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Abstract

We consider a simple timing game in which strategic agents select arrival
times to a service facility. Agents find congestion costly and hence try to
arrive when the system is under-utilized. Working in discrete time, we char-
acterize pure strategy equilibria for the case of ample service capacity. In
this case, agents try to spread themselves out as much as possible and their
self-interested actions will lead to a socially optimal outcome if all agents
have the same well-behaved delay cost function. For even modest sized
problems, the set of possible pure strategy equilibria is quite large, making
implementation potentially cumbersome. We consequently examine mixed
strategy equilibria and show that there is a unique symmetric equilibrium.
Not only is this equilibrium independent of the number of agents and their
individual delay cost functions, the arrival pattern it generates approaches
a Poisson process as the number of agents and arrival points gets large. Our
results extend to the case of limited capacity given an appropriate initializa-
tion of the system. In this setting, we also argue that for any initialization,
competition among customers will equate the expected workload across the
horizon and thus move the system to steady state very quickly. Our model
lends support to the traditional literature on strategic behavior in queuing
systems. This work has generally assumed that customers arrive according
to a renewal process but act strategically upon arrival. We show that as-
suming renewal arrivals is an acceptable assumption given a large population
and long horizon.



1 Introduction

Much of economics is based on the observations that, all else being equal, people prefer the

same goods at a lower cost. As most find waiting inconvenient (if not explicitly costly) a

natural generalization is to assume that people prefer to avoid congestion and the concomi-

tant delay. How rational agents respond to expected delays is consequently an active area

of study. While this literature is extensive, it seems to ignore one of the most basic ways in

which people attempt to avoid delays — trying to arrive when the system is under-utilized.

Beginning with Naor (1969), researchers have assumed that customers arrive according to a

renewal process. Customers have been assumed to be sophisticated in whether they join or

balk from a queue (Naor, 1969; Yechiali, 1971; Lippman and Stidham, 1977), in how they

submit work (Dewan and Mendelson, 1990; Stidham, 1992; Rump and Stidham, 1998), and

in how they declare their priority class (Mendelson, 1985; Mendelson and Whang, 1990; Van

Mieghem, 2000), but to our knowledge no one has considered how a delay-sensitive customer

should choose an arrival time to avoid congestion. Even Rump and Stidham (1998), who

examine stability as customers learn about system congestion, assume that the time between

successive arrivals are independently and identically distributed over fixed intervals.

Here we present a model in which agents strategically choose when to seek service. Each

agent wants to minimize her own delay cost. Delay costs may be agent specific. We only

require that an agent’s cost is an increasing function of the number of other agents seeking

service at the same time. Consequently, each agent tries to pick a distinct arrival time.

Working in discrete time to simplify the analysis, we show that many pure strategy equilibria

exist. These equilibria are all independent of the particular delay cost function each agent

has. In any equilibrium, the number of arrivals in any two periods differs by at most one,

i.e., customers spread out their arrivals as much as possible. For symmetric problems, pure

strategy equilibria minimize total system delay costs subject to a mild regularity condition.

Self-interested agents thus implement socially efficient outcomes.1

While a pure strategy equilibria is attractive, its implementation is cumbersome. All

1 This is essentially the reverse of Ostrovsky and Schwarz (2002), who suppose that

all agents are needed for processing to start. Coordination in their model requires simulta-

neous arrivals but delay-sensitive, independent agents may choose to be late.

1



agents must agree on the specific equilibrium being played. Such coordination is possible if

agents choose sequentially and choices are observable, i.e., an appointment system leads to a

pure strategy equilibrium. However, such an arrangement may not be possible. We therefore

consider mixed strategy equilibria. Again, there are possibly a large number of outcomes, but

equilibria may now depend on agents’ delay cost functions. We show that there is a unique

symmetric equilibrium. In this equilibrium, each agent puts equal probability on every

arrival time and thus the number of arrivals in any time period has a binomial distribution.

The distribution of arrivals per time period is stationary over the horizon and converges to

a Poisson distribution as the number of agents and time periods gets large. In the limit, the

distribution of arrivals across periods is independent. Hence, the arrival pattern converges

to a Poisson process as the number of agents and time periods gets large.

In our model, customers arrive according to a renewal process as a consequence of strategic

interaction. Our work therefore complements the existing literature on strategic behavior in

queuing systems by showing that assuming a renewal arrival pattern is reasonable for systems

operating over a long horizon with a large number of potential customers. We also argue

that when capacity is limited, competitive customers will force the expected workload to be

constant over the horizon. Thus our model also supports the use of steady state analysis.

Below we first present the model and develop results assuming that agents must be served

in the period in which they arrive. In the subsequent section, we suppose that agents may

have to wait one or more periods in order to be served. Section 4 concludes.

2 Model basics and equilibria with ample capacity

We consider a finite horizon divided into T ≥ 2 periods or “bins” (we will use the terms
interchangeably). There are M ≥ 2 agents or customers who seek service over the horizon
by choosing an arrival bin. Let αt = 1, ...,M be the number of customers arriving to bin

t. Let λ = M/T be the average number of customers per bin. For simplicity, we adopt the

convention that all customers arrive at the start of the time period. For now we assume that

the system has ample capacity, i.e., there is sufficient resources to serve all M customers in

one time period. A customer arriving in time period t is therefore certain to receive service

in that time period. No customers remain in the system from period t to period t+1, so the

only customers in the system during period t are the αt who arrive in that period.
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Customer m values service at Vm > 0 regardless of the period in which she is served. All

customers prefer to avoid congestion. Let Wm (αt) denote agent m’s expected disutility of

being one of αt arrivals in period t. (αt includes agentm.) Agentm’s objective is to maximize

her net utility Um (αt) = Vm−Wm (αt) through her choice of arrival bin t. Equivalently, agent

m seeks to minimize her expected congestion or delay cost Wm (αt) . To avoid trivialities,

assume Um (1) > 0; agent m expects a positive benefit if she is the only arrival.

