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Abstract 
 
A finite number of sellers (n) compete in schedules to supply an elastic demand. The costs of the 
sellers have uncertain common and private value components and there is no exogenous noise in 
the system. A Bayesian supply function equilibrium is characterized; the equilibrium is privately 
revealing and the incentives to acquire information are preserved. Price-cost margins and bid 
shading are affected by the parameters of the information structure: supply functions are steeper 
with more noise in the private signals or more correlation among the costs parameters. In fact, for 
large values of noise or correlation supply functions are downward sloping, margins are larger than 
the Cournot ones, and as we approach the common value case they tend to the collusive level. 
Private information coupled with strategic behavior induces additional distortionary market power 
above full information levels and welfare losses which can be counteracted by subsidies. As the 
market grows large the equilibrium becomes price-taking, bid shading is of the order of 1/ n, and 
the order of magnitude of welfare losses is 2 1/ n . The results extend to demand schedule 
competition and a range of applications in product and financial markets are presented. 

Keywords: reverse auction, demand schedule competition, market power, adverse selection, 
competitiveness, rational expectations, collusion, welfare. 
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1. Introduction 

Many markets are characterized by traders competing in demand or supply schedules. 

This is very common in financial markets and some goods markets like wholesale 

electricity. Competition in supply functions has been used also to model bidding for 

government procurement contracts, management consulting, airline pricing reservation 

systems and provides a reduced form in strategic agency and trade policy models. And, 

indeed, the jury is still out on whether many markets are best described as being 

characterized by price or quantity competition and the supply function model appears as 

an attractive contender. In many situations private information is relevant and uncertainty 

has both a common and private values components. This is the case, for example, in both 

Treasury and central bank liquidity auctions as well as in the reverse auctions proposed 

by the Treasury to extract toxic assets from the balance sheets of banks. In this paper I 

present a model of strategic competition in schedules with an information structure which 

allows for private and common values, and does not need exogenous noise (e.g. noise 

traders or noisy supply), and explore the impact of private information on price-cost 

margins, bid shading, competitiveness, and welfare. 

 

Competition in supply schedules has been studied in the absence of uncertainty by 

Grossman (1981) and Hart (1985) showing a great multiplicity of equilibria.1 A similar 

result is obtained by Wilson (1979) in a share auction model. Back and Zender (1993) 

and Kremer and Nyborg (2004) obtain related results for Treasury auctions. Some of the 

equilibria can be very collusive. 2  Klemperer and Meyer (1989) show how adding 

uncertainty in the supply function model can reduce the range of equilibria and even pin 

down a unique equilibrium provided the uncertainty has unbounded support.3 In this case 

the supply function equilibrium always is between the Cournot and competitive 

                                                 
1  Grossman thought of firms signing implicit contracts with consumers that committed the firm to a 

supply function. Hart uncovers the equivalence between choosing a reaction function and a supply 
function. 

2  Back and Zender (2001) and LiCalzi and Pavan (2005) show how the auction can be designed to limit 
those collusive equilibria. 

3  In a linear-quadratic model this is a linear equilibrium. 
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(Bertrand) outcomes. This is also the result in Vives (1986) where the slope of the supply 

function is fixed by technological considerations. The supply function models considered 

typically do not allow for private information. 4  Kyle (1989) introduces private 

information into a double auction for a risky asset of unknown liquidation value and 

derives a unique symmetric linear Bayesian equilibrium in demand schedules when 

traders have constant absolute risk aversion, there is noise trading, and uncertainty 

follows a Gaussian distribution. Exogenous noise is needed to prevent fully revealing 

prices and the collapse of the market. 

 

Consider a market where n sellers compete to satisfy a downward sloping demand. Each 

seller receives a noisy signal of his uncertain private cost. We could consider the 

symmetric situation where n buyers with uncertain private valuations compete to fulfill 

an upward sloping supply schedule. In the paper we stick to the seller convention until we 

develop applications. The modeling strategy is to consider linear-quadratic payoffs 

coupled with an affine information structure, which admits common and private value 

components, that yields a unique symmetric linear Bayesian supply function equilibrium 

(LBSFE) of the game among the n sellers. We do not need to introduce noise in the 

system. The characterization of a linear equilibrium with supply function competition 

when there is market power and private information needs some careful analysis in order 

to model the capacity of a seller to influence the market price at the same time that the 

seller learns from the price. Kyle (1989) pioneered this type of analysis in a financial 

market context introducing noise trading in order to prevent prices from being fully 

revealing and the market collapsing. The present paper provides a tractable alternative to 

the models with an aggregate exogenous shock based on rational traders who are 

heterogeneous because of idiosyncrasies that translate in their market positions. 

 

It is found that there is a unique LBSFE except in the pure common value case. This 

equilibrium is privately revealing. That is, the private information of a firm and the price 

provide a sufficient statistic of the joint information in the market. This means in 

                                                 
4  Exceptions are the empirical papers of Hortaçsu and Puller (2008) and Kühn and Machado (2004) in 

electricity. 
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particular that the incentives to acquire information are preserved despite the fact that the 

price aggregates information. In fact, this is so even as we approach the common value 

case as long as the prior is diffuse enough or the marginal cost of acquiring precision at 0 

is null. We do not examine possible nonlinear equilibria. Linear equilibria are tractable, 

in particular in the presence of private information, have desirable properties like 

simplicity, and have proved very useful as a basis for empirical analysis. 

 

In the linear equilibrium with private information sellers are more cautious when they see 

a price raise since it may mean that costs are high. The more so, with sellers using steeper 

schedules, when signals are noisier or costs parameters more correlated. The market 

looks less competitive in those circumstances as reflected in increased price-cost margins. 

This is reminiscent of the winner’s curse in auctions. Indeed, the price has an informative 

role on top of its traditional capacity as index of scarcity. In fact, when the first effect is 

strong enough supply functions slope downwards and margins are larger than the Cournot 

ones. This is in contrast to the results of Klemperer and Meyer (1989) with symmetric 

information. More surprisingly perhaps, as we approach the common value case margins 

tend to the collusive level. Price-cost margins and bid shading increase with more 

correlation of cost shocks and/or noisier signals. This happens at the unique linear 

equilibrium only because of information-induced market power and not because of the 

existence of a vast multiplicity of equilibria. Relaxation of competition due to adverse 

selection in a common value environment is also obtained in Biais et al. (2000). I find 

also that price volatility is increasing in the noise of the signals and in the underlying cost 

volatility.   

 

When sellers face and inelastic demand then the comparative statics results on the 

information structure parameters hold but supply functions are always upward sloping. 

Indeed, the linear equilibrium breaks down when supply schedules become too steep. 

This is akin to the results of Kyle (1989) and Wang and Zender (2002) studying demand 

schedule competition. Interestingly, in our case the “linkage principle” of the auction 

literature according to which on average, the cost to the buyer decreases when providing 

suppliers with more information about the value of the good (Milgrom and Weber 
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(1982)), does not hold. In our case more public information enhances the informational 

role of the price and makes bidders more cautious instead of more aggressive.5 

 

A welfare optimal allocation can be implemented by a price-taking Bayesian supply 

function equilibrium. This is so since at a LBSFE there is a deadweight loss only because 

of strategic trading since the equilibrium is privately revealing. Sellers at the strategic 

equilibrium act as if there were price–takers but facing steeper marginal costs than the 

true ones. The difference in slopes, the distortion induced by private information, is 

increasing with the correlation of cost shocks and noise in the signals. This means that 

both aggregate/allocative and distributive/productive inefficiency increase with the size 

of the distortion implying too low sales and too similar sales among sellers. It is shown 

that a quadratic subsidy which lowers the perceived slope of marginal costs of sellers 

may alleviate or eliminate the distortion and improve efficiency. Furthermore, typically, 

the deadweight loss increases as we approach the common value case and with noisier 

signals. 

 

The paper considers also the large market case where the number of sellers and demand 

are replicated (n is the number of sellers and the size of the market as well). Then the 

distortion induced by private information and bid shading are decreasing in n, and the 

incentives to acquire information are preserved even as we approach the common value 

case as long as the prior is diffuse enough or the marginal cost of acquiring precision at 0 

is low enough. Furthermore, bid shading is of the order of 1/n, in a large market there is 

no efficiency loss (in the limit) and the order of magnitude of the deadweight loss is 
21/ n . This is also the rate of convergence to efficiency obtained in a double auction 

context by Cripps and Swinkels (2006).  

 

The welfare evaluation of the LBSFE is in marked contrast with the Cournot equilibrium 

in the presence of private information. The reason is that the LBSFE aggregates 

                                                 
5   Perry and Reny (1999) show how, for related reasons, the linkage principle may fail in multi-unit 

auctions. 
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information but not the Cournot market.  The welfare analysis in the supply function 

model contrasts thus with the one in models where there is no endogenous public signal 

such as the Cournot market in Vives (1988), the beauty contest in Morris and Shin 

(2002), or the general linear-quadratic set up of Angeletos and Pavan (2007). With 

Cournot competition we have to add a deadweight loss due to lack of information 

aggregation. A large Cournot market does not aggregate information (i.e. a large Cournot 

market does not approach a full information competitive outcome) and in the limit there 

is a welfare loss due to private information.  

 

A leading application of the model to goods markets is to wholesale electricity. The 

model admits also other interpretations in goods markets. The cost shock could be related 

to some ex post pollution or emissions damage which is assessed on the firm. Before 

submitting its supply schedule a firm would receive some private information on this 

pollution damage. Still another interpretation of the shock would be a random 

opportunity cost of serving the market which is related to revenue management dynamic 

considerations.  

 

The plan of the paper is as follows. Section 2 presents the supply function model with 

strategic firms and characterizes a linear Bayesian supply function equilibrium and its 

comparative static properties. It includes results with costly information acquisition.  

Section 3 performs a welfare analysis characterizing the distortion at the LBSFE and 

deadweight losses, and showing how to implement the efficient allocation with price-

taking equilibria or with subsidy schemes.  Section 4 studies replica markets and 

characterizes the convergence to price-taking behavior as the market grows large and an 

analysis of the order of magnitude of deadweight losses. Section 5 presents welfare 

simulations results of the model and includes a comparison with Bayesian Cournot 

equilibria.  Section 6 introduces applications to electricity markets, pollution control, 

revenue management, strategic agency and trade policy, reverse auctions, and demand 

schedule competition in financial markets (to legacy loan auction, central bank liquidity 

and Treasury auctions). Concluding remarks, including potential policy implications, 
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close the paper. Most proofs and the analysis of endogenous information acquisition and 

the Bayesian Cournot model are gathered in the Appendix.  

 

2. A strategic supply function model 

Consider a market for a homogenous good with n sellers. Seller i faces a cost  

( ) 2
i i i i iC x ; x x

2
λθ = θ +  

of supplying ix units of the good where iθ  is a random parameter and λ > 0.6 Demand 

arises from an aggregate buyer with quasilinear preferences and gross 

surplus ( ) 2U y y y / 2= α − β , where α and β  are positive parameters and y the 

consumption level. This gives rise to the inverse demand  

( )P y y= α −β  

where y is total consumption. In a reverse auction, for example, the buyer presents the 

schedule ( )P y y= α −β  to the sellers who will bid to supply. We will comment as we go 

along on how the results specialize to the case of inelastic demand and in Section 6 on 

how they can be reinterpreted for the case of demand instead of supply bids. Total surplus 

is therefore given by ( ) ( )i i ii i
TS U x C x ,= − θ∑ ∑ . 

 
We assume that iθ  is normally distributed (with mean 0θ > and variance 2

θσ ). The 

parameters iθ  and jθ , j ≠ i, are correlated with correlation coefficient [ ]0,1ρ∈ . So we 

have 2
i jcov , θ⎡ ⎤θ θ = ρσ⎣ ⎦ , for j ≠ i. Seller i receives a signal i i is = θ + ε  and signals are of the 

same precision with iε normally distributed with iE 0⎡ ⎤ε =⎣ ⎦  and [ ] 2
ivar εε = σ . Error terms 

in the signals are uncorrelated among themselves and with the iθ parameters. All random 

variables are thus normally distributed. 

 

                                                 
6  We could also deal easily with the case where there the seller faces an adjustment cost of the 

form ( )i i
2 / 2ˆx xλ −  where ix̂  is a target quantity for agent i. 
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Ex-ante, before uncertainty is realized, all sellers face the same prospects. It follows that 

the average parameter ( )n
ii 1

/ n
=

θ ≡ θ∑�  is normally distributed with mean θ , 

( )( ) 2var 1 n 1 / nθ⎡ ⎤θ = + − ρ σ⎣ ⎦
� , and icov , var⎡ ⎤ ⎡ ⎤θ θ = θ⎣ ⎦ ⎣ ⎦

� � .  

 

Our information structure encompasses the cases of “common value” and of “private 

values”. For 1ρ =  the θ parameters are perfectly correlated and we are in a common value 

model. When signals are perfect, 2 0εσ =  for all i, and 0 1< ρ < , we will say we are in a 

private values model. Agents receive idiosyncratic shocks, which are imperfectly 

correlated, and each agent observes his shock with no measurement error. When 0ρ = , 

the parameters are independent, and we are in an independent values model.  

 

Let ( )2 2 2/θ θ εξ ≡ σ σ + σ  , it is not difficult to see that ( )i i iE s s 1⎡ ⎤θ = ξ + − ξ θ⎣ ⎦  and 

( )j i j i iE s s E s s 1⎡ ⎤ ⎡ ⎤= θ = ξρ + − ξρ θ⎣ ⎦ ⎣ ⎦ . When signals are perfect, 1ξ =  and i i iE s s⎡ ⎤θ =⎣ ⎦ , 

and ( )j i iE s s 1⎡ ⎤θ = ρ + − ρ θ⎣ ⎦ . When they are not informative, 0ξ =  and 

i i j iE s E s⎡ ⎤⎡ ⎤θ = θ = θ⎣ ⎦ ⎣ ⎦ .  

 

Under the normality assumption conditional expectations are affine. There are other 

families of conjugate prior and likelihood that also yield affine conditional expectations 

and allow for bounded supports of the distributions. (See Vives (Ch. 2, 1999)).7 

 

Sellers compete in supply functions. We will restrict attention to symmetric Linear 

Bayesian Supply Function Equilibrium (LBSFE). The characterization of an equilibrium 

with supply function competition when there is market power and private information 

needs to model the capacity of a seller to influence the market price at the same time that 

the seller learns from the price.  

                                                 
7  With normal distributions there is positive probability that prices and quantities are negative in 

equilibrium. This can be controlled by choice of the variances of the distributions and the 
parameters α , β ,  λ  and θ .  
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The strategy for seller i is a price contingent schedule ( )iX s , ⋅ . This is a map from the 

signal space to the space of supply functions. Given the strategies of sellers ( )jX s ,⋅ , j = 1, 

…, n, for given realizations of signals market clearing implies that  

( )( )n
jj=1

p P X s , p= ∑ . 

Let us assume that there is a unique market clearing price ( ) ( )( )1 np̂ X s , ,..., X s ,⋅ ⋅  for any 

realizations of the signals.
8
 Then profits for seller i, for any given realization of the 

signals, are given by  

( ) ( )( ) ( ) ( )( )i 1 n i iX s , ,..., X s , pX s , p C X s , pπ ⋅ ⋅ = −  

where ( ) ( )( )1 nˆp p X s , ,..., X s ,= ⋅ ⋅ . This defines a game in supply functions and we want 

to characterize a symmetric LBSFE.  

 

Given linear strategies of rivals ( )j jX s ,p b as cp= − + , j ≠ i, seller i faces a residual 

inverse demand 

( ) ( )( )j i j ij i j i
p X s , p x n 1 b cp a s x

≠ ≠
= α −β −β = α −β − + + β −β∑ ∑ . 

 
Provided ( )1 n 1 c 0+ β − >   it follows that  

( )( ) 1
i ip I 1 n 1 c x

−
= −β + β −  

where  

( )( ) ( )( )1

i jj i
I 1 n 1 c n 1 b a s

−

≠
= + β − α − − +β β ∑ . 

 
All the information provided by the price to seller i about the signals of others is 

subsumed in the intercept of residual demand iI . The information available to seller i is 

therefore { }is , p  or, equivalently, { }i is , I . Seller i chooses ix  to maximize 

                                                 
8  If there is no market clearing price assume the market shuts down and if there are many then the one 

that maximizes volume is chosen. 
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( ) ( )( )( )12 2
i i i i i i i i i i i iE s , p x p E s ,p x x I 1 n 1 c x E s ,p x .

2 2
−λ λ

⎡π ⎤ = − ⎡θ ⎤ − = − β + β − − ⎡θ ⎤ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

The F.O.C. is 

( )( ) 1

i i i i i iI E s , I 2 1 n 1 c x x 0
−

− ⎡θ ⎤ − β + β − − λ =⎣ ⎦  

or, equivalently, 

( )i i ip E s ,p d x− ⎡θ ⎤ = + λ⎣ ⎦ ,  

where ( )( ) 11d n 1 c
−−≡ β + − , yielding a supply function  

( ) i i
i

p E s , p
X s , p

d
− ⎡θ ⎤⎣ ⎦=

+ λ
. 

The second order sufficient condition for a maximum is 2d 0+ λ > . An equilibrium must 

fulfill also ( )1 n 1 c 0+ β − > .  It is worth noting that there is strategic complementarity in the 

slopes of supply functions for given predicted values i i it E s , p≡ ⎡θ ⎤⎣ ⎦ . Indeed, for  given it  the 

slope of ( )iX s , p  is ( )1/ d + λ  which is increasing in the slope of the  (aggregate) supply 

function of the rivals ( )n 1 c− . The following proposition characterizes the linear equilibrium. 

