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ABSTRACT
Strategic programming is a generic programming idiom for processing compound data such as
terms or object structures. At the heart of the approach is the separation of two concerns: basic
data-processing computations vs. traversal schemes. Actual traversals can be composed by
passing the former as arguments to the latter. Traversal schemes can be defined by the
strategic programmer using a combinator style that relies on primitives for layered traversal. In
this paper, we adopt an aspect-oriented view on strategic programming. This necessitates the
instantiation of aspect-oriented terms such as crosscutting, join point, and advice. More
specifically, we compare strategic programming with adaptive programming, which is a well-
established aspectual approach to the traversal of object structures.
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ABSTRACT
Strategic programming is a generic programming idiom for pro-

cessing compound data such as terms or object structures. At the

heart of the approach is the separation of two concerns: basic data-

processing computations vs. traversal schemes. Actual traversals

are composed by passing the former as arguments to the latter.

Traversal schemes can be defined by the strategic programmer us-

ing a combinator style that relies on primitives for layered traversal.

In this paper, we take a look at strategic programming from an

aspect-oriented programming perspective. Throughout the paper,

we compare strategic programming with adaptive programming,

which is a well-established aspectual approach to the traversal of

object structures. We start from the observation that aspect-oriented

programming terms, e.g., crosscutting, join point, and advice can

be instantiated for aspectual traversal approaches.

Categories and Subject Descriptors
D.1.m [Programming Techniques]: Strategic Programming, Adap-

tive Programming; D.3.3 [Programming Languages]: Language

Constructs and Features

General Terms
Languages, Design

Keywords
Generic programming, Traversal, Strategic programming, Adaptive

programming, Aspect-oriented programming, Strategy, Language

design, Program transformation, Program analysis

1. INTRODUCTION
This paper is devoted to the advanced separation of two concerns

in processing compound data such as many-sorted terms, object

structures, XML documents, and others:

� basic computations for data-processing, and

� traversal schemes with rich variation points.

We will characterise a reference model for the separation of these

concerns, namely the idiom of strategic programming (SP), which

we developed over the last few years. We will compare SP with

another aspectual approach to traversal, namely adaptive program-
ming (AP) as developed by Lieberherr and collaborators [9, 18, 17,

11, 15]. We will work towards a marriage of the ideas underlying

the two aspectual approaches to traversal.

Adaptive programming (AP) at a glance. Quoting [17]:

“An adaptive program can be understood as an object-oriented pro-

gram where the class graph is a parameter, and hence the class

graph may be changed without changing the program. . . . Adap-

tive programs consist of traversal specifications and code wrap-

pers.” Traversal specifications realise adaptiveness, say ‘structure

shyness’ by only mentioning the milestone classes and relation-

ships that are immediately relevant for the specific programming

problem. The execution of an adaptive program applies the class-

specific code wrappers to the objects that are identified by the adap-

tive traversal. AP employs predicates like the following to compose

traversal specifications:

from Identify source nodes.

to Identify target nodes.

through Identify required intermediate nodes.

bypassing Identify disfavoured intermediate nodes.

In Fig. 1, we illustrate adaptive traversal.
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path meets the adaptive traversal

specification ���� � ������� �
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����� �. Notice

how some objects on the path are

not mentioned explicitly (cf. ��

and ��). The figure also indi-

cates another path which meets

all the requirements except for the

�	
����� predicate (cf. ��).

Figure 1: Adaptive traversal of an object structure

Strategic programming (SP) at a glance. SP was initi-

ated in the setting of term rewriting [22, 6], but has been trans-

posed to other programming paradigms, most notably functional



One-layer traversal

Below we illustrate two forms of one-layer traversal: ��� to process
all immediate subcomponents, and ��� to process the leftmost one for
which the argument strategy succeeds. (Shaded vs. black nodes repre-
sent failure vs. success of processing.)

Deep traversal

Below we illustrate two recursive schemes. The left one corresponds to
��� applied at all levels. This results in a full top-down traversal (for
short, ���� ��). The right one attempts ��� at all levels from bottom to
top. This results in a single-hit bottom-up traversal (for short, ��� ��).
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Figure 2: Strategic traversal of a term or a tree

programming [7, 5] and object-oriented programming [21]. The

contribution of SP is to provide the programmer with full control

in designing and implementing traversal functionality on the ba-

sis of programmer-definable traversal schemes. An actual traversal

is synthesised by passing problem-specific basic computations as

arguments to the appropriate traversal scheme. (The basic compu-

tations are like the code wrappers in AP.) The definition of schemes

of traversal relies on traversal primitives that only process the im-

mediate subcomponents of a datum, e.g.:

all Apply an argument strategy to all immediate subcomponents

while preserving the overall shape of the datum.

one Apply an argument strategy to one ‘fit’ subcomponent while

preserving the overall shape of the datum. Success and fail-

ure behaviour of the argument strategy determines fitness.

reduce Similar to ��� but the results of processing the immediate

subcomponents are summed up with a given operator.

select Similar to ��� but the successfully processed immediate sub-

component is returned as the result.

By not anticipating any scheme of recursion, one-layer traversal

can still be completed into deep traversal in different ways using

ordinary recursion. In Fig. 2, we illustrate strategic traversal.

