�cally, the time-averaged pro�ts of GT were
merely 0.0235, while MY achieved 0.0494. MY pricing
has two notable advantages over derivative following:
(i) access to full information pertaining to both com-
petitors' prices and buyer demand, and (ii) the ability
to change its price discontinuously, if necessary. Accord-
ingly, Fig. 2(b) reveals that MY prices generally just un-
dercut GT prices, unless GT charges p�, in which case
MY charges pm = 0:5. We temporarily defer discussion
of competition between MY and DF pricebots.

Table 1 summarizes the results of our 1-on-1 GT,
MY, and DF simulations by depicting the time-averaged
pro�ts obtained by pricebots that employed the various
strategies as indicated. It is interesting to consider this
pro�t matrix as representing the payo�s of a normal
form game in which there are three possible strategies,
namely MY, DF, and GT. In doing so, we observe that
the strategy pro�les (1MY, 1MY) and (1DF, 1DF) are
both pure strategy Nash equilibria, with the latter as
Pareto optimal. Moreover, regardless of the opponents'
behavior, it is always preferable to choose strategy MY
or DF, rather than behave as prescribed by GT: i.e.,
the elimination of dominated strategies eliminates the
game-theoretic strategists. This outcome is not entirely
surprising in view of the fact that GT is rooted in a stage
game analysis, and prescribes play with no regard for
historical data. In contrast, MY and DF take into ac-
count changing environmental conditions, and are thus
more apt in asynchronous, repeated game settings.

We now turn to heterogeneous simulations of 5 price-
bots. These simulations were conducted assuming 1 in-
dividual pricebot vs. 4 pricebots playing the same strat-
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Figure 2: 1-on-1 Pricebot Simulations

1MY 1DF 1GT
1MY .0892,.0892 .0932,.0456 .0494,.0235
1DF .0456,.0932 .1127,.1127 .0334,.0682
1GT .0235,.0494 .0682,.0334 .0319,.0319

Table 1: 1-on-1 Pro�t Matrix. Within a given cell, the
left-hand pro�t is that received by an agent employing
the strategy corresponding to that cell's row, while the
right-hand pro�t is that received by an agent employing
the strategy corresponding to that cell's column.

egy: e.g., 1MY vs. 4DF. Fig 3 displays a 3 � 3 matrix
depicting the 9 possible combinations of 1 vs. 4 price-
bots of strategies MY, DF, and GT, with the cells in
the matrix indexed by 1 � i; j � 3: e.g., Fig 31;2 refers
to the cell that depicts 1MY vs. 4DF. We describe two
of the more interesting o�-diagonal entries.

1MY vs. 4DF

The fact that a homogeneous group of derivative follow-
ers is able to extract a larger pro�t than more clever,
better informed, game-theoretic and myoptimal agents
(see Sec. 5.1) may seem paradoxical: how is it that it
is so smart to be so ignorant? Fig. 31;2, in which one
myoptimal pricebot is pitted against 4 derivative fol-
lowers, suggests that in fact ignorance may not be bliss.
During the simulation, MY averaged a pro�t of 0.0690.
Hovering close to one another, just below the monopo-
listic price pm, 2 of the 4 DFs received average pro�ts
of 0.0210 and 0.0227. A third DF never learned that
it would be better o� charging below pm; even after 10
million iterations it continued to set its price above pm
and earned only 0.0188. The �nal DF pricebot, how-
ever, had a more interesting experience: it engaged in
head-to-head combat with the MY pricebot, managing
in the process to do better than its cohorts obtaining
an average pro�t of 0.0275. Towards the end of this
simulation though, the prices of the competing DF and
MY pricebots approach pm, and consequently, those of
the other DF pricebots. In longer runs, we observed
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Figure 3: 4-on-1 Pricebot Simulations: Prices vs. Time

other DFs going head-to-head with the MY pricebot
suggesting that all DFs ultimately fare equally well.

1DF vs. 4MY

A simulation of 1 derivative-following pricebot compet-
ing with 4 myoptimal pricebots is depicted in Fig. 32;1.
In this simulation, the derivative follower achieved av-
erage pro�ts of 0.0136, while the myoptimal pricebots
earned 0.0335 on average. Note that the pro�t obtained
by a myoptimal seller in this heterogeneous setting is
nearly identical to that obtained when all sellers are
myoptimal. This equivalence is due to a coinciden-
tal cancellation of two opposing e�ects. First, note in
Fig. 32;1 that the derivative follower's price forms an
upper bound above which no myoptimal seller is will-
ing to price. This upper bound is in general less than
pm, since the derivative follower is continually enticed

into half-hearted price wars, but its recovery phase is
typically too short to allow it to meander up as high as
pm. These dynamics tend to reduce the pro�t received
by a myoptimal seller. On the other hand, the more
savvy myoptimal pricebots rarely permit the derivative
follower to undercut them, so the pro�ts earned in the
market segment consisting of the more diligent shop-
pers is shared by just four myoptimal sellers, rather
than �ve. Thus, each myoptimal seller receives a larger
piece of a smaller pie. These opposing e�ects happen
to counterbalance one another almost perfectly for the
choice of parameters made in this example.