This formulation embeds an important assumption. Since Vm is independent of t, agent

m’s net utility depends on the time bin only through the number of arrivals αt. Thus we

are assuming non-urgent or postponable service for which agents do not care about the time

bin t; they only care about the wait they encounter after arriving.

We allow for significant flexibility in modeling the expected delay cost Wm (αt); all we

require is that Wm (αt) is strictly increasing in αt, the number of arrivals to bin t. We will

emphasize two basic forms of Wm depending on whether the agents are served sequentially

or in a batch. In the former case, agent m incurs a cost Cm (k) ≥ 0 for k = 1, ..., αt if she is

the kth customer to be served for some function Cm. Upon arrival, the agents are randomly

ordered such that each agent has an equal probability of being in any position in line. Given

αt ≥ 1, agent m’s expected delay costs are:

Wm (αt) =
1

αt

αtX
k=1

Cm (k) . (1)

We assume that Cm (k) increases sufficiently fast that Wm (αt) is increasing.2

We work with two special cases of (1). First suppose that delay costs are linear. Cm (k) =

θm (k − 1) for θm > 0. We then have:

Wm (αt) =
1

αt

αtX
i=1

θm (k − 1) = θm
αt − 1
2

. (2)

Alternatively, delay costs can increase at an increasing rate. Suppose Cm (k) = ρ
(k−1)
m −1 for

ρm > 1. The resulting expected delay costs are:

Wm (αt) =
1

αt

αtX
k=1

ρ(k−1)m − 1 = ραtm − 1
αt (ρm − 1)

− 1. (3)

In a batch setting, all arrivals are served simultaneously but the quality of service falls

2 This requires that Cm (α+ 1) ≥ α−1
Pα

k=1Cm (k) for α = 1, ...,M − 1.

3



with the number of agents being served:

Wm (αt) = θm − θm
αt
for θm > 0. (4)

Note that if m’s delay cost is (2), the agent only cares about the average number arrivals

to bin t and thus behaves as if she were risk neutral. In contrast, (3) is convex in the number

of arrivals, making the agent’s net utility concave in arrivals.3 Hence, such an agent is risk

averse and prefers to avoid to variability. The reverse holds in a batch setting. The agent’s

delay cost is concave and her net utility is convex. With batch costs, an agent is risk seeking

and prefers variability in the number of arrivals. We exploit these properties below.

2.1 Pure-strategy equilibria

Agent m would like to seek service in the bin that would maximize her expected net benefit,

Um (αt). Of course, that benefit depends on the actions of the other agents. We must look for

equilibrium arrival patterns. For now we restrict our attention to pure strategy equilibria in

which each agent reports deterministically to one bin. Defining such an equilibrium requires

some notation. Let ej denote jth T×1 unit vector and let πm denote agentm’s strategy. πm =
et if agent m reports to bin t. Let Π = (π1, ..., πM) and Π−m = (π1, ..., πm−1, πm+1, ...πM) .

Define α (Π) as the arrival vector that results from Π:

α (Π) = (α1 (Π) , ..., αT (Π)) =
MX
j=1

πj

and α (Π−m) as the arrival vector of all agents but m:

α (Π−m) = (α1 (Π−m) , ..., αT (Π−m)) =
MX
j 6=m

πj.

Finally, let Bm (Π) = t if πm = et. We can now state that Π∗ is a pure strategy Nash

equilibrium if the following holds for m = 1, ...,M :

Vm −Wm

¡
αBm(Π∗) (Π

∗)
¢ ≥ Vm −Wm

¡
αt

¡
Π∗−m

¢
+ 1
¢
for t = 1, ..., T .

In words, a pure strategy equilibrium requires that holding the proposed actions of others

fixed, an agent cannot improve her payoff by unilaterally moving to a different arrival bin.

3 Convexity [concavity] is overly restrictive. Wm is defined for natural numbers and need

not be continuous. We use convexity [concavity] as short hand for increasing [decreasing]

first differences, i.e., Wm (α+ 1)−Wm (α) ≥ [≤]Wm (α)−Wm (α− 1) .

4



Theorem 1 An arrival vector Π∗ is a pure strategy Nash equilibrium if and only if αt (Π
∗)−

αs (Π
∗) ≤ 1 for all s, t = 1, ..., T .

Proof: Suppose that Π∗ is a Nash equilibrium and that Bm (Π
∗) = t. Consider agent m’s

incentive to deviate. As Wm is increasing, she has no interest in moving to any bin s such

that αs (Π
∗) ≥ αt (Π

∗). Suppose there is a bin s0 such that αt (Π
∗) > αs0 (Π

∗) . Deviating is

profitable if αt (Π
∗) > αs0

¡
Π∗−m

¢
+1 = αs0 (Π

∗) + 1. Thus if Π∗ is an equilibrium, it must be

the case that αt (Π
∗)− αs (Π

∗) ≤ 1 for all s, t = 1, ..., T .
Now suppose αt (Π

∗)− αs (Π
∗) ≤ 1 for all s, t = 1, ..., T and Bm (Π

∗) = t. If she were to

move to bin s, the number of arrivals to s would be αs

¡
Π∗−m

¢
+ 1 = αs (Π

∗) + 1 ≥ αt (Π
∗) .

Hence she has no reason to unilaterally deviate from t, and Π∗ is an equilibrium. ¥
In a pure strategy equilibrium each bin must have a “Yogi-Berra” property. In equilibrium,

no one goes there anymore; it’s too crowded. Each agent is content to report to her assigned

bin because, holding everyone else’s decision constant, she cannot find a less congested one.

Compared to her current assignment every other bin is either as crowded, more crowded, or

will become as crowded if she were to deviate by moving to it. Just as no agent can single-

handedly lower her congestion cost, there is no way a central planner can lower system cost

assuming that all agents have the same well-behaved congestion cost function.

Theorem 2 Suppose that all agents have the same delay cost function W (α). Define
S (α) = αW (α) as the system cost of assigning α agents to one bin. If S (α) is convex,
a pure strategy Nash equilibrium minimizes total system congestion costs.