Aspectual traversal. Both adaptive and strategic programming

are aspectual traversal approaches in the sense of aspect-oriented

programming (AOP). The link between AP and AOP is discussed

in [10]. The code wrappers in AP instantiate the AOP notion of ad-
vice. The traversal specifications in AP instantiate the AOP notion

of join points in a somewhat unusual way. Instead of intercept-

ing points along the execution of a given program, we first assume

the execution of a traversal over an object structure. Then, traver-

sal specifications are like join points or even point cuts along this

traversal execution. This implies that AP addresses a form of cross-
cutting in the sense that a traditional implementation of a traversal

results in scattering functionality and traversal control throughout

several classes. This aspect-oriented view on AP carries over to SP,

but SP addresses an additional form of separation of concerns. That

is, one can capture reusable definitions of generic traversal schemes

while exploring various variation points.

Table of contents. In Sec. 2, we will discuss the aspiration of

SP in detail while we compare SP with AP and further related work.

In Sec. 3, we will characterise the key notion used in SP, namely

strategies, and we will provide a guideline suite of basic strategic

combinators. In Sec. 4, we will present prime examples of SP-

like traversal schemes, including approximative reconstructions of

adaptive program patterns. In Sec. 5, we will provide an overview

of SP incarnations in term rewriting, functional and object-oriented

programming. In Sec. 6, we will pay special attention to the traver-

sal of object structures since this is at the heart of AP. In Sec. 7, the

paper is concluded.

2. THE CONTRIBUTION OF STRATEGIES
The aspiration of SP is to provide the programmer with full traver-
sal control. This sets SP apart from all other approaches to traver-

sal including AP. We will first explain the meaning of full traversal

control as opposed to tangling of traversal actions and basic com-

putations. We will then demonstrate the strategic style. We will

also review other traversal approaches.

Full traversal control. We view a traversal as a program that

performs basic data-processing actions on the appropriate data parts

in the right order. Data is meant here in the sense of heteroge-

neously typed data such as many-sorted terms, object structures,

and XML documents. Control can be classified as follows:

i the order of applying the basic actions,

ii the side conditions guarding the basic actions,

iii the propagation of effects caused by the actions, and

iv the traversal over the compound input data.

Control in the sense of (i) ordering, (ii) side conditions, and (iii)

effects is reasonably understood. SP contributes to (iv) traversal
control, and to its interaction with (i)–(iii). The resulting achieve-

ment is called full traversal control. The prime application domain

of SP is program transformation, and indeed, full traversal control

is crucial in this domain to guarantee correctness and termination

of many transformations. The SP idiom is independent of a specific

language or paradigm.

Entangled traversal. Traversals are often implemented in a

way that the traversal logic and basic computations are entangled.

This tangling can be observed in many areas of computing, for ex-

ample, in object-oriented programming with visitors and functional

programming. This is illustrated with a Haskell program in Fig. 3.

The fact that the traversal logic is heavily entangled with the ba-

sic actions is a major problem because the size of the entangled

traversal code is proportional to the number of data constructors

regardless of the specific problem. Also, such entangled traversal

is not robust in the view of changes to the traversed data structure.

Furthermore, the tangling has to be repeated for every new piece of

traversal functionality.



The Haskell function implements a simple transformation by a
traversal. It descends into terms representing regular expressions
to perform simplifications according to the first two equations.
The remaining equations serve traversal only.

�������� �� ��	
�� � ��	
��
�������� ��� 
������ ���� � �� ��������� ���� -- introduce ‘?’

�������� ��� ����� ����� � ��� ��������� ���� -- introduce ‘*’

-- recurse into compound regular expressions

�������� ���� ���� � ��� ��������� ����
�������� ����� ���� � ���� ��������� ����
�������� ��� ���� � �� ��������� ����
�������� ���� ���� ����� � ��� ��������� ����� ��������� �����
�������� ��� ���� ����� � �� ��������� ����� ��������� �����
�������� ��� � ���

Figure 3: Tangled traversal in functional programming

The contribution of AP. Both AP and SP improve on the

above tangling problem. With AP, the programmer can separate

the traversal code (i.e., traversal specifications) from the basic com-

putations (i.e., code wrappers). One also gains adaptiveness, that

is, a traversal is only centred around the specific milestones of a

traversal over a certain object graph.

The contribution of SP. Adaptiveness is also served by SP

as we will demonstrate below. In addition, SP allows the pro-

grammer to capture reusable, potentially generic traversal schemes.

Hence, control patterns for traversal become programmer-definable

abstractions. As a result, both traversal schemes and problem-

specific computations can be reused across applications and their

components.

The strategic method. The SP idiom encompasses both ex-
pressiveness and a method for designing and implementing traver-

sal functionality. The ‘strategic’ expressiveness is that traversal

strategies can be defined in terms of appropriate strategy combi-

nators (cf. Sec. 3). This expressiveness is sometimes hard, some-

times easy to achieve — depending on the targeted programming

paradigm, the required strength of typing and programming conve-

nience. The strategic method can be summarised in the following

steps for implementing a piece of strategic traversal functionality:

1. identification of a reusable traversal scheme,

2. definition of the problem-specific ingredients, and

3. synthesis of the traversal by parameter passing.

The traversal schemes are usually generic, that is, problem-specific

ingredients are anticipated via parameters. These problem-specific

ingredients are type-specific actions or generic actions with type-

specific branches. These actions are meant to describe how data of

‘interesting’ types is processed when encountered during traversal.

The strategic method, although general, is in no way difficult.

A strategic example. The tangling in Fig. 3 is easily eliminated

if we use a strategic traversal scheme to iterate the basic simplifi-

cation rules all over the tree. The disentangled version is shown

in Fig. 4. The function �������� is reconstructed in strategic style

by passing a helper function ����������	� to the traversal scheme

�
�� �� — read as ‘full top-down’. To be precise, ����������	�
is wrapped with ���� � � � �� to make sure that node processing

always succeeds. The function ����������	� captures the basic

‘rewrite steps’ for simplifying regular expressions. In the type of

����������	�, we use the ���	 type constructor in order to ex-

press whether any simplification rule triggers or not.

