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METHODOLOGY ARTICLE Open Access

Strategies for aggregating gene expression data:
The collapseRows R function
Jeremy A Miller1,2, Chaochao Cai2,3, Peter Langfelder2,3, Daniel H Geschwind2,4, Sunil M Kurian5, Daniel R Salomon5

and Steve Horvath2,3*

Abstract

Background: Genomic and other high dimensional analyses often require one to summarize multiple related

variables by a single representative. This task is also variously referred to as collapsing, combining, reducing, or

aggregating variables. Examples include summarizing several probe measurements corresponding to a single gene,

representing the expression profiles of a co-expression module by a single expression profile, and aggregating cell-

type marker information to de-convolute expression data. Several standard statistical summary techniques can be

used, but network methods also provide useful alternative methods to find representatives. Currently few

collapsing functions are developed and widely applied.

Results: We introduce the R function collapseRows that implements several collapsing methods and evaluate its

performance in three applications. First, we study a crucial step of the meta-analysis of microarray data: the

merging of independent gene expression data sets, which may have been measured on different platforms.

Toward this end, we collapse multiple microarray probes for a single gene and then merge the data by gene

identifier. We find that choosing the probe with the highest average expression leads to best between-study

consistency. Second, we study methods for summarizing the gene expression profiles of a co-expression module.
Several gene co-expression network analysis applications show that the optimal collapsing strategy depends on

the analysis goal. Third, we study aggregating the information of cell type marker genes when the aim is to

predict the abundance of cell types in a tissue sample based on gene expression data ("expression

deconvolution”). We apply different collapsing methods to predict cell type abundances in peripheral human blood

and in mixtures of blood cell lines. Interestingly, the most accurate prediction method involves choosing the most

highly connected “hub” marker gene. Finally, to facilitate biological interpretation of collapsed gene lists, we

introduce the function userListEnrichment, which assesses the enrichment of gene lists for known brain and blood

cell type markers, and for other published biological pathways.

Conclusions: The R function collapseRows implements several standard and network-based collapsing methods. In

various genomic applications we provide evidence that both types of methods are robust and biologically relevant

tools.

Background
Genomic and other high dimensional data analyses often

face the challenge to collapse multiple variables. Such

collapsing of data can be advantageous for several rea-

sons: 1) to allow direct comparison of similar data from

unique sources, 2) to amplify the signal by removing

noisy information, or 3) to reduce the computational

burden. As a first example, consider the task of

combining or contrasting gene expression data mea-

sured on different microarray platforms. Most array

platforms measure multiple probes per gene, and differ-

ent platforms typically include different probes for the

same gene. To compare such expression data sets at the

level of a gene identifier (e.g. Entrez ID or gene symbol)

requires that the multiple probe measurements of a

given gene be collapsed into a single gene measurement.

An important, yet relatively unexplored, empirical ques-

tion is how to choose the best representative probe. As

a second example, consider the task of representing co-
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expression modules (clusters of genes) by a single value

(referred to as a module centroid). Several approaches

for finding a module centroid have been proposed in

the literature (e.g. forming the mean, choosing the first

principal component, etc), but it is unclear in which

situation each method should be used. As a third exam-

ple, consider the task of estimating cell type abundances

based on data for lineage and cell-specific markers such

as selectively expressed genes or proteins. Often, micro-

array analyses are performed using heterogeneous tissue

(e.g., brain sections, whole blood); thus, gene expression

changes occurring between two groups of samples could

either be due to changes in transcriptional levels in one

or more cell types, or they could be due to changes in

cell type proportion variation. By accurately estimating

cell type abundances including data from independent

measurements using complementary technologies (e.g.

flow cytometry, histology), more accurate measures of

transcriptional changes could be established.

