
Strategies and issues in the detection of pathway enrichment in

genome-wide association studies

Mun-Gwan Hong1, Yudi Pawitan1, Patrik K.E. Magnusson1, and Jonathan A. Prince1

1 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm,

Sweden

Abstract

A fundamental question in human genetics is the degree to which the polygenic character of complex

traits derives from polymorphism in genes with similar or with dissimilar functions. The many

genome-wide association studies now being performed offer an opportunity to investigate this, and

although early attempts are emerging, new tools and modeling strategies still need to be developed

and deployed. Towards this goal we implemented a new algorithm to facilitate the transition from

genetic marker lists (principally those generated by PLINK) to pathway analyses of representational

gene sets in either threshold or threshold-free downstream applications (e.g. DAVID, GSEA-P, and

Ingenuity Pathway Analysis). This was applied to several large genome-wide association studies

covering diverse human traits that included type 2 diabetes, Crohn’s disease, and plasma lipid levels.

Validation of this approach was obtained for plasma HDL levels, where functional categories related

to lipid metabolism emerged as the most significant in two independent studies. From analyses of

these samples we highlight and address numerous issues related to this strategy, including appropriate

gene based correction statistics, the utility of imputed vs. non imputed marker sets, and the apparent

enrichment of pathways due solely to the positional clustering of functionally related genes. The

latter in particular emphasizes the importance of studies that directly tie genetic variation to functional

characteristics of specific genes. The software freely provided that we have called ProxyGeneLD

may resolve an important bottleneck in pathway-based analyses of genome-wide association data.

This has allowed us to identify at least one replicable case of pathway enrichment but also to highlight

functional gene clustering as a potentially serious problem that may lead to spurious pathway findings

if not corrected for.
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Introduction

The extent to which common genetic polymorphism contributes to variance in complex human

traits has been explored for decades but it has only recently become possible to perform

hypothesis-free studies at fine scale on a genome-wide level (Klein et al. 2005). These studies

strive to reveal the underlying genetic architecture of complex human diseases and quantitative

traits and although the genetic effect sizes have typically been small, the statistical evidence
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implicating individual genes has been strong (Barrett et al. 2008; Willer et al. 2008; Zeggini

et al. 2008). However, most genome-wide association studies performed to date depict only a

few significant loci (http://www.genome.gov/gwastudies/). Among the many remaining

questions is whether or not data from these studies can also be used to generate additional

insight into the biological pathways that influence disease. If the suggestion that complex trait

genetics follows an L-shaped distribution of effect sizes is true (Dixon et al. 2007; Sing and

Boerwinkle 1987), then it might be possible to explore the rightmost tail of the distribution for

significant genes that share common functions. This represents a natural extension of the

approach used in gene expression profiling, where pathway analyses based upon controlled

gene descriptions, such as from the Kyoto Encyclopedia of Genes and Genomes or the Gene

Ontology projects, is common practice (Ashburner et al. 2000; Goto et al. 1997). As reflected

by the recentness of genome-wide association studies themselves, attempts to consider

pathways are also relatively new. The first study to explore for pathway enrichment from

genome-wide marker data was based upon relatively small samples on Parkinson’s disease and

age-related macular degeneration (Wang et al. 2007). This was followed up by a second paper

based upon several human diseases from the larger public Wellcome-Trust Case-Control

Consortium data (WTCCC) (Torkamani et al. 2008). The use of pathway modeling has also

been an additional analytical component to some of the primary genome-wide association

studies, the first of which being a study of human height by Gudbjartsson et al. (Gudbjartsson

et al. 2008). There are now several recent additional examples (Askland et al. 2009; Baranzini

et al. 2009; Vink et al. 2009; Wang et al. 2009), and with the exception of one study on type

2 diabetes that reports negative findings (Perry et al. 2009), all previous studies have claimed

significant evidence of pathway enrichment.

A principal bottleneck in these kinds of analyses, in contrast to gene expression profiling, is

that genome-wide association studies produce genetic marker lists, not gene lists, and it is the

latter for which pathway annotations exist. The reliable conversion of markers to representative

genes is not trivial and shares the same inherent ambiguity as any genetic association study

where a genomic region is implicated in disease or quantitative trait variation and where linkage

disequilibrium (LD) remains a vital consideration. We thus set out to create an application that

would allow the automatic conversion of any marker list in flat text file format to a

representative gene list, also taking into account LD. Our principal target was output from

PLINK (Purcell et al. 2007) which is at present the most commonly used software for

performing the statistical testing of markers from genome-wide association studies. In the

present study, we have applied our software to several large genome-wide association data sets

and used the results as a foundation to examine a number of issues that may have relevance

for the success of this strategy. We obtained relatively strong evidence validating the

importance of lipid related pathways in the determination of plasma lipid levels, but we also

highlight a key result that positional gene clustering, if not corrected for, can lead to spurious

results.