�������� � �
�� �� ����� ����������	� ���

����������	� �� �	���� � ���	 �	����
����������	� ���� ������� 	��� � �
�� ���� 	���
����������	� ���� ���
� 	���� � �
�� ���� 	���
����������	� � �������

Figure 4: Aspectual variation on Fig. 3

A variation. Although the above definition of �������� is per-

fectly modular, and faithfully reconstructs the original tangled def-

inition, a shortcoming becomes obvious. The definition does not

enforce the exhaustive application of ����������	�. This is because

�
�� �� applies its argument to the input datum before its immedi-

ate subcomponents were traversed. Here is a variation ���������

that eliminates this problem because it performs simplifications ac-

cording to the folklore traversal scheme ���	����� :

��������
� � ���	����� ����������	�

The scheme ���	����� operates bottom-up, and it loops until a

fixpoint is reached. Hence, in this example, ���	����� is more

appropriate than �
�� �� . In another context, the opposite situation

is possible, for example, if the use of ���	����� would cause a

nonterminating strategy due to the nature of the given rewrite step.

The schemes �
�� �� and ���	����� are two beginner’s favourites.

Rich variation points. SP enables and encourages the pro-

grammer to reflect on the variation points of traversals for each new

problem. This makes it even easier to alter the design of a traver-

sal when compared to the mere achievement of concise traversal

implementations. These are typical variation points for traversals:

� transformation vs. query,

� single vs. cascaded traversal,

� top-down vs. bottom-up traversal,

� depth-first vs. breadth-first traversal,

� left-to-right traversal and vice versa,

� full vs. single-hit vs. cut-off traversal,

� types vs. general predicates as milestones,

� fixpoint by equality test vs. fixpoint by failure,

� local choice vs. full backtracking vs. explicit cut,

� traversal with effects (accumulation, cloning, etc.).

We have experienced these and other variation points in actual ap-

plications. AP and other generic programming idioms do not ad-

dress this rich variety of variation points.

Applications. References to a few typical applications of SP are

in place. In [1], a transformation system CodeBoost for domain-
specific optimisation of C++ programs in the domain of numeric

programming is described. It was implemented in Stratego making

use of the XT bundle of tools for program transformation which in-

cludes packages for parsing and pretty printing. In [7], the use of

functional strategies for the implementation of program refactor-

ing for Java is demonstrated. The refactorings were implemented

in Haskell using Strafunski. In [3], the program understanding
tool ControlCruiser is described which reconstructs and visualises

Cobol control flow. The JJTraveler / JJForester architecture has

been used for the implementation.



Levels of traversal control. We conclude our discussion of

traversal control by placing different styles of programming in a

range of levels to measure the sophistication of traversal control:

Entangled traversal The folklore style of visitor programming or

(non-generic) functional programming is placed at this level.

Disentangled traversal Approaches that separate traversal logic

and the basic computations qualify for this level. The or-

thogonal example is the notion of generalised folds in func-

tional programming [14], which provides a uniform traver-

sal scheme for all datatypes. The basic computations per

constructor can be passed as arguments to the fold combi-

nator. An object-oriented approach to disentangled traversal

is described in [16] (inspired by AP concepts). There, OOP

is enriched with a domain-specific language for specifying

reusable traversals of object structures.

Adaptive traversal If a traversal approach provides some means

to abstract from the traversed data structure, then we call

this an adaptive approach. This is obviously the case for

AP. Polytypic programming [4] can also be used in a way

to perform adaptive traversal. The above-mentioned notion

of generalised folds can be refined to serve adaptiveness by

considering generic, primitive fold algebras that only need

to be updated for the data constructors relevant for a specific

traversal problem [8]. Yet another adaptive approach is term

rewriting with traversal functions [2].

First-class traversal SP inhabits this level. Traversal schemes are

programmer-definable entities. Often, these schemes are com-

pletely generic.

Absent variation points in AP. Generic traversal schemes

that make available various variation points are beyond the aspira-

tion of AP. In fact, the semantics of adaptive programs fixes certain

variation points of traversals, e.g.:

� Adaptive traversals are depth-first traversals.

� Milestones are searched in top-down manner.

� Milestones are constrained by classes.

� Traversal specifications denote all valid paths.

3. THE FOUNDATIONS OF STRATEGIES
Strategic programming is programming with the use of (traversal)

strategies. Depending on the SP incarnation within a certain pro-

gramming paradigm, strategies might correspond to objects, pure

functions, impure functions, and others (cf. Sec. 5). Below, we will

characterise an abstract notion of strategy that is not bound to any

particular programming language or paradigm. We will also define

a guideline suite of basic strategy combinators.

Characteristics of strategies. Strategies in the sense of SP

are data-processing actions with the following characteristics:

Genericity Strategies are generic in the sense that they are appli-

cable to data of any type (say, sort, or class).

Specificity Though generic, strategies provide access to the actual

data structures by means of type-specific operations.

Composability There are means to express compound, conditional,

and iterated strategy application.

One-layer traversal Strategies enable generic traversal into the

immediate subcomponents of heterogeneous data structures.

Partiality The application of a strategy to a given datum may fail,

and recovery from failure is possible.

First-class Strategies are first-class citizens in the sense that they

can be named, can be passed as arguments, etc.