Prisoners' Dilemma

Table 2 summarizes the results of 5 pricebot simula-
tions by depicting the time-averaged pro�ts obtained
by pricebots that employed the various strategies as in-



dicated. (This table parallels Fig. 3.) Given 4 oppos-
ing pricebots that behave uniformly, the best-response
of one additional pricebot is myoptimal pricing; con-
versely, assuming 1 opposing pricebot behaves accord-
ing to MY, the best-response for 4 pricebots acting in
unison is again myoptimal pricing. Thus, in this frame-
work, the strategy pro�le (1MY, 4MY) can be viewed
as a Nash equilibrium; in fact this is the unique Nash
solution in Table 2. This strategy pro�le is not Pareto
optimal, whereas (1DF, 4DF), for example, is Pareto
optimal. In e�ect, this pro�t matrix has the same basic
character as that of the Prisoner's Dilemma: the coop-
erative strategy is DF, but there is every incentive for
individuals to defect to MY.

4MY 4DF 4GT
1MY .0337,.0337 .0690,.0225 .0185,.0109
1DF .0136,.0335 .0387,.0387 .0134,.0159
1GT .0119,.0169 .0536,.0226 .0129,.0129

Table 2: 4-on-1 Pro�t Matrix

Consumer Surplus

Table 3 presents the consumer surplus | the bene�t
achieved beyond the buyers' willingness to pay | ob-
tained by the simulated buyers for the usual combina-
tions of seller strategies. As expected, when all price-
bots play DF and seller pro�ts are maximized, consumer
surplus is minimized. Notice, however, that the intro-
duction of a single GT pricebot substantially increases
consumer surplus; similarly, the introduction of a GT
pricebot into a group of otherwise MY pricebots leads
to even greater increases in consumer surplus. Appar-
ently, the presence of even a single GT agent substan-
tially bene�ts buyers. Interestingly, however, the great-
est consumer surplus is seen, not when all pricebots
are GT strategists, but rather when one pricebot plays
MY and the remainder play GT. The deterministic, ex-
plicit undercutting by the MY pricebot (as opposed to
the probabilistic undercutting by the GT pricebot) not
only bene�ts the MY seller (see Table 2), but it also
slightly improves the consumers' lot. What is a gain for
MY and the consumers is a loss for the GT sellers.

4MY 4DF 4GT
1MY .2907 .3066 .4349
1DF .3010 .2638 .4144
1GT .4092 .3238 .4326

Table 3: Consumer Surplus

6 Q-Learning Simulations

The MY, DF, and GT pricing strategies studied in the
previous section are all prede�ned strategies that do not
vary during a simulation run. In this section, we study
Q-learning, which incorporates a training period dur-
ing which time Q pricebots adapt to speci�c opponent
strategies. Simulation results of Q-learning against each
of the 4 pricebot strategies (including Q-learning itself)
are presented below. Due to the lookup table represen-
tation of the Q-function, these simulations were limited
to 2 pricebots. In future work, we plan to study Q-
learning in the case of multiple pricebots using function
approximators (e.g., neural networks and decision trees)
rather than lookup tables to represent the Q-functions.
Details of our Q-learning methodology are presented in
Tesauro and Kephart [15].

Q vs. GT

Initially, we trained a Q-learner against a GT pricebot,
and obtained a resulting policy that is virtually identi-
cal to the myoptimal policy, regardless of the value of
the discount parameter . This is due to the fact that
the game-theoretic strategy is state-independent, which
implies the actions of the Q-learner have no impact on
its opponent's future course of action. Hence, the best
the Q-learner can do is optimize its immediate reward,
which amounts to following the myoptimal policy.

Q vs. DF

The DF strategy is history dependent; thus, Q-learning
is not guaranteed in theory to �nd an optimal policy
against DF. In practice, however, Q-learning performs
quite well. The Q-derived policy, which is once again
largely independent of , is similar to the myoptimal
policy. The primary di�erence is that the Q-learner
tends to undercut by 2� rather than by just �, thereby
guaranteeing that it will continue to have the lowest
price even after the DF replies, since the DF can only
lower its price by � at each given time step. 5

Q vs. MY

In Tesauro and Kephart [15], Q-learning vs. MY and Q
vs. another Q-learner were studied in a variant of the
present model of shopbots and pricebots in which all
buyers had equal valuations. The results discussed here,
assuming a uniformdistribution of buyer valuations, are
similar to the results reported previously. Q-learning al-
ways yielded exact convergence to a stationary, optimal
solution (as expected) against a myoptimal opponent.
Moreover, the Q-derived policies always outperformed

5In the simulations reported here, DF was modi�ed slightly so that
the size of its price increments was �xed at 0.01, which matched the
price discretization of the Q-learner's lookup tables.



the myoptimal strategy, and average utility increased
monotonically with . Q-learning also had the side ef-
fect of improving the utility of its myopic opponent,
because the Q-learner learned to abandon undercutting
behavior more readily than MY as the price decreased.
As shown in Fig. 4(a), the price-war regime is smaller
and is con�ned to higher average prices, leading to a
closer approximation to collusive behavior, with greater
expected utilities for both sellers.
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Figure 4: (a) Prices vs. time for Q-learner vs. myopti-
mal pricebot after training. (Training used a discount
parameter  = 0:5.) Compared to MY vs MY, the
price-war amplitude is diminished, and pro�tability is
increased for both sellers. (b) Prices vs. time for one
Q-learner vs. another after training. (Both Q-learners
trained with  = 0:5.)