 

Proposition 1. Let ρ < 1 and 2 2
ε θσ σ < ∞/ , then there is a unique symmetric linear Bayesian 

supply function equilibrium. It is given by the supply function 

( ) ( ) ( )i i iX s ,p p E s ,p / d= − ⎡θ ⎤ + λ⎣ ⎦  

with ( )( ) 11d n 1 c
−−= β + − , c X / p≡ ∂ ∂  is the slope of supply and is given by the  largest 

solution to the quadratic equation 

( )( ) ( )( ) ( )( )( )
( )

2 1

1 1

n 1 1 M c 1 M n M n 1 c

n M 1 0

−

− −

+λβ − + + β + λ + λ − β −

+ β + λ β − =
 

where 
( ) ( )( )( )

2

2 2

nM
1 1 n 1

ε

ε θ

ρσ
≡

− ρ σ + + − ρ σ
. The sensitivity to private information is 

ia X / s≡ −∂ ∂  and 
( )

( )( ) ( ) 1

2 2

21
a d

1
−

ε θ

θ− ρ σ
+ λ

σ + − ρ σ
= . In equilibrium we have that 
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( )1/ c M / 1 M nλ > > − + β , a 0> , and c  decreases with M and with λ . When M 0=  we 

have that c 0>  and c is increasing in n. When c 0>  then  ( )n 1 c− , and therefore 1d−  are 

increasing in n. 

 

Proof: See Appendix I.  

 

Average quantity is given by ( )ii
x x / n b as cp≡ = − +∑ �� , where 

( ) ( )i ii i
s s n n≡ = θ + ε∑ ∑�� . Substituting in the inverse demand p nx= α −β � and 

solving for p we obtain  

( ) ( )1p 1 nc nb nas−= + β α −β + β � .9 
 

The price p  reveals the aggregate information s� . The equilibrium is privately revealing 

(i.e. for seller i ( )is , p  or ( )is , s�  is a sufficient statistic of the joint information in the 

market ( )1 ns s ,...,s= , see Allen (1981)). In particular, in equilibrium we have that 

i i i i iE s , p E s ,s E s⎡θ ⎤ = ⎡θ ⎤ = ⎡θ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦� . It is worth noting that key to the private revealing 

property of the equilibrium is that the same signal is  conveys information about the 

idiosyncratic component i iη ≡ θ − θ�  and an aggregate component θ� (average cost 

parameter). Indeed, an equivalent formulation of the individual cost parameter has 

i iθ = θ + η� , where icov , 0⎡ ⎤η θ =⎣ ⎦
�  and n1

ii 1
n 0−

=
η =∑ . 

 

Despite the fact that the LBSFE is privately revealing it is distorted in relation to the full 

information supply function equilibrium where sellers share ( )1 ns s ,...,s=  (denoted by a 

superscript f). Indeed, following a similar analysis as before it is easy to see that 

( ) ( ) ( )f f
i iX s ,p p E s / d= − ⎡θ ⎤ + λ⎣ ⎦  where fd corresponds in Proposition 1 to the case 

                                                 
9  Note that since ( )c M / 1 M n 1 / n> − + β > − β  in equilibrium 1 nc 0+ β >  (and then 

( )1 c 1 nc c 0n 1+ β = + β − β >− , with either if c 0>  or c 0< , as posited to derive iI ).  
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M 0=  (in which case fc c= , where fc  is given implicitly by the positive root of  

( )( ) 11 1n 1 c c
−− −β + − + λ = ). Whenever there is no correlation between the cost parameters 

( 0ρ = ) or signals are perfect (the private values case with 2 2/ 0ε θσ σ = ) 10 , M 0= , 

i i i i iE s , p E s E s⎡θ ⎤ = ⎡θ ⎤ = ⎡θ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ and seller i does not learn about iθ  from prices. In these 

cases the LBSFE coincides with the full information equilibrium. When  0ρ >  or 
2 2/ 0ε θσ σ >  sellers learn from prices and supply functions at the LBSFE are steeper: fc c<  

(and fd d> ).11 The price at a LBSFE serves a dual role as index of scarcity and as 

conveyor of information. This can be seen from the supply function 

( ) ( ) ( )i i iX s ,p p E s ,p / d= − ⎡θ ⎤ + λ⎣ ⎦ . Indeed, a high price has a direct effect to increase the 

competitive supply of a seller, but also conveys news that costs are high (since i iE s ,p⎡θ ⎤⎣ ⎦  

is increasing in p).  

 

Comparative statics 

If ρ = 0 or 2 2/ 0ε θσ σ =  then the price conveys no extra information on the costs of seller i, 

the equilibrium coincides with the full information equilibrium, and c > 0. The fact that 
fc c< is due to adverse selection.  As ρ  or 2 2/ε θσ σ  increase then the slope of the supply 

function becomes steeper ( c  decreases) because of the informational component of the 

price (i.e. the seller learns more from the price about its cost shock and reacts less to a 

price change than if the price was only an index of scarcity) and turns negative at some 

point. Indeed, it is easily checked that c  decreases in ρ  and 2 2/ε θσ σ . This follows from 

the fact that c  decreases with M  and M  is in turn increasing in ρ  and 2 2/ε θσ σ . Note that 

as 2
εσ  increases the private signal of a seller diminishes its precision in a one-to-one 

fashion while the precision in the price diminishes according to the factor ( )1/ n 1− . As ρ 

tends to 1, c  becomes negative. There are particular parameter combinations (i.e. when 
                                                 
10   In this case the equilibrium is independent of ρ and it exists even if 1ρ = . 

11   It is worth noting that the equilibrium depends only on the ratio 2 2/
ε θ

σ σ . 
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( ) 11M n 1
−−= + λβ  ) for which the scarcity and informational effects balance and sellers 

set a zero weight ( c 0= ) on public information. In this case sellers do not condition on 

the price and the model reduces to the Cournot model where sellers compete in 

quantities. However, in this particular case, when supply functions are allowed, not 

reacting to the price (public information) is optimal. Figure 1 depicts the change in the 

equilibrium supply function as ρ goes from 0 to 1 for is = θ : ( )X ,pθ . 

 
 

Figure 1. The LBSFE ( )X ,pθ  as ρ goes from 0 to 1. 

The results are reminiscent of asymmetric information models where traders submit 

steeper schedules to protect themselves against adverse selection (Kyle (1989), Biais, 

Martimort, Rochet (2000)).12 The phenomenon is akin to the winner’s curse in common 

                                                 
12  Kyle (1989) and Wang and Zender (2002) consider a common value model with noise. Biais et al. 

(2000) in a common value environment show that adverse selection reduces the aggressiveness of 
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value auctions (Milgrom and Weber (1982)): a bidder refrains from bidding aggressively 

because winning conveys the news that the signal the bidder has received was too 

optimistic (the highest signal in the pool). Bidders shade their bid more, to protect against 

the winner’s curse, the less precise their signals are. 13 In our model a seller refrains from 

competing aggressively with its supply function because a high price conveys the bad 

new that costs are high and the more so the less precise his signal is.14 

 

When increasing ρ the variance of aggregate fundamental volatility θ� also increases. In 

some situations we would like to know the impact of changing ρ for var ⎡ ⎤θ⎣ ⎦
� constant. 

This will entail to decrease 2
θσ  appropriately. If we do so we will find that increasing ρ  

makes c smaller than when we allow var ⎡ ⎤θ⎣ ⎦
�  to change (this is so since 

( ) [ ]( )( )2M / 1 var varε ⎡ ⎤≡ ρσ − ρ θ + ε⎣ ⎦
� �  increases by more when we keep var ⎡ ⎤θ⎣ ⎦

�  constant). 

In short, in constant aggregate variance environments the impact of changes in 

correlation on the slope of supply is larger. 

 

Inelastic demand 

The case of inelastic demand where an auctioneer demands q units of the good is easily 

accommodated letting  β → ∞  and / qα β → . Then ( )y p / q= α − β → . It can be 

checked then that there is a unique symmetric LBSFE if only if n 2 M 0− − > . In this 

case we have that ( )( ) 1
d n 1 c

−
= −  and 

( )( )
n 2 Mc 0
n 1 1 M

− −
= >

λ − +
. A necessary condition for 

existence of the LBSFE is that n 3≥ . As M increases,  n 2 M 0− − →  and c 0→  and the 

LBSFE collapses. This is because of the combination of adverse selection and market 

power: the demand schedules become too inelastic to sustain a linear equilibrium as 

                                                                                                                                                 
competition in supply schedules of risk neutral uninformed market makers facing a risk averse 
informed trader who is subject also to an endowment shock. 

13  See also Reece (1978). 
14   This is also related to the generalized winner’s curse or “champion’s plague” pointed out in Ausubel 

(2004) for multi-unit auctions according to which, and translated in our context, the expected cost of a 
bidder conditional on being allocated a larger quantity is larger than with a smaller quantity.  
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n 2 M 0− − → .15 This is similar to the double auction context of Kyle (1989) in which a 

linear equilibrium exists only if the number of informed traders is larger or equal than 3 

(when there are no uninformed traders). This is so since the market breaks down when 

traders submit vertical schedules. In our general model with strategic agents facing an 

elastic demand function from passive buyers this does not happen.  

 

Furthermore, with inelastic demand supply functions are always upward sloping ( c 0> ).  

This is as in the auction models of Kyle (1989) or Wang and Zender (2002) where 

demand schedules always have the “right” slope: downwards.  As before, the supply 

function is always flatter with full information (
( )

f n 2c c
n 1
−

= >
λ −

). 

 

Common values and information acquisition 

The equilibrium is in contrast with the pure common value model of Kyle (1989) where 

noise traders or noisy supply are needed in order to prevent the collapse of the market. In 

our model there is no noise and consequently in the pure common value case ( 1ρ =  

and 2
εσ < ∞ ) the market collapses. Indeed, when 1ρ =  and 20 ε< σ < ∞  a fully revealing 

REE is not implementable and there is no linear equilibrium. The reason should be well 

understood: if the price reveals the common value then no seller has an incentive to put 

any weight on its signal (and the incentives to acquire information disappear as well). But 

if sellers put no weight on their signals then the price can not contain any information on 

the costs parameters.  As 1ρ → , M → ∞  and at the linear equilibrium in Proposition 1 we 

have that d n→ β , ( a 0→ , c 1 n→ − β/ , b n→ α β/ ) and the equilibrium collapses in the 

limit. In fact, the supply function of a seller converges to the per capita seller demand 

function ( )x p n= α − β/ . (See Figure 1.) As 1ρ →  traders are less and less aggressive. 

This is so because of worsened adverse selection coupled with strategic complementarity 

in the slopes of the supply functions. Indeed, as other traders make steeper their supply 

                                                 
15  We do not examine the existence of potential nonlinear equilibria. Note, however, than in Battacharya 

and Spiegel (1991) when the linear equilibrium fails to exist there is no other equilibrium except a 
degenerate no-trade equilibrium. 



 15

functions the best reply of a trader is to do the same. This will have important implications 

for competitiveness. 

 

Do sellers have incentives to gather information? If the sellers receive the private signals 

for free, in the course of their activity for example, then this means that each seller has an 

incentive to rely on its private signal even though the price provides also information. 

Indeed, for seller i the signal is still helps in estimating iθ  even though p  reveals s�  (i.e., 

the equilibrium is privately revealing).  

 

If the signals are costly to acquire and agents face a convex cost of acquiring precision 

then, even if there are many sellers in the market, each seller will have an incentive to 

purchase some precision for any correlation of the costs parameters which is not perfect 

provided that the marginal cost of acquiring precision is zero for zero precision or the 

prior diffuse enough. More precisely, consider a market where each seller can purchase a 

private signal at a cost, increasing and convex in the precision i

21 /ε ετ ≡ σ of the signal, 

according to a smooth function ( )H ⋅  that satisfies H(0) = 0, H ' 0>  for 0ετ > , and 

H '' 0≥ . There are, thus, nonincreasing returns to information acquisition. We consider 

the case where each seller does not observe the precision purchased by other sellers and 

look therefore at a simultaneous move game where each seller chooses its precision and 

the supply function.  Denote by ( )εψ τ  the marginal benefit of acquiring precision 

evaluated at a symmetric solution and let ( ) ( )00 lim 0
ετ → εψ ≡ ψ τ > . It can be shown (see 

Proposition A.1 in Appendix II for a formal statement and proof of the result) that there is 

a symmetric equilibrium in the game with costly information acquisition provided that 

( ) ( )H ' 0 0< ψ  and 1ρ < . At equilibrium sellers buy a positive precision of 

information * 0
ε

τ > . This is so in particular if ( )H ' 0 0=  or the prior is diffuse enough - θτ  

small- (even if the number of sellers is large and/or ρ  close to 1). As 1ρ →  we have 

that ( ) ( )( ) 120 2 2 n
−

θψ → β + λ τ  . This means that for any n even as 1ρ →  there are 

incentives to acquire information when ( )H ' 0 0= . The intuition is as follows. The 
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marginal benefit of acquiring precision is declining with the level ετ acquired and is 

positive for 0ετ =  with a finite number of sellers even if parameters are very correlated 

(a seller by purchasing a signal will improve the information he has on the common value 

even though he learns the signals of the other sellers through the price). When the number 

of sellers is large the improvement will be small but if the seller can purchase a little bit 

of precision at small cost it will do it.16  If  ( )H ' 0 0>  then for n large enough there is no 

purchase of information.17  

 

If ( ) ( )H ' 0 0≥ ψ  then there can not be any information acquisition in a symmetric 

equilibrium and in fact there is no equilibrium (provided that ( )H ' 0  is not too high). We 

have that * 0ετ =  at a candidate equilibrium but this can not be an overall equilibrium 

since if other sellers do not purchase information then the price contains no additional 

information for a  seller and it will pay a single seller to get information (provided that 

( )H ' 0  is not too high). As parameters , ,  and nβ λ ρ move in such a way that 

( ) ( )0 H ' 0ψ ↓ , then * 0
ε

τ →  and the linear supply function equilibrium collapses.18 

 

Demand uncertainty 

Demand uncertainty can be incorporated easily in the model as long as it follows a 

Gaussian distribution. It would add noise to the demand function, ( )P y u y= α + − β  with 

( )2
uu N 0,σ∼ , and to the inference problem of sellers but should not change the 

qualitative results. We would have a noisy linear equilibrium instead of privately 

                                                 
16  Jackson (1991) shows the possibility of fully revealing prices in a common value environment with 

costly information acquisition with a finite number of agents and under some specific parametric 
assumptions. 

17  However, there would be positive purchase for any n if the prior is diffuse enough in the natural case 
of a large market where the number of buyers and sellers grow together. See Section 6. 

18  Note that when 2 2

ε θ
σ σ → ∞/  -in which case ( )M n / 1→ ρ − ρ - the equilibrium in Proposition 1 

collapses also since a 0→ . However, in the limit 2 2/
ε θ

σ σ → ∞  there is another linear equilibrium 

(even when 1ρ = )   in which ( ) ( )fX p c p= − θ  (since [ ]
i i

E s , pθ = θ ). 
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revealing since sellers would have on top of their private signal a noisy estimate of the 

average signal. A linear equilibrium would exist even in the common value case. Demand 

noise would lessen the adverse selection problem making the price less informative about 

the average signal but still for low enough demand noise we would have downward 

sloping supply functions in similar circumstances as in our model.19 As noise in the 

demand tended to zero the equilibrium would converge to our privately revealing 

equilibrium. In the other extreme, with infinite noise, the price would contain no 

information and sellers would rely only on their private signals.  

 

More in general, what makes our model tractable is the combination of a linear-quadratic 

payoff structure coupled with an affine information structure (that is, a pair of prior and 

likelihood that yields affine conditional expectations) that allows for the existence of 

linear equilibria. Here it is crucial that the slopes of demand and costs are not affected by 

uncertainty. Adding (intercept) demand uncertainty presents no problem as long as the 

affine information structure is kept. 

 

Competitiveness 

Seller i bids according to the supply function ( ) ( ) ( )i i iX s ,p p E s ,p / d= − ⎡θ ⎤ + λ⎣ ⎦  where 

the bid is “shaded” with respect to the expected marginal cost 

[ ]i i i i iE MC E s ,p x≡ ⎡θ ⎤ + λ⎣ ⎦  according to the factor ( )( ) 11d n 1 c
−−= β + − :   

[ ]i i ip E MC dx− = , 

This has a translation in terms of margins in the usual Lerner index form. Letting  
r

ip / dxη = be the elasticity of residual demand for seller i  

( ) ( )r 1
jj i

x p X s , p−
≠

= β α − − ∑ : 

[ ]i i
r

p E MC 1
p

−
=

η
. 

 

                                                 
19  See Vives (2009). 



 18

The (absolute value of the) slope of residual demand is 1d− .  We see therefore that the 

competitiveness of the LBSFE depends on d and the slope of supply c . A consequence of 

the comparative statics results is that the margin (and amount of bid shading) over 

expected marginal cost i i iE s , p x⎡θ ⎤ + λ⎣ ⎦  is increasing in 2
εσ  and ρ.  

 

We know from Proposition 1 that the aggregate slope of supply of rivals of a seller 

( )n 1 c−  increases (i.e. becomes flatter) with n whenever c  > 0 for any n and therefore 

that ( )1 n 1 c−β + −  is increasing in n (and therefore d  decreasing in n). It follows that 

when c  > 0 the margin is decreasing in n.  However, this need not hold when c < 0. 20 

 

A similar relation holds for the margin over average expected marginal cost  

[ ] ( )n n1
n n i i i i ii 1 i 1

E MC E s ,p x / n n E s ,p x−
= =

≡ ⎡θ ⎤ + λ = ⎡θ ⎤ + λ⎣ ⎦ ⎣ ⎦∑ ∑ � : 

[ ]n np E MC dx− = �  

or the aggregate Lerner index: 

 

[ ]
( )( )

n n

n

p E MC 1 d
p n1 n 1 c n

−
= =

β η+ β − η
 

 

where ( )p / nxη = β � is the elasticity of demand.  