SP vs. AP. The abstract notion of strategy corresponds to a re-

quirement specification for incarnating strategic programming in a

given programming language or paradigm. It also provides a refer-

ence chart to assess other generic programming approaches. In the

case of adaptive programming, we can pinpoint deviations of adap-

tive programs from our characterisation of strategies, in particular:

� Adaptive programs are not fully generic because their traver-

sal specifications refer to class names and labels to describe

milestones and and the relations between them. Using ‘sym-

bolic names’ [11] instead of concrete names, traversal speci-

fications become reusable.

� The traversal specifications of adaptive programs do not in-

volve one-layer traversal on immediate subcomponents. AP

favours instead operations on sets of paths.

� Adaptive programs do not involve a designated form of par-

tiality. Traversals are performed by visiting all milestones.

‘Around’ wrappers control if the rest of the traversal is per-

formed before or after the wrapper, or maybe not at all.

� Adaptive programs are normally not first-class citizens, al-

though recent implementations [15] might admit the poten-

tial for first-class adaptive programs.

A guideline combinator suite. In the following, we specify

a set of strategy combinators that must be supported by an incar-

nation of SP. Actual incarnations of strategic programming may

include further combinators than those proposed below. Here is the

syntax for strategy combinators �:

� ��� �� Identity strategy
� ���� Failure strategy
� ������ �� Sequential composition
� 	
����� �� Left-biased choice
� ��	
��� �� Type-based dispatch for a basic action �
� ������ Process all immediate subcomponents
� 
����� Process one immediate subcomponent

The semantics of the combinators is shown in Fig. 5 while we sug-

gest a semi-formal reading of the figure. The given semantics de-

liberately leaves open how to blend with the expressiveness offered

by the host paradigm of an eventual incarnation. (Think of value se-

mantics vs. reference semantics.) We refer to [22, 6] for the formal

treatment of SP in a term-rewriting setting. We will now discuss

the combinators in detail.

Constants and composition. The strategy �� succeeds for any

datum and returns its input without change. Dually, the strategy 	���

fails for any datum, indicated by the output �. There are two com-

binators for strategy composition. The sequence combinator 
��

applies its two argument strategies in succession. The left-biased

���� combinator first attempts application of its first argument

strategy. If and only if this application fails, the second argument

is attempted. We assume that the definition of new named combi-

nators can involve recursion.

One-layer traversal. The definitions of the combinators ���

and ��� formalise the intuitions from Fig. 2. They both push their

argument strategy one level down into the input datum to process



Notation
� ... data
 ... data constructors

� ... data or failure “�”
� ... type-specific actions
� ... strategies
��� ... application of � to �
��� ... application of � to �

� � � ... big-step semantics
� � 
 ... type handled by �
� � 
 ... type of a datum �
��℄ ... indivisible data
��� � � � ��� ... compound data

Meaning
���� � �
������ � �
������ ����� � � if ��� � �� � ����� � �
������ ����� � � if ��� � �
	
������ ����� � �� if ���� � ��

	
������ ����� � � if ���� � � � ���� � �
���������℄ � ��℄
���������� � � � ��� � ���

�
� � � ���� if ���� � ��

�
,. . . ,���� � ���

���������� � � � ��� � � if ��� ���� � �

��������℄ � �

��������� � � � ��� � �� � � ��

�
� � � � if ��� ���� � � � � � � � ������ � � � ���� � ��

�


��������� � � � ��� � � if ���� � �,. . . ,���� � �
��	
��� ���� � ��� if � � 
 and � � 

��	
��� ���� � ��� if � � 
 � � � 
� � 
 �� 
�

Figure 5: Semantics of the strategy combinators

all immediate components, or just the leftmost one for which the

argument strategy succeeds, respectively. We use dedicated nota-

tion to differentiate between indivisible data and compound data.

Note that ��� and ��� preserve the shape of the input datum because

the constructor  reappears in the result. We say that this kind of

strategies is type-preserving, or that they perform a transformation.

We omit the discussion of dual combinators that perform a query or

an analysis with a fixed result type regardless of the input datum’s

type. (Recall 
���� and ���� from the introduction.) To illustrate

the definition of recursive traversal schemes in terms of one-layer

combinators, we define �
�� �� for full top-down traversal in terms

of ���. The following definition means that �
�� �� ��� applies its ar-

gument strategy � at the root of the incoming datum, and then (cf.


��) it applies itself to ��� immediate components of the datum:

�
�� ����� � 
����� �����
�� �� �����

Lifting type-specific actions. In Fig. 5, we distinguish type-
specific actions vs. generic data-processing actions — the latter be-

ing called strategies. There are means to mediate between the two

categories. Obviously, a generic action � can be applied immedi-

ately to a datum � of any type. (The application operator � � ��� is

overloaded for type-specific and generic actions.) Notably, a type-

specific action can also be turned into a generic action by what

we call ‘type-based dispatch’ or simply ‘lifting’. This is neces-

sary in order to enable the application of type-specific actions to

subcomponents of different sorts in the course of traversal. Ex-

plicit lifting is accomplished by the ���� combinator, which con-

structs a new strategy from a generic default � and a type-specific

action �. That is, the strategy ������� �� behaves like � except for

data of �’s input type; here it dispatches to �. An incarnation of

strategic programming can omit the ���� combinator, and favour

implicit lifting instead. Then, a type-specific action � is viewed

as �����	���� ��. We illustrate lifting by adding an application of

���� to the strategic Haskell snippet from Fig. 4:

�������� � �
�� �� ����� ����� 	��� ����������	�� ���

We use 	��� as default. We could have used �� as well because

we recover from failure anyway via ���� � � � ��. Defaults other

than �� and 	��� are also sensible. One could, for example, consider

recursive descent as default which is only meant to happen if the

type of the basic action and the type of the given datum do not fit.