Results

There were three core issues that we considered essential to investigate prior to attempting

pathway enrichment analyses on disease or trait results from genome-wide association studies

i) the extent of bias introduced by the higher likelihood of low p-values in long genes (or genes

with many tested polymorphisms) ii) the potential local clustering of genes with similar

function and iii) differences in marker lists, in particular as it relates to imputed vs. non-imputed

data sets (Marchini et al. 2007).

For the first question, the impact of gene length was assessed using the gene list derived from

an HDL data set (table 1; sample 1), in order to provide an indication of what might be expected

from genome-wide marker data rather than all annotated genes in the human genome. We note
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that this sample consists of approximately 2.3 million directly typed and imputed markers, and

thus gene representation reflects what is obtainable from HapMap data (release 21). After

conversion using our algorithm, this set also resulted in the largest number of genes (16,977)

from among the samples listed in table 1. These were sorted by average transcript length of

known splice-forms (see methods) and the top 1%, 2%, and 3% of genes were tested by

enrichment analysis using DAVID with the total (16,977) as the base set (see methods). All

three divisions showed a large enrichment of specific ontology terms with progressively

increasing significance from the 1% to 3% groupings (for clarity we only show the 3% grouping

and the top 5 terms in table 2). Sorting this gene set by the number of SNPs extending across

the longest splice-form of each gene resulted in a similar result (table 2). Finally, assessing

genes according to their unadjusted p-value for the HDL trait association itself also gave rise

to similar term enrichment, although significance was attenuated (table 2). Simple linear

regression of gene length, number of markers, and unadjusted marker significance was as

expected high (r2 = 0.8 for length vs. marker number, and r2 = 0.15 for both comparisons of

unadjusted p-value vs. length and marker number, p ≪ 0.0001 for all three comparisons). These

results illustrate the importance of applying strict corrections for gene length (or number of

markers), and for this reason we elected to base our correction upon an LD-adjusted number

of markers for each gene (see methods). A related topic is the change in the rank of associated

genes following the weighted adjustment by our algorithm. This is shown in figure 1, where

the ranks of the top 3% of adjusted genes for the HDL trait are plotted against their ranks prior

to adjustment (there we also depict a running average of the rank ratios).

The second question pertaining to the local clustering of genes with similar functions was in

our view a potentially complicated problem. This has been explored to some extent previously

(e.g. Lee and Sonnhammer 2003; Yi et al. 2007), but we thought it might be valuable to generate

a depiction of the degree of clustering in the genome based upon gene ontology annotations.

For this we again using the gene list derived from the HDL data set (table 1; sample 1) and a

systematic walk was performed along each chromosome from pter to qter, taking 100 genes at

a time (this resulted in an average spacing of 17 megabases and a total of 163 bins) and those

lists tested for enrichment using DAVID. Gene lists were expanded to 100<N<200 at the qter

tails. We recognized that the true problem resides in the capturing of multiple genes by virtue

of linkage disequilibrium (LD) with a single association signal, but that LD which seldom

extends beyond a few hundred kilobases (Weiss and Clark 2002) would result in gene lists that

are too small to empower an enrichment analysis. An equivalent analysis was performed using

100 random bins of 100 genes each to generate a null distribution for comparison. In each case,

the maximum statistic and associated GO term were recorded and we illustrate the results in

figure 2 (full data ordered by chromosome and segment interval as well as specifically enriched

terms are presented in supplementary table 1). This revealed that clustering is extensive, with

a large proportion of bins showing strong evidence of pathway enrichment. We scrutinized the

10 most significant bins to assess the size of the chromosomal segments and the LD structure

across the genes that contribute to the signals. In general, the clusters giving rise to significance

spanned single contiguous regions much smaller than the total region examined (not shown).

However, there were exceptions to this. For example, olfactory genes located on chromosome

11 occur in multiple, separate clusters.

To explore how imputation (Marchini et al. 2007) might impact pathway analyses, we

examined the WTCCC diabetes data set (table 1; subset of sample 2), for which both directly

genotyped and imputed data were available. We anticipated that an increase in gene

representation would occur with imputed data, but sought to estimate its degree. After marker

conversion our algorithm resulted in 15,510 genes being represented in the directly typed set

(from 393,143 markers) vs. 16,347 in the imputed set (from 2,308,536 markers). We noted that

the average length of the represented genes from the imputed data were much shorter than

those in the non-imputed list (8,995 bases for the 837 additional genes vs. 63,591 bases for the
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non-imputed set, p ≪ 0.0001). The position of the imputed genes by unadjusted p-value rank

for the disease association in the full list was also assessed to determine if these were randomly

distributed. Average rank for the imputed genes was 11,812 vs. 7,977 for the non-imputed set,

p ≪ 0.0001. We consider the more important result here to be the inclusion by imputation of

short genes, as this last statistic related to rank simply reflects the smaller likelihood of

obtaining low p-values for short genes. A second question is the relative change in the ranks

of genes following imputation. To estimate this, the ranks of the top 3% of genes in the directly

typed set were plotted vs. their ranks following imputation and the same was done for the top