 

Recall that in equilibrium i i i i iE s , p E s ,s E s⎡θ ⎤ = ⎡θ ⎤ = ⎡θ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦�  and therefore 

n n1 1
i i ii 1 i 1

n E s , p n E s E s E s− −
= =

⎡ ⎤ ⎡ ⎤⎡θ ⎤ = ⎡θ ⎤ = θ = θ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑ � � �  (the latter equality holding 

since s�  is a sufficient statistic for s in relation to θ� ). We have therefore that 

                                                 
20  Simulations show that another possible pattern is for ( )n 1 c−  to have a U-shaped form with n. 

Simulations have been performed for the range of parameters 2

ε
σ  and 2

θ
σ  in [ ]0.01,10.01  with step size 

2, [ ]0, 0.9ρ ∈  with step size 0.1, and β  and λ  in[ ]1,10 , with step size 1, and n up to 30. 
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( )p E s d x⎡ ⎤= θ + + λ⎣ ⎦
� � � and from the demand function we obtain 

( ) ( )x E s / n d⎡ ⎤= α − θ β + λ +⎣ ⎦
� ��  and therefore [ ] ( ) ( )E x / n d= α − θ β + λ +� . It follows that 

the average expected output decreases (and expected price increases) with 2 2/ε θσ σ  and ρ, 

and with 1n− if c 0>  (since in all these cases d increases).  Similarly, expected bid 

shading [ ]dE x�  increases with 2 2/ε θσ σ  and ρ, and with 1n− if c 0> . 

 

We have also that [ ] ( ) 2var x n d var E s− ⎡ ⎤⎡ ⎤= β + λ + θ⎣ ⎦⎣ ⎦
� ��  and  [ ] ( ) [ ]2var p n var x= β � , 

where ( )E s s 1⎡ ⎤θ = ξ + − ξ θ⎣ ⎦
� � �  and ( )2var / var / nεξ ≡ ⎡ θ ⎤ ⎡ θ ⎤ + σ⎣ ⎦ ⎣ ⎦

� � , 

( )( ) 2var 1 n 1 / nθ⎡ ⎤θ = + − ρ σ⎣ ⎦
� . From this it follows that 

[ ]2var E s var s var⎡ ⎤⎡ ⎤ ⎡ ⎤θ = ξ = ξ θ⎣ ⎦ ⎣ ⎦⎣ ⎦
� �� �  increases in ρ  and 2

θσ , and decreases in 2
εσ . We 

conclude that price volatility decreases with 2
εσ and increases with 2

θσ  (since d increases 

with 2 2/ε θσ σ ).  

 

The case c 0=  corresponds to a Bayesian Cournot equilibrium, where seller i sets a 

quantity contingent only on its information { }is ,  and the aggregate margin is 1/ nη  (the 

unique Bayesian Cournot equilibrium is derived formally in Proposition A.3 in Appendix 

III). The supply function and the Cournot equilibrium coincide when ( ) 11M n 1
−−= + λβ , 

in which case c 0=  (indeed, then it can be checked that Cournot SFa a=  and Cournot SFb b= ). 

 

When c 0> , we are in the usual case in which the supply function equilibrium has 

positive slope and is between the Cournot and the competitive outcomes (e.g. Klemperer 

and Meyer (1989) when uncertainty has unbounded support). However, when c 0<  the 

margin is larger than the Cournot level and, in fact, converges to the collusive level 1/ η  

when 1ρ →  (this is so since as 1ρ →  ( )1 cn 0+ β →  and c 1/ n→ − β ; therefore 
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( )( )1 n 1 c 1/ n+ β − → or d n→ β  ). Indeed, if sellers were to share the signals 

( )1 ns s ,...,s= and maximize joint profits they would solve: 

( )n
i i 1

n
ii 1x

Max E s
=

=
⎡ ⎤π⎣ ⎦∑  

where n
ii 1

E s
=

⎡ ⎤π⎣ ⎦∑ n n n 2
i i i ii 1 i 1 i 1

px E s x x
2= = =

λ
= − ⎡θ ⎤ −⎣ ⎦∑ ∑ ∑ , and (sufficient) F.O.C.  

n
i i ii 1

2 x E s x 0
=

α − β − ⎡θ ⎤ − λ =⎣ ⎦∑ , i = 1, …, n. 

Adding up across sellers we obtain immediately 

[ ]n np E MC 1
p

−
=

η
 

where  [ ] n1
n n ii 1

E MC n E s x−
=

= ⎡θ ⎤ + λ⎣ ⎦∑ �  (as noted at a LBSFE we have that 

i i i i iE s , p E s ,s E s⎡θ ⎤ = ⎡θ ⎤ = ⎡θ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦� ). It is also immediate that the (unconditional) expected 

average collusive output is ( ) ( )/ 2 nα − θ β + λ  and, indeed, at the LBSFE as 

1ρ → : [ ] ( ) ( ) ( ) ( )E x / n d / 2 n= α − θ β + λ + → α − θ β + λ�  since d n→ β . 

 

It is remarkable that sellers may approach collusive margins in a one-shot noncooperative 

equilibrium because of informationally-induced market power. Let us recall that at the 

full information equilibrium (corresponding to 0ρ = ), indicating the pure market power 

distortion in the market, the aggregate Lerner index would equal ( )( )( ) 1f1 n 1 c n
−

+ β − η . 

As 1ρ → the private information distortion becomes more severe and sellers protect 

themselves by increasing the slope of their supplies in a escalation reinforced by strategic 

complementarity of slopes. The result is that the margin tends to the collusive level. 

 
The following proposition summarizes results so far on comparative statics and 

competitiveness. 
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Proposition 2. At the LBSFE, with ρ < 1 and 2 2
ε θσ σ < ∞/ : 

(i) The slope of equilibrium supply is steeper ( c  smaller) with increases in ρ  and 
2 2
ε θσ σ/ , going from c 0>  for ρ = 0 or 2 0εσ =  to c 0<  for large values of ρ  or 

2 2
ε θσ σ/ .  

(ii) When c 0>  ( c 0< ) the margin over average expected marginal cost is smaller 

(larger) than the Cournot level.  As 1ρ →  the margin and expected output tend to 

the collusive level.  

(iii) Expected bid shading and the margin are increasing in ρ or 2 2
ε θσ σ/  (and with 

1/ n for c 0> ). The opposite happens with the expected price. 

(iv) Price volatility decreases with 2
εσ and increases with 2

θσ . 

 
In the case of inelastic demand, in the range of existence n 2 M 0− − > ,  (i) holds (with 

c 0>  always), (iii) holds (and d is decreasing with n) and bid shading also increases with 

q (note that [ ]n np E MC dq / n− = ), and (iv) also holds (and [ ]var p  increases also with 

ρ since in this case [ ]var p var E s⎡ ⎤⎡ ⎤= θ⎣ ⎦⎣ ⎦
� � ). It is worth noting that according to (iii) the 

expected price and the payment of the buyer are increasing in the precision of public 

information 21 θσ/ . This is a failure of the “linkage principle” of the auction literature 

where on average, the cost to the buyer decreases by providing the bidders (suppliers) 

with more information about the value of the good (Milgrom and Weber (1982)). In our 

case more public information enhances the informational role of the price and makes 

bidders more cautious instead of more aggressive. It is worth noting that in our model 

increasing 21 θσ/  decreases both the variance of the common, var ⎡ ⎤θ⎣ ⎦
� , and the 

idiosyncratic component, [ ]ivar η , of iθ with more weight to the former the higher is ρ . 

 

3. Welfare analysis 

In order to assess the welfare loss at the LBSFE we provide an alternative outcome-based 

characterization of the equilibrium and compare it with the full information and with the 

fully efficient outcomes. At the full information equilibrium sellers have market power 
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and there is no private information. There is a welfare loss due to market power with 

respect to the efficient outcome. At the LBSFE there is on top a welfare loss due to 

private-information-induced extra market power. I show also that the efficient outcome 

can be implemented with a price-taking SFE. The section studies whether optimal 

subsidies can implement the efficient allocation and ends with a characterization of the 

deadweight losses at the LBSFE. 

 

3.1 An alternative characterization of the LBSFE outcome and welfare 

The strategies at a LBSFE induce the outcomes ( )( )n
i i 1

x s
=

and ( )p s  as a function of the 

realized vector of signals s. At the LBSFE we know that the price reveals s� and that 

i i i i iE s , p E s ,s E s⎡θ ⎤ = ⎡θ ⎤ = ⎡θ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦� . It is easy to see then than the outcome at the LBSFE 

maximizes a distorted surplus function with common information s: 

( )n
i i 1

n 2
ii 1x

dmax E TS s x
2=

=

⎧ ⎫⎡ ⎤ −⎨ ⎬⎣ ⎦⎩ ⎭
∑  

where ( ) ( )i i ii i
TS U x C x ,= − θ∑ ∑  and ( )( ) 11d n 1 c

−−= β + −  (where c  is the 

equilibrium LBSFE parameter). That is, the market solves the surplus maximizing 

program with a distorted cost function which represents both higher costs and marginal 

costs: 

( ) ( ) 2
i i i i i

dĈ x , C x , x
2

θ ≡ θ + . 

The result follows since the F.O.C. of the distorted planning problem are: 

( )i ip E s d x 0− ⎡θ ⎤ − + λ =⎣ ⎦ , i = 1, …, n, 

which are identical to those of the LBSFE since at the LBSFE: i i iE s , p E s⎡θ ⎤ = ⎡θ ⎤⎣ ⎦ ⎣ ⎦ . 

 

It is worth to remark that, indeed, at the LBSFE bids are always shaded according to the 

distortion d, ( )i ip E s d x= ⎡θ ⎤ + + λ⎣ ⎦ . The LBSFE allocation would be obtained by price-

taking sellers with distorted costs functions ( )i iĈ x ,θ  and full information s. However in 
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this case, supply functions would always be upward sloping, ( ) ( )i ix p E s / d= − ⎡θ ⎤ + λ⎣ ⎦ , 

since there is no informative role for the price to play. 

 

Similarly, the full information supply function equilibrium can be obtained as the 

solution to a distorted planning program replacing d  by fd .  

 

It is clear that the full (shared-) information efficient allocation obtains setting d 0= . 

This is a Pareto optimal allocation and is characterized by the equality of price and 

expected marginal cost (with full information): 

i i ip E s ,s x= ⎡θ ⎤ + λ⎣ ⎦� ,  i = 1, .., n. 

 
The implied allocation is symmetric (since the total surplus optimization problem is 

strictly concave and sellers and information structure are symmetric).  

 

In order to understand the properties of the deadweight losses it is useful to look at 

outcomes for given predicted values for θ  with full information: ( )1 nt t ,..., t= , 

i it E s≡ ⎡θ ⎤⎣ ⎦ , i =1, …, n. Note that n n1 1
i ii 1 i 1

E s n E s n t t− −
= =

⎡ ⎤θ = ⎡θ ⎤ = ≡⎣ ⎦⎣ ⎦ ∑ ∑� � . To 

condition on t is equivalent to condition on s.   

 

The wedge d 0>  induces both distributive/productive and aggregate/allocative 

inefficiency. Distributive inefficiency refers to an inefficient distribution of 

sales/production of a given aggregate (average) quantity x� . Sellers minimize distorted 

costs ( )i iĈ x ,θ  with d 0> , equivalent to a fictitious more convex technology, and the 

choices of individual quantities are biased towards too similar sales. Indeed, the market 

solves the program 

( ) ( ){ }n
i i 1

n n1
i i ii 1 i 1x

ˆmin E C x , t  s.t. n x x 
=

−
= =

⎡ ⎤θ =⎣ ⎦∑ ∑ �  

yielding  ( ) ( )i ix̂ x t t / d= + − + λ�� , i = 1, …, n, while the true cost minimization allocation 

would obtain setting d = 0. It follows that the total average minimized cost 
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( ) ( )n
i ii 1

ˆx; t,d E C x , t / n
=

⎡ ⎤Ω ≡ θ⎣ ⎦∑�  

is increasing in d. Indeed, it can be checked that 

( )
2 2
i2 i

d 1 t t 0
d nd

∂Ω ⎛ ⎞= − >⎜ ⎟∂ ⎝ ⎠λ +
∑ � . 

Aggregate inefficiency refers to a distorted level of average quantity. With d 0>  average 

quantity for given t, ( ) ( )E x t t / n d⎡ ⎤ = α − β + λ +⎣ ⎦ �� , is too low with respect to the optimal 

one -which corresponds to d = 0.  The latter would be the solution to  

( ) ( ){ }xmax U nx x; t,d 0− Ω =� � � . 

Average quantity is decreasing in d and, since total surplus is concave in x� , aggregate 

inefficiency increases with d. Since fd d 0> >  the following ranking of expected average 

quantity at the LBSFE, full information equilibrium, and efficient allocation follows: 

[ ] ( ) ( )fE x E x x / n⎡ ⎤< < ≡ α − θ β + λ⎣ ⎦� � , and correspondingly expected prices follow the 

reverse ranking.  

 

The distortion fd can be assigned to standard market power (since sellers act with full 

information) while the additional distortion fd d 0− >  can be assigned to increased 

market power induced by the private information. Increasing 2
εσ  or ρ increases fd d−  (by 

increasing d ) and therefore raise both aggregate and distributive inefficiency due to a 

worsened adverse selection problem. The distortion fd  decreases with n and the 

inefficiency is reduced (d decreases with n when c > 0 when may increase with n 

otherwise). The following proposition is then immediate. 

 

Proposition 3. Consider an allocation parameterized by d for a given realization of 

predicted values t. Then both aggregate and distributive inefficiency are increasing in d. 

Furthermore, for given t, 

(i) Increases in 2 or ερ σ  increase both types of inefficiency at the LBSFE both 

with respect to the efficient allocation and with respect the full information 

supply function equilibrium. 
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(ii) As 2 or ερ σ  increase the inefficiency due to standard market power ( fd ) stays 

constant while the one due to information-induced market power ( fd d− ) 

increases. 

(iii) Increases in n reduce the inefficiency due to standard market power ( fd ) but 

need not reduce the overall one. 

 

The intuition for the result should be clear since increases in d , for a given realization of 

predicted values, reduce average output and bias individual outputs towards excessive 

similarity. We will see in section 3.3 how these results extend when averaging over the 

it ´s, that is, when taking unconditional expectations. 

 

When demand is inelastic Proposition 3 holds with respect to distributive inefficiency 

(there is no inefficiency in the aggregate quantity) with the exception that now increases 

in n reduce the overall inefficiency also since they reduce n. 

 

3.2 Price-taking LBSFE and the efficient allocation 

Provided that 1ρ < , 2 0θσ > and 2
εσ < ∞ , the efficient full information allocation is 

implemented by a symmetric price-taking LBSFE (denoted by a superscript “c” –for 

competitive– on the coefficients). The equilibrium strategy of seller i will be of the form 

( )c c c c
i iX s , p b a s c p= − +  and it will arise out of the maximization of expected profits 

taking prices as given but using the information contained in the price: 

( )i

2
x i i i iMax p E s ,p x x

2
λ⎧ ⎫− ⎡θ ⎤ −⎨ ⎬⎣ ⎦⎩ ⎭

. 

This will yield the following system of F.O.C. 

i i ip E s ,p x= ⎡θ ⎤ + λ⎣ ⎦  for i = 1, .., n, 

where ( ) ( )1c c cp 1 nc nb na s
−

= + β α −β + β �  provided that c1 nc 0+ β ≠ . In the linear 

equilibrium c1 nc+ β  > 0 and ca 0> . Therefore, p reveals s� , i i i iE s , p E s ,s⎡θ ⎤ = ⎡θ ⎤⎣ ⎦ ⎣ ⎦�  , 

and the price-taking LBSFE implements the efficient solution.  



 26

 

The following proposition can be derived similarly as Proposition 1 (see Appendix I). 

 

Proposition 4. Let ρ < 1 and 2 2
ε θσ σ < ∞/ , then there is a unique symmetric price-taking 

LBSFE. This equilibrium implements the efficient allocation.  It is given by the supply 

function ( ) ( )c
i i iX s ,p p E s ,p /= − ⎡θ ⎤ λ⎣ ⎦ . The slope of supply is given by  

( )
( ) ( )( )( )

11 2
c

2 2

n M nc  where M
M 1 1 1 n 1

−−
ε

ε θ

λ − β ρσ
= ≡

+ − ρ σ + + − ρ σ
. 

We have that ( )c1/ c M / 1 M nλ > > − + β  cc  decreases with M  and λ , and cc 0>  for 

M 0= . The sensitivity to private information is 

( )
( )( )

2
c 1

2 2

1
a 0

1
θ −

ε θ

− ρ σ
= λ >

σ + − ρ σ
. 

 

Note that we may have also cc  < 0.  As before the equilibrium supply function can be 

upward or downward sloping. It will be downward sloping when the reaction to private 

information is small (i.e. when we are close to the common value case, when prior 

uncertainty is low or noise in the signals is high). It is worth to remark that the price-

taking supply function will coincide with the marginal cost schedule only when there is 

no learning from prices (that is, when 2 0ερσ = ). In this case  both boil down to 

i i ip E s x= ⎡θ ⎤ + λ⎣ ⎦ . The supply functions always go through the point ( )x, p where 

( ) ( )x / n≡ α − θ β + λ  and ( ) ( )p n / n≡ λα + β θ β + λ . This follows easily from the fact 

that ( ) ( )c cX ,p x c p pθ = + − . As in the strategic case the supply function of a seller 

converges to the per capita seller demand function ( )x p n= α − β/  as 1ρ → . When ρ = 

0 we have that ( )1
i i ix p E s−= λ − ⎡θ ⎤⎣ ⎦  ( M  = 0, cc 1/= λ , and c cb a= − θ ).  