Adaptive traversal primitives. Let us clarify what it means

that AP does not cater for access to immediate subcomponents of

compound data. We recall that traversal specifications are com-

posed in terms of the predicates from, to, through, and bypassing

as sketched in the introduction. The semantics of AP usually refers

to other primitives [18] that make clear that traversal specifications

denote sets of paths in a graph with classes as nodes, and edges

for subclassing and subobjects. These are the most fundamental

primitives to compose traversal specifications �:

� ����℄ — the set of paths from class � to class �; this form

corresponds to from� to�.

� �� � �� — the concatenation of the sets of paths �� and

�� where the target class in �� must coincide with the source

class in ��; through predicates can be modelled via this form.

� �� � �� — the union of sets of paths where �� and �� must

agree on the source and target classes; merging traversals can

be modelled via this form.

There are further forms of composition, e.g., for intersection, and

acyclic paths [11, 12]. The bypassing predicate can be viewed as a

combination of a complement operation and intersection.

Other forms of strategies. The term strategy or related terms

like tactics and tacticals are also used in other contexts of comput-

ing. Usually some sort of ‘control’ is associated to this use, but not

the means to cater for generic access to components of heteroge-

neous data structures. For example, strategies are used to describe

proof tactics and tacticals or programmable evaluation strategies in

term rewriting [19]. In the newer AP literature, the term (traversal)

strategy is also used as a generalisation of the ‘traversal specifi-

cations’ in the earlier literature. The generalisation concerns the

way how traversal specifications are viewed. An AP-like strategy

is viewed as a function on graphs preparing the actual traversal of

milestones. At the programming level, still the same predicates

from, to, etc. are used.

4. TRAVERSAL SCHEMES
The power of our strategy combinators can best be demonstrated

with a few examples. Fig. 6 shows a list of combinators defined

in terms of the basic ones. The first two control patterns ��� and

�	�	� do not involve traversal whereas the remaining combinators

define different traversal schemes. In fact, these are all general-

purpose traversal schemes. We omit a discussion of domain-specific

schemes, e.g., schemes for language processing. We will first ex-

plain all the schemes from the figure. Eventually, we will clarify

how the adaptive style meets our strategic style.

Non-traversal control. The combinator ��� turns its argument

strategy into an always succeeding strategy: ������ attempts � but
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Figure 6: Some defined strategy combinators

resorts to �� if � fails. The �	�	� combinator serves for fixpoint

computation: �	�	� ��� applies � repeatedly until � fails. This con-

trol pattern is useful in the definition of traversal schemes like in-
nermost where traversal involves exhaustive application of actions.

Traversal schemes. The combinators �
�� �� and �
�� �

model a full top-down or bottom-up traversal, respectively. They

apply their argument strategy at the root of the incoming datum,

and at all its immediate and non-immediate components. The com-

binators ��	 �� and ��	 �
 are variations that apply the argu-

ment strategy only to the first component at which it succeeds.

The combinator ���� �� attempts the application of the argument

strategy to components along all branches, and it stops in a given

branch when an application succeeds. The ���	 ���	����� and

���	����� combinators both implement the leftmost innermost

evaluation strategy, but the second is more efficient than the first.

SP meets AP. We are now in the position to reconstruct adaptive

program patterns as strategy combinators. This reconstruction is

based on the following ideas:

Milestones as strategies Adaptive traversal specifications refer to

class names as milestones. In SP, we call this a type guard —

a strategy that succeeds if and only if faced with data of a

given type. Hence, the combinator for an AP pattern receives

strategy arguments for milestone identification.

Code wrappers as strategy combinators An ‘around’ wrapper in

AP dictates how to superimpose the wrapper’s functionality

onto the traversal steps (with ‘before’ and ‘after’ as special

cases). In SP, we model code wrappers as strategy combina-

tors that take the ‘rest of the traversal’ as a strategy argument.

Predicates as traversal schemes The predicates used in the traver-

sal specifications of AP are mapped to appropriate strate-

gic traversal schemes. A traversal specification with several

predicates maps then to a cascaded traversal strategy.

We start with the most simple example of a traversal specification,

namely from� to� with associated code wrappers 	� and 	�

for the two milestones. We define a strategy combinator from to

for this pattern with arguments for �, �, 	�, and 	� :

���� �������	��	�� � 
�����	�������	����
�����	�� � �������� �� �
����� ����	�����

For short, it is the ���� �� scheme which does all the work. We

first test for � to enforce that we are faced with a datum of type

�. Then, we invoke the wrapper 	� and pass the rest of the

traversal to it as an argument. The rest is defined by a helper com-

binator to. The outermost ��� implies descending one level, and

the ���� �� �
����� � � ��� means following all branches but stop-

ping for �. When we found �, we invoke the wrapper 	� . This

wrapper strategy takes no arguments because there is no remaining

traversal. We enforce success via ��� . As a general remark regard-

ing the above reconstruction: the semantics of SP implies that the

reconstruction is more greedy than prescribed by the semantics of

AP. That is, even subcomponents the types of which rule out nested

�s are traversed. This concern will be addressed in Sec. 6. We

continue with a combinator that includes a through predicate:

���� ����
�� ����� 
 ���	�� 	� �	�� �

���� �����
�	��	� ������	����

We boxed the added parameters 
 for the through milestone, and

the associated wrapper 	� . We first go from source nodes (cf.