Statistically speaking, all of these tasks involve sum-

marizing several closely related variables into one col-

lapsed variable. Collapsing approaches fall into one of

two categories: 1) composite values, which involve form-

ing an average (often weighted) of multiple variables in

a group; and 2) representatives, where a single variable

is chosen from those in the group. Two examples of

composite values include the mean and the first princi-

pal component (PC). The first PC explains the maxi-

mum amount of variation underlying the variables. For

example, when summarizing the gene expression pro-

files of a co-expression module, the first PC is known as

the module eigengene (ME; e.g. [1]). Several strategies

can be used for choosing a representative; for example,

one could choose the variable with the least number of

missing data or the maximum mean expression value or

the maximum variance. Apart from these statistical

approaches, network methods are increasingly used to

collapse data. For example, one can first construct a net-

work between the variables and then choose the one

that has the highest connectivity (or degree; see the

Methods section for more details). Toward this end,

signed correlation networks are particularly relevant

since often one wants to keep track of the direction of

the relationship between variables. For example, in the

case of transcriptional networks, genes showing positive

correlation are more likely than uncorrelated or nega-

tively correlated genes to have known protein-protein

interactions [2-4].

In the present work, we have created an R function,

collapseRows, that implements a host of widely used

collapsing methods. We will describe this function in

more detail and present several motivating examples

involving gene expression data (mRNA abundances).

We explore this function in the context of the several

distinct gene expression-related situations presented

above, describing situations when certain collapsing

methods are advantageous. For example, we find that in

most microarray experiments performed on brain tissue

it is best to choose the probe with the maximum mean

expression per gene, whereas when choosing a single

gene to represent a co-expression module, the optimal

collapsing method depends on the goal of the analysis.

For predicting the true proportion of cell types within a

tissue homogenate, on the other hand, network-based

collapsing approaches perform best. Finally, we provide

R code for both the collapseRows function as well as for

performing all of the analyses discussed in the text.

Overall, we find that the collapseRows function is useful

in many situations in which data aggregation is required.

Results
Robust methods for summarizing large quantities of

genomics data can be critical to advancing biological

understanding. To address this issue we created collap-

seRows, which takes a numeric matrix of data as input,

in which rows correspond to the variables, as well as a

grouping variable that assigns each row to a group. This

function implements standard collapsing methods (such

as forming the average), as well as alternative network

based methods (such as connectivity based collapsing)

as possible strategies for data aggregation, then outputs

one representative or composite value per group of

rows. Thus, the resulting matrix has the same number

of columns as the input matrix but typically has far

fewer rows, potentially alleviating computational bottle-

necks and often increasing between-study comparability.

For example, in Figure 1 we present a hypothetical pipe-

line for using microarrays from multiple data sets to

predict clinical outcome, in which collapseRows is used

twice: first to collapse probes to genes, and then to col-

lapse genes to modules.

In the following, we describe the R implementation of

collapseRows and present examples from several empiri-

cal studies of high dimensional genomics data. In parti-

cular, for each of our examples, we run a subset of the

following six collapsing strategies: maximum mean (1.

max), maximum variance (2.var), maximum mean +

maximum connectivity (3.kMax), maximum variance +

maximum connectivity (4.kVar), module eigengene (5.

ME), and the average (6.Avg; see Methods for details).

Table 1 provides an overview of our empirical studies

and the types of employed collapsing strategies.

R implementation of the function collapseRows

This collapseRows function implements several net-

work-based and biostatistical methods for finding a sin-

gle value to represent each group specified in the

function call. collapseRows is available in the WGCNA
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package for R [5], and is presented as Additional file 1:

the collapseRows function, while code for performing all

of the above analyses is presented in Additional file 2: R

code to perform analysis. Accompanying data files can

be downloaded from the collapseRows website [6]. Our

code was run using version 2.12.2 of R, although any

recent version should work. A few steps of the analysis

(i.e., building the networks for example 2) require a

computer with a large amount of RAM (a computer

with 16 GB of RAM was used for these steps); however,

most analysis steps can be performed on laptops (e.g.

we used a MacBook Pro with 4 GB RAM in most ana-

lyses steps), and the entire analysis can be reproduced

in a few hours. The R function is called as follows:

collapseRows(datET, rowGroup, rowID, method="Max-

Mean”,

connectivityBasedCollapsing=FALSE,

methodFunction=NULL,

connectivityPower=1, selectFewestMissing=TRUE)

In this call, datET represents a matrix or data frame

containing numeric values where rows correspond to

variables (e.g. microarray probes) and columns corre-

spond to observations (e.g. microarrays). Each row must

have a unique row identifier (specified in the vector

rowID). The group label of each row is encoded in the

vector rowGroup (e.g. gene symbols corresponding to

the probes in rowID). The argument method is a charac-

ter string for determining which method is used to col-

lapse rows into groups. The implemented options,

described in more detail in the Methods, are “Max-

Mean,” “MinMean,” “maxRowVariance,” “absMaxMean,”

