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Multiplexed imaging is a recently developed and powerful single-cell biology research tool.

However, it presents new sources of technical noise that are distinct from other types of

single-cell data, necessitating new practices for single-cell multiplexed imaging processing

and analysis, particularly regarding cell-type identification. Here we created single-cell

multiplexed imaging datasets by performing CODEX on four sections of the human colon

(ascending, transverse, descending, and sigmoid) using a panel of 47 oligonucleotide-

barcoded antibodies. After cell segmentation, we implemented five different normalization

techniques crossed with four unsupervised clustering algorithms, resulting in 20 unique

cell-type annotations for the same dataset. We generated two standard annotations:

hand-gated cell types and cell types produced by over-clustering with spatial verification.

We then compared these annotations at four levels of cell-type granularity. First, increasing

cell-type granularity led to decreased labeling accuracy; therefore, subtle phenotype

annotations should be avoided at the clustering step. Second, accuracy in cell-type

identification varied more with normalization choice than with clustering algorithm. Third,

unsupervised clustering better accounted for segmentation noise during cell-type

annotation than hand-gating. Fourth, Z-score normalization was generally effective in

mitigating the effects of noise from single-cell multiplexed imaging. Variation in cell-type

identification will lead to significant differential spatial results such as cellular neighborhood

analysis; consequently, we also make recommendations for accurately assigning cell-type

labels to CODEX multiplexed imaging.

Keywords: Multiplexed tissue imaging, CODEX, single-cell analysis, normalization, unsupervised clustering, spatial

analysis, cell-type identification, colon

INTRODUCTION

Multiplexed imaging techniques allow imaging up to 60 markers in a tissue simultaneously, which

increases the number of identifiable cell types in situ (1–3). This enables a level of spatial analysis of
cells that not possible using other immunophenotyping approaches (4, 5). Spatial and structural

relationships are now at the forefront of biological, consortia-led, and clinical studies using these

technologies (6–10). However, these multiplexed imaging technologies have unique sources of
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noise: imperfect cell segmentation, image processing artifacts,

and tissue processing artifacts like autofluorescence (2, 11–14).

Although not problematic for qualitative analysis, these

sources of noise can interfere with quantitative single-cell

analysis—particularly cell-type identification. Incorrect cell-

type identification will lead to false interpretations of spatial
features and study conclusions. Most studies using multiplexed

imaging technologies have employed previously established

pipelines created for non-imaging-based, single-cell-type

identification, such as hand-gating flow plots or unsupervised

clustering, and have used various methods of raw data processing

and normalization (10, 15–20).
Here we describe a study benchmarking the effects of

normalization techniques and unsupervised clustering algorithms

on multiplexed imaging data. In this study, we evaluated the

performance of five major normalization techniques and four

unsupervised clustering algorithms on mitigating the effects of

noise in cell-type identification in a dataset generated by the co-
detection by indexing (CODEX) multiplexed imaging technology.

MATERIALS AND METHODS

CODEX Imaging
CODEX multiplexed imaging was done using a CODEX staining
and imaging protocol previously described in detail (16, 19).

Settings used for the microscope are listed in Supplemental

Table 1. The 47 antibodies were custom conjugated to

oligonucleotides following the published protocol. Antibody

information is summarized in Supplemental Table 1. Raw

imaging data were then processed using the CODEX Uploader

for image stitching, drift compensation, deconvolution, and cycle
concatenation. Processed data were segmented using the

CODEX Segmenter, a watershed-based single-cell segmentation

algorithm. Both the CODEX Uploader and Segmenter are

software can be downloaded from our GitHub site (https://

github.com/nolanlab/CODEX).

Normalization Techniques
We compared single-cell quantified data without processing to

that processed using four different normalization techniques:

Z Normalization
Each marker intensity was Z normalized separately for all cells

within the dataset. This normalized the range of each marker as

fluorescent intensities of each marker can depend on antibody

staining strength and exposure times.

Log (Double Z) Normalization
The first Z normalization was performed on each marker intensity,

and then another Z normalization was applied to each cell. These

values were then transformed into probabilities. Finally, a negative

log transformation was applied to the complement of the

probabilities. Because the first Z normalization equalizes signal

intensities, marker Z scores can be compared. Furthermore, as
each cell should only be positive for between one and fivemarkers of

the 47 recognized by antibodies in the staining panel, applying the

second Z normalization identifies positive markers with high

probability. Using a negative log transformation of the

complement of the probability is necessary to amplify values of

high probabilities for input into clustering algorithms.

Min_Max Normalization
First the 1st and 99th percentiles were found to cap minimum and

maximum values, respectively, for each fluorescent channel and

then each value in the channel was normalized by taking the

difference between minimum over the range of values. Reducing

to the 99th percentile aids removes artificially high background

fluorescent intensities often seen in imaging datasets.