�) to intermediate nodes (cf. 
 ) via the from to combinator. The

wrapper 	� for the intermediate nodes receives the appropriate

rest of the traversal, which is meant to eventually reach all target

nodes (cf. �) via the to combinator. This idea works for any num-

ber of through predicates. Each new milestone is found by a stop td
traversal. We can also cope with bypassing predicates:

���� �� ������������� � �	��	�� �
���� ����� ����������	�� �������	���

So we stop the from to traversal at both target nodes (cf. �) as well

as bypassing nodes (cf.� ), and we make sure that the wrapper	�

is only applied in case we are faced with a proper target node.

5. IMPLEMENTING STRATEGIES
The strategic programming idiom has been realised within several

programming paradigms. There are fully worked-out and tool-

supported incarnations for term rewriting based on Stratego [22,



Concept per paradigm Term rewriting Functional programming OO programming

Datum many-sorted term term of an algebraic datatype object graph

Immediate component subterm subterm referenced object

Basic action rewrite rule monomorphic function specific visit method

Strategy term rewriting strategy ‘strategically’ polymorphic function generic visitor object

Strategy application dedicated operator function application visit method invocation

Strategy combinators strategy definitions higher-order functions visitor classes

Type-based dispatch implicit type-safe cast RTTI, dynamic binding

Types liberal checks rank-2 types, constrained “�” subtype polymorphism

Partiality built-in monadic effect exceptions

Host idioms ‘DSL-like’ extensions monadic effects graphs, side effects

Figure 7: Overview of strategic programming incarnations

20], for functional programming in Haskell based on Strafunski [7,

5], and for object-oriented programming in Java based on JJTrav-
eler / JJForester [21]. Stratego is a language that is devoted to the

strategic programming idiom. The functional and object-oriented

incarnations take a different road: they aim at making the SP idiom

available in general-purpose programming languages. We will not

revisit the incarnations in detail. Instead, we will discuss how to

incarnate, in general, strategic programming. Furthermore, we will

compare the incarnations at a higher level of abstraction. Imple-

mentational models for AP will also be sketched.

Incarnation process. An incarnation is designed by mapping

the abstract notion of strategy onto the host paradigm. This involves

the identification of an abstraction form for modelling strategies.

In the case of functional programming, for example, strategies are

modelled as a specific kind of polymorphic functions. One also has

to instantiate subsidiary concepts such as type-specific action, da-
tum, component, partiality. The incarnation process culminates in

the implementation of the guideline set of basic strategy combina-

tors ��, 	���, 
��, ����, ���, and ���. In Fig. 7, we compare strate-

gic programming in three paradigms based on the instantiation of

the relevant concepts. The incarnations exhibit different trade-offs

as we will pinpoint below. The incarnation process involves certain

challenges. One is that all programming idioms that are ‘native’ to

the host paradigm should remain available to the programmer when

using strategies. In object-oriented programming, strategies should

blend with reference semantics, and side-effects. Functional strate-

gies should have value semantics, allow monadic effects, and be

strict or lazy depending on the host language. Another challenge

is the typing of strategies. In a strongly typed setting, a kind of

‘strategic polymorphism’ is needed [5]. This necessitates second-

order polymorphism, and goes beyond parametric polymorphism

and ad-hoc polymorphism.

Term rewriting strategies. The Stratego [22, 20] encoding of

the running example is shown in Fig. 8. As one can see, basic

computations are represented as ordinary (though labelled) rewrite

rules. We use Stratego’s left-biased choice combinator <+ to com-

bine the rewrite rules [S1] and [S2] into the helper strategy simpli-
fyStep. Stratego uses implicit lifting, and hence, the scheme full td
is directly applied to the type-specific strategy simplifyStep. Strat-

ego as of today only performs liberal type checks, namely a kind

of arity checking for term constructors and strategy combinators.

The well-formedness of terms according to a given signature can

be checked at run-time.

Stratego—a DSL for program transformation. In the de-

sign of Stratego, the prime issue was to effectively support the

signature
constructors
Alt : RegExp * RegExp -> RegExp
Opt : RegExp -> RegExp
...

rules
S1 : Alt(Epsilon,exp) -> Opt(exp)
S2 : Opt(Plus(exp)) -> Star(exp)
strategies
simplify = full_td(simplifyStep <+ id)
simplifyStep = S1 <+ S2

Figure 8: Stratego representation of Fig. 4

development of program transformation systems. Hence, Strat-
ego can be viewed as a domain-specific language (DSL). In fact,

a number of domain-specific constructs are available in Stratego,

e.g., the hygienic generation of fresh names as needed in trans-

formations, and scoped dynamic rewrite rules to compute rules at

run-time. Stratego’s DSL character is also reflected by other pro-

visions. The language implementation performs specific traversal-

aware optimisations. It further uses a designated run-time term rep-

resentation that allows for sharing, constant time equality test, and

hidden transportation of comments and layout.

Functional strategic programming. By modelling strate-

gies as functions [7, 5], the first-class requirement for strategies

can be met without further ado. All other incarnations of strategic

programming are more problematic in this respect. We have inves-

tigated a variety of models for functional strategies. They differ

regarding the selection of strategy primitives, and subtle details of

typing and representation. The original expressiveness of strategies

can be captured in just two special function combinators:

� The adhoc combinator as defined earlier.

� A highly parameterised one-layer traversal combinator.

The two special combinators can be made available in three ways:

� The programmer instantiates them for each new datatype.

� A generative tool supplies the datatype-specific code.

� A language extension covers the combinators.