Proof: If S (α) is convex, S (α)+S (α0) ≥ S (α− 1)+S (α0 + 1) for α > α0+1. Thus for any

assignment of agents to bins such that αt > αs+1 for some bins s and t, cost can be lowered

by transferring agents from t to s. This is feasible unless αt − αs ≤ 1 for all s, t = 1, ..., T ,
which is the condition for a Nash equilibrium. ¥
Symmetric, self-interested agents will choose a socially efficient outcome that minimizes

total waiting costs. The required condition is fairly weak. It is obviously satisfied by any

weakly convex delay cost function. Some concave cost functions such as (4) also satisfy it.

While we have characterized pure strategy equilibria, we have not proved that one neces-

sarily exists. Theorem 1 does offer guidance on how we may construct one. Let bxc denote
the smallest integer less than or equal to x. Let λ = bλc and τ = M − λT . Clearly,

0 ≤ τ < T . In words, if one assigns λT customers such that each bin has λ agents, there
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are τ agents still to be assigned. An equilibrium vector Π∗1 can then be formed by selecting

τ bins and adding one agent to each of those bins. As all agents are assigned an arrival

time and each agents is assigned to only one bin, the vector is feasible. As the maximum

difference in arrivals is one, the vector is an equilibrium.

Since T ≥ 2 and M ≥ 2, it is immediate that the equilibrium Π∗1 is not unique. If one

merely interchanges an agent assigned to bin t with an agent assigned to bin s 6= t, one has

created a new equilibrium Π∗2. Indeed, the set of pure strategy equilibria can be quite large.

Lemma 1 Let Π̄ denote the set of all possible pure strategy equilibria. Let Π̄m
t denote the

set of equilibria that assigns agent m to bin t. Let kXk denote the cardinality of the set X.
1.
°°Π̄°° = M !

λ!(T−τ)max{(λ+1)!τ,1}
¡
T
τ

¢
.

2. kΠ̄
m
t k
kΠ̄k = 1

T
.

Proof: The first part is proved by induction on T . Suppose that T = 2 and that λ agents

are assigned to the first bin. M !
λ!(T−τ)max{(λ+1)!τ,1} =

³
M
λ

´
gives the number of equilibria given

that there are λ agents to the first bin while
¡
T
τ

¢
then accounts for the number of ways to

select τ bins to have λ+ 1 agents. Suppose the result holds for T − 1 bins and consider the
case of T bins. Fix the τ bins assigned λ+ 1 agents and assume that the first bin has only

λ agents. The number of equilibria vectors satisfying these criteria are:µ
M

λ

¶
(M − λ)!

λ! (T − 1− τ)max {(λ+ 1)!τ , 1} =
M !

λ! (T − τ)max {(λ+ 1)!τ , 1} .
The second term relies on the inductive hypothesis, and the result follows.

For the second part, pick an element of Π̄m
t . Exchanging all agents assigned to bin t for

all those assigned to bin s 6= t creates an equilibrium outside of Π̄m
t . For each element of

Π̄m
t , we can thereby create T − 1 elements of Π̄ outside of Π̄m

t . Running the procedure in

reverse for each element of Π̄ not in Π̄m
t assures that no equilibria are unaccounted for. ¥

With such a large number of potential equilibria, implementation is potentially an issue.

The following offers a possible means for selecting an equilibrium.

Theorem 3 Suppose agents select bins sequentially. Agent m observes all prior arrivals
before choosing a bin. If agent m is indifferent between bins, assume she chooses randomly
between bins with equal probability. This procedure leads to an element of Π̄.

Proof: For the last agent, there must be available at least one bin with λ or fewer agents.

She prefers this to any bin with λ+1 or more agents. Similarly, no earlier agent will choose
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a bin already occupied by λ+1 agents. Thus, the final arrangement of agents will have bins

with either λ or λ+ 1 agents and must be an equilibrium by Theorem 1. ¥
Customers benefit from an appointment system that enforces sequential choice with visi-

bility because it always implements an equilibrium vector. If the initial sequencing of agents

is random, the assumption that indifferent agents randomize implies that any element of Π̄

is a feasible outcome. This does not hold for other behavioral assumptions. Suppose instead

that an agent choosing between equally crowded bins always selects the earliest bin. Then

if M > T , the first λ (T − τ) agents always opt to arrive in the last (T − τ) time periods

because they anticipate that the final τ agents will choose to arrive in one of the first τ

periods. Hence, the first τ bins will always be the “crowded” bins with λ+ 1 occupants.

2.2 Mixed strategy equilibria

Sequential choice requires less upfront coordination and information than picking an arbitrary

pure strategy, but it may not always be feasible. To coordinate on a pure strategy, it is still

necessary to sequence the agents and take appointments. In addition, the agents must know

the total number of customers attempting to use the system. Consequently, a mixed strategy

equilibrium may be a more plausible outcome. Here agents randomize over their possible

actions, i.e., which bin to select, so an agent’s strategy is a probability distribution over the

set of bins. Hence, we now have πm =
¡
π1m, ..., π

T
m

¢
for πtm ≥ 0 and

PT
t=1 π

t
m = 1. Note

that the pure strategies considered above are subsumed in this formulation by considering

degenerate distributions (i.e., by allowing πm to be a unit vector). The set of mixed strategy

equilibria is thus at least as large as the set of pure strategy equilibria.

The number of arrivals to bin t is now a random variable that depends on the agents’

strategies Π. Let αt (Π) denote this random variable. Let αt (Π−m) denote the number of

arrivals to t excluding agent m. αt (Π) takes values from zero to M while αt (Π−1) takes

values from zero toM −1. Note that if agent m’s realized bin choice is t, her expected delay
costs are E [Wm (αt (Π−m) + 1)] . We can therefore define Wm (Π) , m’s expected delay cost

when all agents follow mixed strategies Π, as:

Wm (Π) =
TX
t=1

πtmE [Wm (αt (Π−m) + 1)] .

We say that a random variable X is stochastically larger than a random variable Y if

P (X ≤ β) ≤ P (Y ≤ β) for all β. X is stochastically larger than Y if and only if E [φ (X)] ≥
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E [φ (Y )] for all increasing φ such that the expectation is defined (Shaked and Shanthikumar,

1994). The following lemma is then an immediate consequence of Wm being increasing.