Arcsinh Normalization
An arcsinh transformation was performed on marker intensities,

and the resulting values were scaled with a cofactor of 150. This

type of normalization is appropriate when dataset contain low or

negative values resulting from background subtraction.

Unsupervised Clustering Techniques
Hand gating was carried out using a hierarchical strategy to label
each cell as shown in Supplemental Figure 1 using CellEngine

(https://cellengine.com/). X-shift with angular distance, X-shift

with Euclidian distance, and k-means clustering were performed

using the VorteX software available from our GitHub site

(https://github.com/nolanlab/vortex). Default settings were used

with k values obtained from the elbow-point inflection from each

clustering technique. Leiden-based clustering was performed
using the scanpy Python package with default parameters.

F-Score and Neighborhood Analysis
F-score analysis was performed as described in Figure 3A using

the indicated reference dataset for each comparison.

Neighborhood analysis was performed using the same Python

scripts described previously (10). Neighborhoods were named
for cell types enriched within the neighborhood as compared to

the tissue as a whole (Supplemental Figure 12).

RESULTS

CODEX Multiplexed Imaging of the
Human Colon
We conducted our analysis on data we collected as a part of the

Human BioMolecular Atlas Program (HuBMAP) consortia

effort that focuses on systematic mapping healthy tissue
structure across human organ systems and making the data

publicly available (6). For this analysis we used imaging data

collected from four tissue blocks from the same human donor

from the transverse, ascending, descending, and sigmoid colon

(regions 1-4, respectively) made into a single array. We used a 47

oligonucleotide-barcoded antibody panel to image with the

CODEX technology (16, 19), which involves cyclic stripping,
annealing, and imaging of fluorescently labeled oligonucleotides
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complementary to the oligonucleotides that barcode the

antibodies used in staining (Figure 1A).

The antibody panel includes targets for discriminating several

major epithelial subtypes of the colon, stromal cell types, and

both adaptive and innate immune cell types (Figure 1B). Using

only six markers we can observe major cell subsets of the colon:
immune (magenta), goblet (green), proliferating (cyan), nerve

(gray), general epithelial (yellow), and smooth muscle (red) cells

(Figures 1C, D).

CODEX imaging of the colon tissue resulted in a single-cell

dataset composed of ~130,000 cells with fluorescence values

quantified from each marker by standard processing of

CODEX imaging data: tile stitching, drift compensation, cycle

concatenation, background subtraction, deconvolution,

determination of best focal plane, and segmentation of single

cells ready for cell type annotations (Figure 1E).

Methods for Normalization and
Unsupervised Clustering Techniques
Used for Cell Type Identification
We first used the hand-gating approach to hierarchically gate out 35
distinct cell types in the dataset (Figures 2A, B and Supplemental

Figure 1). Hand gating is often used for cell type identification in

immunophenotyping techniques like flow or mass cytometry and is

A B

C D

E

FIGURE 1 | CODEX multiplexed imaging of the human colon. (A) Schematic of the CODEX protocol for imaging of sections of ascending, transverse, descending,

and sigmoid colon. (B) The 47 CODEX oligonucleotide-barcoded antibodies used discriminate several major epithelial subtypes of the colon, stromal cell types, and

both adaptive and innate immune cell types. (C) Image with six representative markers highlighted with data for CD45 (magenta), MUC2 (green), Ki67 (cyan),

Synaptophysin (gray), Cytokeratin (yellow), and aSMA (red) (scale bar = 1 mm). (D) Magnified view of the region indicated with the cyan box in panel (C) (scale bar =

100 mm). (E) The workflow for single-cell multiplexed imaging preprocessing used in this study.
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FIGURE 2 | Strategies used for cell type annotation via five methods of data normalization and four clustering algorithms. (A) Far left: Spatial plot of x, y positions

cells gated based on quantified fluorescent signal for aSMA and Cytokeratin. Plots to the right: Single-positive gating shows location of identified populations with the

same x, y positions. (B) Cell-type comparisons at four levels of granularity with the level 1 having the highest degree of granularity of 35 cell types and level 4 having

the lowest degree of granularity of 7 types. (C) Schematic of data treatment and representative UMAP plots for, from left to right, original CODEX data, Z normalized

data, log(double Z) transformed data, min-max normalized data, and arcsinh normalized data. (D) Data, normalized or not, was clustered using the Leiden algorithm,

k-means, X-shift with Euclidian distance, or X-shift with angular distance. All cell type annotations were merged for each cell and combined into one dataset for

comparison of annotations.
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an often used gold-standard for comparison of cell-type annotations

(21). In addition to gating out marker values, with CODEX data we

can also visualize or gate on the spatial location of cells based on

markers (Figure 2A).