The generic programming bundle Strafunski supports several mod-

els via a generative tool component.

Object-oriented strategic programming. This incarnation

uses generalised visitor objects to model strategies [21]. A number

of ideas are needed to make folklore visitors fit for SP, that is, to

meet all defining characteristics of strategies:



class Seq implements Visitor {

Visitor v1, v2;

public Seq(Visitor v1, Visitor v2) {
this.v1 = v1; this.v2 = v2;

}

public Visitable visit(Visitable x) {
return v2.visit(v1.visit(x));

}
}

public class FullTD extends Seq {
public FullTD(Visitor v) {

super(v,null);
v2 = new All(this);

}
}

Figure 9: Strategy combinators as visitor combinators

� While standard visitors are specific to a class hierarchy, strate-

gic programming additionally necessitates completely generic

visitors. These visitors implement a single visit method.

� To enable one-layer traversal, we need to cater for generic

access to the immediate subobjects of objects. This is accom-

plished by a Visitable interface to get and set all ‘children’.

� To cover partiality for visitors, failure is encoded by throwing

a VisitFailure exception, and left-biased choice recovers from

failure via exception handling.

� The double-dispatch protocol of ordinary visitors is com-

plemented by a visitor combinator that forwards any class-

specific visit method to a generic visit method. By subclass-

ing a forwarding visitor, one achieves the effect of ����.

� While ordinary visitors are ‘void’ visitors, ‘returning’ visi-

tors are preferred in the SP setting. That is, ��������� al-

ways returns an object — normally . This makes it easier to

replace objects by new ones (possibly of different subtypes).

� A combinator style for first-class visitors relies on param-

eterised constructors for visitors. Using the generic visitor

interface, one can define generic visitor combinators. This is

demonstrated for 
�� and �
�� �� in Fig. 9.

The ‘strategies as visitors’ approach is naturally supported via a

generative tool (JJForester in our case). This concerns the afore-

mentioned Visitable interface to be introduced into a given class

hierarchy, and the derivation of the ordinary visitor class, as well as

the forwarding visitor combinator. The current typing model neces-

sitates some casting. This problem can be remedied with generics.

AP language implementation. Previous approaches to the

implementation of adaptive programs normally relied on compi-

lation. In [18], an adaptive program is compiled into an object-

oriented program where the class hierarchy contains a method for

each adaptive traversal. The generated method definitions recurse

into subobjects, and they invoke the code wrappers. A problem

with this approach is that the generated code could be invoked in-

correctly without starting at a proper source node. In [17], a more

general compilation technique is described with several methods

per traversal. The idea is here that the search through the object

graph can be modelled as a (deterministic) finite automaton where

the states are modelled by methods. In [11], a generic approach to

the generation of traversal methods is described. In this approach,

traversal specifications are compiled into road-maps that are used

by the traversal methods at run-time. The main idea is to maintain

a traversal graphs with tokens that represent the traversal history.

In [15], an implementational model for AP is described which is

reflection-based, that is, no preprocessing or compilation is needed.

6. TRAVERSING OBJECT STRUCTURES
While the notion of strategies was initiated in the declarative pro-

gramming setting of term rewriting (i.e., referential transparency,

no cycles in data structures, many-sorted data, no side effects),

strategies are perfectly sound in other settings, too. The Strat-
ego incarnation demonstrates how to cope with side effects. The

object-oriented incarnation provides the prime platform for traver-

sal strategies on mutable graphs, i.e., object structures. Since adap-

tive programming focuses on traversing object structures, we will

investigate the issues that come up in this context.

Mutable structures. There are two overall options to deal with

mutable structures, say, object structures, in SP:

1. Strategies mutate the (traversed) objects to compute a result-

ing object structure.

2. Strategies perform (deep or shallow) cloning, in particular

the one-layer traversal combinators.

In our implementations, we adhere to the first option because the

preservation of the original object structure is normally not required.

Deep cloning can still be triggered explicitly by the programmer.

This attitude is well in line with AP where the code wrappers are

immediately executed whenever milestones are encountered in the

course of a traversal, without even waiting for a proper target node

to be reached [18]. These code wrappers typically accumulate some

result, or they mutate the milestone objects, or both. In principle,

they could also perform cloning. However, searching through the

object structure by itself does not involve any cloning.

General topologies. In the primary application domain of SP —

program transformation —, strategies are predominantly applied to

tree-shaped data. Even in the object-oriented setting, the object

structures normally resemble the context-free grammar of the lan-

guage subject to program transformation and analysis. We have

certainly encountered situations where other topologies need to be

covered, e.g., the traversal of control-flow graphs [3]. There are

the following issues regarding the potential of different topologies

such as trees, directed acyclic graphs (DAG), or even cyclic graphs:

� If cyclic structures are traversed, we have to make sure that

the traversal will always terminate.

� If objects can be referenced several times, we have to decide

if the traversal should differentiate between these references.

Creating awareness of the different references to an object as in

a DAG is just a refinement of cycle detection as discussed below.

These are the possible attacks for coping with cycles:

1. We restrict ourselves to tree-shaped object structures for strate-

gic traversal. A corresponding check can be automated.

2. We make sure that a traversal only sees tree-shaped slices of

object structures. This can be done via bypassing conditions.

3. We keep track of traversed objects, and we let the traversal

fail for the second encounter of a given object.

In Fig. 10, we list a visitor combinator FailIfVisited that can be

used as a guard in strategic programs to detect a cycle in the sense

of (3.) above. One can prefix node processors by FailIfVisited so

that a traversal will not descend into an object for a second time.