 

For ρ < 1, and 2 2
ε θσ σ < ∞/ , the supply function of a seller in the price-taking equilibrium 

is always flatter than the supply function of the seller in the strategic equilibrium: 
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( )( ) ( )1c 1c c d / M 1 0−−− = λ − + λ + >  

since in equilibrium d 0> . It is immediate also that sellers are more cautious responding 

to their private signals when they are strategic: 

( )
( )( ) ( )( )

2
1c 1

2 2

1
a a d 0

1
−θ −

ε θ

− ρ σ
− = λ − + λ >

σ + − ρ σ
. 

By the same token, given that fd d 0> >  we have that  c fc c c> >  and c fa a a> > . 

 

This is because of the usual effect of market power: A seller takes into account the price 

impact coming from the amount sold. Note that in principle a seller with market power 

would also be cautious because of the informational leakage from his action, but here the 

equilibrium is revealing. It should be recalled also that here market power above the full 

information level fd  is induced by the adverse selection problem. 

 

Given that the outcome at the LBSFE is like in a price-taking equilibrium with steeper 

marginal costs (by the amount d ) the movements in the intercept of marginal costs will 

have damped effects on prices and quantities in relation to the “true” price-taking 

equilibrium. Indeed, we confirm in the simulations that price and average output 

volatility is always larger in the competitive case. Indeed, sellers react more to 

information in this case.  

 

3.3 Optimal subsidies 

From the results in Proposition 3 it may be conjectured that first best efficiency may be 

restored by a quadratic subsidy 2
ix / 2κ  that “compensates” for the distortion 2

idx / 2  and 

induces sellers to act competitively. We will see that the conjecture is partially true, a 

quadratic subsidy can always reduce the distortion but can not eliminate it in some 

circumstances.21  

                                                 
21   See Angeletos and Pavan (2009) for a thorough analysis of tax-subsidy schemes in quadratic 

continuum economies with private information and with agents using non-contingent strategies (e.g. 
Cournot type). 
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The question is whether we can find a κ  (with 0κ >  for a subsidy) such that 

( )dλ − κ + κ = λ  or ( )d κ = κ , where ( ) ( ) ( )( ) 11d n 1 c
−−κ ≡ β + − λ − κ  is the (endogenous) 

distortion when the slope of marginal cost is λ − κ . In this case a seller would act 

effectively as if he was competitive and facing a marginal cost with slope λ  and the FOC 

would be ( )( )i i i ip E s d x p E s x 0− ⎡θ ⎤ − κ + λ − κ = − ⎡θ ⎤ − λ =⎣ ⎦ ⎣ ⎦ . For a given κ < λ and 

induced slope of marginal cost 0λ − κ > , we know that c / 0∂ ∂κ >  since c is strictly 

decreasing in λ  (Proposition 1). It follows that ( )d κ is decreasing in κ  up to κ = λ . 

Equivalently, and given Proposition 4, we have to find a κ such that ( ) ( )cc cλ − κ = λ  

(and this will yield ( ) ( ) ( )( ) 11 cd n 1 c
−−κ ≡ β + − λ ).  We have 

that ( ) ( )( ) ( )1c 1c  n M / M 1−−λ = λ − β +  goes from +∞ to ( )M / 1 M n− + β  as λ  moves in 

the range  ( )0, +∞ . Therefore given that ( ) ( )cc cλ > λ and that both are strictly 

decreasing in λ , for any 0λ >  there is always a 0κ >  such that ( ) ( )cc cλ − κ = λ  

provided that the range of ( )c λ  is also from +∞ to ( )M / 1 M n− + β  as λ  moves in the 

range  ( )0, +∞ . This is so if and only if n M 2 0− − ≥ . In this case as 0λ → , ( )c λ → ∞ . 

If n M 2 0− − <   then as 0λ → , ( ) ( ) ( )c n M / n M 2 nλ → − − − − β (see the Lemma after 

the proof of Proposition 1 in Appendix I). Then only if λ  is such that 

( ) ( ) ( )cc n M / n M 2 nλ ≤ − − − − β  we can find the desired 0κ > . If 

( ) ( ) ( )cc n M / n M 2 nλ > − − − − β  then there is no 0κ >  such that ( ) ( )cc cλ − κ = λ . (It 

would not help either to give a κ   so that  0λ − κ <  since it can be checked that 

c / 0∂ ∂λ > for 0λ < ). When n M 2< −  and ( ) ( ) ( )cc n M / n M 2 nλ > − − − − β then a 

quadratic subsidy can reduce the distortion d up to ( )d λ  (since d is decreasing in κ ) but 

the first best is not attained.  

In summary: An appropriate quadratic subsidy reduces always the distortion d but can 

eliminate it completely only when n 2 M− ≥  or when n 2 M− <  and 
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( ) ( ) ( )cc n M / n M 2 nλ ≤ − − − − β . The optimal subsidy is given by 

( ) ( )( ) 11 c* n 1 c
−−κ = β + − λ  if feasible to attain the first best or by *κ = λ  otherwise. In the 

first case the subsidy is increasing in M and λ  (since cc  decreases with M  and λ ). 

Indeed, the subsidy parameter *κ depends in general on all the deep parameters of the 

model. This means that *κ  increases with 2and ερ σ . 

Note that the first best can always be attained when there is no adverse selection problem 

( M 0= ) and only standard market power.  

 

If demand is inelastic then  ( )( ) 1cc  M 1
−

= λ +  and ( ) ( )( )( )c n 2 M / n 1 1 M 0= − − λ − + >  

and in both cases  c → ∞ as 0λ → . Therefore for any 0λ >  there is always a ( )0,κ ∈ λ  

such that ( ) ( )cc cλ − κ = λ .  This is precisely ( ) ( )( ) ( ) ( )1c* n 1 c 1 M / n 1
−

κ = − λ = λ + − . 

The subsidy *κ  increases with 2 2, /  and ε θρ σ σ λ , and decreases with n. 

 

3.4 Characterization of the deadweight losses 

The (expected) deadweight loss (DWL) at the LBSFE is the difference between expected 

total surplus at the LBSFE ( ETS ) and at the price-taking LBSFE ( cETS ), ( )cETS ETS− . 

It can be shown that 

( ) ( )( )2 2c c c
i iDWL ETS -  ETS = n nE x x E x x / 2 .⎡ ⎤ ⎡ ⎤≡ β − + λ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

� �
 

The result follows considering a Taylor series expansion of TS (stopping at the second 

term due to the quadratic nature of the payoff) around price-taking equilibria.22 The key 

to simplify the computations is to notice that at price-taking equilibria total surplus is 

maximized. Letting i iu x x≡ − �  and c c c
i iu x x≡ − �  , as in section 3.1, we can further 

decompose the total inefficiency in terms of aggregate and distributive inefficiency: 

                                                 
22  The result holds true, in fact, comparing a price-taking regime with any another regime which is based 

on weakly coarser information. 
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( ) ( ) ( )( )2 2c c c
i iETS ETS n n E x x E u u / 2⎡ ⎤ ⎡ ⎤− = β + λ − + λ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

� � , 

where ( ) ( )2cn n E x x / 2⎡ ⎤β + λ −⎢ ⎥⎣ ⎦
� �  corresponds to aggregate inefficiency (loss in surplus 

when supplying, in a cost-minimizing way, an average output x�  different from the 

benchmark cx� ), and ( )2c
i in E u u / 2⎡ ⎤λ −⎢ ⎥⎣ ⎦

 to distributive inefficiency (supply of an 

average quantity in a non cost-minimizing way). The decomposition follows noting that 

if average quantities x� and cx�  are supplied in a cost minimizing way then for all i, 

c
i iu u= . 

 

From the analysis in section 3.1 we have that for aggregate inefficiency, 

( ) ( )( )( )1 1cx x n n d t− −− = β + λ − β + λ + α − �� �  

and therefore 

( ) ( ) ( )( ) ( )
22 21 1cE x x n n d E t− −⎡ ⎤ ⎡ ⎤− = β + λ − β + λ + α −⎢ ⎥ ⎣ ⎦⎣ ⎦

�� � . 

 

We know that increases in ρ  or 1/ 2
εσ increase the variance of the prediction t E s⎡ ⎤= θ⎣ ⎦

�� � . 

 From this it follows that 2E t⎡ ⎤⎣ ⎦�  and therefore ( )2
E t⎡ ⎤α −

⎣ ⎦
�  increase in ρ  and decrease 

in 2
εσ . This is bad for aggregate efficiency. Since d  increases in ρ  (for 2 0εσ > ) we can 

conclude that aggregate inefficiency increases with ρ . We have also that d  increases in 
2
εσ  and it can be checked that aggregate inefficiency may be non-monotonic with respect 

to 2
εσ   (although it tends to be increasing in 2

εσ  for ρ  not too small). 

 

We have that for distributive inefficiency, ( ) ( )i i iu x x t t / d≡ − = − λ +��  and 

( )c c c
i i iu x x t t /≡ − = − λ�� . Therefore: 

( ) ( )( ) ( )
22 21c 1

i i iE u u d E t t−−⎡ ⎤ ⎡ ⎤− = λ − λ + −⎢ ⎥ ⎣ ⎦⎣ ⎦
�  
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where i it E s≡ ⎡θ ⎤⎣ ⎦ .  

 

The deadweight loss due to distributive inefficiency increases with 

( )2
iE t t⎡ ⎤−

⎣ ⎦
� = ( )i i ivar t t var var s⎡ ⎤⎡ ⎤⎡ − ⎤ = θ − θ − θ − θ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

� �� . Indeed with it t= � , i = 1, …, n, 

there would be no distributive inefficiency. This would happen with 1ρ =  or 2
εσ = ∞ . 

Increasing ρ  aligns probabilistically i with θ θ�  and increasing 2
εσ  increases 

( )ivar s⎡ ⎤θ − θ⎣ ⎦
� , both reduce ivar t t⎡ − ⎤⎣ ⎦� . It can be checked with simulations (see Section 

5 for details of simulations) that ( )2
iE t t⎡ ⎤−

⎣ ⎦
�  is decreasing in ρ  and 2

εσ . The effect of  ρ  

( 2
εσ ) on ( )2

iE t t⎡ ⎤−
⎣ ⎦

�  is particularly strong when 2
εσ  (ρ ) is small. 

 

If 0ρ =  then d  is independent of 2
εσ  and aggregate and distributive inefficiency 

decrease in 2
εσ . In consequence, DWL is decreasing in 2

εσ  

 

If 2 0εσ =  then d  is independent of ρ  and aggregate inefficiency increases in ρ  and 

distributive inefficiency decreases in ρ . The second effect dominates always in our 

simulations and the DWL is decreasing inρ  

 

The welfare loss induced by standard market power, that is, with respect to the full 

information allocation, is given by 

( ) ( ) ( )( )2 2c f f c f c
i iETS ETS n n E x x E u u / 2⎡ ⎤ ⎡ ⎤− = β + λ − + λ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

and since  neither ρ  nor 2
εσ  affect fd  it follows that both aggregate and distributive 

inefficiency decrease in 2
εσ  and therefore the deadweight loss is decreasing in 2

εσ , and 

aggregate (distributive) inefficiency increases (decreases) in ρ .   
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The following proposition summarizes the formal results thus far. We know that for 

given predicted values t both types of inefficiency increase with ρ and 2
εσ  but changes in 

those parameters change the probability distribution over t.  

 

Proposition 5.  

(i) The deadweight loss due to aggregate inefficiency increases always in ρ  while 

distributive inefficiency may increase or decrease in ρ .  If 2 0εσ =  then 

distributive inefficiency decreases in ρ .  

(ii) Both the deadweight loss due to aggregate and distributive inefficiency may 

increase or decrease in 2
εσ .  If 0ρ =  then they both decrease in 2

εσ .  

(iii) With respect to the welfare loss induced by standard market power:  both 

aggregate and distributive inefficiency decrease in 2
εσ , and aggregate 

(distributive) inefficiency increases (decreases) in ρ .   

 

In the case of inelastic demand the results for distributive inefficiency apply. 

 

Simulations show that the central scenario for the comparative statics of the DWL with 

respect to ρ and 2
εσ  confirm the results of Proposition 4 derived for given predicted 

values of cost parameters provided that ρ and 2
εσ are not too small.  In this case, increases 

in 2 or ερ σ  increase both aggregate and distributive inefficiency at the LBSFE both with 

respect to the efficient allocation and with respect the full information supply function 

allocation. However, increasing ( )2
ερ σ  may decrease the DWL when ( )2

εσ ρ  is small.23 

 

The intuition for the result is that for given t increases in 2or ερ σ  increase both aggregate 

and distributive inefficiency. When averaging over predicted values distributive 

                                                 
23  See Section 5 for details of the simulations. 
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inefficiency decreases with increases in 2or ερ σ  and the effect overwhelms the impact 

given t when 2
εσ  (orρ ) are small enough. 

 

In the central scenario of the simulations increases in 2or ερ σ  increase the DWL due to 

private-information-induced market power (the total DWL minus the DWL in the full 

information equilibrium). This so since the DWL tends to increase with increases in 
2 or ερ σ  while the DWL in the full information equilibrium diminishes with 2

εσ always 

and distributive inefficiency also diminishes withρ . 

 

4. Convergence to price-taking behavior in large markets 

In order to study how fast the inefficiency of supply function equilibria disappears in 

large markets we consider replica markets where the numbers of sellers and buyers grow 

at the same rate n. More precisely, suppose that there are n buyers, each with quasilinear 

preferences and benefit function ( ) 2u x x x / 2= α −β  where x is the consumption level. 

This gives rise to the inverse demand ( )nP y y / n= α −β  where y is total consumption. 

There are n sellers as before. Total surplus is therefore given by 

( ) ( )i ii
TS nu y / n C x ,= − θ∑  and per capita surplus by 

( ) ( )( )i ii
TS / n u y / n C x , / n= − θ∑ .  

 

We will denote with subscript n the magnitudes in the n-replica market. The results we 

have obtained so far, except possibly comparative statics with respect to n, hold replacing 

β beta by / nβ . In the n-replica market the distortion at the LBFSE is 

( )( ) 11
n nd n n 1 c

−−= β + − .  It is also true that f
nc  increases in n. Using simulations it can be 

checked that the aggregate slope of supply of rivals of a seller ( ) nn 1 c−  increases (i.e. 
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becomes flatter) with n whenever nc  > 0 for any n 24 and that ( )1
nn n 1 c−β + −  is 

increasing in n always (and therefore nd  decreasing in n). It follows that the margin is 

decreasing in n.  The same is true of the optimal subsidy 

( ) ( )( ) 1* 1 c
n nn n 1 c

−−κ = β + − λ when the distortion can be eliminated since it can be checked 

that it is strictly decreasing in n.  

 

It is worth noting also that if we want to keep nvar ⎡ ⎤θ⎣ ⎦
� constant when increasing n (which 

will mean to decrease 2
θσ  appropriately since nvar ⎡ ⎤θ⎣ ⎦

�  is decreasing in n), then nc  will 

be smaller than when we allow nvar ⎡ ⎤θ⎣ ⎦
�  to vary (this is so since nM  increases by more 

when we keep nvar ⎡ ⎤θ⎣ ⎦
�  constant). This will mean that the distortion nd  will be larger.  

 

We can examine the incentives to acquire information in the replica market (see 

Appendix II). The same characterization as in Section 2 holds but now as 1ρ →  we have 

that ( ) ( )( ) 12
n 0 2 2

−

θψ → β + λ τ . This means that ρ  close to 1 for any number of sellers we 

will need the same degree of diffusion of the prior in order to have positive precision 

acquisition.  

 

What happens in a large market (that is, a market where the limit n → ∞  is taken first)? 

Then ( ) ( )
( )n n 21

1lim
2 (1 )

∞ ε →∞ ε −
ε θ

ψ τ ≡ ψ τ =
λ τ + τ − ρ

. If ( )H ' 0 0>  let ρ  be such that 

( ) ( )
2

2

(1 )0 H ' 0
2∞

θ

− ρ
ψ = =

λτ
. 

                                                 
24  Another possible pattern is for ( ) nn 1 c−  to have a hump-shaped form with n being positive and 

increasing first to become decreasing and eventually negative ( nc  may increase or decrease with n). 
See Section 5 for the details of the simulations. 
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This yields ( )1 2 H ' 0θρ = − τ λ . There is a unique symmetric equilibrium in the game 

with costly information acquisition provided thatρ < ρ . Indeed, then we have ( )0 0∞φ > , 

( ) 0∞φ ∞ <  and 0∞′φ <  where ( ) ( ) ( )H '∞ ε ∞ ε εφ τ ≡ ψ τ − τ . 

 

In summary, in a large market, there is a unique symmetric equilibrium in the game with 

costly information acquisition provided that ( )1 2 H ' 0θρ < ρ ≡ − τ λ . With 1ρ <  this is so 

in particular if ( )H ' 0 0=  or the prior is diffuse ( θτ  small). At equilibrium sellers buy a 

positive precision of information * 0
ε

τ > . As ρ → ρ  we have that * 0
ε

τ →  and the linear 

supply function equilibrium collapses. 

 

Remark: We could also consider the case where information acquisition is observable in 

a first stage of the game and then at a second stage sellers compete in supply functions 

for given precisions. In this case we add a strategic effect of information acquisition and 

the characterization is much more involved. However, it is possible at least to check that 

the results are very similar for ρ close to 1. (For example, we also have that 

( ) ( )n 2

10
2 2 θ

ψ →
β + λ τ

 as 1ρ → .) 