“absMinMean,” “ME”, “average,” and “function.” If

method = “function”, the method used is set by the

argument methodFunction, which must be a function

that takes a matrix of numbers as input and produces a

vector the length of the number of columns as output

(e.g., colMeans). The logical argument connectivityBa-

sedCollapsing controls whether groups with 3 or more

corresponding rows should be collapsed by choosing the

row with the highest connectivity according to a signed

weighted correlation network adjacency matrix (Meth-

ods), where the power is determined by the argument

connectivityPower. All collapsing strategies presented in

the empirical studies were formed by setting a combina-

tion of the method and connectivityBasedCollapsing

parameters. Finally, the logical argument selectFe-

westMissing (with default value TRUE), controls whether

datET should be trimmed such that only the rows with

the fewest number of missing values per group are

retained. Detailed information regarding the function is

available within R using the help(collapseRows)

command.

Example 1: collapsing microarray probes to genes

Gene expression microarrays often have several probes

(or probe sets) per gene. Collapsing methods can be

used to arrive at a single measurement per gene, which

facilitates merging of data across different platforms. For

example, in a previous study of mouse and human

Figure 1 Example pipeline for using collapseRows functions.

The collapseRows function could be used in two steps of a pipeline

for finding predictors of a clinical outcome. First, probes could be

collapsed into genes by taking the probe with the highest

expression (1.max strategy) to allow comparability of data run using

several microarray platforms (or RNAseq). These data could then be

combined into a consensus module. Second, modules from the

resulting network could be summarized using the the most highly

connected gene (3.kMax strategy), some of which will likely be

related to clinical outcomes.
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brain, a preliminary version of collapseRows was used to

convert gene expression matrices from 18 human and

20 mouse data sets run on five separate microarray plat-

forms into matrices that could be compared [3] (see

Methods). Here we re-analyze these same data sets,

along with several additional data sets from studies of

human blood [7-12].

We evaluate the performance of the collapsing meth-

ods in multiple ways. To begin with, we determine how

reproducible the result of the collapseRows function is

across different data sets. For example, assume two dif-

ferent gene expression data sets in brain are available.

After collapsing the probes by gene one can calculate the

mean expression value of each gene in the two data sets.

Next one can correlate the mean expression levels of the

first data set with those of the second data set. A high

correlation indicates that the output of the collapsing

method allows one to robustly define the mean expres-

sion level of a gene. Since we are mainly interested in

ranked expression levels, we determine the correlation of

ranked mean expressions (which amounts to using the

Spearman correlation coefficient). Apart from studying

the reproducibility of the mean expressions, we also

study the reproducibility of the network connectivity

since this informs co-expression network applications.

The connectivity (or degree) is the most widely used net-

work statistic for describing the topological properties of

a network node (gene) [13]. It is of great practical interest

to determine to which extent the connectivity (and hub

status) is preserved between 2 data sets. For example, it

has often been used to compare networks from different

species [3,14]. In this case, we define a signed weighted

correlation network (Methods) after collapsing the

probes into genes. Next we calculate the whole network

connectivity measure ki, which measures how correlated

the i-th gene is with other genes in the network (Meth-

ods). A significant positive correlation of ranked connec-

tivity suggests that a co-expression network between the

genes (collapsed probes) is robustly defined.

To empirically assess the reliability of different strate-

gies of probe selection, we ran the collapseRows

function on the brain and blood data sets described

above, using 1.max, 2.var, 3.kMax, and 4.kVar. For each

pair of gene expression matrices, we took the subset of

genes in common and correlated the ranked mean

expression and the ranked connectivity between data

sets for each of the four collapsing strategies (see Figure

2A for a typical example; while the scatter plots do not

reveal a strong relationship, we should point out that

the connectivity correlations are significantly different

from zero and non-negligible - at p < 10-8 the correla-

tion coefficient is highly significantly different from

zero). We then determined the average correlation of

these two measures across data set pairs in human brain

(Figure 2B), mouse brain (Figure 2C), and human blood

(Figure 2D) and assessed how frequently and to what

degree these measures were highest for each collapsing

strategy. Overall, we found that 1.max was the most

robust method, particularly with regards to the expres-

sion correlation; in other words, choosing the probe

with the highest mean expression nearly always lead to

the most comparable results between these data sets.