Since the granularity of cell-type definition is dependent on

the data analyzer, we also explored the confidence of cell-type
discrimination with multiplexed imaging data. To do this, we

defined four levels of cell-type granularity: level 1, 35 cells types

(including a “noise” cell type); level 2, 20 cell types; level 3, 14 cell

types; and level 4, 7 cell types (Figure 2B). Discrimination at the

highest level of granularity should provide the most detailed

understanding of tissue biology, but increasing granularity comes
at a cost of confidence in accuracy.

To compare the influence of normalization techniques, the

quantified fluorescent data was subjected to one of four

normalization techniques: Z, log(double Z), min-max, or arcsinh,

or left in its original raw format (Figure 2C). The transformed data

were then used as input to four different unsupervised clustering
algorithms: Leiden (graph-based), X-shift (density-based) with

either Euclidian or angular distances, and k-means (Figure 2D).

This produced 20 separate clusterings, with each cell annotated

based on cluster membership, that could be directly compared to

each other and to the hand-gated standard.

Comparison of Normalization and
Unsupervised Clustering Techniques to
Hand-Gated Cell Type Annotations
All percentages of cell types were fairly similar across with values

within 10% for all cell type annotations (Supplemental Figure 2)

and numbers of unique cell types identified were similar across
the clusterings (Supplemental Figure 3). To compare

annotations more statistically between the unsupervised and

hand-gated populations, the F-score was calculated for all

clustering algorithms and normalization combinations at each

cell type. The F-score is a commonly used metric to refer to the

concordance of a prediction and a gold standard and is defined as

the harmonic mean of the precision and recall (Figure 3A,
Supplemental Figure 4). This metric is widely used because it

considers false positives and false negatives. The F-score ranges

from 0 to 1 where 0 is no concordance and 1 is perfect accuracy

between the gold standard and the predication.

F-scores summarized over all cell types revealed that the highest

level of granularity in cell-type identification had a low-level
agreement with the gold-standard hand gating (0.1-0.3,

Figures 3B, C) with high variation. The F-score average increased

(to 0.4-0.6) at higher levels of granularity (Figures 3B, D and

Supplemental Figure 5). As expected, given the variation in F-

scores, grouping of the data on a per cell type basis revealed stark

inter-cell and intra-cell variation of F-scores (Figure 3E).

Understanding the inter-cell variation of F-scores can help us
gauge the appropriate granularity for cell-type assignment.

Certain cell types (e.g., interstitial cells of Cajal, plasma,

stromal cells) were consistently categorized accurately (average

F-score of 0.6), whereas other cell types (e.g., CD4- CD8- T cells,

CD4+ T cells, CD127+ pCD4+ T cells) were not (average F-score

of 0.05), regardless of normalization technique or clustering

algorithm used.

A major reason certain cell types have consistently low F-

scores is that these types of cells were not identified by many of

the approaches (Supplemental Figure 6). Another reason is that

the granularity of cell type definition at level 1 includes the use of
phenotypic markers to split cell types. For example, the

identification of CD4+ T cells at level 1 is poor because CD4+

T cell subpopulations were based on CD127 and CD69

expression. Although these distinct cell types were evident in

many clustering datasets based on average expression profiles,

the intensity profiles of single-cell data are a continuum rather
than binary, characteristic of many phenotypic markers like

CD69 and CD127 (Supplemental Figure 7A). This makes it

harder to consistently resolve cell types based on phenotypic

markers. The next level of granularity, level 2, eliminates these

phenotypic separations, and CD4+ T cells were one of the more

consistently recognized cell types (F-score increased from 0.05
with level 1 granularity to 0.5 at level 2) (Supplemental

Figure 7B). Consequently, phenotypic definitions of cell types

should be avoided in cell-type annotations.

We verified these general trends using another quantitative

metric, Cohen’s kappa, which is a measure of chanced corrected

accuracy. Cohen’s kappa ranges from 0 to 1 with higher scores

indicative of better agreement between two labels. Cohen’s kappa
was also inversely correlated with the granularity of the cell type

(Supplemental Figure 8A). This metric demonstrated that X-

shift clustering with Euclidian distance clustering performed

poorly regardless of normalization technique (Supplemental

Figures 8B, C). The F-scores and the Cohen’s kappa scores

were correlated indicating agreement within the two metrics
(Supplemental Figure 8D).

Understanding intra-cell variation of F-scores informs how

different combinations of clustering algorithms and normalization

techniques influence cell-type labeling accuracy for CODEX data.

For some cell types (e.g., neuroendocrine cells and neutrophils)

there was high intra-cell variation of F-scores (~0.7 range), whereas

for other cell types (e.g., enterocytes) there was considerably less
intra-cell variation of F-scores (~0.15 range). We highlight three

examples with both high and low intra-cell variation are instructive

of the differences in normalization and clustering techniques.