 

We show next how equilibria in finite economies become price-taking. We characterize 

the rates of convergence and the order of magnitude of the deadweight loss at the LBSFE. 

 

Before stating the convergence results we will recall some measures of speed of 

convergence. We say that the sequence (of real numbers) nb  is of the order nυ, with υ a 

real number, whenever n nn b k−υ ⎯⎯→ for some nonzero constant k. We say that the 

sequence of random variables { }ny  converges in mean square to zero at the rate 

r1/ n (or that ny  is of the order r1/ n ) if ( )2
nE y⎡ ⎤

⎣ ⎦ converges to zero at the rate r1/ n  

(i.e. ( )2
nE y⎡ ⎤

⎣ ⎦  is of the order r1/ n ). Given that ( ) [ ]( ) [ ]22
n n nE y E y var y⎡ ⎤ = +⎣ ⎦ , a 
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sequence { }ny  such that [ ]nE y = 0 and [ ]nvar y  is of the order of 1/ n , converges to zero 

at the rate 1/ n .  

 

In our case ( )n
n ii 1

/ n
=

θ ≡ θ∑�  is normally distributed with mean θ  

and ( )( ) 2
nvar 1 n 1 / nθ⎡ ⎤θ = + − ρ σ⎣ ⎦
� . We have therefore that nθ → θ� � in mean square at the 

rate 1/ n  where θ�  is normally distributed with mean θ  and variance 2
θρσ .  

 

The following proposition characterizes the convergence of the LBSFE to a price-taking 

equilibrium as the market grows. As we have seen before the price-taking equilibrium is 

first best efficient since it aggregates information. 

 

Proposition 6. As the market grows large the market price np  (at the LBSFE) converges 

in mean square to the price-taking Bayesian price c
np  at the rate of 1/ n . (That is, 

( )2c
n nE p p⎡ ⎤−⎢ ⎥⎣ ⎦

 tends to 0 at the rate of 21/ n .) The deadweight loss at the LBSFE 

( )c
n nETS ETS / n−  is of the order of 21/ n . 

 

The rate of convergence to price-taking behavior is 1/n, which is the same as the usual 

rate under complete information. This is a statement that bid shading is of the order of 

1/n. It follows from the fact that the distortion nd is of order 1/ n  (alternatively because 

the difference in equilibrium parameters c
n na a−  and c

n nc c−  is of the order of 1/ n ) and 

both equilibria aggregate information - np  and c
np  depend on the average signal ns� . The 

departure from price taking (marginal cost) is of the order of 1/n and the deadweight loss 

is of the order of the square of it. (See proof in Appendix I.)  This result should not be 

surprising since the LBSFE aggregates information. Cripps and Swinkels (2006) obtain a 

parallel result in a double auction environment. The authors consider a generalized 

private value setting where bidders can be asymmetric and can demand or supply 

multiple units. Under some regularity conditions (and a weak requirement of “a little 
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independence” where each player’s valuation has a small idiosyncratic component), they 

find that as the number of players grows (say that there are n buyers and n sellers) all 

nontrivial equilibria of the double auction converge to the competitive outcome and 

inefficiency vanishes at the rate of 21/ n −α  for any 0α > .  

 

As in Kyle (1989) we could ask what happens when the total amount of precision 

available to agents is fixed as the market grows large. Then as n tends to infinity 0ετ → . 

In this case it is easy to see that  the market collapses and the supply function of a seller 

converges to the per capita demand.25  Therefore the non-competitive limit of Kyle does 

not arise in our private value environment. 

 

At the Bayesian Cournot equilibrium Proposition 6 holds (with the important proviso that 

now ( )c
n nETS ETS / n−  is the deadweight loss with respect to the price-taking 

equilibrium but not with respect to the full information first best, see Appendix III). The 

price-taking Bayesian Cournot equilibrium coincides with the full information first best 

in a large economy only in the independent values case, where there is no aggregate 

uncertainty (see Vives (2002)). Otherwise, as the market grows large there is no 

convergence to a full information equilibrium.  

 

In summary, convergence to price-taking is, in both cases, at the rate of 1/ n  for prices 

and 21/ n  for the welfare loss with respect to price-taking behavior. 

 

5. Simulations and comparison with Cournot 

In this section we simulate the n-replica market and compare the efficiency properties of 

the supply function mechanism with the Cournot mechanism. 

 

 

 

 
                                                 
25  This is so since in this case as n → ∞  nM → ∞ .  



 38

5.1 Simulating the deadweight losses 

In the central scenario of the simulations26 increases in 2or ερ σ  increase the (per capita) 

deadweight loss at the LBSFE both with respect to the efficient allocation 

( ( )c
n nDWL / n ETS ETS / n≡ − ) and with respect the full information supply function 

allocation ( ( )f
n nETS ETS / n− ). (See Figure 2a, b). However, increasing ( )2resp. ερ σ  may 

decrease DWL / n  when ( )2 resp. εσ ρ  is small (see for example in Figure 2.b that the 

effect of increases in 2
εσ  are small when  ρ  is small). The deadweight loss decreases with 

ρ (resp. 2
εσ  ) whenever 2

εσ  (resp. ρ ) is small.27 

 

                                                 
26  Simulations have been performed for { }and  in 1, 5β λ , [ ]0.01, 0.99ρ ∈  with step size 0.01,  2

ε
σ  

and [ ]2  in 0.01,10.01
θ

σ  with step size 2, and [ ]n 2,82∈  with step size 20. (When needed we extend the 

simulations to [ ] in 0.001, 0.999ρ  with step size 0.001 and 2

ε
σ [ ]in 0,10  with step size 0.01.) In this 

range of simulations and with 30θ = , 50α =  the probability of a negative output is at most 15% in 
either the SFE (strategic or competitive versions) or the Cournot equilibrium and the upper bounds are 
attained only when 5 and 1β = λ = . Otherwise the probabilities of negative output tend to be very low. 

27  In our range of simulations we confirm that the total DWL decreases in ρ  ( 2

ε
σ )  when 2

ε
σ  ( ρ ) is small 

(in our case below 2 0.07
ε

σ =  (or below 0.01ρ = ).  
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Figure 2a. ( )c
n nDWL / n ETS ETS / n≡ −  as a function of ρ  (with parameters 1β = λ = , 

30θ = , 50α = , 2 2 1θ εσ = σ = ) 
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Figure 2b. ( )c

n nDWL / n ETS ETS / n≡ −  as a function of 2
εσ  (with parameters 1β = λ = , 

30θ = , 50α = , 2 1θσ = , and n = 10) 
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It is also found that DWL / n decreases as the market gets large (i.e. with n, see Figure 

2.a) and that the rate of decrease is slow for low 2
θσ . This is driven by the decrease in nd  

with n (which overwhelms the fact that when averaging over predictions both 

( )2
nE t⎡ ⎤α −

⎣ ⎦
�  and ( )2

i nE t t⎡ ⎤−
⎣ ⎦

�  tend to increase with n). Typically, the speed of 

convergence of the deadweight loss to zero (in terms of the constant of convergence) is 

slower when ρ  is larger. That is, the limit as n tends to infinity of ( )c
n nn ETS ETS− is 

increasing with ρ . (This is so since ( )c
n nETS ETS−  is typically increasing in ρ  for any n 

and the limit of ( )c
n nn ETS ETS− as n tends to infinity is well defined.) 

 

It is worth noting also that the (per capita) deadweight loss at the full information 

equilibrium ( ( )c f
n nETS ETS / n− or deadweight loss due to standard market power) also 

decreases with n but that the (per capita) deadweight loss due to the private-information-

induced market power (that is, ( )f
n nETS ETS / n− may increase with n for n low). This is 

due to the fact that the deadweight loss due to standard market power falls more sharply 

at the beginning that the one due to the private information induced market power.28 

 

5.2 Comparison with Cournot 

The welfare evaluation of the LBSFE is in marked contrast with the Bayesian Cournot 

equilibrium. At the LBSFE sellers act with full information and the deadweight loss is 

due to market power (which is increased in equilibrium due to adverse selection). There 

would be no welfare loss if sellers would act as price takers. At the price-taking Bayesian 

Cournot equilibrium there is always a welfare loss because the Cournot market 

mechanism does not aggregate information.29 

                                                 
28  For example, this happens from n = 2 to n = 4 when 1β = λ = , 30θ = , 50α = , 2 1

θ
σ = , 2 10

ε
σ = and 

0.9ρ = . 

29  Except possibly with constant marginal costs (see Palfrey (1985) and Vives (1988). However, a price-
taking Bayesian Cournot equilibrium is team optimal (i.e. maximizes total expected surplus subject to the 
constraint that sellers use decentralized -quantity- strategies in information, see Vives (1988)). 
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It is worth to compare the relative efficiency of the Cournot market ( Cournot
nETS ) in 

relation to the supply function market ( SF
nETS ) in per capita terms. A typical pattern for 

moderate n is for ( )SF Cournot
n nETS ETS / n−  to be positive for ρ  close to zero and negative 

for ρ close to 1, being zero at the point for which the supply function equilibrium calls 

for a vertical supply. For large n we may have ( )SF Cournot
n nETS ETS / n 0− >  all along 

(except for ρ  very close to 1). (See Figure 3a.) In fact, for a given ρ  and for large n we 

have always that ( )SF Cournot
n nETS ETS / n 0− > . (See Figure 4.) Furthermore, when signals 

are perfect ( 2 0εσ = ) we have also that ( )SF Cournot
n nETS ETS / n 0− >  always. When signals 

are close to perfect we have that ( )SF Cournot
n nETS ETS / n 0− >  except for ρ  very close to 1. 

The typical pattern of ( )SF Cournot
n nETS ETS / n−  as a function of 2

εσ  is similar to ρ , being 

positive for 2
εσ  small and negative for 2

εσ  large, and zero at the point for which the 

supply function equilibrium calls for a vertical supply. (See Figure 3b.) 
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Figure 3a. Efficiency differential between supply function and Cournot equilibria as a 
function of ρ  (with parameters 1β = λ = , 30θ = , 50α = , and 2 2 1ε θσ = σ = ) 
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Figure 3b. Efficiency differential between supply function and Cournot equilibria as a 
function of 2

εσ  (with parameters 1β = λ = , 30θ = , 50α = , 2 5θσ = , and 0.5ρ = ). 
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Figure 4. Efficiency differential between supply function and Cournot equilibria as a 
function of n (with parameters 1β = λ = , 15θ = , 20α = , 2 1θσ = , and 2 5εσ = ). 
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The intuition for the results should be clear. The supply function market always 

dominates in efficiency in terms of information because sellers have full information 

(although they do not behave as in a full information equilibrium) while in the Cournot 

market they do not. For 2
εσ  or ρ  small the supply function market dominates overall 

because on top sellers have less market power (since supply functions slope upwards). 

The result is that SF Cournot
n nETS ETS 0− >  for 2

εσ or ρ  small. For larger ρ  and 2 0εσ >  (or 

for larger 2
εσ  and 0ρ > ) when supply functions slope downwards, sellers in the supply 

function market have more market power and this may dominate the information effect 

for n low, with the result that SF Cournot
n nETS ETS 0− < . At the critical value of ρ  (or 2

εσ ) 

for which the supply function equilibrium calls for a vertical supply we have 
SF Cournot
n nETS ETS 0− =  since then both equilibria coincide. For n large the market power 

effect is not very important and we may have that ( )SF Cournot
n nETS ETS / n 0− > .  

 

Indeed, for n large, for a fixed ρ , we must have ( )SF Cournot
n nETS ETS / n 0− >  since, as we 

have seen, as n grows the supply function equilibrium converges to the (full information) 

first best but not the Cournot equilibrium. At the LBSFE there is only a deadweight loss 

due to market power (which is aggravated by the adverse selection problem), which 

dissipates in a large market; at the Bayesian Cournot equilibrium the deadweight loss due 

to private information remains in a large market. It is worth noting that the welfare loss at 

the Bayesian Cournot equilibrium increases with ρ . 

 

The comparison between the Cournot and supply function outcomes has practical 

implications.  

 

First when a supply function market is modeled, for convenience, à la Cournot we want 

to know what biases are introduced. The result is that in a market characterized by supply 

function competition using the Cournot model overestimates the welfare loss with respect 

to the actual supply function mechanism on two counts when supply function slope 
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upwards: excessive market power and lack of information aggregation. When the 

equilibrium supply function slopes downwards the Cournot market underestimates 

market power and then the comparison is ambiguous: the Cournot market may under- or 

overestimate the deadweight loss in relation to supply function competition. In a large 

market the Cournot model always overestimates the welfare loss since at the LBSFE 

there is (almost) no efficiency loss while there is a significant one with Cournot 

competition due to private information. 

 

Second, when sellers are restricted to use upward sloping schedules they may end up 

using vertical ones when in the supply function equilibrium they would be called to use 

downward sloping ones. The restriction to upward sloping schedules caps the market 

power of sellers in the supply function market. Forcing sellers to use increasing schedules 

when they would like to use decreasing ones may or not may be a good idea depending 

basically on the number of sellers. It will be good when the number of sellers (and size of 

the market) is moderate.  

 

6. Applications  

In this section we provide several applications of the model: electricity markets, agency 

and strategic trade policy, pollution damages, revenue management, and financial 

markets. We consider first supply schedule competition examples first and then we move 

on to demand schedule competition. 

 

6.1 Supply schedule competition 

Wholesale electricity markets 

A potential application of the model is to competition in wholesale electricity markets: 

the day-ahead or spot market, with separate auctions for each delivery period (half-hourly 

or hourly), and the balancing market, that secures that demand and supply match at each 

point in time. Those markets are typically organized as uniform price multiunit auctions. 

In the British Pool, the first liberalized wholesale market, generators had to submit a 
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single supply schedule for the entire day.30 Over this period residual demand facing a 

firm may vary considerably due to demand uncertainty and plant outings. The rules 

typically require producers to submit nondecreasing (step) function offers (although in 

some markets, like the Amsterdam Power Exchange, retailers may submit nonincreasing 

demands).
31

  

 

In our modeling the supply functions are smooth (the old English pool was modeled like 

this by Green and Newbery (1992) and Green (1996, 1999)) while typically supplies are 

discrete. The modeling of the auction with discrete supplies leads to existence problems 

of equilibrium in pure strategies (see von der Fehr and Harbord (1993)). However, 

Holmberg at al. (2008) show that if prices are selected from a discrete grid, where 

(realistically) the number of price levels is small in comparison to the number of quantity 

levels, then the step functions converge to continuous supply functions as the number of 

steps increase. This justifies the approximation of step-functions with smooth supply 

functions. The linear supply function model has been widely used in electricity markets 

and new developments include cost asymmetries, capacity constraints, piecewise affine 

supply functions and non-negativity generation constraints (see Baldick, Grant, and Kahn 

(2004) and Rudkevich (2005)). Furthermore, empirical studies of the Texas balancing 

market suggest that the continuous supply approach approximates well the behavior of 

the largest producers in the Texas balancing market (ERCOT).32 Baldick and Hogan 

(2006) justify to concentrate attention on linear (affine) supply function equilibria in a 

                                                 
30  The British Pool was replaced by NETA in 2001, in this system the balancing mechanism auction is 

not uniform. 
31  In the day-ahead market in the Spanish pool generators submit supply functions which have to be 

nondecreasing and can include up to 25 price-quantity pairs for each production unit, as well as some 
other ancillary conditions. The demand side can bid in a similar way and the market operator 
constructs a merit order dispatch by ordering in the natural way supply and demand bids. The 
intersection of the demand and supply schedules determines the (uniform) price. Once the market 
closes the system operator solves congestion problems and market participants may adjust their 
positions in a sequence of intra-day markets, which have similar clearing procedures as in the day-
ahead market. (See Crampes and Fabra (2005).) 

32  See Niu et al. (2005), Hortaçsu and Puller (2008), and Sioshansi and Oren (2007). 
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linear-quadratic model because other equilibria (in the range between the least 

competitive Cournot one and the most competitive) are unstable.33 

 

Both strategic behavior and private information are relevant in electricity markets. There 

is ample evidence by now that firms bid over marginal costs (see, e.g. Borenstein and 

Bushnell (1999), Borenstein et al. (2002), Green and Newbery (1992), and Wolfram 

(1998)). Hortaçsu and Puller (2008) introduce private information on the contract 

positions of firms in the Texas balancing market (the day-ahead market is resolved with 

bilateral contracts).34 Information on costs is available because the balancing market 

takes place very close to the generation moment and also from information sellers. Kühn 

and Machado (2004) introduce private information on retail sales in their study of 

vertically integrated firms in the Spanish pool. Private cost information related to plant 

availability will be relevant when there is a day-ahead market organized as a pool where 

firms submit hourly or daily supply schedules.35 This means that the residual demand 

faced by a firm will be random since the supply of other firms depends on plant 

availability, which is random. The firm may have privileged information because of 

technical issues or transport problems. Furthermore, hydro availability in the reservoirs of 

each firm as well as the terms of supply contracts for energy inputs or imports are also 

private information. The latter include constraints in take-or-pay contracts for gas where 

the marginal cost of gas is zero until the constraint –typically private information to the 

firm– binds, or price of transmission rights in electricity imports depending on the private 

arrangements for the use of a congested interconnector. (It is worth noting that even if the 

opportunity costs of the inputs are the prices of those inputs in international markets in 

many instances there is not a single reference market.) Furthermore, in an emission rights 

system, future rights allocations may depend on current emissions and firms may have 

                                                 
33  Unstable in the sense that a small perturbation from the equilibrium supply functions induce sellers to 

deviate still more from the equilibrium. 