Lemma 2 If the distribution of αt (Π−m) is stochastically larger than αs (Π−m), then agent
m prefers arriving in bin s.

For Π∗ = (π∗1, ..., π
∗
M) to be a mixed strategy equilibrium, we must have form = 1, ...,M :

Vm −Wm (Π) ≥ Vm −E
£
Wm

¡
αt

¡
Π∗−m

¢
+ 1
¢¤

for t = 1, ..., T. (5)

(See Fudenberg and Tirole, 1996.) This definition requires that an agent must weakly prefer

randomizing over a set of actions to going to any one bin with certainty. Thus, she must be

indifferent among any actions on which she puts positive probability.4 We now consider an

example to illustrate the nature of a mixed strategy equilibrium

Example 1 Suppose T > 2, and λ = λ ≥ 2. (The latter implies τ = 0.) Four agents are
selected to randomize, placing equal weight on bins 1 and 2. For each bin t > 2, λ agents are
selected and deterministically report to bin t. If agents remain, λ−2 agents deterministically
report to bin 1 and λ− 2 report to bin 2. Note that E [Wm (αt (Π))] = λ for all t. We claim
this forms a mixed strategy equilibrium if all agents have an expected delay cost function as
given in (4), i.e., W (α) = C − C/α.
To establish this we need to verify that three types of agents are willing to follow the

proposed equilibrium. Type 1 agents report deterministically to bins 1 or 2. Type 2 agents
randomize between 1 and 2. Type 3 agents report deterministically to some bin t > 2. Let
mi denote a representative agent of each type for i = 1, 2, 3. First consider a type 1 agent
reporting deterministically to bin j = 1 or 2. Such an agent has no interest in moving to bin
3− j by Lemma 2. Next, since αt (Π−m1) is weakly stochastically smaller than αt (Π−m2) for
all t, a type 2 agent has higher delay costs from following the proposed equilibrium than a
type 1 agent. Hence, if type 2 agents follow the equilibrium, so will type 1 agents.
For type 2 agents, E [αt (Π−m2)] = λ − 1

2
for t = 1, 2. The agent prefers the proposed

equilibrium to having αt (Π−m2) = λ− 1
2
deterministically (becauseW is concave). Thus she

prefers participating in the equilibrium to deviating to t > 2 for which αt (Π−m2) = λ.
Finally, a type 3 agent’s cost from following the strategy is W (λ) with certainty. Addi-

tionally, αt (Π−m3)−(λ− 2) has a binomial distribution with parameters (4, 1/2) . Therefore,
if she deviates to bin 1 or 2, her costs increase by:

W (λ− 1) + 4W (λ) + 6W (λ+ 1) + 4W (λ+ 2) +W (λ+ 3)

16
−W (λ)

= C
¡−9− 2λ+ 6λ2 + 2λ3¢ /2 (λ− 1)λ (λ+ 1) (λ+ 2) (λ+ 3) ,

which is positive since λ ≥ 2. Hence, type 3 agents also follow the equilibrium.

4 To see this classical result, multiply both sides of (5) by πtm and sum over t.
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While all pure strategy equilibria are independent of the assumed delay cost functions, this

mixed strategy equilibrium depends on them in a crucial way. Agents are assumed to have a

concave cost function and so behave in a risk-seeking fashion. Suppose, on the other hand,

that a type 2 agent has a cost function as given in (3) with ρ = 10, i.e., Wm2 (α) =
10α−1
9α
−1.

It is possible to show that such an agent always prefers to deviate to bin t ≥ 3 for any

λ > 2. Thus, the feasibility of an equilibrium depends critically on the delay cost function.

In this case, the equilibrium can collapse if agents have convex costs and so act in a risk-

averse manner. Given this observation, it useful to consider whether any mixed strategy

equilibrium can be independent of the agents’ delay costs.

Theorem 4 An equilibrium Π∗ is independent of all agents’ delay cost functions if and only
if for m = 1, ...,M :

1. αt

¡
Π∗−m

¢
is weakly stochastically smaller than αs

¡
Π∗−m

¢
for all s, t ∈ {1, ..., T} such

that πtm > 0 and πsm = 0.

2. For all t, u ∈ {1, ..., T} such that πtm > 0 and πum > 0:

P (αt

¡
Π∗−m

¢
= β) = P (αu

¡
Π∗−m

¢
= β) (6)

for β = 0, ...,M − 1.

Proof: First, suppose both conditions hold. By Lemma 2, agent m prefers t to s regardless

of Wm. In addition, the second condition assures that she is indifferent between between the

bins over which she randomizes for allWm. Hence, Π∗ is an equilibrium for allWm. To go the

other way, αt

¡
Π∗−m

¢
is stochastically smaller than αs

¡
Π∗−m

¢
if and only ifE

£
φ
¡
αt

¡
Π∗−m

¢¢¤ ≤
E
£
φ
¡
αs

¡
Π∗−m

¢¢¤
for all increasing φ (Shaked and Shanthikumar, 1994). Consequently, if

Π∗ is independent of Wm for any increasing Wm, condition 1 must hold. Next, suppose (6)

fails for some agent m and some bins t and u. There must exist β < β0 such that

P (αt

¡
Π∗−m

¢
= β) > P (αu

¡
Π∗−m

¢
= β)

P (αt

¡
Π∗−m

¢
= β0) < P (αu

¡
Π∗−m

¢
= β0)

Since m randomizes over t and u, they must result in the same expected congestion cost:

E
£
Wm

¡
αt

¡
Π∗−m

¢
+ 1
¢¤
= E

£
Wm

¡
αu

¡
Π∗−m

¢
+ 1
¢¤
.