Neuroendocrine cells are a rare cell type (~0.3% of all cells)

and are uniquely positive for chromogranin A (CHGA). CHGA

had a low signal intensity in the fluorescence but also had a low
background signal (Supplemental Figure 9A). F-scores were

largely dependent on normalization technique and not on the

unsupervised clustering algorithm (Figure 3F and Supplemental

Figure 9B). When Z normalization was applied, these cells were

consistently identified (F-score of 0.65); in contrast, without

normalization, these cells were not identified (F-score of 0).

Neutrophils are also rare (~0.3% of all cells) and are identified
due to expression of CD45, CD15, and CD16, which are markers

also shared by other immune and epithelial cells. CD15 and CD16

had higher background signals than other markers (Supplemental

Figure 9C), and the F-scores were dependent on the normalization

technique (Figure 3G and Supplemental Figure 9D).
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The min-max and arcsinh normalizations had high consistency

(<0.1 F-score range) regardless of the clustering algorithm, whereas

F-scores determined with other normalization techniques varied

widely and depended on the downstream clustering algorithms

(~0.5 F-score range).
Enterocytes are a common cell type (~12% of all cells) identified

based on cytokeratin staining and lack of specialized epithelial

markers (e.g., MUC2). The intra-cell F-score variation was low for

these cells. Differences between normalization and clustering

technique were less pronounced than for neuroendocrine cells and

neutrophils, although for enterocytes agreement depended more on

the clustering technique than for rarer cells types. For enterocytes,

Leidenandk-means clusteringhadmore consistentF-scores thandid

X-shift-based methods (Figure 3H and Supplemental Figure 9E).
It is important to select the normalization and clustering

technique that maximizes the performance on the cell types (e.g.,

neuroendocrine cells and neutrophils) that have high intra-cell

variation of F-scores. Our analysis indicates that a normalization

A

B

C

D

E

F G H

FIGURE 3 | F-score comparisons between clustering and normalization technique to hand-gated standard demonstrate high inter-cellular and high intra-cellular

variation. (A) Method for calculating F-scores with cell-type assignments. (B) Average F1 score for each normalization. (C) Clustering combinations stratified by level

of granularity. (D) Level 1 and level 4 F-scores averaged across cell types for each combination of normalization technique and clustering algorithm. (E–H) Level 1 F-

scores for (E) each cell type and, in expanded views, (F) neuroendocrine cells, (G) neutrophils, and (H) enterocytes pulled out for comparisons of clustering or

normalization technique (black data point is mean and error bars indicate standard deviation).
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A B

C D

E F

G

FIGURE 4 | Hand-gating is confounded by cell segmentation noise. (A) Level 4 F-score averaged across cell types for each combination of normalization technique

and clustering algorithm as compared to hand-gating standard. (B) Heatmap of fold differences between cell-type percentages for level 4 for each combination of

normalization technique and clustering algorithm as compared to hand gating annotations. (C) CD34 versus CD31 fluorescent intensity (endothelial markers) for, from

left to right, all cells, actual endothelial cells that are downstream of the Cytokeratin gate (orange box), and both mislabeled epithelial cells (blue) and all other epithelial

cells (green). (D) Plots of, from left to right, all gated cells, three populations indicated by orange, green, and blue boxes in panel (C), and just endothelial and

mislabeled epithelial cells. (E) Overview of technique to generate an over-clustered standard dataset: 1) 90 clusters were generated by X-shift angular distance

clustering with the original cell data, 2) clusters were annotated with cell type by evaluation of marker average profiles and location of cells withing tissue, and 3)

common cell types were merged to a final standard dataset of 28 clusters. (F) Level 4 F-scores averaged across cell types for each combination of normalization

technique and clustering algorithm as compared to over-clustered standard. (G) Level 4 F-scores for the endothelial cell population for combinations of normalization

and clustering techniques compared to the over-clustered standard (black data point is mean and error bars indicate standard deviation).
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method such as Z normalization reduces clustering artifacts

associated with noise associated with low signal or

high background.

Hand-Gating Annotations Are Limited by
Segmentation Noise
F-score averages increased at lower levels of granularity as

expected, although, surprisingly, the endothelial cell population

had a consistent low average score (Figure 4A). We investigated

this by computing the fold change of cell-type percentage from

each clustering result compared to the hand-gated standard
(Figure 4B and Supplemental Figure 10A). Endothelial cells

were identified more frequently (5- to 10-fold higher total

numbers) by clustering annotation compared to hand gating.

In contrast, there were fewer epithelial cells (5- to 10-fold fewer

total numbers) identified by clustering than by hand-gating

assignment. This suggests that the hand-gated standard may
have incorrectly misclassified endothelial cells as epithelial cells.