3% of imputed genes vs. the typed set. This is shown in figure 3, where the ranks of the majority

of genes remain the same, but where clear outliers exist. Of particular note, while the increase

following imputation for some genes was expected (figure 3a), the loss of rank (figure 3b)

derives from our algorithm using LD to predict significant un-typed markers in adjacent genes,

but where imputation ultimately provides evidence against those particular genes being

significant. One additional analysis was thus conducted, changing the LD threshold to 0.9 from

its default of 0.8. This resulted in slightly fewer genes that decreased rank following imputation,

but did not affect the number of genes that increased rank (not shown).

To initiate pathway analyses of real association results, the HDL set (table 1; sample 1) was

selected with the premise that this might represent a validation of this approach and provide a

benchmark for the degree of statistical evidence to be expected. Thus, the emerging genetic

architecture of the HDL trait indicates that several of the most significant genes previously

implicated on a genome-wide level play a role in lipid metabolism (e.g. Zeggini et al. 2008).

The data set comprises a meta-analysis of 8656 individuals from 3 individual studies, with

results representing the marker-by-marker test statistics for 2.3 million markers (directly typed

and imputed). We performed a marker-to-gene conversion for this sample and analyzed the

top 1% of genes for pathway enrichment (see methods). This threshold was decided upon

primarily due to the concern that larger lists might increase the likelihood of enriching for

functional gene clusters. From this analysis, we noted that there were at least two possible

instances of exaggerated enrichment due to clustering. In the first, 3 genes contribute to

statistical evidence of enrichment of several lipid related terms, these being FADS1, FADS2,

and FADS3, all residing in the same genomic interval and LD block. Removing 2 of these from

the input list, retaining only the gene with the highest rank, and re-evaluating the statistics for

previously significant terms resulted in an anticipated decrease in the statistical evidence. In

contrast, we also noted two genes on chromosome 16q, in relatively tight proximity, that both

contribute the enrichment of the term “cellular lipid metabolic process”, these being LCAT and

LYPLA3. The most significant markers in these genes were not in high LD, and thus both were

retained. Based on these observations we concluded that while it was trivial and informative

to manually curate the results of a pathway analysis by examining the specific genes that

contribute to enrichment and to adjust the number downward based upon LD and retaining the

gene(s) with maximum significance, that an automated process might be preferable in some

cases. For this reason, we added a feature to our software to automatically generate “trimmed”

lists to account for genes in high LD (see methods). This feature also allowed us to provide an

estimate of the average level of excess gene representation across the entire data set. For this

sample that number was 0.53; in other words, each gene had on average 0.53 additional genes

that were indiscernible given a certain LD threshold (in this case r2 = 0.8). The results of the

manually trimmed analysis of the HDL trait are presented in table 3a. There, the genes that

contribute to the enrichment of the term “cellular lipid metabolic process” are specifically

highlighted since they served to illustrate the rank assignments from our algorithm of some of

the most well-known genes that influence HDL levels (table 3b). We extended this analysis to

both LDL and triglyceride levels. The results for LDL are shown in table 4, where lipid related

terms also emerged at the top. In contrast, for TG, there were no significant terms, even at a

liberal uncorrected p-value threshold of 0.05.
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We next applied the above analytical scheme (first converting PLINK results to gene lists and

performing enrichment tests using DAVID) to two additional genome-wide data sets, selected

from the growing list of studies (http://www.genome.gov/gwastudies/) due to their size (table

1; samples 2 and 3). The most notable finding from these sets was the possible enrichment of

microtubule genes in type 2 diabetes (table 5a). An interesting feature of this result was the

marked difference from what was observed for lipids in that the ranks of the component genes

that contribute to term significance are all much lower, but this set also had the benefit of these

genes each residing in unique loci (table 5b). In contrast, the analysis of Crohn’s disease was

more problematic with the apparent enrichment of several terms related to immune response

appearing to arise due to clustering of genes in the well-characterized HLA region on

chromosome 6p. We elected for this sample to present both the pre-trimmed and trimmed

results for this data set since it provides an illustration of the impact of clustering, and where

the requisite trimming changes the significance substantially (table 6). Notably, even after

trimming some possible clustering still remains involving 3 genes, although they were not

formally in strong LD (MICA, HLA-DQA2, and HLA-C).

While DAVID represents an excellent starting point for pathway analyses given its flexibility

and fairly comprehensive coverage of recent annotations, there are two important alternatives.