Pick aWm such that this equality holds. SinceWm is strictly increasing, we can create a new

cost function W̃m such that W̃m (β + 1) = Wm (β + 1) + ε, W̃m (β
0 + 1) = Wm (β

0 + 1) − ε,
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and W̃m =Wm otherwise. We must then have:

E
h
W̃m

¡
αt

¡
Π∗−m

¢
+ 1
¢i

> E
h
W̃m

¡
αu

¡
Π∗−m

¢
+ 1
¢i

,

so the equilibrium is not independent of the cost function. ¥
Neither condition of the theorem is trivial. The first asserts that for a mixed strategy to

be independent of delay costs, it must be that an agent randomizes over what she perceives

as less crowded bins. However, the bins cannot be too different. One can show that if Π∗

is a mixed strategy equilibrium for any W, we must have E [αt (Π
∗)] − E [αs (Π

∗)] ≤ 1 for
all s, t = 1, ..., T. Thus a condition similar to that of Theorem 1 must hold in expectation.

The second asserts that agents must view bins over which they randomize as identical. The

following modifies the previous example to be independent of delay cost functions.

Example 2 Consider a setting similar to Example 1 but suppose that only two agents
randomize between the first two bins while λ−1 agents report to those bins deterministically.
Define type 1, 2, and 3 agents as before. From the perspective of a type 1 or 2, the maximum
value αt

¡
Π∗−m

¢
takes for t = 1, 2 is λ while αs

¡
Π∗−m

¢
= λ for all s > 2. In addition, the

distributions of α1
¡
Π∗−m

¢
and α2

¡
Π∗−m

¢
are identical. For a type 3 agent reporting to bin

t > 2, αt

¡
Π∗−m

¢
= λ−1, which is the smallest possible value of αs

¡
Π∗−m

¢
for s = 1, 2. Hence,

this is an equilibrium for any W .

The above example shows that even if a mixed strategy equilibrium is independent of delay

cost functions it is not necessarily easier to implement than a pure strategy equilibrium. In

this case, we must divide the agents into three groups and within groups 1 and 3 we must

assign individual agents to particular bins. It would be much simpler to have a symmetric

equilibrium that is independent of the agents’ congestion cost function. In a symmetric

equilibrium, π∗m = π∗n for all agents m and n. We note the following.

Lemma 3 If Π∗ is a symmetric equilibrium, all elements of π∗m must be strictly positive.

Proof: If πt∗m = 0 for some t, any agent could deviate to t and have no delay. ¥
Let πUm = {1/T, ..., 1/T} and ΠU =

¡
πU1 , ..., π

U
M

¢
. It is straightforward to verify that ΠU

is a mixed strategy equilibrium.

Theorem 5 ΠU is the only symmetric equilibrium. It is independent of the agents’ delay
cost functions.
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Proof: Any other symmetric equilibriummust have πtm > πsm for some bins t and s. αt (Π−m)

would be stochastically larger than αs (Π−m) for all m. Agents would prefer s to t so the

equilibrium fails. It is easy to verify that ΠU satisfies the requirements of Theorem 4. ¥
The theorem establishes that equilibrium ΠU is an attractive alternative since it requires

minimal coordination between the agents. It is independent of their delay cost functions and

is even independent of the number of agents. Given Lemma 1, an alternative interpretation

of the equilibrium is that each agent randomly selects a pure strategy Π from the set Π̄ and

then reports to the bin to which she is assigned under Π.

In some sense, ΠU is an obvious outcome. If an agent is completely uniformed — unsure

of how many others will seek service or of their delay cost — how could she do better than

uniformly picking among the bins? It is important to recognize that such reasoning depends

on strategically anticipating the actions of others. Uniformly randomizing only makes sense

if others are doing it as well. One might reasonably conjecture that the other agents are

“early birds” or are prone to procrastination, but uniformly picking an arrival time is then

no longer optimal. Thus, the arrival pattern generated by ΠU depends on the strategic

interaction between the agents.

It is straightforward to see that under ΠU , the distribution of arrivals to bin t is now a

binomial distribution with mean λ. The arrival pattern, α
¡
ΠU
¢
, it generates thus has some

similarity to a Poisson process. Its increments are stationary. If one is told that over some

subset of bins there have been, say, k arrivals, then those arrivals are uniformly distributed

across the bins. Where the similarity fails is independence. Since there are a finite number

of agents, the arrivals in distinct bins are not independent. Indeed, it is easy to show that

the joint distribution of arrivals is a multinomial distribution. However, we can relax this as

the number of agents and time periods gets large.

Theorem 6 Consider a sequence of system (Mn, Tn) such that Mn and Tn are integers for
all n, Mn+1 > Mn, limn→∞Mn = ∞, and Mn

Tn
= λ for all n. Let ΠU

n denote the equilibrium
in which all Mn agents play {1/Tn, ..., 1/Tn} .
1. limn→∞ P

¡
αt

¡
ΠU
n

¢
= k

¢
= e−λλk

k!
.

2. Let Ω be a set of bins such that kΩk = ω < T1−1. For all s ∈ Ω, one knows the realized
value of αs and

P
s∈Ω αs = A < M1. Let P

¡
αt

¡
ΠU
n

¢
= k|Ω¢ denote the probability that

αt

¡
ΠU
n

¢
= k given Ω for t /∈ Ω. Then limn→∞ P

¡
αt

¡
ΠU
n

¢
= k|Ω¢ = e−λλk

k!
.

Proof: The first part is a standard result on the limit of a binomial distribution (Ross,

11



1983). More details are required for the second part since E
¡
αt

¡
ΠU
n

¢
= k|Ω¢ does not

necessarily equal λ. First, it is possible to show that the joint distribution of arrivals

for states outside of Ω given Ω is a multinomial distribution that depends on Ω only

through ω and A. The marginal distribution of αt

¡
ΠU
n

¢
is then P

¡
αt

¡
ΠU
n

¢
= k|Ω¢ =¡

Mn−A
k

¢ ³
1− 1

Tn−ω
´Mn−A−k ³

1
Tn−ω

´k
. Since Mn

Tn
= λ, we have

P
¡
αt

¡
ΠU
n

¢
= k|Ω¢ = Ã (Mn −A)!

(Mn −A− k)! (Mn − ωλ)k

!µ
1− λ

Mn − ωλ

¶M−A−k
λk

k!
.