In the hand-gating process, endothelial cells were identified as

cells that were negative for cytokeratin and positive for CD34

and CD31 (Figure 4C). Only 2% of cells that expressed

cytokeratin were also positive for CD34 and CD31 (Figure 4C

and Supplemental Figure 10B).

Imperfect cell segmentation often happens in regions where
cells are in close proximity and are not separated. This contributes

to the noise in multiplexed imaging data. To understand if this

might be the reason for mislabeling of endothelial cells, we looked

at the spatial locations of endothelial cells, the mislabeled

epithelial cells, and the epithelial cells that were defined by

hand gating. The mislabeled endothelial cells were located
closely adjacent to the epithelium (Figure 4D). This indicates

that cells were misassigned due to segmentation noise in locations

where the cytokeratin stain bleeds into endothelial cell

populations. Because hand gating only can segregate cell types

hierarchically using two markers at a time, this strategy cannot

deal with segmentation noise well.

Since hand-gating cell type identification does not handle cell
segmentation noise well, we required a new gold standard. To

create this standard, the original data was over-clustered into 90

clusters using X-shift clustering with angular distance

(Figure 4E). We used X-shift clustering with angular distance

as this approach was accurate across levels of granularity

(Supplemental Figure 8C). Over-clustering the data enhanced
separation of cell types often confounded by noise into distinct

clusters and overlaying these clusters on imaging data enabled

expert users to determine accurate cell-type annotations based

on staining and morphology. Clusters were also classified and

merged using average cluster profiles, resulting in identification

of 28 unique cell types.

Comparing the clustering outputs to this new gold-standard
annotation substantially increased the average F-score of

endothelial cells at level 4 granularity from 0.2 to 0.6

(Figure 4F). However, there was still high variation between

clustering outputs for endothelial cells. Isolating the endothelial

cells at level 1 revealed that the accuracy of cell-type annotation

was more dependent on normalization technique than clustering

technique. Z normalization and log(double Z) normalizations

provided more consistent performance than did min-max or

arcsinh normalizations (Figure 4G and Supplemental

Figure 11). This result further emphasizes the importance of

CODEX data normalization prior to clustering.

Cross Comparison of Normalization and
Unsupervised Clustering Techniques
In general, the over-clustering annotations demonstrated a bias

towards agreement with X-shift angular clustering and original

untransformed data as expected since these were the conditions
used to generate the annotations (Supplemental Figure 12). To

understand the extent of inter-agreement between choices of

clustering algorithm and normalization technique, we used each

individual clustering result as the gold standard for comparison.

We first averaged the F-scores for each clustering output and cell

type. Similar to previous observations, the normalization method
dominated similarity between combinations of clustering and

normalization algorithms (Figure 5A).

By further averaging all F-scores across these comparisons we

identified normalization techniques and clustering algorithms

that resulted in the greatest variation in cell-type assignment

(Figures 5B, C). Hand-gated assignments had the lowest overall

average, which confirms that this method is not ideal for CODEX
multiplexed imaging assignment. In clustering algorithm

comparisons, X-shift with Euclidian distance had the highest

variance and lowest F-score average (Figure 5B). Furthermore,

k-means and Leiden clustering algorithms had the highest

consistency and least variation (Figure 5A).

We also averaged F-scores to compare all combinations for
each cell type (Figure 5D). The results are consistent with those

of individual comparisons (compare to Figure 3E). Certain cell

types are consistently recognized accurately (e.g., interstitial cells

of Cajal, plasma cells) and others are not assigned accurately

(e.g., CD4+ T cells, CD127+ pCD4+ T cells). This strengthens the

argument that phenotypic cell-type calling should be limited in

initial clustering due to the low confidence of these cell-type
definitions (Supplemental Figure 13).

Neighborhood Analysis Reveals Sources
of Noise in Cell-Type Calling
CODEX multiplexed data can be used to spatially map cell types
and to characterize cell neighborhoods (10). We identified cell

neighborhoods for five exemplary annotations at the highest

level of cell-type granularity (Supplemental Figure 14). Visual

inspection revealed that some neighborhoods (e.g., plasma-

enriched interstitial epithelial lymphocytes) are present in all

regions of the colon, whereas there was considerable variation in
other neighborhoods (e.g., transit amplifying zone) (Figure 6A

and Supplemental Figure 15). Particularly noticeable are the

differences between muscularis externa and noise (enriched for

noise cells) neighborhoods. Both neighborhoods primarily

depend on one cell type: noise and smooth muscle muscularis

externa, respectively.

Imaging noise was particularly located within the tissue sample
from the transverse colon (region 1) as there were areas where the
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tissue folded during the cutting process, and some edge effects that

were noticeable in the folded area (Supplemental Figure 16A).