We should point out that numerous alternative

approaches for collapsing probes per gene are possible.

Some of them are discussed below.

Example 2: choosing one centroid per gene expression

module

The collapseRows function allows one to aggregate the

genes that make up a co-expression module. A co-

expression module is sometimes defined via a clustering

method, but any module assignment can be specified

with the row-grouping variable of the collapseRows

function (also see examples 3 and 4 below). We assessed

the reliability of the following three different strategies

for collapsing module genes into a single representative

per module: 1.max, which chooses the module gene

with highest mean expression; 3.kMax, which chooses

the most highly connected intramodular hub gene; and

5.ME, which defines the first principal component of

the module genes, resulting in the module eigengene.

We focused only on these three collapsing methods

Table 1 Summary of data sets and corresponding collapsing strategies

Fig Analysis Data sets used 1. max 2. var 3. kMax 4. kVar 5. ME 6. Avg

1 Summary Hypothetical data X - X - - -

2 Collapsing probes to genes 18 Human Brain # 20 Mouse Brain % 5 Human Blood $ X X X X - -

3 Choosing module centroids 7 Human Brain # 8 Mouse Brain % 5 Human Blood $ X - X - X -

4 Predicting cell type proportions Abbas et al 2009 (cell lines) X - X - X X

5 Predicting cell type proportions Grigoryev et al 2010 (whole blood) X - X - X X

“#” - The 18 human brain data sets were the following GSE numbers: 1133, 1297, 1572, 2164B, 3526A, 3526B, 3790A, 3790B, 3790C, 4036, 4757, 5281A, 5281B,

5388A, 5388B, 7621, 8397, and 9770. “%” - The 20 mouse brain data sets were the following GSE numbers: 1482, 1782A, 1782B, 2392, 3248, 3327A, 3327B, 3594C,

3963A, 3963B, 4269, 4734, 5429, 6285, 6514A, 6514B, 9444A, 9444B, 9444C, 10263. For “#” and “&,” underlined data sets were used in Figure 3 as well as Figure 2.

See Miller et al 2010 for more details on these data sets. “$” - The 5 human blood data sets were from Dumeaux et al 2010, Goring et al 2007, Pankla et al 2009,

and Saris et al 2009.
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since they are often used in network based data reduc-

tion methods [13].

To perform this analysis, we started with expression

data from a single data set in each group (GSE3790B for

human brain, GSE4734 for mouse brain, and [9] for

human blood) and defined co-expression modules using

WGCNA, since it is a widely used method for defining

co-expression modules [3-5,15-19]. Modules were

defined as branches of a hierarchical clustering tree. To

increase the robustness of our results, different choices

Figure 2 When collapsing probes to genes, 1.max is usually the optimal collapsing strategy to choose. A) A typical example of ranked

expression (left column) and ranked connectivity (right column) correlation between two data sets. Each dot represents a gene in common

between data sets, with the x and y axes represented that gene’s ranked expression or connectivity in data sets 1 and 2, respectively. B-D)

Across several studies in human brain (B), mouse brain (C), and human blood (D) the MaxMean (1.max) parameter generally produces better

ranked expression correlations (left column) than maxVariance (2.var). For both MaxMean and maxVariance, use of connectivityBasedCollapsing

(3.kMax and 4.kVar) decreases the between-study correlations. Similar results hold, to a lesser extent, with connectivity correlations (right column).

Y-axes correspond to the average expression and connectivity correlation between data sets. Error bars represent standard error. Percentages

indicate the percent of assessments in which the relevant strategy had the highest overall between-set correlation.
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http://www.biomedcentral.com/1471-2105/12/322

Page 5 of 13



of branch cutting parameters implemented in the dyna-

micTreeCut R library [20] were chosen to define 28 dif-

ferent module assignments. For each choice of module

assignments (grouping variables), we then ran collapseR-

ows on the subset of seven human and eight mouse

brain data sets run on the HG-U133A and MG-U430A

Affymetrix platforms, respectively, and on all five

human blood data sets from example 1. Finally, we cal-

culated the resulting ranked mean expression and

ranked connectivity correlations between the different

data sets as described above (Figure 3). If rows represent

genes in a module, the connectivity of the collapsed

variables measures how closely related the module is to

other modules. Several studies have found that these

correlations between modules may reveal higher order

relationships between them [1,3,4].