The first term goes to 1 as n gets large while the second goes to e−λ. ¥
Thus agents under equilibrium ΠU generate an arrival pattern that approaches a Poisson

process, i.e., customers show up according to a renewal process. This result complements

earlier work on queuing systems with strategic customers that assume renewal arrivals. We

have shown that if one allows customers to also act strategically in choosing their arrival

time a plausible equilibrium leads to a renewal process.

We emphasize that this result depends critically on the strategic interactions between

customers. A given agent chooses an arrival point in such a way that total arrivals have a

Poisson distribution because of how the other agents choose to play. Not all mixed strategies

lead to Poisson outcomes. Consider Example 2. If one scales up that example, the equi-

librium continues to hold but does not lead to Poisson arrivals. Thus our result also goes

beyond the usual interpretation that a Poisson process arises from having a large number of

agents acting independently. Yes, equilibrium ΠU assumes that each agent picks an arrival

bin independently of all others but the same is true for any mixed strategy equilibria and

not all mixed strategy equilibria lead to Poisson arrivals. Not only does equilibrium ΠU lead

to Poisson arrivals it has a number of other appealing properties. It is the only symmetric

equilibrium and is independent of the delay cost functions and the number of agents. Hence,

it requires very little coordination to implement.

Theorem 6 is a limiting result, but assuming Poisson arrivals can be a reasonable ap-

proximation for ΠU at finite values. In Table 1, we consider how quickly P
¡
αt

¡
ΠU
n

¢
= k

¢
converges to a Poisson distribution for two examples. Both begin with T1 = 25 but differ

in the arrival intensity. In the first λ = 2 and in the second λ = 0.6. We then increase the

number of bins and agents. We report the maximum absolute deviation in the probability

mass function (PMF) and in the cumulative distribution function (CDF). We see that the

12



lower arrival rate converges more slowly but is still is closely approximated by a Poisson

process. With just 50 bins and 30 agents, the maximum deviation is less than half a percent.

Table 2 examines how quickly the dependence between bins diminishes. We focus on a

setting with 400 agents and 200 bins and examine the distribution conditional on knowing

the arrivals for the first 50, 100, and 150 bins. As the conditional distribution depends

only on the cumulative number of arrivals, we consider having arrivals run 10 and 20 agents

above or below their expected value. We report the maximum absolute deviation between

the PMF and the CDF of αt

¡
ΠU
n

¢
given Ω and a Poisson distribution with λ = 2.5 As one

might expect, the fit is not as close as for the unconditional distribution, but it remains a

reasonable approximation as long as one does not know “too much.” When one has observed

150 bins (75% of the horizon) and the arrivals deviate significantly from the average, the

Poisson is not a close fit (the maximum deviation is over 5%), but when observing fewer bins

and having smaller deviations from the mean, the fit is much tighter.

2.3 Extensions

We briefly consider some extensions for which ΠU continues to be an equilibrium.

2.3.1A finite waiting room

We have thus far assumed that an agent arriving to bin t can enter and be served (although

possibly incurring a significant delay cost). We now suppose that the system can only hold

K customers at one time. Customers are randomly sequenced upon arrival, and the first K

are admitted and served according to the established sequence. Any remaining customers

are denied service. If agent m is admitted, she incurs a cost Cm (k) if she is the kth person

processed. Assume that Vm ≥ Cm (K) so that she always values service if admitted. If she

is denied admission, she incurs a cost ωm ≥ 0 and does not receive Vm. Her expected net
benefit given αt arrivals is then:

Um (αt) =

(
1
αt

PK
k=1 [Vm − Cm (k)] if αt ≤ K

K
αt

³
1
K

PK
k=1 [Vm − Cm (k)]

´
− αt−K

αt
ωm if αt > K

.

This net benefit function models a system with a finite waiting room and first in first out

(FIFO) service. An agent denied entry receives no net benefit from service and may incur

5 Thus if one observes 100 bins and sees total arrivals of 210, we compare a Poisson

distribution with λ = 2 to a binomial with parameters (400− 210) and 1/(200− 100).
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a loss. One could specify a similar cost function for the batch model of (4). As Um (αt)

decreases in the αt, our analysis is unchanged, and ΠU is still an equilibrium.

2.3.2Exogenous arrivals

Suppose that in each bin there is a stochastic shock in addition to the arrival of the agents.

LetX = (X1, ..., XT ) denote the vector of shocks. Such a shock could be additional customers

arriving from some other source. Agents choose their bins before the shocks are observed.

If the realized number of agents is αt, then agent m’s congestion costs are Wm (αt + xt)

where xt is the realized value of Xt. If the marginal distribution of the shocks is the same

for all bins, our analysis goes through. For pure strategies, agents spread themselves out

as much as possible. For mixed strategies, ΠU is again viable. Note that we require the

marginal distributions to be the same but do not require independence. Thus we could have

the arrivals in bins being positively or negatively correlated.

2.3.3Priorities

Suppose there are two classes of agents. There are M1 type 1 agents and M2 type 2 agents.

Let αi
t be the number of type i agents arriving to bin t. Suppose m1 is a type 1 agent

with congestion costs Wm1 (α
1
t , α

2
t ) . We assume that

∂Wm1(α1t ,α2t)
α1t

>
∂Wm1(α1t ,α2t)

α2t
= 0. Let

m2 be a type 2 agent with congestion costs Wm2 (α
1
t , α

2
t ) . We assume that

∂Wm2(α1t ,α2t)
α1t

≥
∂Wm2(α1t ,α2t)

α2t
> 0. These cost functions are consistent with a priority scheme that serves type

1 arrivals before type 2 arrivals. A type 1’s net utility is unaffected by the arrival of a type

2 customer, but type 1 arrivals always lowers the utility of a type 2 customer.