For the first, in order to complement the above analyses we chose to focus again on plasma

lipid traits, and a search for enrichment was attempted using gene set enrichment analysis

(GSEA; see methods) which was originally designed to circumvent the arbitrary nature of

threshold definitions (Subramanian et al. 2005; see methods). For HDL levels in particular,

this produced only modest evidence implicating lipid metabolism (table 7). Performing GSEA

based analyses on the LDL trait in this same sample failed to identify significant terms (not

shown). For TG, a single term was significant at p = 0.0002 (heparin binding). However, a

problem emerged when we simply removed the top ranked gene (CETP) from analysis of HDL,

which almost completely eliminated the significance for lipid terms (table 7). We think this

reiterates the importance of more closely examining the specific genes that contribute to term

enrichment statistics. Perhaps more importantly, this highlights a potential problem with GSEA

in that strong statistical support for a pathway can be driven by a single gene. The second

software that is achieving wide-spread use now is IPA (Ingenuity Pathway Analysis). We again

subjected our lipid results for sample 1 (top 1%) for analysis using IPA specifically restricting

our assessment to the category of molecular and cellular functions. For this analysis we chose

to focus on pathways with 3 or more contributing genes after trimming of any identified

positional clusters. The best evidence of pathway enrichment was obtained for “homeostasis

of cholesterol” in relation to plasma LDL levels with an uncorrected p-value of 9.3 × 10−6

(note that IPA bases its analyses on a Fisher’s Exact Test which is comparable to DAVID) and

included the genes ABCA1, APOB, APOE, LDLR, and PLSCR3. The next best evidence was

for “metabolic process of lipid” in relation to HDL levels with an uncorrected p-value of 1.3

× 10−4 and included the genes CETP, FADS1, IKBKB, IL6, LCAT, LPL, PLA2G15, PPARA,

RAC1, and SMDPD2. These two lists can be directly compared to tables 3b and 4b, where

several genes are represented in both analyses, but where there are differences. This highlights

an important aspect of which down-stream analysis software one opts to use, as there clearly

are gene annotation discrepancies. There was no evidence for enrichment of any category with

more than 3 genes at p < 0.05 for TG.

Finally, we sought evidence of replication for the above analyses by focusing on a second

independent sample with plasma lipid traits from a recent genome-wide association study (table

1; sample 4). We decided to focus on IPA for this analysis, given its somewhat better apparent

performance compared to the other approaches above. We were unable to validate the result

for LDL levels, with no functional categories with 3 or more genes achieving p < 0.05.

However, for HDL levels, results were highly consistent with the data from sample 1, with

multiple categories replicating between the two sets and with “lipid metabolism” being the
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most significant high-level category in both samples. The best evidence of replication was

obtained for the lower-level term “homeostasis of cholesterol” with p = 3.3 × 10−4 for sample

1 and p = 5.3 × 10−4 for sample 4 (using Fisher’s combined probability test gave p = 2.3 ×

10−6). This represented the best study-wide significance across all tests conducted.

Discussion

We developed and implemented a new software program to facilitate the conversion of genetic

marker lists to gene lists, with the primary goal of uncovering evidence of pathway enrichment

from genome-wide association studies. To accomplish this, only the largest of the many

available genome-wide association study data sets were targeted, with an initial focus on

plasma lipid levels that we thought might have a detectable pathway basis. We obtained a

reasonably high level of statistical evidence by replicating an enrichment of lipid related terms

for plasma HDL levels in two independent samples. We consider however the more important

aspect of this work to be the broader exploration of various parameters that may affect the

validity of this strategy.

A central issue in approaches such as ours is how to best obtain representation of genes from

markers. Any strategy like that presented will both increase gene diversity in a region of a

single association signal, potentially causing pathway dilution, and create the possible

“appearance” of enrichment due to the positional clustering of functionally related genes. For

the former, we noted that across the various data sets, the inflation factor was around 0.5, or

on average 50% more genes than would be expected if LD was r2≥0.8 between the markers

showing the highest significance. The consequence of this will be to increase type II error. The

latter problem however, in our view, is much more serious and a few cases are exemplified

where the statistical support decreases following correction for clustering. Although we attempt

to resolve clustering with both manual and/or automatic curation, the only real solution will

require the identification of true functional variants that can be shown to influence specific

genes. Thus, functional studies on gene regulation, including identifying markers that directly

affect gene expression and can be tied to a specific gene are extremely important for pathway-

based analyses. There are a number of impressive in silico tools now appearing for marker and

gene prioritization that may also aid this endeavor (Chen et al. 2008; Gaulton et al. 2007; Ge

et al. 2008; Pico et al. 2009; Tranchevent et al. 2008). The many published genome-wide data

sets also lend themselves to strategies to test for marker independence (Sun et al. 2008), but

there will also be merit in exploring alternative human populations, where LD is less of a

problem (Cox et al. 2002). For the time being, we acknowledge that our algorithm leads to the

inclusion of an excess of genes around significant signals, but we do note that the software

includes options for changing LD thresholds. Nonetheless, in terms of pathway analyses it may

be argued that results of enriched terms where the contributing genes all reside in independent

loci may be regarded as more reliable than those where the genes are clustered, even if not in

strict LD.