For human brain (Figure 3A), mouse brain (Figure

3B), and human blood (Figure 3C) the ranked mean cor-

relation measure suggests that 1.max is the best collap-

sing strategy, whereas the ranked connectivity measure

suggests that 3.kMax is a better collapsing strategy.

Furthermore, in the case of mouse brain, 3.kMax actu-

ally leads to higher ranked connectivity correlations

than the standard method of calculating the module

eigengene (5.ME). Together, these results suggest that

different parameter options should be chosen depending

on the goal of the analysis and the specific input data

being used. For example, if the goal of the analysis were

Figure 3 When collapsing genes to modules, the optimal method depends on the goal of the analysis. A-C) Across several studies in

human brain (A), mouse brain (B), and human blood (C) the MaxMean parameter generally produces better ranked expression correlations (left

column) when setting the connectivityBasedCollapsing parameter to FALSE. On the other hand, better connectivity correlations (right column) are

found when setting connectivityBasedCollapsing to TRUE, in some cases producing higher correlations that even the module eigengene (5.ME).

Labelling as in Figure 2 B-D.

Miller et al. BMC Bioinformatics 2011, 12:322
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to determine correlation patterns between modules then

3.kMax would be a more appropriate collapsing strategy

than 1.max.

Example 3: predicting cell type abundances in mixtures

of pure cell lines

Most microarrays measure tissue RNA from tissue

homogenate rather than from a pure cell type. It has

been recognized that markers for pure cells can some-

times be used to estimate the proportion of pure cells

that make up the tissue homogenate. For example, stan-

dard expression deconvolution (based on a multivariate

regression model) can be used to simultaneously esti-

mate the abundance of multiple cell types [7,21-23].

While using a multivariate linear model may afford

greater efficiency in estimating cell type abundances, it

may perform poorly if it is incorrectly specified, for

example due to omission of an unknown cell type. Our

collapseRows based approach to expression deconvolu-

tion addresses a more limited, but related question: how

well can expression levels of a set of marker genes for a

single cell type (group) be used to estimate the relative

abundance of that cell type between samples? Thus, the

rows of the input matrix correspond to marker genes

and the grouping variable assigns markers to their

respective cell types. The collapsed variable per group is

used as an abundance measure for the pure cell line.

To evaluate the performance of expression deconvolu-

tion methods, Abbas and colleagues [7] created a data

set that involved mixing four distinct “pure” cell lines–

Raji and IM-9 (from B cells), Jurkat (from T-cells), and

THP-1 (from monocytes)–using pre-specified propor-

tions. These known proportions could be used as gold

standard measurement for judging the performance of

methods that aim to estimate cell type abundances.

Included in the expression data are microarrays run on

each pure cell line, as well as microarrays run on four

mixtures of these cell lines in known proportions, each

in triplicate [7].

We applied the collapseRows function to the microar-

ray data from the cell mixture study described above.

We first chose the top 500 marker genes for each of the

four cell lines by finding the genes with the highest fold

change enrichment in a given cell line compared with

the other three. We then ran the collapseRows function

on the four mixtures of cell lines, using these 2000 mar-

ker genes as rows and the four cell lines as groups, and

using several collapsing methods. Finally, we scaled

these collapsed expression matrices to obtain the pre-

dicted proportions of each cell type across samples. We

should emphasize that a limitation of our deconvolution

approach is that it can only estimate the proportion of

cells up to a constant. While our prediction is expected

to be correlated with the true proportion across

samples, it cannot be used to estimate the true propor-

tion. The situation is similar to predicting degrees Fah-

renheit based on another temperature scale: 0 degrees

Fahrenheit does not correspond to 0 degrees Celsius,

but a linear transformation can relate Fahrenheit to Cel-

sius. It is often sufficient to use such an approach in the

context of measuring cell type abundance, e.g. when

correlating cell type abundances to a clinical outcome,

because the correlation measure is scale invariant.