As an orthogonal example, here is a full top-down traversal that

merely tests for tree-shape:



public class FailIfVisited extends Visitor {

Set visited = new HashSet();

public FailIfVisited() {}

public Visitable visit(Visitable x)
throws VisitFailure

{
if visited.contains(x) {

throw new VisitFailure();
} else {

visited.add(x); return x;
}

}
}

Figure 10: A provision for cycle detection

public class IsTree extends FullTD {
public IsTree() {
super(new FailIfVisited());

}
}

Again, this approach is well in line with AP. In [11], a similar tech-

nique for invoking traversal methods is described to cut off traversal

whenever an object is encountered for the second time. In [12], a

predicate for traversal specifications is considered that specifically

rules out cyclic paths. In fact, cyclic structures are otherwise not

too much of an issue in the AP literature. Instead of using a com-

binator like FailIfVisited and a collection of visited objects, one

might also think of other means that could be served by a native SP

implementation, e.g., marking objects with visit flags.

Compatibility. In [18], compatibility is described as a desirable

property for AP. Given a traversal specification and a concrete class

graph, compatibility means that all the milestones of the traversal

can be possibly established for some object graph. This is illus-

trated in Fig. 11. Note that one can not guarantee the reachability

of the milestones for all possible object graphs. (Think of NIL

references, and non-instantiated subclasses.) Compatibility can be

transposed to SP as follows:

� Compatibility of a strategy �, a root class , and a class graph

� means that each type-specific branch in � should be possi-

bly encountered for some object graph rooted by an object of

class . This deviation reflects that strategies are not centred

around the idea of milestones but we rather assume that type-

specific computations interact with the concrete data struc-

ture (recall explicit lifting via ���� or implicit lifting).

� Compatibility checking in AP can be reduced to a graph-

theoretical reachability analysis. Compatibility in SP is, in

general, undecidable. This is because all ingredients of a

strategic program are defined in the same Turing-complete

language as opposed to the separation of traversal specifica-

tions and code wrappers in AP.

� Compatibility is biased towards adaptive traversal. In SP,

we also consider completely generic traversal schemes. One

might also want to check these schemes for properties, e.g.,

if a traversal scheme can succeed at all, if it might tend to

fail too often, or if it might succeed too easily with a trivial

result. Here are examples of problematic strategies:

– �
�� �� ����� 	��� � � �� — will fail too often

– ��	 �� ����� �� � � �� — will succeed too easily

We consider the study of such properties as a topic for future work.
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Properties of traversal specifications:

� from � through  to � is compatible with the class graph.

� from � through � to  is not compatible with the class graph.

To see this, one can observe:

� A � object is reachable from an  object for some object graphs.

� An object is not reachable from a� object for any object graph.

Figure 11: Compatibility of adaptive programs

Premature termination. The semantics of adaptive programs

employs static meta-information on the class graph to limit the

traversal to those branches in the given object graph that can pos-

sibly lead to a target node [13]. Intuitively, a reachability analysis

as in the case of compatibility determines the optimised traversal

sequences which cut off hopeless branches. Recall Fig. 11:

Traversing an object graph according to “���� �
����
�� � �� �”, traversal ends prematurely when
we hit on a � node before we saw an � node because

� is not reachable from � in the class graph.

The benefit of premature termination is foremost efficiency since

less nodes need to be visited. In addition, code wrappers for through
nodes will not be executed unnecessarily if a target node cannot be

reached anyway. If the cut-off analyses in AP are done at compile-

time, then a closed-world assumption is necessary (i.e., no further

subclassing). The reflection-based approach in [15] avoids this

problem. Premature termination of strategies in SP on the basis

of static analyses has not been an issue so far. We consider the

transposition of the AP techniques as a prime topic for future work

on SP, and as the crucial element of a completed marriage of SP

and AP. Note that cutting off branches in a strategic traversal can

be very well achieved with stop conditions. This is common prac-

tice in SP — not necessarily related to efficiency, but often also to

correctness, just as for bypassing predicates.

Surprising paths. The structure shyness in AP is sometimes

considered harmful [16]. The problem is that traversal strategies

might go along surprising paths especially when the class hierar-

chy changes. One can call this a robustness issue. This under-

specification problem is perceived differently in the SP context. In

the application context of programming transformation and anal-

ysis, the programmer is usually very well aware of the given lan-

guage syntax — so few surprises are to be expected. Adaptive-

ness is mainly employed for conciseness. In fact, languages do not

change so dramatically as arbitrary object models.

7. CONCLUSION
Traversal programming in SP and AP are prime examples of general-

purpose aspect-oriented programming techniques. Strategic and

adaptive programming share several benefits: conciseness of traver-

sal specification, support for reuse of basic computations, and iso-



lation from changes in the data structures. Both idioms are well

founded and well supported by corresponding tools and program-

ming environments. We will conclude the paper by highlighting

the respective strengths and weaknesses of AP and SP.

Adaptive programming

� Use of static meta-information to optimise traversals.

� Compatibility checking of traversal specifications and class graphs.

� Clear separation of traversal specifications and code wrappers.

� Absence of a number of variation points for traversal.

� Bias towards object-oriented programming.

Strategic programming

� Programmer-definable, reusable, generic traversal schemes.

� Access to the full range of variation points for traversal.

� Language-independent generic programming idiom.

� Premature termination of traversals not automated.

� Freewheeling combinator style blurs focus.

The ultimate, unified aspectual traversal approach shall combine

the strengths to dissolve the weaknesses. To us, this seems feasible.
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� http://www.stratego-language.org/
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