We think there is reason to be cautious about biological interpretations of pathway results

across the data sets here and elsewhere. The space of variables that can be tuned for these kinds

of analyses is quite large, ranging from the statistics and covariates chosen in the original

genome-wide studies to which pathway enrichment tool/statistic is used. This is particularly

important given the relatively large number of analysis programs now available, including

those used here (DAVID, GSEA-P, and IPA). Against this background the possible enrichment

of terms associated with lipid metabolism in two independent data sets for HDL levels

represents a reasonable validation of this approach. However, this statistical evidence should

be taken in context with that of the most significant individual gene (CETP; P ≈ 10−20). If this

is an indication that the evidence one can expect from pathway analyses is likely to be weaker

than for individual genes, then even larger samples than those currently employed may be
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required for detection. An interesting contrast to the HDL result is the essential lack of evidence

in the Crohn’s disease sample. In particular, the role of the immune system for this disease is

well documented (Lettre and Rioux 2008) yet is only marginally implicated by our pathway

analysis. The result however reiterates a classic problem in genetics, namely the possibility

that there are multiple independent functional variants acting in the HLA region that are

indiscernible due to LD. This may have implications for other immune diseases, such as

rheumatoid arthritis (Raychaudhuri et al. 2008). The result for diabetes yielded yet a third

contrasting scenario, where there was a suggestion of the involvement of microtubule genes

but no confounding by positional clustering. An intriguing aspect of this result was the inclusion

of the KIF11 gene which resides in an LD block that includes HHEX and IDE. We have focused

on IDE in the past (Gu et al. 2004), and others have highlighted maximum signals nearer

HHEX (Zeggini et al. 2007). Still, though there is no strong precedent for the involvement of

kinesin proteins in type 2 diabetes from the literature, the additional information included by

a pathway analysis may help to prioritize specific genes for further functional assessment.

At the outset of this investigation we were interested in what the evolutionary implications

might be should evidence of pathway enrichment emerge. Given that both allelic and locus

heterogeneity act to influence phenotypes, a natural concern was that population differences

could contribute to apparent enrichment. Thus, two genes with similar annotations and acting

detectably on a phenotype but exclusively in separate sub-populations would be considered

together. For genes such as CETP this is unlikely to be the case since it has been demonstrated

to be highly significant in numerous populations, but for genes farther down in rank it may be.

This ultimately represents a trade-off in terms of obtaining high statistical power for single

marker analyses (via meta-analysis) and the risk of enriching a pathway due to locus

heterogeneity across different populations. Nonetheless, the assumption that diseases should

arise by mechanisms involving similar genes has long been one the corner-stones of genetic

association studies. Complex phenotypes have evolved to be resilient to insult (Buchanan et

al. 2006), and the emergence of modest to weak effects across multiple genes in a pathway

might be seen to support this.

In summary, pathway analyses of genome-wide association data based upon controlled gene

annotations are now emerging, with many groups claiming evidence of enrichment for a range

of phenotypes (Baranzini et al. 2009; Torkamani et al. 2008; Wang et al. 2007). The data

presented in this paper also support the prospect that biological pathways can be detected in

genome-wide association data, but we have still only scratched the surface of the bulk of

genome wide data becoming available and we think there is still reason to be cautious. In

particular, the observation that persists both here and in other studies is that there is no case

where the evidence for any pathway enrichment exceeds that of the previously reported single

locus findings. This can be taken as a strong contrast to gene expression studies, where striking

evidence of pathway enrichment often emerged in the absence of obvious single gene effects

(Mootha et al. 2003). The application of pathway approaches to genetic marker data is

nonetheless relatively new territory and may represent a valuable addition to ongoing genome-

wide studies given the vast range of phenotypes now being investigated

(http://www.genome.gov/gwastudies/). This needs to be tempered however against a number

of issues that have previously not been dealt with, the most important in our view being

positional gene clustering. The software provided here should nonetheless help to relieve the

bottleneck of automating the transition from marker lists to gene lists, and thus expedite further

analyses of genome-wide data in a pathway context.
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Materials and Methods

From SNP lists to Gene lists

A Perl program, named ProxyGeneLD, was developed to automate the assignment of

genotyped SNPs from genome-wide association studies to specific genes, flexibly taking into

consideration linkage disequilibrium (LD). This was based upon several assumptions. First, a

functional SNP is more likely to affect the gene if the variant is located within its open reading

frame or in the promoter binding region. Second, the number of SNPs derived from HapMap

phase II is large enough to provide coverage of most genes annotated in the various databases

describing pathway terms (e.g. Gene Ontology). Third, the program also assumes that the

number of common non-HapMap SNPs which are solely located in a gene and in strong LD

with a directly observed SNP is negligible.