To assess the performance of different marker gene

collapsing methods, we correlated the predicted abun-

dances (proportions) of pure cell types with the true

proportion determined by the mixture proportions (Fig-

ure 4). We find that all four tested methods of collap-

sing genes–1.max, 3.kMax, 5.ME, and 6.Avg–produced

significant correlations (R > 0.8), but that collapsing

based on maximum connectivity (3.kMax) led to by far

the most accurate predictor (R = 0.994). In this applica-

tion, collapsing rows by choosing the module eigengene

(5.ME) leads to the least accurate predictions.

Example 4: Predicting cell type abundances in peripheral

human blood

Finally, to assess whether these methods can accurately

predict cell type abundances in a more realistic model,

we obtained microarray data from a deconvolution

study of peripheral blood both pre- and post-kidney

transplant [10]. Similar to the previous data set, these

data include microarrays run on pure cell populations

(CD4+ and CD8+ T cells, and CD19+ B cells) as well as

on whole blood; however, these arrays were run using

actual human blood and the constituent blood cell

populations were purified using magnetic beads from

the same samples used for whole blood assays. To assess

the performance of different marker gene collapsing

methods, we correlated the predicted abundances

(which up to a constant are proportions) of pure cell

types with the true proportion determined by flow cyto-

metry data (described in [10]). Again, we find high cor-

relation between true and predicted cell proportions for

these cell types (Figure 5; 0.5 < R < 0.6 in most cases),

although unsurprisingly, these real cell subset predic-

tions for whole blood are not as accurate as the highly

contrived strategy of using fixed combinations of trans-

formed cell lines by Abbas and colleagues [7]. We also

varied the number of marker genes per cell type used to

form predictor. Collapsing on connectivity (3.kMax),

ME (5.ME), and average (6.Avg) all lead to comparably

good predictors. Furthermore, choosing N~100 marker

genes produces the best results, although these three

predictors are all fairly robust to the number of marker

genes chosen. Choosing the gene with the maximum

mean expression (1.max), however, is a much less robust

method, and should not be used in this situation.

Miller et al. BMC Bioinformatics 2011, 12:322
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Figure 4 collapseRows accurately predicts the relative quantity of blood cell lines across mixed samples. Four prediction methods were

used on data from (Abbas et al 2009), from which both gene expression data and actual blood cell counts were known: A) maximum mean

expression (1.max), B) maximum connectivity (3.kMax), C) module eigengene (5.ME), and D) average (6.Avg) expression of all marker genes. Each

dot presents one cell type in one sample. The X-axes correspond to the predicted proportion of each cell type, while the Y-axes correspond to

the actual proportion of each cell type across samples. Values are scaled so that the sum of the proportions for a single cell type across all

samples is 1. For all methods (except ME), the x = y line (representing perfect agreement) is plotted. Note that choosing the gene with the

highest connectivity (B) most accurately predicts the true cell type proportions.

Figure 5 collapseRows accurately predicts the relative quantity of cell type across samples of whole blood. Using data from a realistic

blood model (Grigoryev et al 2010), the 1.max, 3.kMax, 5.ME, and 6.Avg collapseRows aggregation strategies can still predict the relative

proportion of several major cell types. Each point represents the correlation between true and predicted proportions for one of the four

strategies. The X-axis corresponds to the number of marker genes used for the predictor, while the Y-axis corresponds to the correlation

between true and predicted proportions. Note that all methods other than MaxMean (1.max) are relatively robust to choice in number of marker

genes.

Miller et al. BMC Bioinformatics 2011, 12:322
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Data aggregation using collapseRows leads to increased

reproducibility

Despite advantages, data aggregation or collapsing will

inevitably lead to a loss of information. Therefore, it is

important to assess whether the loss of information has

an impact on analysis results and if so what the impact

looks like. Most of our empirical analyses use reproduci-

bility (as measured by correlation of ranked mean

expression and connectivity) as a measure of how much

usable information remains in the data after aggregation.