Consider first the behavior of type 1 agents. Since their waits are independent of the

actions of the second type, they face the same problem we analyzed above. Now consider

type 2 customers. If type 1 agents are playing a pure strategy, suppose that the second type

cannot verify which strategy (i.e., they do not know which bins have λ1 agents and which

have λ1 + 1 agents. Then they can treat the number of arrivals of type one agents as an

exogenous shock as discussed above. Alternatively, if type 1 agents follow mixed strategy

equilibrium ΠU , we again have an exogenous shock. In either setting, type 2 agents are

willing to employ equilibrium ΠU .
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3 Equilibria with limited capacity

We now suppose that the system can only serve a limited number of customers in each

period and allow customers unserved in period t to carry over to period t+1. Our intention

is to develop conditions such that ΠU is again an equilibrium. If this is the case, Theorem 6

continues to hold and a Poisson process is again a valid approximation for the arrival process

generated by strategic customers.

Let It denote the inventory of customers in the system at the start of period t prior to

any new arrivals. Let st denote the maximum number of customers that can be served in

period t. The assumed sequence of events is that It agents are carried into period t, αt new

customers arrive, and then st is realized enabling max {It + αt, st} customers to exit the
system. The number of customers carried into period t+ 1 is then:

It+1 = [It + αt − st]
+ ,

where [x]+ = max {x, 0}. We assume st is a non-negative random variable that takes only

integer values. The draw in each period is identically and independently distributed (IID).

E [st] = µ > λ and P (st < M) > 0. Restricting st to be integer-valued simplifies the state

space by assuring that It is always integer-valued. We only need to track the number of

agents in the system as opposed to the work in the system. A positive probability that

st is less than M implies limited capacity. There is some chance that the system cannot

process all arrivals. Possible examples of st include a Poisson random variable with mean µ

or a Bernoulli random variable with probability of success equal to µ. Note that It is not a

Markov chain since its distribution depends on the entire history of the process.

We assume that the system employs a FIFO discipline. Arrivals in period t must wait

for the It customers already in the system to exit before any of them may enter service. If

αt ≥ 2, these new arrivals are randomly ordered and served in that sequence. Delay costs as
a function of αt and It thus follow a modified form of (1):

Wm (αt, It) =
1

αt

αtX
k=1

Cm (k + It) .

Let IT+1 denote the number of customers who remain unserved at the end of the horizon.

We assume the system continues to operate until all customers have been served. Additional

service draws sT+1, sT+2, ... are taken until all IT+1 customers have exited the system where
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draw sT+k has the same distribution as st for t = 1, ..., T. For example, if st = 1 with cer-

tainty, an additional IT+1 periods of operation are required. Assuming continued operations

removes the end of horizon affect. Together with the FIFO service discipline, it assures that

Wm (αT , IT ) =Wm (αt, It) for t < T as long as (αT , IT ) = (αt, It).

Let I1 denote the initial population of customers. To initialize the system, we assume

that I1 is a random variable such that P (I1 = k) = f1 (k) for k = 0, 1, .... The agents know

the distribution of I1 but do not see its realized value until after they have selected their

arrival bin. Allowing I1 to be a random variable is a generalization over merely assuming

the system begins empty since one can always suppose f1 (0) = 1.

Agent m’s objective is again to minimize her net benefit Um (αt, It) or equivalently to

minimize her expected delay cost Wm (αt, It). Agents still choose their arrival bins simulta-

neously. The novel aspect of imposing limited capacity is that an agent’s cost now depends

on both the number of agents that arrive with her as well as the existing inventory of agents.

Note that because of the FIFO discipline her costs depends only on the number of agents

that arrive before her and with her, not on the number that come after her.

LetΠ∗ be a candidate equilibrium. αt

¡
Π∗−m

¢
and It

¡
Π∗−m

¢
respectively denote the number

of arrivals to bin t and the number of agents already present in bin t underΠ∗ holding agentm

out. Since I1
¡
Π∗−m

¢
= I1, Π

∗ depends on the distribution of I1.We suppress this dependence

to simplify the notation. For Π∗ to be a Nash equilibrium, we require for m = 1, ...,M :

Vm −Wm (Π
∗) ≥ Vm −E

£
Wm

¡
αt

¡
Π∗−m

¢
+ 1, It

¡
Π∗−m

¢¢¤
for t = 1, ..., T, (7)

where

Wm (Π
∗) =

TX
t=1

πtmE
£
Wm

¡
αt

¡
Π∗−m

¢
+ 1, It

¡
Π∗−m

¢¢¤
.

Lemma 4 Given M , T and the distribution of I1, at least one Nash equilibrium Π∗ exists.

Proof: Every finite strategic form game has a Nash equilibrium. See Theorem 1.1 of Fu-

denberg and Tirole (1996). ¥
The lemma does not guarantee that a pure strategy exists or that ΠU is an equilibrium.

It is easy to show that ΠU is not necessarily an equilibrium. Suppose I1 ≡ 0 and that all
agents follow ΠU . Then if agent m reports to bin 1, she expects arrivals of αt

¡
ΠU
−m
¢
but no

inventory of existing customers. If she reports to bin 2, she again expects arrivals of αt

¡
ΠU
−m
¢
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but now P (I2 > 0) > 0 (because P (st < M) > 0). She consequently strictly prefers the first

bin, and ΠU cannot be an equilibrium.

For ΠU to be an equilibrium, we need an alternative initialization. Consider the following:

Ît+1 =
h
Ît + α̂t − st

i+
,

where st is as defined above and α̂t has a binomial distribution with parameters M − 1 and
1/T . Draws of st and α̂t are independent across periods. While the inventory process for

our system It does not form a Markov chain, Ît does. Let P̂ij = P
³
Ît+1 = j|Ît = i

´
. We

assume that Ît is ergodic and denote its stationary distribution by γ = (γ0, γ1, ...) . That is,

γj =
P∞

i=0 γiP̂ij.(See Ross, 1983.) The following theorem shows that if the initialization of

the system is given γ, ΠU is an equilibrium.

Theorem 7 If the distribution of I1 is such that f1 (k) = γk for k = 0, 1, ..., Π
U is a Nash

equilibrium for any set of agent delay cost functions.