The program requires 5 different data files from public databases, which were obtained as

follows. The positional data of the entire set of validated polymorphic SNPs from CEU samples

of HapMap phase II (release 22) and the file containing NCBI RefSeq transcript locations were

attained using the UCSC table browser tool (hg18). Information on pair-wise LD estimates for

all HapMap CEU SNPs was downloaded from the official HapMap homepage (release 23a).

In the program, gene definitions followed Entrez Gene database conventions and GeneIDs

were used as reference identification numbers. Because GSEA-P, one of the downstream

applications we utilized, accepts only gene symbols, a step to convert Entrez GeneIDs to gene

symbols was also implemented in our program. The data files for GeneIDs and linked official

gene symbols were downloaded from Entrez Gene ftp. All of the aforementioned 5 data files

were preprocessed creating more compact files in order to speed up the program. The program

initiates by reading the output data file of original genome-wide association study (GWAS)

that is tab-, space-, or comma-delimited text files and which contains list of SNPs and

corresponding p-values.

Two sets of SNPs are considered in the program. The first is the set of SNPs from HapMap

CEU phaseII and the other comprises the SNPs tested in original GWAS, which were termed

“HapMap SNPs” and “study SNPs”, respectively. The program first examines LD structure

between HapMap SNPs and groups two HapMap SNPs at a user defined LD threshold to create

a “proxy cluster”. In most cases the condition r2≥0.8 was used as a default. The proxy cluster

is then expanded by iteratively adding one more HapMap SNP in high LD with any member

SNP of the cluster or by merging with another proxy cluster that shares an identical member.

The program retains information on which HapMap SNPs were in high LD to form proxy

clusters. Each HapMap SNP regardless of membership in a proxy cluster is then assigned to

the longest known transcript of each gene including a 1kbp extension to include promoter

regions. Likewise, every proxy cluster is assigned to the nearest gene according to the positions

of the SNPs that comprise the cluster. All genes for which any study SNP or any proxy cluster

is assigned are then listed, ignoring SNPs which are not represented in HapMap. The

significance level of association for each gene before adjustment is chosen as the lowest p-

value among the single study SNPs that do not belong to any proxy cluster and those in proxy

clusters that include one or more study SNP that have been assigned to the gene. The total

number of single SNPs and proxy clusters is then multiplied by the pre-adjustment significance

level. An illustration of this process is shown in supplementary figure 1.

Automated Trimming of Gene Clusters

A gene cluster was defined as a gene set for which the most significant SNP assigned to each

gene is a member of the same proxy cluster. In other words, signals from all genes in a gene

cluster had a high likelihood of originating from a single association between one marker and

phenotype. The program automatically provides a column showing for each gene any other
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gene(s) that were indiscernible members of the same cluster. As an optional step, it additionally

creates one more list of genes in which clusters are sorted out, whereby the gene with the highest

ranked SNP is retained and the remaining genes moved to bottom of the list. A note of caution

with this is that it might not be appropriate to use this function for cases in which rank is

important (e.g. for GSEA-P).

GSEA

Gene set enrichment analysis (GSEA v2.0) is implemented as a JAVA application named

GSEA-P and requires a text file containing gene symbols and a weight for gene ranking. For

our analyses, gene ranks were calculated by; (weight) = −log10(adjusted gene-wide p-value).

Since this produces a large number of negative values due to gene-based adjustment, to retain

the relative rank positions for all genes beyond the inflection a linear scale ending at zero was

created. All reported results using GSEA are based upon 5000 permutations, p = 1 weighting,

maximum set size of 500 and minimum set size of 15. A false discovery rate < 25% was used

as an indication of potentially interesting findings.

Threshold-based ontology analysis (DAVID)

DAVID is one of the many publicly available web-applications for searching for over-

represented pathways in gene lists. It provides extensive options for the interrogation of

approximately 40 alternative databases (e.g. KEGG, Interpro, Pfam), but there is a large degree

of redundancy when multiple data sources are tested and GO has the greatest number of gene

annotation records. Even for GO annotations, redundant terms arise with only marginal

differences in the component gene lists. For this reason, for all analyses using DAVID results

are presented based upon the use of functional annotation clustering and only the top five single

terms from among clusters are reported. For presentation purposes, this was truncated at a

maximum of five results. Analyses presented here used DAVID with a March 2008 GO

annotation update.

Ingenuity pathway analysis (IPA; Ingenuity Systems)

IPA is a commercial web-delivered application implemented in JAVA of which one of

functions is to calculate the probability of observing an association between certain gene sets

and pathways by random chance. It applies the right-tailed Fisher’s Exact test and Benjamini-

Hochberg method of multiple testing correction (Benjamini and Hochberg 1995) to find over-

represented pathways in the gene set comparing to a reference set, which in our analyses is the

total genes monitored in each original GWAS. In IPA, annotations of genes to pathways are

based on the Ingenuity Knowledge Base, that was built on the extracted findings in major life

sciences literature and data in established public databases such as GO and EntrezGene.