We now extend these analyses to assess how selective

removal of information using collapseRows affects

reproducibility, using the subset of 7 human brain sam-

ples run on the HG-U133A array and the subset of 8

samples run on the MG-U430A array. We measured the

correlation of ranked mean expression and connectivity

for comparisons on the probe level, and compared those

with our best result using collapseRows (1.max; see

Additional file 3 - Increase in reproducibility using col-

lapseRows). In human we find average expression corre-

lations of R = 0.87 and 0.87, and connectivity

correlations of R = 0.23 and 0.33 for the probe-level and

gene-level comparisons, respectively. In mouse the com-

parable correlations are R = 0.93 and 0.93, and R = 0.15

and 0.24 for probe-level and gene-level comparisons.

Together, these results suggest that, while present, the

loss of information using collapseRows actually leads to

increased reproducibility, at least as measured by corre-

lation of ranked connectivity.

The function userListEnrichment facilitates biological

interpretation of gene lists

After collapsing gene lists into groups, either for the

purpose of finding co-expression modules or for deter-

mining marker genes, it is often useful to relate the col-

lapsed data to cell type markers. For example, when

using collapseRows to predict cell type abundances in a

data set that does not contain control samples from

pure cell lines, it would be useful to be able to compare

each gene group against lists of known marker genes for

the expected cell type before using these groups for

deconvolution. Such a biological indicator is particularly

useful when studying brain, where it is almost never

possible to precisely separate cell types as an experimen-

tal control. To address this issue, we have created the

function userListEnrichment, which is also available in

the WGCNA library [5]. This function measures enrich-

ment of input lists of genes (i.e., groups found using col-

lapseRows) with respect to pre-defined or user defined

collections of brain- and blood-related lists curated from

the literature (see the help file for specific references

cited). Files containing user-defined lists can also be

input as reference lists directly. userListEnrichment

measures enrichment using a hypergeometric test, after

which significant enrichments are output to a file that

can then be used for further biological assessments.

While biological assessment of userListEnrichment is

beyond the scope of this article, we present a tutorial

for how to perform a co-expression analysis using both

collapseRows and userListEnrichment on our website:

http://www.genetics.ucla.edu/labs/horvath/Coexpression-

Network/JMiller/.

Discussion
The collapseRows function implements widely used col-

lapsing methods and lesser known ones based on corre-

lation network methodology. For example, we describe

situations when it can be useful to collapse a group of

numeric variables by determining the most highly con-

nected hub variable. The main contributions of this arti-

cle are: i) to describe important uses of this function, ii)

to empirically compare different collapsing methods,

and iii) to make recommendations regarding when to

use various collapsing methods. Overall, our empirical

studies show that collapseRows is a useful function in

many situations when comparing data from separate

high-throughput gene expression sources, with a set of

default parameters that are often, but not always, the

best parameters to use. In the case of collapsing probes

to their respective gene symbols, for example, we find

that the 1.max strategy (implemented by setting method

= “MaxMean” and connectivityBasedCollapsing =

FALSE) produces the most robust results. On the other

hand, when using the collapseRows function to predict

cell type abundances, we find that the 3.kmax strategy

(implemented by setting connectivityBasedCollapsing =

TRUE) leads to the most accurate results. In the more

general case of choosing a single value as representative

for all genes in a co-expression module, we would sug-

gest trying multiple parameter options to see which

work best for that particular set of data. Although ori-

ginally designed and tested for expression data, in prin-

ciple collapseRows could be used in any situation

requiring data aggregation (e.g., fMRI data, methylation

data, etc.). In this case, one should try several collapsing

strategies to determine the most robust one for the task

at hand.

For the special setting of expression data, alternative

methods have been developed to aid in the annotation

and comparison of data sets between studies. First, sev-

eral sequence-based strategies for reannotating microar-

ray probe identifiers based on updated genomic

sequences have been proposed [24-27]. The most exten-

sive such endeavour is the Array Information Library

Universal Navigator (AILUN), which provides an up-to-

date mapping between probe identifiers and Entrez gene

IDs for microarray platforms in 79 species [25]. While

very useful, these studies address a slightly different
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issue than the collapseRows function, improving probe

annotations rather than combining similarly annotated

probes. In fact, we expect that first downloading the

appropriate data from AILUN and then running collap-

seRows would lead to an improvement in the robustness

of one’s results. Other software packages have sought to

combine these steps to some degree. GeneCruiser, for

example, allows users to find gene annotation, as well as

display heat maps of data, view the location of probes in

the genome using the UCSC Genome Browser, and per-

form keyword searches for probes [28], but it only

includes Affymetrix data sets. Integrative Array Analyzer

(iArray) allows the user to perform several between- and

within-study analyses, including data processing, co-

expression analyses, differential expression analyses, and

graphical visualization [29], but requires genes from dif-

ferent array platforms to already be linked (i.e., col-

lapsed) by gene name. In short, while all of these studies

provide useful resources for gene expression analysis,

the collapseRows function is involved in an important

processing step for between-study analysis that, to the

best of our knowledge, has not been systematically

addressed elsewhere.