Focusing on this region, the F-scores for noise depended more on

clustering algorithm than normalization; use of X-shift angular

distance clustering resulted in the highest average F-score
(Figure 6B and Supplemental Figure 16B). This result closely

mirrors the trend of the ability of clustering algorithm to identify

higher numbers of unique cell types (Supplemental Figure 3).

This suggests the need for overclustering of CODEX multiplexed

data to segregate out noise from the cell-type clusters.

Hand-gating did not accurately pick up the noise in the folded

region and labeled many cells in this area as immune cell types.

This is another limitation of the hand-gating approach. Even

though no actual noise cells were identified by the Z

normalization and Leiden combination, this combination did

identify the noise neighborhood. This demonstrates the ability of

this combination of normalization and clustering to recognize
noise at later stages of the data analysis pipeline.

Smooth muscle muscularis externa had significant

background signal from the MUC2 channel in tissue from the

sigmoid colon (region 4). Smooth muscle cells were often

incorrectly assigned as cells of goblet or epithelium origin as

demonstrated by assignment to the muscularis externa

neighborhood (Supplemental Figure 16C). Only Leiden

A B

C

D

FIGURE 5 | F-score comparisons between all clustering and normalization techniques as standards. (A) Clustered heatmap with F-scores averaged across cell

types. The yellow rectangle indicates the comparisons made in Figure 3, the cyan rectangle indicates the comparisons made in Figure 4, and the green rectangle

indicates the comparisons made when log double Z normalization combined with Leiden clustering was used as the gold standard. The red rectangle indicates

exemplary similarities between normalization techniques. (B, C) Level 1 F-scores averaged over cell types for (B) clustering and (C) normalizations for all

comparisons shown in panel (A, D) Level 1 F-scores averaged over cell types for all normalization and clustering combinations (black data point is mean and error

bars indicate standard deviation).
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clustering with either Z or arcsinh normalizations were able to

accurately eliminate noise and accurately assign the majority of

the smooth muscle cells (Figure 6C and Supplemental

Figure 16D). This demonstrates that cell-type assignment

without image verification can lead to faulty cell annotations.
Of the normalization techniques, Z normalization best reduced

high background signal noise.

DISCUSSION

Manual identification of cell types in multiplexed imaging data

requires significant time and expertise. Noise from imaging artifacts,

imperfect segmentation, or tissue processing artifacts can hinder

accurate cell-type annotation. Decreasing the time required and
increasing the quality of cell type annotations is crucial for

A

B C D

FIGURE 6 | Cellular neighborhood analysis reveals additional noisy cell populations that can be managed by data normalization. (A) Cellular neighborhoods shown

for Region 1 and 4 for five of the 23 cell-type annotations. (B) Level 1 F-score averages for Region 1 for the noise cell type and averaged across all cell types.

(C) Level 1 F-score averages for Region 1 for the smooth muscle muscularis externa cell type and averaged across all cell types (black data point is mean and error

bars indicate standard deviation). (D) Recommendations for normalization and cell type annotations of segmented single-cell CODEX data.
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conducting robust and reproducible analysis on tissues from large

cohorts of subjects. By analysis of cell-type annotation of CODEX

multiplexed imaging data that result from several combinations of

normalization and clustering approaches provided insight into

optimal strategies, summarized in Figure 6D.

In general, of the normalization methods we tested (Z, log
(double Z), min-max, or arcsinh), Z normalization was the most

consistent technique for handling different sources of noise

including low intensity signal, high background signal,

segmentation noise, and imaging artifacts. Furthermore, Z

normalization resulted in accurate identification of both rare

and common cell types. Consequently, we recommend Z
normalization of values from each marker prior to cell-type

identification (Figure 6Di).

Accuracy in cell-type identification depended more on

normalization technique than it did on the downstream

unsupervised clustering algorithms. The algorithms tested,

which were the graph-based Leiden, the density-based X-shift
with either Euclidian or angular distances (15), and k-means

clustering, performed similarly, although X-shift clustering with

Euclidian distances consistently performed poorly across

conditions and annotated standards. Clustering algorithms that

resulted in higher numbers of distinct clusters were more

accurate in separating distinct phenotypes at the most granular

level of cell-type annotation. Furthermore, hand-gating
annotations failed to recognize a noise cell type due to cells

positive for all markers, image processing artifacts, or tissue

artifacts (like folded tissue) and was confounded by

segmentation noise such as bleed through of cytokeratin signal

into neighboring endothelial cells.

Many granular cell-type definitions that were phenotypic
separations (e.g., activated CD4+ T cells vs. inactivated CD4+ T

cells) were inaccurately assigned by all normalization and

clustering algorithms. Consequently, irrespective of the

clustering algorithm used, settings should be chosen to produce

significantly higher number of clusters than cell types expected

(Figure 6Dii). Further detailed annotation should then be done

using expression profiles, direct image overlay of cells, and
avoiding granular phenotypic cell type calling (Figure 6Diii).