General statistics

For various analyses, gene length was taken as the average of all known splice-forms according

to RefSeq of NCBI build 36.1. Total unadjusted SNP number for each gene was established

according to the genomic interval spanning the longest known splice-form. Analyses involving

gene ranks were performed using the Mann-Whitney U test. Gene length, number of markers,

and unadjusted genome-wide p-values were log10-transformed prior to simple linear

regression.

Software Availability

The software ProxyGeneLD is available for free download at

http://ki.se/ki/jsp/polopoly.jsp?d=26072&l=en. It consists of the main program

proxyGeneLD.pl, and two additional programs for preprocessing.
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URLs

DAVID 2008: http://david.abcc.ncifcrf.gov/; Entrez Gene download data:

ftp://ftp.ncbi.nlm.nih.gov/gene/; Gene Ontology (GO): http://www.geneontology.org/;

HapMap bulk data download, LD data: http://ftp.hapmap.org/ld_data/?N=D; UCSC genome

browser: http://genome.ucsc.edu/; Ingenuity Pathway Analysis software:

http://www.ingenuity.com/; GSEA-P: http://www.broad.mit.edu/GSEA

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Change in the ranks of genes in sample 1 (GWAS of plasma HDL levels) following gene based

adjustment for the number of markers spanning the longest known splice-form. Adjusted ranks

are plotted along the x-axis and unadjusted ranks along the y-axis. The sub-panel shows the

running average of the ratio between the unadjusted and adjusted ranks and illustrates that the

relative change is large for the top-ranked genes. The appearance of lines in the main panel

reflects groups of genes with similar numbers of markers (the steepest being genes represented

by single markers, the second steepest by 2 markers, and so on).
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Fig. 2.

Evidence of wide-spread ontology-based clustering of genes in the human genome. The main

panel illustrates the distribution of significance for the first 100 clusters (dark shaded area)

against a null distribution for random genes (light shaded area at base). The sub-panel depicts

significant clusters according to genome position, ordered from pter of chromosome 1 to qter

of chromosome 22. The top three peaks represent “olfactory receptor activity”, “cell adhesion”,

and “keratinization”, respectively. See supplementary table 1 for a full listing of significant

terms.
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Fig. 3.

Change in gene ranks for a subset of sample 2 (WTCCC type 2 diabetes) using the top 3% of

genes from directly genotyped marker lists (x-axis) compared to the same genes derived from

imputed lists (y-axis) (3a). For comparison, in figure 3b the top 3% of genes from imputed lists

(x-axis) are compared to directly typed markers (y-axis). In both cases, while some extreme

outliers occur, most genes retain similar rank. All axes are drawn in log10 scale.
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Table 2

GO terms enriched among long genes

Term Genes with term Length SNP number HDL trait p-value

synapse 37 4.80E-17 1.00E-16 NS

cell adhesion 61 4.00E-13 2.60E-14 1.00E-06

plasma membrane part 106 2.20E-12 1.30E-10 2.90E-07

membrane 254 3.10E-10 1.50E-11 4.30E-05

nervous system development 52 4.90E-09 5.40E-11 NS

Enriched terms among the longest 3% of genes, by number of markers, and by unadjusted association with the HDL trait. Genes in term refers only

to the number in the first analysis of length.

NS = not significant at α = 0.05.
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Table 3a

GO terms enriched for plasma HDL levels

Term Genes with term p-value Fold change

carboxylesterase activity 7 9.60E-04 6.1

response to external stimulus 14 3.50E-03 2.5

fatty acid metabolic process 7 4.60E-03 4.5

cellular lipid metabolic process 13 6.30E-03 2.4

sterol transport 3 8.60E-03 21

The five most significant terms from among the top functional annotation clusters are shown.
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Table 3b

Specific genes contributing to enrichment of the term “cellular lipid metabolic process”

Gene Rank in GWAS Marker p-value (original)

CETP 1 rs7203984 4.55E-20

LPL 2 rs328 2.29E-11

LIPC 3 rs1077834 5.18E-10

ABCA1 7 rs4149274 7.36E-08

MVK 17 rs7954144 4.76E-06

FADS1 21 rs174545 4.18E-05

LYPLA3 26 rs17688076 4.18E-05

PPARA 99 rs9615264 4.44E-05

SMPD2 120 rs6911838 1.14E-03

BMP6 136 rs2876117 5.15E-05

CPT1A 147 rs597539 1.53E-04

LCAT 151 rs4986970 1.07E-03

ADIPOR2 160 rs11061935 1.79E-04

Rank in GWAS is according to the LD-adjusted p-value of the most significant marker associated with each gene. The presented p-value is the

unadjusted significance of the specified marker in the original data set.
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Table 4a