Q vs. Q

In simultaneous Q-learning, exact convergence of the Q-
functions was only found for small . For large , there
was very good approximate convergence, in which the
Q-functions converged to stationary solutions to within
small random uctuations. Di�erent solutions were ob-
tained at each value of . For small , a symmetric
solution was generally obtained (in which the shapes
of p1(p2) and p2(p1) were identical), whereas a broken
symmetry solution was obtained at large . There was
a range of  values, between 0.1 and 0.3, where either
a symmetric or asymmetric solution could be obtained,
depending on initial conditions. The asymmetric solu-
tion is counter-intuitive because one would expect that
symmetric utility functions would lead to symmetric
policies. Fig. 4(b) illustrates the results of simultane-
ous Q-learning at  = 0:5. Note that there is a further
reduction in the price-war regime as compared to MY
vs. MY and Q vs. MY, leading to even greater pro�ts
for both sellers. Pro�ts in the Q-learner simulations are
summarized in Table 4.

In the cases of Q vs MY and Q vs GT, it appears
that the Q-learner has obtained the theoretically opti-
mal strategies against the respective opponents. For

Pricebots Pro�ts
(Q,GT) (.0469, .0360)
(Q,DF) (.2132, .0301)
(Q,MY) (.1089, .1076)
(Q,Q) (.1254, .1171)

Table 4: Pro�ts per time step in 2 pricebot simulations
where one of the pricebots was a Q-learner (trained at
 = 0:5) and the other was as indicated.

Q vs DF, the Q-learner does quite well despite the
non-Markovian nature of the opponent's strategy, and
for simultaneous Q-learning, generally good behavior
was found, despite the absence of theoretical guaran-
tees. Exact or very good approximate convergence was
obtained to simultaneously self-consistent Q-functions
and optimal policies. Spontaneous symmetry breaking
is found for large , even though the utility functions
for both players are symmetric. Understanding how
this broken symmetry solution comes about is an ac-
tive area of research. Also of interest would be to bet-
ter characterize the solutions that appear to converge
approximately but not exactly; such behavior has no
analog in ordinary Q-learning.

7 Conclusions and Future Work

This paper examined several approaches to the design
and implementation of pricebot algorithms that di�er
in their informational and computational requirements,
and further di�er in terms of their merits and limita-
tions when tested against themselves and one another.
The simplest algorithm is derivative following (DF) |
its price adjustments are trivial to compute, and it re-
quires no knowledge of either the buyer responses or of
the other sellers' prices. DF is a reasonable approach in
the absence of such knowledge, and performs well when
other sellers also use DF. If more knowledge is avail-
able, however, other approaches can be designed to yield
greater pro�ts. If expected buyer demand is known, it
is often possible to compute a game-theoretic equilib-
rium solution (GT). While this strategy is perhaps ap-
propriate for one-shot games, in iterated games where
there is knowledge of other sellers' prices, it is possible
to outperform GT. The myoptimal strategy (MY), for
example, uses knowledge of expected buyer demand to
compute a short-term optimal price (but ignores the ex-
pected long-term behavior of its competitors) and out-
performs both GT and DF. Computation of MY would
appear to require an exhaustive search over all possi-
ble prices; however, MY's computational overhead can
be reduced to examining only �-undercuts of the other
sellers' prices and the monopolistic price, for su�ciently
small values of �.



Pricing based on Q-learning is superior to myopti-
mal pricing since Q anticipates the longer-term con-
sequences of its actions resulting both from competi-
tor responses and its own counter-responses. Thus,
among the pricing strategies studied, Q appears to o�er
the most promising performance; however, its compu-
tational requirements are rather substantial. This is
true for both o�-line and on-line Q-learning. For o�-
line Q, an extensive simulation is required, including
models of both the buyers' demands and the other sell-
ers' strategies. For on-line Q, real competitor prices
and buyer responses are used, so that models are not
required, but the training process remains long and te-
dious, and the learner must endure true losses during
the training period while exploring suboptimal actions.
In future work, we plan to continue investigating adap-
tive learning approaches such as Q-learning, with an
aim towards designing algorithms that are feasible for
practical implementation. For example, the Q-function
can be represented using function approximators rather
than lookup tables. Preliminary (and encouraging) re-
sults have been obtained based on neural networks [14],
and work based on decision trees is underway. Lastly,
while knowledge of competitors' prices seems reasonable
(by the very existence of shopbots), accurate models of
competitors' strategies or buyer demand may in fact be
unavailable in actual agent economies; methods to over-
come such limitations remain open to investigation.
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