34  The authors also argue that to take a linear approximation to marginal costs in the Texas electricity 
market is reasonable. 

35  Note that even if there was a market for information on costs the solution of the model with private 
information would yield the value of information. 
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different private estimates of such allocation. This will affect the opportunity cost of 

using current emission rights. 

 

In our model demand is not random and the random residual demand a firms faces is due 

to cost uncertainty. In a wholesale electricity market the demand intercept α  is a 

continuous function of time (load-duration characteristic) that yields the variation of 

demand over the time horizon considered. At any time there is a fixed α  and the market 

clears. Mansur and White (2009) show how a centralized auction market in the Eastern 

US yields very important information aggregation benefits over bilateral trading in order 

to achieve an efficient allocation in a situation where differences in marginal costs and 

production are private information among firms. In our model prices are revealing of 

average cost conditions but strategic behavior on the basis of private information prevents 

the achievement of an efficient allocation. We have seen also how increasing the noise in 

the private signal 2
εσ  makes the slope of supply steeper. This result may help explain the 

fact that in the Texas balancing market small firms use steeper supply functions than 

those predicted by theory and that those departures explain the major portion of losses in 

productive efficiency (Hortaçsu and Puller (2008)).36 Indeed, smaller firms may have 

signals of worse quality because of economies of scale in information gathering while 

residual non-contract private cost information has not been taken into account in the 

estimation. Consistently with our analysis the losses due to the “excess steepness” of 

supply functions over and above standard market power may be more important than the 

losses due to the latter. 

 

The Cournot framework has been used in a variety of studies.37 The advantage of the 

Cournot model is that it is a robust model in which capacity constraints and fringe 

suppliers are easily incorporated. A drawback is that the Cournot model tends to predict 

                                                 
36  The authors explain the finding by the complexity faced by small firms in set up the bidding. 
37  See, for example, Borenstein and Bushnell (1999) for the US; Alba et al. (1999) and Ramos et. al. 

(1998) for Spain; and Andersson and Bergman (1995) for Scandinavia. 
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prices that are too high given realistic estimates of the demand elasticity.38 The supply 

function approach is more realistic. Our model helps understand the biases introduced 

when taking the Cournot modeling short-cut when firms compete in supply functions. 

 

Pollution control  

The cost shock could be also related to some ex post pollution or emission damage which 

is assessed on the firm and for which the producer has some private information.  The 

unit tax would be given by θ� and the effective cost to the firm would include also an 

idiosyncratic component i iθ = θ + η� , where icov , 0⎡ ⎤η θ =⎣ ⎦
� . In the pollution damage 

interpretation of the shock, and when the equilibrium calls for a downward sloping 

supply, we would have that when firms see the price going up they reduce supply because 

they figure out that the assessed pollution damage will be higher.  

 

Revenue management 

The cost shock can also be interpreted as a random opportunity cost of serving the market 

which is related to dynamic considerations (e.g. revenue management on the face of 

products with expiration date and costly capacity changes). Revenue management deals 

with situations where the product, be it a hotel room, airline flight, generated electricity 

or tickets for a concert, has an expiration date and capacity is fixed well in advance and 

can be added only at high marginal cost.39 The problem arises then of predicting the 

opportunity cost of sale (the value of a unit in a shortage situation). A high opportunity 

cost is an indication of high value of sales in the future. In this case a firm would have a 

private assessment of the opportunity cost with which it would form its supply schedule.  

 

Patterns of pricing for airline flights have proved difficult to explain with extant 

theoretical models (see e.g. McAfee and te Velde (2006)). If we believe that supply 

function competition provides a suitable reduced form for pricing in such markets then 

                                                 
38  However, including vertical relations and contracts in a Cournot setting provides better estimates (see 

Bushnell, Mansur, and Saravia (2008)). 
39  Talluri and Van Ryzin (2004) for the basics of revenue management. 
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taking into account the information aggregation role of price may help explaining some 

pricing patterns.40 We have seen that when the information role of the price dominates is 

index of scarcity role then supply is downward sloping. If this is the case the 

interpretation would be that when airlines see prices going up they may infer, correctly, 

that the opportunity cost is high (i.e. that expected next period demand is high) and they 

reduce supply in the present period to be able to supply next period at a higher profit. 

And, indeed, an airline when thinking about selling a seat in a flight today has to think 

about whether the same seat could be sold tomorrow at a higher price. In any case, when 

the variance of the (opportunity) cost shock increases the equilibrium reaction of firms is 

to set a flatter supply schedule inducing lower margins. Higher volatility of demand 

would translate then in lower margins.  

 

Strategic agency and trade policy 

Strategic agency models where an owner provides incentives to the manager to compete 

in the market place have typically a reduced form which is a supply function.41 This is 

similar to the presence of adjustment costs in certain industries committing the firms to 

supply functions (internal incentives in management consulting or the pricing program 

that airlines use).  

 

In strategic trade models a government can manipulate the supply function of domestic 

firms with tariffs and subsidies. Laussel (1992) considers a market with linear demand 

and constant marginal costs where firms compete in a common foreign market with the 

help of domestic tax-subsidy schemes. The domestic government imposes a quadratic 

export tax and a linear subsidy. The quadratic tax makes steeper the slope of the effective 

marginal cost schedule of a firm softening competition. The subsidy allows the domestic 

firm to capture a larger share of the profits. If marginal costs are random and private 

information to the firms or the amount of subsidy uncertain (with the domestic firm 

                                                 
40  See Section 10.1 in Talluri and Van Ryzin (2004) for a description of airline pricing. For example, the 

authors state (p. 523): “A typical booking process proceeds as follows. An airline posts availability in 
each fare class to the reservation systems stating the availability of seats in each fare class.” This is 
indeed like a supply function.  

41  See Vickers (1985), Fersthman and Judd (1987), Sklivas (1987), and Faulí-Oller  and Giralt (1995). 
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receiving a noisy signal about the cost/subsidy level) we can conclude from our model 

that introducing more noise in the signals also softens competition. In the case of 

subsidies this could be achieved with the disclosure policy of the government towards 

national firms (which are supposed to know more than foreign firms about the subsidies 

of their government). The opaqueness of subsidies may soften competition.42 

 

Reverse auctions 

In the initial Paulson plan of October 2008 reverse auctions were suggested as 

mechanisms to extract toxic assets from banks’ balance sheets.43 In a reverse auction the 

buyer, the US Treasury, would announce a buying schedule relating prices and quantities 

a certain class of securities (say Residential Mortgage Backed Securities out of California 

property of a certain face value, vintage and type).44 The buying schedule could be 

vertical (inelastic demand) or have some elasticity. Those securities are in the hands of 

multiple banks and the Treasury wants to buy a certain proportion of them. The value of 

the securities to bank i is iθ , reflecting both the intrinsic value to the bank and the 

liquidity needs of the institution (both are correlated across institutions) and the bank has 

an imperfect estimate of iθ  . The bank will sell first the securities with a lower 

probability of repayment of the underlying mortgages and will move on to better 

securities only if in need to sell more. This means that the marginal cost of selling 

securities will be increasing: ixλ  for selling an amount ix  of the securities.  The 

parameter λ  reflects the quality heterogeneity of the securities, the larger it is the faster 

the securities of the bank improve as the lemons are sold. It is reasonable to think that in 

a crisis situation λ  will be higher since the quality heterogeneity of the securities will 

increase. 

                                                 
42  Grant and Quiggin (1997) study the case in which firms are competitive and governments try to 

manipulate their supply functions. In their model the competitive supply functions of the firms also 
depend on a shock. Whenever supply functions are linear the authors find an equilibrium in tax-
subsidy schedules with quadratic trade revenue taxes. Again here the quadratic tax allows the 
government to manipulate the slope of the supply of the competitive domestic firms. 

43  Emergency Economic Stabilization Act of 2008. The Federal Reserve is also considering reverse 
auctions to mop out excess liquidity in a post-crisis scenario. 

44   Designs security-by-security and pooled auctions have been proposed with dynamic auctions (see  
Ausubel and Cramton (2008)) and for static auctions for substitute goods (Klemperer (2009)). 
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The Treasury is uninformed about the value of the securities and the reverse auction will 

serve a price discovery purpose eliciting the average value θ� . Banks which value the 

security the least or have the higher liquidity needs will sell more. Market power is 

definitely a potential concern in this type of auction given the potentially few bidders. 

This means that with high correlation competition will be softened and the Treasury will 

pay much more than the competitive price for the securities. It is worth noting that the 

Treasury has no incentive to release any public information it may have since this would 

only increase the distortion. Introducing an elastic demand function would alleviate the 

market power problem and reduce the distortion. This also avoids any potential market 

breakdown when demand is inelastic and the combination of the number of bidders and 

the degree of adverse selection makes the linear equilibrium collapse. 

 

6.2 Demand schedule competition 

The model can be restated in terms of competition among buyers of an asset of unknown 

ex-post average value ( )n
ii 1

/ n
=

θ ≡ θ∑� . The value for agent i is i iθ = θ + η� , 

where icov , 0⎡ ⎤η θ =⎣ ⎦
� . With a change of variables i iz x≡ − we have the results for demand 

competition. The (inverse) supply of the asset is given by ii
p z= α + β∑  (with 0β > ) 

where ii
z∑  is the total quantity demanded. The equilibrium demand is 

( ) ( ) ( )i i iZ s , p E s ,p p / d= ⎡θ ⎤ − + λ⎣ ⎦  = ib as cp− + −  (with the endogenous parameters as in 

Proposition 1). The case of inelastic supply where an auctioneer supplies k units of the 

good is easily accommodated letting  β → ∞  and / k 0−α β → > . The marginal benefit of 

buying iz units of the asset for agent i is i izθ − λ , where iθ  is the value with a private 

component and izλ  a transaction or opportunity cost, or risk aversion component.45 The 

profits of agent i are given by  ( ) 2
i i i ip z z / 2π = θ − − λ . A real market example would be 

                                                 
45  Note that the adjustment cost is exogenous while with CARA preferences, for example, it would be 

endogenous and would depend, in expectation, on the degree of risk aversion times the variance of θ  
conditional on the information of the trader. 
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firms purchasing labor of unknown average productivity θ�  because of technological 

uncertainty, and facing an inverse linear labor supply and quadratic adjustment costs in 

the labor stock.  

 

A first application of the model is to legacy loans auctions which were envisioned in the 

Public-Private Investment Program of March 2009 to remove those bad loans from the 

balance sheet of banks.46 Basically, the banks nominate pools of legacy loans that meet 

certain criteria and that they wish to sell. Approved private investors bid for the pools of 

loans and receive a non-recourse loan having as collateral the same securities to be 

acquired. The winning bid for each pool then is either accepted or rejected by the bank. 47 

In terms of our model the marginal valuation of a bidder will depend on the collateral that 

it can post. Using the same securities as collateral of the non-recourse loan to finance the 

purchase is equivalent to providing a subsidy to bidders that decreases the slope of their 

marginal valuation.  Our model would rationalize then the subsidy scheme of the 

Treasury since it would reduce the discount of the auction price. 

 

We turn now to applications to Treasury auctions or open market central bank operations 

(to provide liquidity to the banking system).   

 

Financial market auctions 

In an open market operation the supply of funds is given by the central bank (usually 

inelastically). The ECB conducts typically weekly repo auctions (main refinancing 

operations) and the Federal Reserve holds daily ones (presently both have a 

discriminatory format). The US Treasury auctions are uniform price format exclusively 

since 1998. 

Each bank bids for funds with a demand function. Ewerhart et al. (2009) argue that the 

marginal valuations of bidders in the open market operations should be declining. For 

                                                 
46  See www.financialstability.gov.  
47   Ausubel and Cramton (2009) propose to combine the forward auction with a reverse auction as in the 

Paulson plan. 
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example, θ�  is related to the interest rate/price in the secondary interbank market and  λ  

reflects the structure of counterparty i´s pool of collateral. A bank (bidder) prefers to 

provide the central bank illiquid collateral in exchange for funds. However, with an 

increased allotment the bidder must forward more liquid types of collateral which have a 

higher opportunity cost and this explains the declining marginal valuation. The marginal 

value iθ  for funds of bank i is idiosyncratic and is only assessed imperfectly by the own 

bank (for example, due to uncertainty about future liquidity needs). Those values are 

correlated among banks. 

Our results imply the following predictions for the case of an inelastic supply k: (i) there 

is a discount with respect to the expectation of the secondary market or average value 

E s⎡ ⎤θ⎣ ⎦
� �  since ( )p E s d k / n⎡ ⎤= θ − + λ⎣ ⎦

� � ; (ii) as fundamentals’ volatility 2
θσ  increases the 

discount decreases;  (iii)  when the liquidity of collateral high  (low λ ) bids schedules are 

very flat; (iv) increasing the size of the auction (k) or providing more public information 

(higher  21 θσ/ ) leads to an increased discount. All these are documented features of the 

ECB euro auctions (Ewerhart et al. (2009)).48 

Our model also illustrates the impact of a crisis situation. The more severe the 

information problem (a larger ρ or 2 2/ε θσ σ ) or the more costly to part with more liquid 

collateral (higher λ )49, the steeper demand functions are, the larger the equilibrium 

margin and the amount of bid shading, and the inefficiency in funds allocation (in the 

extreme the linear equilibrium may break down due to severe adverse selection coupled 

with market power).50 Note that when a bank sees a high price for funds it infers that the 

values of other banks are high and therefore its own value also high.  Cassola et al. 

(2009) study ECB auctions and show that after the subprime crisis in August 2007 

                                                 
48  Note however that the ECB auctions in the period studied are discriminatory while our model is 

uniform price.  
49   Note also that if we interpret λ  as proxy for risk aversion then in a crisis situation it is usually thought        

that risk aversion increases. 
50  Flannery (1996) builds an adverse selection model of the secondary market for bank assets where there 

is a fire-sale penalty which, it is argued, should be higher in a crisis situation because of increased 
uncertainty about the signals received by institutions. 
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marginal valuations for funds of banks increased and the aggregate bid curve was steeper 

with increased bid shading. These authors also find evidence of strategic effects. In our 

model the level effect on valuations would be represented by an increase in θ .  

What has been the response of central banks to the crisis? The central bank has two main 

objectives in the liquidity auctions. The first is to inject the right amount of money so that 

the short term rate stays close to the target level. The second is to provide appropriate 

liquidity to the banks (enough in particular to cover their reserve requirements). A fixed-

quantity auction controls the aggregate amount of money injected exactly and elicits the 

values for liquidity of the banks (price discovery). However, there is an inefficiency in 

the distribution of liquidity which can be substantial when 2 2and/or /ε θρ σ σ  are large. A 

first way to reduce the inefficiency in the allocation is accepting lower quality collateral 

from the banks in the repo auctions. This is equivalent to provide a quadratic subsidy to 

the banks that lowers effectively λ . The amount of the subsidy will be increasing with 
2 2 and /ε θρ σ σ  and decreasing with n. Central banks have enlarged acceptable collateral 

and some the qualifying participants in the auctions. For example, the Federal Reserve 

established the TAF auction facility (with a single-price format) to broaden the range of 

counterparties and the range of collateral in relation to regular open market operations.  

A second way is to modify the auction procedure. The inelastic supply auction may 

generate a lot of inefficiency when 2 2and/or /ε θρ σ σ , as well as λ , are large.  It may pay 

then to introduce some elasticity in the supply to control market power and reduce 

inefficiency. In the extreme the central bank could set a fixed-price tender (an horizontal 

supply schedule with 0β = ). The trade-offs are the following. The inelastic auction 

provides price discovery and tight quantity control but the allocation may be very 

distortionary. The fixed-price tender controls the amount of money injected only 

indirectly, and does not elicit the liquidity value from the banks, but eliminates any 

inefficiency in the distribution of liquidity since banks bid competitively. This may be 

precisely the case in a crisis situation where a fixed-price full-allotment tender may be 

preferable. A fixed-price tender controls the amount of money injected only indirectly, 

and does not elicit the liquidity value from the banks, but eliminates any inefficiency in 
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the distribution of liquidity since banks bid competitively. Noting that in a crisis situation 

the control of the total amount of liquidity comes second to making enough liquidity 

available to the banks helps to explain what the ECB has done after the collapse of 

Lehman Brothers by accepting the banks’ demands in full at a fixed rate instead of the 

usual auction where banks would bid for money and set the interest rate in the process.  

It is worth noting that the central bank should have no incentive to release public 

information (i.e. increase 21/ θσ ) since this would increase bid shading and the distortion 

in the allocation of liquidity. 

In the Treasury auction interpretation the sources of private information could be 

different expectations about the future resale value of securities θ�  (for instance, bidders 

have different forecast of inflation and securities are denominated in nominal terms), and 

as before bidders may have different liquidity needs due to idiosyncratic shocks. There is 

evidence of private information in Treasury auctions, which prices feature a discount 

from secondary market prices, increasing with the noise in the signal of the bidders, as 

well as of auctions prices aggregating information (Cammack (1991), Nyborg et al. 

(2002)). 51  Bindseil et al. (2005) argue that the common value component in T-bill 

auctions is much more important than in the case of central bank auctions. US Treasury 

auctions are exclusively uniform price since October 1998, and only a limited number of 

primary dealers can submit competitive bids.52  Gordy (1999) argues that bidders in 

Treasury auctions submit demand schedules to protect against the winner’s curse and he 

associates larger bid dispersion with increased incidence of the winner’s curse in 

Treasury auctions in Portugal. Bid dispersion in our model can be associated with the 

slope of the demand schedule with a steeper slope when the information problem is more 

severe. 

                                                 
51  Hortaçsu and Kastl (2008) cannot reject the hypothesis that bidders in Canadian 3-months T-Bill 

auctions have private values. 