GO terms enriched for plasma LDL levels

Term Genes with term p-value Fold change

sterol transport 4 4.30E-04 25

lipid transporter activity 6 6.40E-04 8.6

intracellular organelle 88 1.30E-03 1.3

nucleic acid metabolic process 47 8.10E-03 1.4

macromolecular complex assembly 12 1.10E-02 2.4

The five most significant terms from among the top functional annotation clusters are shown.
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Table 4b

Specific genes contributing to enrichment of the term “sterol transport”

Gene Rank in GWAS Marker p-value (original)

LDLR 4 rs6511720 6.76E-10

APOB 5 rs531819 1.01E-09

APOE 93 rs405509 1.70E-03

ABCA1 105 rs2000069 2.25E-05

Rank in GWAS is according to the LD-adjusted p-value of the most significant marker associated with each gene. The presented p-value is the

unadjusted significance of the specified marker in the original data set.
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Table 5a

GO terms enriched for type 2 diabetes

Term Genes with term p-value Fold change

microtubule-based process 10 1.30E-04 5.1

response to nutrient 5 6.10E-04 12.6

advanced glycation end-product receptor activity 3 9.90E-04 59

intracellular organelle 82 1.40E-02 1.2

cellular component assembly 12 1.60E-02 2.3

The five most significant terms from among the top functional annotation clusters are shown.
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Table 5b

Specific genes contributing to enrichment of the term “microtubule-based process”

Gene Rank in GWAS Marker p-value (original)

KIF2A 49 rs152189 1.03E-04

KIF21A 78 rs4768736 9.96E-05

KIF3C 100 rs2384298 1.63E-04

HCN4 121 rs1564345 1.77E-04

PCLO 123 rs1157530 4.06E-05

MAP3K11 129 rs7946115 6.47E-04

CENPE 137 rs12506065 5.46E-04

KIF11 150 rs4933734 2.76E-04

DNAL4 158 rs760482 7.89E-04

KPNA2 161 rs4638 3.25E-03

Rank in GWAS is according to the LD-adjusted p-value of the most significant marker associated with each gene. The presented p-value is the

unadjusted significance of the specified marker in the original data set.
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Table 6a

GO terms enriched for Crohn’s disease

Term Genes pre-trim p-value pre-trim p-value post-trim (genes) Fold change post-trim

MHC protein complex 6 1.30E-05 NS NA

immune response 18 4.60E-05 0.011 (13) 2.3

regulation of apoptosis 13 5.30E-03 0.033 (11) 2.1

nucleocytoplasmic transport 6 1.20E-02 no change 4.3

kinase activity 16 1.30E-02 no change 1.9

The five most significant terms from among the top functional annotation clusters are shown.

NS = not signficant at α = 0.05, NA = not applicable.
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Table 6b

Specific genes contributing to enrichment of the term “immune response” after trimming

Gene Rank in GWAS Marker Genomic Position p-value (unadjusted)

IL23R 1 rs11465804 chr1:67.4 Mb 1.01E-35

NOD2 2 rs2076756 chr16:49.2 Mb 3.42E-32

NKX2-3 7 rs10883371 chr10:101.2 Mb 1.82E-10

IRF1 17 rs2188962 chr5:131.8 Mb 4.58E-09

TNFSF15 39 rs6478109 chr9:116.6 Mb 2.61E-07

CCR6 50 rs7749278 chr6:167.4 Mb 3.29E-07

CCL11 77 rs991804 chr17:29.6 Mb 4.01E-06

MICA 88 rs2596503 chr6:31.5 Mb 3.94E-06

HLA-DQA2 99 rs7768538 chr6:32.8 Mb 7.92E-06

HLA-C 121 rs2905747 chr6:31.3 Mb 1.50E-05

IFI30 122 rs7125 chr19:18.1 Mb 3.61E-05

PTPN22 150 rs2476601 chr1:114.2 Mb 1.81E-05

CSF3 160 rs8078723 chr17:35.4 Mb 5.51E-05

Genomic position is according to NCBI Build 36.1 of the human genome.

Rank in GWAS is according to the LD-adjusted p-value of the most significant marker associated with each gene. The presented p-value is the

unadjusted significance of the specified marker in the original data set.
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Table 7a

GO term enrichment for HDL from GSEA analyses

Term Core genes p-value - sample 1 p-value w/o CETP

lipid transport 6 4.00E-04 0.037

lipid transporter activity 5 8.00E-03 0.67

Reported significance is based upon 5000 permutations. The analysis excluding CETP was done in sample 1.
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Table 7b

Specific genes contributing to enrichment of the term “lipid transport”

Gene Rank in GWAS Rank Metric Score

CETP 1 18.0

ABCA1 7 5.2

PPARA 101 2.8

LCAT 153 2.5

PSAP 257 2.1

ABCD3 292 2.1

PPARD 734 1.5

Rank in GWAS is from sample 1.
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