Proof: Given that others play ΠU , agent m perceives the distribution of αt

¡
ΠU
−m
¢
as inde-

pendent of t. If m deviates from ΠU , it must be because of the evolution of the inventory

process It
¡
ΠU
−m
¢
. Suppose the realized value of I1 equals i. We have

I2
¡
ΠU
−m
¢
=
£
i+ α1

¡
ΠU
−m
¢− st

¤+
.

However, the distribution of α1
¡
ΠU
−m
¢
is a binomial with parameters M − 1 and 1/T. Con-

sequently, P
¡
I2
¡
ΠU
−m
¢
= j|I1 = i

¢
= P̂ij. Unconditioning, one has

P
¡
I2
¡
ΠU
−m
¢
= j
¢
=

∞X
i=0

γiP̂ij = γj .

Thus the distribution of I2 is the same as I1. An induction then extends the result to It for

t = 1, ..., T . We then have E
£
Wm

¡
αt

¡
ΠU
−m
¢
+ 1, It

¡
ΠU
−m
¢¢¤

is independent of t for any Wm

and that ΠU is an equilibrium. ¥
It is tempting to interpret Theorem 7 as saying that if the system starts in steady state, the

agents play ΠU , but that is not quite correct. First, It is not a Markov chain. Second, even

if one considers a Markov version of It in which arrivals are independent across periods, its

transition probabilities would not be P̂ij since its arrivals would have a different distribution

than α̂t. That said, asM and T get large, the distribution of α̂t converges to that of αt

¡
ΠU
¢
,

and γ converges to the steady state distribution of It. Thus, looking at a limiting system as

in Theorem 6, we have that Poisson arrivals see time averages of the state of the system.
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A steady-state initialization may seem a limitation to the result, but it is sufficient for

our purpose. From the outset, our interest has been whether previous research was limited

by assuming renewal arrivals. Most existing research also assumes that arrivals experience

steady state waits (e.g., Mendelson, 1985; Mendelson and Whang, 1990). Thus, if one

believes that it is sufficient to look at long run average waits, our results suggest that strategic

customers will plausibly pick an arrival strategy that approaches a Poisson process.

A second consideration is that strategic customers will take the system to steady state.

This is inherent in the definition of an equilibrium as given in (7). If agent m puts a positive

probability on multiple bins, it must be the case that she expects the same wait in those

bins. Suppose all agents have linear waiting cost, i.e.,

W (αt, It) =
1

αt

αtX
i=1

(k − 1 + It) =
αt − 1
2

+ It,

and that for some initialization of It (not necessarily γ) there exists an equilibrium Π0 such

that some agent m puts positive probability on states s and t. It must be:

E

"
αt

¡
Π0−m

¢− αs

¡
Π0−m

¢
2

#
= E

£
Is
¡
Π0−m

¢− It
¡
Π0−m

¢¤
.

Differences in arrival rates compensates for differences in inventory levels, and equilibrium

workload levels across bins must be constant. If bin is expected to have a low inventory (as

with I1 ≡ 0), it must have a higher arrival rate and vice versa. In general, any equilibrium
will require that agents expect a (nearly) constant wait across states. If the system does not

start in steady state, the agents will choose an equilibrium that moves it to steady state.

4 Conclusion

We have presented a simple timing game. A set of customers seek service over some horizon.

All find congestion costly and so try to arrive when the facility is under-utilized. Working

in discrete time, we characterize pure strategy equilibria for the case of ample capacity. We

show that agents try to spread out their arrivals as much as possible. If all agents have the

same well-behaved delay costs, self-interested agents will choose a socially efficient outcome

that minimizes total waiting costs.

While potentially efficient, pure strategy equilibria are cumbersome and difficult to imple-

ment. We consequently consider mixed strategy equilibria and identify a unique symmetric

equilibrium. This equilibrium has several appealing properties: It is independent of both
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the delay cost functions of the agents and the number of agents. Further as the number of

agents and time periods gets large, the number of arrivals in any period goes to a Poisson

distribution and the number of arrivals across bins becomes independent. Thus, a large

population of strategic customers seeking to avoid congestion generates an arrival pattern

that is well approximated by a Poisson process. Our results extend to the case of limited

capacity given an appropriate initialization of the system.

Our model lends support to the traditional literature on strategic behavior in queuing

systems. This work has generally assumed that customers arrive according to a renewal

process but act strategically upon arrival. We show that assuming renewal arrivals is an

acceptable assumption given a large population and long horizon.

Our simple setting has limitations. We have worked in a discrete time setting. In many

ways, this is an reasonable approximation of human behavior; few people plan their day

in, say, five minute increments let alone in continuous time. However, traditional queuing

models are in continuous time so it would be worth considering such a setting. This may

raise additional technicalities. Considering only a finite number of arrival bins means that

we do not have to worry about the existence of an equilibrium (see the proof of Lemma 4).

A continuous time formulation may necessitate some additional structure.

We have assumed that all agents have the same horizon and are indifferent to when they

are served over that horizon. The latter may be true in some settings (e.g., when to run a

simple errand) but not in others (e.g., when to have lunch). Time dependent preferences or

overlapping horizons will likely generate non-stationary arrivals. However, an insight gained

from our analysis will likely continue to hold: Strategic customers will move the system to

steady state by competing away difference in expected waits.
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(M, T) PMF CDF

(50, 25) 0.00556 0.00552
(100, 50) 0.00274 0.00273

(200, 100) 0.00136 0.00136
(400, 200) 0.00068 0.00068

(30, 25) 0.00952 0.00673
(60,50) 0.00468 0.00333

(120, 100) 0.00232 0.00165
(240, 200) 0.00116 0.00083

Observed 
Number of 

Bins

Deviation 
from Mean 

Arrivals

50 -20 0.01811 0.03616
50 -10 0.00960 0.01868
50 10 0.00908 0.01810
50 20 0.01834 0.03645

100 -20 0.02715 0.05423
100 -10 0.01417 0.02781
100 10 0.01365 0.02718
100 20 0.02847 0.05563

150 -20 0.05384 0.10802
150 -10 0.02741 0.05450
150 10 0.02745 0.05450
150 20 0.06331 0.11697

Maximum Deviation
PMF        CDF

Table 2

Maximum Deviation

Table 1