52  Similarly in Treasury auctions in Sweden the range of participants is from 6 to 15 (Nyborg et al. 
(2002)). 
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Underpricing is thought to be a serious problem in uniform price auctions.53 Keloharju et 

al. (2005) find underpricing but little support for market power effects in uniform price 

Finnish Treasury auctions and they attribute it to the fact that the Treasury acts 

strategically manipulating supply after observing the bids. There are also worries that in 

the present financial crisis margins and profits of (Wall Street) dealers have grown 

dramatically at the expense of the Treasury and the Fed (part of the story may come from 

a decrease in the number of participants in the auctions).54 The Treasury could profit also 

from using an elastic supply schedule in its auctions. Supposedly its objective may be 

revenue minus an adjustment cost of a quantity target. If this is the case our results would 

indicate that the optimal schedule should be more elastic the more severe the adverse 

selection problem is. A lower β  would reduce underbidding but would increase the 

departures from the quantity target and underbidding increases when adverse selection 

worsens.55 

 

7. Concluding remarks 

In a model with private and common value uncertainty and no exogenous noise we have 

found a privately revealing equilibrium where the incentives to acquire information are 

preserved. Several testable implications derive from the equilibrium. Price-cost margins 

and bid shading are increasing in cost correlation and in the noise in the signals, and 

decreasing with the size of the market. Note, however, that information on the slope of 

marginal costs/benefits will be needed to disentangle the effect of this parameter from the 

distortion introduced by private information. Price volatility is increasing with noise in 

the signals and prior volatility. The results may help explain pricing patterns arising in 

electricity markets, revenue management and auctions. For example, it explains how the 

Treasury may overpay in reverse auctions for toxic assets. It may also explain how in a 

financial crisis loosening collateral requirements in central bank liquidity auctions may 

be part of an optimal subsidy scheme to banks and how a central bank may respond 

                                                 
53  Kandel et al. (1999) provide underpricing evidence for IPO (initial public offering) uniform-price 

auctions in Israel. 
54  See Financial Times, August 3, 2009: “Wall St. profits from Fed role” and Wall St. gets its cut from 

the Fed and Treasury”. 
55  LiCalzi and Pavan (2005) advocate this in a model with no adverse selection to control market power. 
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optimally by changing the liquidity facility from an auction to a fixed rate tender. Finally, 

the model also characterizes the biases introduced by a Cournot model when competition 

is in fact in supply or demand schedules. 
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Appendix I: Proofs of Propositions 1, 4 and 6. 
 
Proof of Proposition 1: Suppose that sellers other than i use the 

strategy ( )i iX s , p b as cp= − + . Form the market clearing equation and from the point of 

view of seller i (provided a 0> ) the price is informationally equivalent to 

( ) ( )( )( ) j ii i jh b n 1 1 n 1 c p x / a s≠≡ β − − α + + β − + β β = ∑  . The pair ( )is ,p  is 

informationally equivalent to the pair ( )i is ,h , hence 

i i i i iE s , p E s ,h⎡θ ⎤ = ⎡θ ⎤⎣ ⎦ ⎣ ⎦ . 

Because of the assumed information structure we have 
 

( )

( )
( )

( ) ( ) ( )( ) ( )( )

2 2 2

2 2 2 2

2 2 2 2 2

i

i

i n 1 n 1 n 2

n 1
, n 1

n 1 n 1 n 1
s ~ N
h

θ θ θ

εθ θ θ

εθ θ θ θ

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− σ + σ + − − ρσ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

θ σ σ − ρσ
θ σ σ + σ − ρσ

− θ − ρσ − ρσ

θ
 , 

 
We obtain 

( )( )
( ) ( )( )( )

( )( ) ( )( )( ) ( )( ) ( )( )( )

2
i

i i i i i 2 2

2 2 2 2 2

i i2 2 2 2 2 2 2 2

hE s ,h E s ,
n 1 1 n 1

1 1 n 1
s h .

1 1 n 1 1 1 n 1

ε

θ ε

θ θ ε θ ε

θ ε θ ε θ ε θ ε

σ⎡ ⎤
⎡θ ⎤ = θ = θ +⎢ ⎥⎣ ⎦ − σ + − ρ + σ⎣ ⎦

σ σ − ρ + − ρ + σ σ σ ρ
+

σ − ρ + σ σ + − ρ + σ σ − ρ + σ σ + − ρ + σ

 
 
We are looking for strategies of the form ( )i iX s , p b as cp= − + . Using the F.O.C. 

( )i i ip E s ,p x
1 n 1 c

⎛ ⎞β
− ⎡θ ⎤ = + λ⎜ ⎟⎣ ⎦ ⎜ ⎟+ β −⎝ ⎠

 and the expression for ih  we obtain the following  

 
( )( ) ( )( )
( )( ) ( )( )( )

( ) ( )( )( )
( )( ) ( )( )( )

( )( )
( )( ) ( )( )( ) ( ) ( )

2 2 22 2 2 2 2

i2 2 2 2 2 2 2 2

2 2

i2 2 2 2

1 1 n 11 nb a
s

1 1 n 1 1 1 n 1

1 nc a
1 p b as cp

1 n 1 c1 1 n 1

θ ε θε ε θ θ ε

ε θ ε θ ε θ ε θ

θ ε

ε θ ε θ

− ρ σ σ + + − ρ σσ σ + − ρ σ θ + σ σ ρ β − α β
− −

σ + − ρ σ σ + + − ρ σ σ + − ρ σ σ + + − ρ σ

⎛ ⎞σ σ ρ + β β ⎛ ⎞β⎜ ⎟+ − = + λ − +⎜ ⎟⎜ ⎟⎜ ⎟ + β −σ + − ρ σ σ + + − ρ σ ⎝ ⎠⎝ ⎠

 



 59

Identifying coefficients, letting
( ) ( )( )( )

2

2 2

nM
1 1 n 1

ε

ε θ

ρσ
≡

− ρ σ + + − ρ σ
, we obtain a,b,c by 

solving the following system of equations 

 

( )
( )( ) ( )

( )( )( ) ( )
( )

( )
( ) ( )

2

2 2

12

2 2

1
a

1 n 1 c1

M nb
b

1 n 1 c n1 n 1

M 1 nc
1 c

n 1 n 1 c 1 n 1 c

θ

ε θ

−

ε

ε θ

⎧ ⎛ ⎞− ρ σ β
⎪ = + λ⎜ ⎟⎜ ⎟+ β −σ + − ρ σ⎪ ⎝ ⎠
⎪
⎪ ⎛ ⎞ β − ασ β⎪− θ + λ − =⎜ ⎟⎨ ⎜ ⎟+ β − βσ + + − ρ σ ⎝ ⎠⎪
⎪

⎛ ⎞⎛ ⎞ ⎛ ⎞+ β β β⎪
− + λ = + λ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟β + β − + β −⎝ ⎠ ⎝ ⎠⎝ ⎠⎪⎩

 

 
This characterizes linear equilibria. We have that 

( )
( )( ) ( )

( )( )( ) ( )

1

2 2

1

2

2

2 2

1
a d

1

1b d
1 M

M
1 n 1

−

ε θ

−

θ

ε

ε θ

− ρ σ
+ λ

σ + − ρ σ

⎛ ⎞
α⎜ ⎟+ λ⎜ ⎟+ β⎜ ⎟

⎝ ⎠

=

σ= − θ
σ + + − ρ σ

 

 

with 
( )

d
1 n 1 c

β
=

+ β −
. The last equation in the curved bracket is quadratic in c of the 

form ( )g c = 0 with 

( ) ( )( ) ( )( ) ( ) ( )2 M Mg c n 1 1 M c 1 M n 1 c 1.
n n

⎛ ⎞⎛ ⎞= λβ − + + β + λ + + − λ −β + β + λ −⎜ ⎟⎜ ⎟ β⎝ ⎠⎝ ⎠
 

For n = 1 there is a unique solution to the quadratic equation. Otherwise, it can be 

checked that the determinant of the quadratic equation is positive and therefore the 

equation has two real roots. Furthermore, only the largest root c  is compatible with the 

second order condition. 

 

It is easily checked also that ( )( )g M / 1 M n 0− + β <  and therefore for the largest root we 

have ( )c M / 1 M n> − + β  because of convexity of the parabola ( )g ⋅ . It follows also that  
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( )c M / 1 M n 1/ n> − + β > − β  and therefore 1 nc 0+ β > . Since nc 1β > −  it follows that 

( )1 n 1 c 0+ β − >  either for c 0>  or c 0< .  Furthermore, a 0> . This is so since from the 

expression for a  in the system of equations, ( ) ( )
sgn a sgn

1 n 1 c
⎛ ⎞β

= + λ⎜ ⎟⎜ ⎟+ β −⎝ ⎠
. To see that 

c 1/< λ  note the following:  

( )
( )

1
M 1 nc 1c

1 n 1 c n

−
⎛ ⎞ + ββ

= + λ − <⎜ ⎟⎜ ⎟+ β − β λ⎝ ⎠
. 

The largest root decreases with M  since g / M 0∂ ∂ >  for c 1/ n> − β .  This is so since it 

can be checked that g / M∂ ∂  is a convex parabola in c with largest root 1/ n− β . It 

follows that for c 1/ n> − β  we have that g / M 0∂ ∂ > . Similarly, we have that g / 0∂ ∂λ >  

at any candidate equilibrium c.  This is so since it can be checked that g /∂ ∂λ  is a convex 

parabola in c with largest root ( )M / 1 M n− + β for n 1>  and we know that 

( )( )g M / 1 M n 0− + β < . This means that since ( )g ⋅  is a convex parabola in c,  in 

equilibrium we have that ( )c M / 1 M n> − + β  and the result that g / 0∂ ∂λ > follows. We 

conclude that the largest root decreases with λ . When M 0=  we have that c 0> . In this 

case we have that c increases in n since ( )g / n c c 1 0∂ ∂ = β λ − <  for 1 c 0−λ > > . Finally, 

it is possible to check that 

( )( )( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )( )

11 1 1 1 1 1

1

c n 1 1 cn 1 Mn 1 n 1 1 Mn c Mn 2Mn c Mn 2Mg/ nc
n g/ c 2c n 1 M 1 n 1 M 1 Mn n 1

−− − − − − −

−

β β+λ β − + β+ −ρ −ρ ρ − + + β−β+ λ+ βλ− βλ+ βλ∂ ∂∂
∂ ∂ ∂ λβ − + + −β − + β+λ + + λ −

= − = −

It follows that  

( ) ( )( )( ) ( ) ( )( ) ( ) ( ) ( )( )( )( )
( )( ) ( )

1 1 1c n 1 1 Mn n 1 Mn 1 c M 1 n 1 1 Mn n 1 1

n 1 1 g/ c
c

n nc(n 1) (n 1) c 0
− − −β+λ β − + − ρ− −ρ + β + ρ − + + − ρ−

ρ − + β ∂ ∂
∂ ∂

∂ ∂− = − + = >  

when c 0> since g / c 0∂ ∂ > , ( )( )( ) ( )1c n 1 1 n n 0−β + λ β − + ≥ λ + β > , and from  

( )
1

10 Mn ρ−
−ρ≤ <  , both ( ) ( )( )1n 1 1 Mn n 1 1 0−ρ − + + − ρ − >  and 

( ) ( )( )1 1Mn n 1 Mn 1 0− −− ρ − − ρ ≥  follow. ♦ 
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Lemma.  If n M 2 0− − ≥  then as 0λ → , ( )c λ → ∞ . If n M 2 0− − <   then as 0λ → , 

( ) ( ) ( )c n M / n M 2 nλ → − − − − β  (in this case  
0

lim c 0
λ→

<   if and only if ( )
( ) ( )( )

2

2

2 1

1 n 1 1
θ

ε

σ

σ

ρ−

−ρ ρ − +
<  

or n M< ). 
Proof:  From the implicit expression determining c in the proof of Proposition 1  
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and operating we obtain 

( )( )( )
( )( )( )( )

( )
( )( )( )

( )( )( )( ) ( )( )

2

2 2

2

2 2

1 c n 1

n 1 1 1

1 c n 1

1 (n 1)c n 1 1 1 1 c n 1

1
c .

1

ε

εθ

ε

εθ

β+λ +β − σ ρ

σ ρ − + +σ −ρ β

β+λ +β − σ ρβ
+β − λ σ ρ − + +σ −ρ +β − λ

−
λ =

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠

 

 

Let  
0

lim c
λ→

λ = ν .  Then, taking limits in the previous equality we obtain 
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Solving for ν ,  we have 0  ν = and 

( )( ) ( )( ) ( )( )
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Denote by  
0

c lim c
λ→

=
�

.  In case that 0ν = ,  using the implicit expression determining c we 

get that 
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In equilibrium we have that ( )( )1 c n 1 0.+ − β >  This inequality evaluated at c
�

 is 

equivalent to 

( )( ) ( )( ) ( )( )( )2 2n 2 1 n 1 1 2 n 1 n 2 0.θ εσ − − ρ − ρ + − σ ρ − − + <  

 

If ( )( ) ( )( ) ( )( )2 2n 2 1 n 1 1 2 n 1 n 2 0θ εσ − − ρ ρ − + − σ ρ − − + > , then necessarily   0ν >  and 

therefore c = +∞
�

 (and ( )( )1 c n 1 0+ − β >� ). When 

( )( )( ) ( )( )2 2n 2 1 n 1 2 n 1 n 2 0,θ εσ − − ρ ρ − ρ + − σ ρ − − + <  the condition ( )( )1 c n 1 0+ − β >�   

does not hold for 0ν > . Finally, when ( )( )
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2 2 n 1 n 2
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ε
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− −ρ ρ−ρ+σ =  direct computation of c yields 

a quadratic equation which larger solution tends to c = +∞
�
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Proof of Proposition 4: Similarly as in the proof of Proposition 1 it can be checked that 

the coefficients of the equilibrium strategy ( )c c c c
i iX s , p b a s c p= − + are given by the 

solution to the system of equations 
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where 
( ) ( )( )( )

2

2 2

nM .
1 1 n 1

ε

ε θ

ρσ
≡

− ρ σ + + − ρ σ
 The equilibrium coefficients are given by: 
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It is immediate that c1/ c 1/ nλ > > − β , a 0> , cc  is strictly decreasing in M , and cc 0>  

for M 0= . ♦ 
 
Proof of Proposition 6: Recall that the n subscript denotes the n-replica market. Note first 

that from the equation ( )nf c 0=  in the n-replica market defining nc  (just replace β by 

/ nβ  in ( )f c 0= ) we have that 
1 1

n n

Mc c
M 1

− −
∞

∞
∞

λ −β
⎯⎯→ ≡

+
 if 0ρ >  where 
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ε
∞
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σ
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− ρ σ
(and n nM M∞⎯⎯→ ), and 1

n nc −⎯⎯→λ   if 0ρ = . It is immediate then that 

the order of the distortion ( )( ) 11
n nd n n 1 c

−−= β + −  is 1/n  and  the same holds for  

( )( ) ( )1c 1
n n n nc c d / M 1− −− = + λ − λ +  and ( )( ) ( )1c 1

n n na a d / M 1 0−−− = λ − + λ + > . (Note 

also that we have ( ) ( )1 1
n n n nc d c M− −= λ + − β + ).   

 

Let us show first the order for the price difference ( )2c
n nE p p⎡ ⎤−⎢ ⎥⎣ ⎦

.  We know that 

( )c c
n n n np p x x− = β −� �  and that ( ) ( ) ( )( ) ( )

22 21 1c
n n n nE x x d E t− −⎡ ⎤ ⎡ ⎤− = β + λ − β + λ + α −⎢ ⎥ ⎣ ⎦⎣ ⎦

�� � , 

where ( )n n n n nn
t E s s 1⎡ ⎤= θ = ξ + − ξ θ⎣ ⎦

�� � �  and ( )2
n n nvar / var / nεξ ≡ ⎡ θ ⎤ ⎡ θ ⎤ + σ⎣ ⎦ ⎣ ⎦

� � , 

( )( ) 2
nvar 1 n 1 / nθ⎡ ⎤θ = + − ρ σ⎣ ⎦
� . It follows that n ∞θ → θ� �  in mean square as n tends to 

infinity where ∞θ�  is normally distributed with mean θ  and variance 2
θρσ . In consequence,  
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( ) ( )n i n ii i
s s n n= = θ + ε∑ ∑��  will converge also in mean square to  ∞θ�  (since  

( )i ni
n 0ε ⎯⎯→∑  in mean square).      Since n

n 1ξ ⎯⎯→  it follows that n nt ∞⎯⎯→θ��  in 

mean square and therefore ( )2
nE t⎡ ⎤

⎣ ⎦
�  and ( )2

nE t⎡ ⎤α −
⎣ ⎦

�  are of the order of a constant. 

The order of  ( )2c
n nE p p⎡ ⎤−⎢ ⎥⎣ ⎦

 and of ( )2c
n nE x x⎡ ⎤−⎢ ⎥⎣ ⎦
� � is the order of 

( ) ( )( )21 1
nd− −β + λ − β + λ +  which is 21/ n  since ( )( ) 11

n nd n n 1 c
−−= β + −  is of the order 

of 1/n. 