However, phenotypic markers can be useful once cell types

have been established to look at differential expression between

the same cell type in different experimental conditions (e.g. PD1

staining on T cells). Also, here we imaged healthy human

intestine, whereas in tumor tissues there can be in EMT
(Epithelial-Mesenchymal Transition) and MET transition

states. This also makes separation of cell types challenging with

EMT or MET markers. However, computational analysis such as

pseudotime analysis of the transition continuum would be

interesting once broader cell types have been established.

With this in mind, selection of antibodies thus plays a

significant role in downstream spatial tissue analysis and
recognition of cell types. In short, if the research question is to

maximize the number of cell types identified to understand the

distinct landscape of the tissue, then antibody markers that were

restricted to certain cell types (e.g. CHGA-Neuroendocrine)

should be selected. On the other hand, phenotypic markers are

useful in comparing a certain cell type state in greater detail

between experimental conditions.

Beyond making a choice between phenotypic and cell-type

markers, antibody clone selection can significantly affect staining

quality. Improving the signal-to-noise ratio makes it easier to

separate out cell types from one another in unsupervised
clustering. Best practices for selecting antibodies can be found

in a recent primer (22). Briefly, one should compare available

clones, validate with positive and negative controls with both

unconjugated and conjugated antibodies, titrate antibody

concentration and exposure time, and alter order used within

the multiplexed imaging to increase signal-to-noise ratios to
improve cell type identification accuracy. While time-

consuming, quality assessment of CODEX antibodies will

critically impact downstream quantitative results.

In the future, we expect that machine learning-based cell-type

annotation transfer models will be built using accurately

annotated data (23). This type of model will enable rapid cell-
type annotations for replicates or additional samples imaged

with a similar imaging panel. This further underscores the

necessity for generating an accurate, high-confidence sets of

cell-type annotations as training sets.

Additional analytical methods will be needed to address the

root causes of additional noise in multiplexed imaging data. As

examples, efforts are focused on cell segmentation with
generalizable whole-cell segmentation masks trained from a

variety of mult iplexed imaging data (11) . Second,

computational methods for correcting small imperfections in

segmentation and reassigning signal to the proper cells are in

development. Third, amplification approaches within the

multiplexed imaging techniques themselves will aid in
improving signal-to-noise ratios and elimination of tissue- and

imaging-based noise (24, 25). We expect, however, that even

after these noise issues are addressed, downstream data analysis

will depend on data normalization and cell-type annotation of

high-quality reference datasets.
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4. Porwit A, Béné MC. Multiparameter Flow Cytometry Applications in the

Diagnosis of Mixed Phenotype Acute Leukemia. Cytom Part B Clin Cytom

(2019) 96:183–94. doi: 10.1002/cyto.b.21783

5. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The

Technology and Biology of Single-Cell RNA Sequencing. Mol Cell (2015)

58:610–20. doi: 10.1016/j.molcel.2015.04.005

6. Consortium H. The Human Body at Cellular Resolution: The NIH Human

Biomolecular Atlas Program. Nature (2019) 574:187. doi: 10.1038/s41586-

019-1629-x

7. Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A, Rood

JE, et al. The Human Tumor Atlas Network: Charting Tumor Transitions

Across Space and Time at Single-Cell Resolution. Cell (2020) 181:236–49.

doi: 10.1016/j.cell.2020.03.053

8. Ecker JR, Geschwind DH, Kriegstein AR, Ngai J, Osten P, Polioudakis D, et al.

The BRAIN Initiative Cell Census Consortium: Lessons Learned Toward

Generating a Comprehensive Brain Cell Atlas. Neuron (2017) 96:542–57. doi:

10.1016/j.neuron.2017.10.007

9. Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vazquez G,

et al. Deep Profiling of Mouse Splenic Architecture With CODEX

Multiplexed Imaging. Cell (2018) 174:968–81. doi: 10.1016/j.cell.

2018.07.010

10. Schürch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L, Zlobec I, et al.

Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at

the Colorectal Cancer Invasive Front. Cell (2020) 182:1341–59. doi: 10.1016/

j.cell.2020.07.005

11. Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Fullaway CC, et al.