 

We know also that ( ) ( )( ) ( )
22 21c 1
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E s , s

≠
⎡ ⎤θ
⎣ ⎦∑ . From the expression for i i jj i

E s , s
≠

⎡ ⎤θ
⎣ ⎦∑ , and the fact 

that n nM M∞⎯⎯→  and n ns ∞⎯⎯→θ��   in mean square, it follows that 

( ) ( )1 1
i i i it E s , 1 M s M 1 M− −

∞ ∞ ∞ ∞ ∞
⎡ ⎤→ θ θ = + + + θ⎣ ⎦

� � in mean square as n tends to infinity, 

and ( )2
i nE t t⎡ ⎤−

⎣ ⎦
�  is of the order of a constant. It follows that  ( )2c

in inE u u⎡ ⎤−⎢ ⎥⎣ ⎦
 is of order 

21/ n  since ( )( )211
nd −−λ − λ + is. We conclude that  

( ) ( ) ( ) ( )( )2 2c c c
n n in inETS ETS / n E x x E u u / 2⎡ ⎤ ⎡ ⎤− = β + λ − + λ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 is of order 21/ n .♦  

 
 

Appendix II: Information acquisition  

In this Appendix we characterize the equilibrium with costly information acquisition. 

Consider the model of Section 2 and suppose now that private signals have to be 

purchased at a cost, increasing and convex in the precision ετ of the signal, according to a 

smooth function ( )H ⋅  that satisfies H(0) = 0, H ' 0>  for 0ετ > , and H '' 0≥ .  There are, 

thus, nonincreasing returns to information acquisition. A strategy for seller i is a pair 

(
iετ , ( )iX .,. ) determining the precision purchased and the supply function strategy.  We 
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analyze the symmetric equilibria of the game. Note that in order for ( )( )2
i

1
i

i 1,...n
, X ( , )

εσ
=

⋅ ⋅ to 

be a pure equilibrium of the game, ( )i i 1,...n
X ( , )

=
⋅ ⋅ needs to be the equilibrium of a game for 

a given precision tuple  ( )( )2
i

1

i 1,...nεσ
=

. Since we are interested in studying a symmetric 

equilibrium, we assume that any seller  j i≠   has the same precision, denoted by 2
1
εσ

, and 

the same coefficients, denoted by (b,a,c) , for the candidate equilibrium supply function 

j jX(s , p) b as cp,  j i= − + ≠  . Provided that ( )1 n 1 c 0+ β − >  and exactly as in Section 2 

we obtain a supply function for seller i  

( ) ( ) ( )i i i iX s ,p p E s ,p / d= − ⎡θ ⎤ + λ⎣ ⎦  

with ( )( ) 11d n 1 c
−−= β + − . Now, as in the proof of Proposition 1 from the point of view 

of seller i and provided a 0>  the price is informationally equivalent to  

( ) ( )( )( ) j ii i jh b n 1 1 n 1 c p x / a s≠≡ β − − α + + β − + β β = ∑  , and applying standard Gaussian 

theory we obtain  

( )( ) ( )( ) ( )( )
22 2 2 2 2 2 2

i

i i

n 2 n 1
i i i i iE( | s , h ) (s ) h n 1θ θ θ ε θ θ εσ σ + − ρσ +σ − − ρσ ρσ σ

∆ ∆θ = θ + − θ + − − θ  

 

Where ( ) ( )( ) ( )2

i

2 2 2 4 2
i 1 (n 2) n 1θ ε θ ε θ∆ ≡ σ + σ + − ρ σ + σ − − σ ρ  . 

 

Using the expression for the demand function of i and ih and identifying coefficients with 

i i i i i iX (s , p) b a s c p= − +  we obtain 

( ) ( ) ( )( ) ( ) ( )
2 2 22 2 2 2 2 2 2 2 2 2

ii i

ii i i
2 2 2 2 2 2

i i i

i i i

(n 1)b(n 2) (n 1) 1 1 (n 1)c
aa

i i i

1 (n 1)c a 1 (n 1)c a 1 (n 1)c a

1
a ,  b ,  and c .

α
θ εθ θ θ ε θ θ ε ε θ εβ

θ ε θ ε θ ε

ρσ σ − −σ σ + − ρσ +σ − − ρσ −ρ σ +σ σ θ ρσ σ +β −
∆ β∆ ∆ ∆

ρσ σ ρσ σ ρσ σβ β β
+β − ∆ +β − ∆ +β − ∆

−− −
= = =

+ λ + + λ + + λ +

       

The expected profits of seller i from trading are given by 

[ ] ( ) ( )2
i i iE E X (s ,p)

1 c n 1 2
⎛ ⎞β λ ⎡ ⎤π = +⎜ ⎟⎜ ⎟ ⎣ ⎦+ β −⎝ ⎠

 . 
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After some lengthy manipulations it can be checked that  [ ]iE π =  

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
( ) ( )( )

222 2 2 2 2 2 2 2 2 2 2 21 n 1 1 a n 1 1 c n 1 a n 1 1 n 1 1 n 1 1 c n 1 a n 2 1
i

4 2 2 2 2 21 n 1 1 n 2 1
i

b c a

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

σ σ −ρ ρ − + +σ σ βρ − − + β − + β − σ −ρ ρ − + +σ +σ − σ ρ + β − − β σ ρ − + +σε ε εεθ θ θ θ θ θ

σ −ρ ρ − + +σ σ +σ σ ρ − + +σε εεθ θ θ

+ α−θ − +θ − β( )( )
( )( ) ( )( )( )

2
n 1

2 1 c n 1 2 1 c n 1
.

−

+ β − β+λ + β −

 

The marginal benefit of acquiring precision 
i i

21/ε ετ ≡ σ , [ ]
iiE / ε∂ π ∂τ , evaluated at a 

symmetric solution 
iε ετ = τ is given by  

( )
( )( )( )

( )( )( )
( ) ( )( )( )

2

21 2

(1 ) 1 n 11

2 2 1 n 1 c (1 ) 1 n 1

ε θ
ε −

ε θ ε θ

τ − ρ + ρ − + τ
ψ τ ≡

β + − β + λ τ − ρ + τ τ + ρ − + τ
 

 

(note that it is decreasing in ετ  for a given c).  Interior symmetric equilibria are 

characterized by the solution of  ( ) ( )H ' 0ε εψ τ − τ =  with ( )c ετ  given by the largest 

solution to the quadratic equation g(c) = 0 for a given ετ .56 Let ( ) ( )0c 0 lim c
ετ → ε+ ≡ τ . 

This is well defined and is a function of , ,  and nβ λ ρ since as 0ετ →  we have that 

( )M n / 1→ ρ − ρ . Then ( ) ( )
( ) ( )( )( )0 1 2

10 lim 0
2 2 1 n 1 c 0ετ → ε −

θ

ψ ≡ ψ τ = >
β + − β + + λ τ

, 

and ( ) 0εψ τ →  as ετ → ∞ . 

 

If ( ) ( )H ' 0 0< ψ  for 1ρ <  there is an interior solution * 0
ε

τ >  to the equation  

( ) ( ) ( )H ' 0ε ε εφ τ ≡ ψ τ − τ =  

since ( )0 0φ >  , ( ) 0φ ∞ <  and ( )φ ⋅  is continuous. With considerable work, one can 

show that the solution is unique at least if n = 2 or if ρ is close to 0 or 1.  

 

If ( ) ( )H ' 0 0≥ ψ  then there can not be any information acquisition in a symmetric 

equilibrium and in fact there is no equilibrium (with ( )H ' 0  not too high). We have that 

                                                 
56  It can be checked that [ ]iE π is strictly concave in 

iε
τ . 
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* 0ετ =  at a candidate equilibrium but this can not be an overall equilibrium since if other 

sellers do not purchase information then the price contains no additional information for a  

seller and it will pay a single seller to get information (with ( )H ' 0  not too high). As 

parameters , ,  and nβ λ ρ move in such a way that ( ) ( )0 H ' 0ψ ↓ , then * 0
ε

τ →  and the 

linear supply function equilibrium collapses. 

In summary: 

Proposition A.1. Let ( )
( ) ( )( )( )1 2

10
2 2 1 n 1 c 0

−

θ

ψ ≡
β + − β + + λ τ

. There is a symmetric 

equilibrium in the game with costly information acquisition provided that ( ) ( )H ' 0 0< ψ  

and 1ρ < . At equilibrium sellers buy a positive precision of information * 0
ε

τ > . This is 

so in particular if ( )H ' 0 0=  or the prior is diffuse enough ( θτ  small) (even if the number 

of sellers is large and/or ρ  close to 1). As 1ρ →  we have that ( ) ( ) 2

10
2 2 n θ

ψ →
β + λ τ

 

since ( )c 0 1/ n+ → − β .  

 
In the replica economy (Section  6) we have to replace β  by / nβ  and we have that 

( )
( ) ( )( )( )n 1 2

n

10 0
2 2 n n 1 c 0

−

θ

ψ ≡ >
β + − β + + λ τ

. Proposition A.1 applies with ( )n 0ψ  

instead of ( )0ψ . Now, as 1ρ →  we have that ( ) ( )n 2

10
2 2 θ

ψ →
β + λ τ

 since 

( )nc 0 1/+ → − β . For ρ  close to 1 for any number of sellers we will need the same 

degree of diffusion of the prior in order to have positive precision acquisition.  

 

 
Appendix III: Cournot competition 
 

Consider the market exactly as in Section 2 in the replica version (section 4) but now 

seller i sets a quantity contingent on its information { }is .57 The seller has no other source 

                                                 
57  See Vives (2002) for related results when cost parameters are i.i.d. and Vives (1988) for the common 

value case. 



 68

of information and, in particular, does not condition on the price. The expected profits of 

seller i conditional on receiving signal si and assuming seller j, j ≠ i, uses strategy j jX (s ) , 

are 

( )( ) 2
i i i n j j i i i ij i

E s x P X (s ) + x E s x
2≠

λ
⎡π ⎤ = − ⎡θ ⎤ −⎣ ⎦ ⎣ ⎦∑ . 

 

From the F.O.C. of the optimization of a seller we obtain 

( )i i i ip E s x x
n
β

− ⎡θ ⎤ + λ =⎣ ⎦ . 

(Note that given that the profit function is strictly concave and the information structure 

symmetric, equilibria will be symmetric.) It follows that 

 

[ ]n

n

p E MC 1
p n

−
=

η
 

 

where [ ] ( )n n
n n i i i i i ni 1 i 1

1 1E MC E s x E s x
n n= =

≡ ⎡θ ⎤ + λ = ⎡θ ⎤ + λ⎣ ⎦ ⎣ ⎦∑ ∑ � and ( )n np / xη = β � . The 

margins are larger or smaller than in the supply function equilibrium case depending on 

whether the slope of supply nc  is positive or negative since in the Cournot case they 

correspond to the case of nc 0= .  

 

The following proposition characterizes the Bayesian Cournot equilibrium and the price-

taking Bayesian Cournot equilibrium (denoted by a superscript c). Both equilibria are 

different from their supply function counterparts (except in the knife-edge case for which 

nc 0= ) since there is no conditioning in the market price. We will abuse somewhat 

notation and we will use the same notation for parameters at the Cournot equilibrium than 

at the supply function one. 

 

Proposition A.4. There is a unique equilibrium and a unique price-taking Bayesian 

Cournot equilibrium. They are symmetric, and affine in the signals. Letting 
2 2 2/( )θ θ εξ ≡ σ σ + σ  the strategies of the sellers are given (respectively) by: 
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( ) ( ) ( )n i n n iX s b a s= α − θ − − θ , where na ,2 n 1
n n

ξ
=

β −
+ λ + β ρξ

and n
1b
1 n

n

=
+⎛ ⎞λ + β⎜ ⎟

⎝ ⎠

; 

( ) ( ) ( )c c c
n i n n iX s b a s= α − θ − − θ , where c

na ,n 1
n n

ξ
=

β −
+ λ + β ρξ

and c
n

1b =
λ + β

. 

 

Proof: Drop the subscript n labeling the replica market and let 1β = . We consider first the 

Bayesian Cournot equilibrium. We check that the candidate strategies form an 

equilibrium. The expected profits of seller i conditional on receiving signal si and 

assuming seller j, j ≠ i, uses strategy ( )jX ⋅ , are 

  ( )i i i j j ii i ij i

1 1E s x E s E X s s x
n n 2≠

⎛ ⎞λ⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤π = α − θ − − +⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎝ ⎠
∑ . 

Then first order conditions (F.O.C.) yield for i = 1,..., n: 

( ) ( )i j j i ii ij i

1 1E s E X s s 2 X s .
n n 2≠

λ⎛ ⎞⎡ ⎤⎡ ⎤α − θ − = +⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎝ ⎠
∑

 

Plugging in the candidate equilibrium strategy and using the formulae for the conditional 

expectations for i iE s⎡ ⎤θ⎣ ⎦ and j iE s s⎡ ⎤⎣ ⎦ , 

 

( )i i iE s s 1⎡ ⎤θ = ξ + − ξ θ⎣ ⎦  and ( )j i j i iE s s E s s 1⎡ ⎤ ⎡ ⎤= θ = ξρ + − ξρ θ⎣ ⎦ ⎣ ⎦ , 

it is easily checked that they satisfy the F.O.C. (which are also sufficient in our model). 

To prove uniqueness we show that the Bayesian Cournot equilibria of our game are in 

one-to-one correspondence with the (person-by-person) optimization of an appropriately 

defined concave quadratic team function G. A team decision rule ( ) ( )( )1 1 n nX s ,...,X s  is 

(person-by-person) optimal if it can not be improved upon by changing only one 
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component ( )iX ⋅ (i.e. each agent maximizes the team objective conditional on his 

information and taking as given the strategies of the other agents.) Let 

( ) ( ) ( )i i iG x x f x−= π +  where 

( ) ( ) 2
k ji i j j j k jj i j i k, j i

1 1f x x x x x
n 2 2n ≠− ≠ ≠ ≠

λ⎛ ⎞α − θ − + −⎜ ⎟
⎝ ⎠

= ∑ ∑ ∑ . 

This yields  

( ) ( ) 2
j j j i jj j i j

1 1G x x x x x
n 2 2n ≠

λ⎛ ⎞= α − θ − + −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ . 

We obtain the same outcome by solving either 
ix i imax E s⎡ ⎤π⎣ ⎦  or 

ix imax E G s⎡ ⎤⎣ ⎦  since 

( )i if x−  does not involve ix . Note now that person-by-person optimization is equivalent 

in our context to the global optimization of the team function (since the random term 

does not affect the coefficients of the quadratic terms and the team function is concave in 

actions, Radner (1962, Theorem 4)). Invoke the result by Radner (1962, Theorem 5)), 

which implies that in our model, the components of the unique Bayesian team decision 

function of the equivalent team problem are affine. Based on the above three observations 

conclude that the affine Bayesian Cournot equilibrium is the unique equilibrium. 

A similar argument establishes the result for the Bayesian price-taking equilibrium. Then 

the F.O.C. for seller i is given by   

( ) ( )i j j i ii ij

1E s E X s s X s ,
n

⎡ ⎤⎡ ⎤α − θ − = λ⎣ ⎦ ⎣ ⎦∑  

and the solution is a (person-by-person) maximum of a team problem with an objective 

function which is precisely the ETS. ♦ 

 

We consider, as before, convergence to price taking and its speed as the economy is 

replicated. The following proposition characterizes the convergence of the Bayesian 
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Cournot equilibrium to a price-taking equilibrium. ETS ( c
nETS ) denotes here the 

expected total surplus at the (price-taking) Bayesian Cournot equilibrium. 

 

Proposition A.5. As the market grows large the market price np  at the Bayesian Cournot 

equilibrium converges in mean square to the price-taking Bayesian Cournot price c
np  at 

the rate of 1/ n . (That is, ( )2c
n nE p p⎡ ⎤−⎢ ⎥⎣ ⎦

 tends to 0 at the rate of 21/ n .) The difference 

( )c
n nETS ETS / n−  is of the order of 21/ n .  

 

Proof: Let us show first the order for the price difference ( )2c
n nE p p⎡ ⎤−⎢ ⎥⎣ ⎦

.  We know that 

( )c c
n n n np p x x− = β −� �  and, letting i i i

r E s⎡ ⎤≡ θ⎣ ⎦ and ( )n
n ii 1

r r / n
=

= ∑�  it is easily checked 

that 

( ) ( ) ( )( ) ( )
22 1 1 2c

n n nE x x / n E r− −⎡ ⎤ ⎡ ⎤− = β + λ − β + λ + β α −⎢ ⎥ ⎣ ⎦⎣ ⎦
�� � , 

where ( )n nr s 1= ξ + − ξ θ� �  and 2 2 2/( )θ θ εξ ≡ σ σ + σ . From this it follows that 

( )nr 1→ ξθ + − ξ θ�� in mean square and therefore ( )2
nE r⎡ ⎤α −⎣ ⎦�  is of the order of a 

constant. The order of  ( )2c
n nE p p⎡ ⎤−⎢ ⎥⎣ ⎦

 and of ( )2c
n nE x x⎡ ⎤−⎢ ⎥⎣ ⎦
� � is the order of 

( ) ( )( )21 1/ n− −β + λ − β + λ + β  which is 21/ n . 

 

It is easily checked also that ( ) ( )( ) ( )
22 1 2c 1

in in i nE u u / n E r r−−⎡ ⎤ ⎡ ⎤− = λ − λ + β −⎢ ⎥ ⎣ ⎦⎣ ⎦
� . The 

order of ( )2
i nE r r⎡ ⎤−⎣ ⎦�  will be the same as ( )22

i nE s s⎡ ⎤ξ −⎣ ⎦� which is the order of a 

constant. Since the order of ( )( )211 / n −−λ − λ + β is 21/ n , it follows that the order of  
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( )2c
in inE u u⎡ ⎤−⎢ ⎥⎣ ⎦

 is also 21/ n . We conclude that  

( ) ( ) ( ) ( )( )2 2c c c
n n in inETS ETS / n E x x E u u / 2⎡ ⎤ ⎡ ⎤− = β + λ − + λ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 is of order 21/ n . ♦ 
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