Whole-Cell Segmentation of Tissue Images With Human-Level Performance

Using Large-Scale Data Annotation and Deep Learning. bioRxiv (2021). doi:

10.1101/2021.03.01.431313

12. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: A Generalist

Algorithm for Cellular Segmentation. Nat Methods (2021) 18:100–6. doi:

10.1038/s41592-020-01018-x

13. Schapiro D, Sokolov A, Yapp C, Muhlich JL, Hess J, Lin J-R, et al. MCMICRO:

A Scalable, Modular Image-Processing Pipeline for Multiplexed Tissue

Imaging. bioRxiv (2021). doi: 10.1101/2021.03.15.435473

14. Chang YH, Chin K, Thibault G, Eng J, Burlingame E, Gray JW. RESTORE:

Robust Intensity Normalization Method for Multiplexed Imaging. Commun

Biol (2020) 3:1–9. doi: 10.1038/s42003-020-0828-1

15. Samusik N, Good Z, Spitzer MH, Davis KL, Nolan GP. Automated Mapping

of Phenotype Space With Single-Cell Data. Nat Methods (2016) 13:493–6. doi:

10.1038/nmeth.3863

16. Kennedy-Darling J, Bhate SS, Hickey JW, Black S, Barlow GL, Vazquez G,

et al. Highly Multiplexed Tissue Imaging Using Repeated Oligonucleotide

Exchange Reaction. Eur J Immunol (2021) 51(5):1262–77. doi: 10.1002/

eji.202048891

17. Lin J-R, Izar B, Wang S, Yapp C, Mei S, Shah PM, et al. Highly Multiplexed

Immunofluorescence Imaging of Human Tissues and Tumors Using T-CyCIF

and Conventional Optical Microscopes. Elife (2018) 7:e31657. doi: 10.7554/

eLife.31657

18. Liu X, Song W, Wong BY, Zhang T, Yu S, Lin GN, et al. A Comparison

Framework and Guideline of Clustering Methods for Mass Cytometry Data.

Genome Biol (2019) 20:1–18. doi: 10.1186/s13059-019-1917-7

19. Black S, Phillips D, Hickey JW, Kennedy-Darling J, Venkataraaman VG,

Samusik N, et al. CODEX Multiplexed Tissue Imaging With DNA-

Conjugated Antibodies. Nat Protoc (2021) 16:3802–35. doi: 10.1038/s41596-

021-00556-8

20. Shakya R, Nguyen TH, Waterhouse N, Khanna R. Immune Contexture

Analysis in Immuno-Oncology: Applications and Challenges of Multiplex

Fluorescent Immunohistochemistry. Clin Transl Immunol (2020) 9:e1183.

doi: 10.1002/cti2.1183

21. Aghaeepour N, Finak G, Hoos H, Mosmann TR, Brinkman R, Gottardo R,

et al. Critical Assessment of Automated Flow Cytometry Data

Analysis Techniques. Nat Methods (2013) 10:228–38. doi: 10.1038/

nmeth.2365

22. Hickey JW, Neumann EK, Radtke AJ, Camarillo JM, Beuschel RT, Albanese

A, et al. Spatial Mapping of Protein Composition and Tissue Organization: A

Primer for Multiplexed Antibody-Based Imaging (2021). Available at: https://

arxiv.org/abs/2107.07953 (Accessed July 23, 2021).

Hickey et al. Accurate CODEX Cell Type Identification

Frontiers in Immunology | www.frontiersin.org August 2021 | Volume 12 | Article 72762612

https://BioRender.com
https://www.frontiersin.org/articles/10.3389/fimmu.2021.727626/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.727626/full#supplementary-material
https://doi.org/10.1002/cac2.12023
https://doi.org/10.1136/jitc-2019-000155corr1
https://doi.org/10.1016/j.cels.2016.03.008
https://doi.org/10.1016/j.cels.2016.03.008
https://doi.org/10.1002/cyto.b.21783
https://doi.org/10.1016/j.molcel.2015.04.005
https://doi.org/10.1038/s41586-019-1629-x
https://doi.org/10.1038/s41586-019-1629-x
https://doi.org/10.1016/j.cell.2020.03.053
https://doi.org/10.1016/j.neuron.2017.10.007
https://doi.org/10.1016/j.cell.2018.07.010
https://doi.org/10.1016/j.cell.2018.07.010
https://doi.org/10.1016/j.cell.2020.07.005
https://doi.org/10.1016/j.cell.2020.07.005
https://doi.org/10.1101/2021.03.01.431313
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1101/2021.03.15.435473
https://doi.org/10.1038/s42003-020-0828-1
https://doi.org/10.1038/nmeth.3863
https://doi.org/10.1002/eji.202048891
https://doi.org/10.1002/eji.202048891
https://doi.org/10.7554/eLife.31657
https://doi.org/10.7554/eLife.31657
https://doi.org/10.1186/s13059-019-1917-7
https://doi.org/10.1038/s41596-021-00556-8
https://doi.org/10.1038/s41596-021-00556-8
https://doi.org/10.1002/cti2.1183
https://doi.org/10.1038/nmeth.2365
https://doi.org/10.1038/nmeth.2365
https://arxiv.org/abs/2107.07953
https://arxiv.org/abs/2107.07953
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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