Although our study provides a key step in the com-

parison of multiple numeric matrices, particularly with

regards to gene expression analysis, it also has several

limitations. First, our empirical studies only involve the

use of a weighted correlation networks for finding a

representative hub gene, when in fact other association

networks (e.g. based on mutual information) could be

used. Fortunately, close relationships exist between the

seemingly countless statistical and network based

approaches for constructing networks. Along the same

lines, we choose intramodular hub genes using the con-

nectivity (sum of adjacencies), while in principle other

centrality measures could be used. Third, our strategy 6.

Avg only uses a straight average, whereas an equally

valid approach would be to form a weighted average

based on other statistical or biological information. For-

tunately, through the use of the methodFunction para-

meter, these or any other collapsing functions could be

used with collapseRows as required. Finally, it is impor-

tant to note that group assignments should be carefully

checked (for example, by using AILUN [24]) before run-

ning collapseRows, as this function does not test

whether annotations are correct.

Conclusions
The collapseRows functions implements powerful and

widely used methods for combining related variables.

For example, collapseRows can be used to collapse

probes to genes, to collapse genes to modules, or both.

It can be used to choose an optimal cell marker gene. It

can be used to aggregate dependent variables in such a

way that computational memory requirements are

greatly diminished. Our applications illustrate that the

proposed collapsing strategies lead to robust, reliable

results.

Methods
Abstractly speaking, we study methods for collapsing the

rows of a numeric matrix. The word “collapse” reflects

the fact that the method yields a new matrix whose

rows correspond to a subset of rows from the original

input data. The function collapseRows implements sev-

eral biostatistical and network-based methods for find-

ing a representative row or composite value for each

group specified in rowGroup, which are described in

detail below. One of the advantages of this function is

that it implements the following default settings, which

have worked well in numerous applications: first, each

group is represented by the corresponding row with the

fewest number of missing data. Often several rows have

the same minimum number of missing values (for

example, if there is no missing data) and a representa-

tive must be chosen among those rows; in this case, the

function chooses the remaining row with the highest

sample mean. In the rare case when multiple rows have

the same mean, then the function randomly chooses a

representative row.

Using human and mouse brain data sets to assess

reproducibility

All samples from the 18 human and 20 mouse brain

data sets were taken from brain tissue and were all run

on Affymetrix platforms. Given that we explore the

same tissue (albeit from different species) we hypothe-

sized that a subset of genes would show reproducible

mean expression levels and network connectivity levels.

For example, regardless of the experimental paradigm,

there will be a subset of marker genes in neurons and

glial cells that will be present, and this subset of genes

should be reproducible. In a prior publication we con-

firmed that both mean expression and connectivity

showed a significant amount of reproducibility in all of

these data sets, even when comparing across species [3].

For example, the mean expression (Spearman correla-

tion of R = 0.60, p < E-400) and connectivity (R = 0.27,

p < E-70) was highly correlated between human and

mouse brains. We and others have used the (Spearman)

correlation to assess reproducibility of means and con-

nectivities in pairs of data sets but we should point out

that other measures are possible.

Biostatistical methods for collapsing rows

The collapseRows function implements several standard

methods for collapsing rows into their respective groups.

First, the row with the highest mean value ("MaxMean”)
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can be selected for each group (the default). Similarly,

the representative row with the lowest mean value

("MinMean”), or the one with the highest or lowest

mean absolute value ("absMaxMean” and “absMin-

Mean,” respectively) can also be chosen. Further, one

can also select rows according to their variance across

observations ("maxRowVariance”). In addition, the func-

tion implements two composite value methods: 1) the

group value can be summarized as the average value

("average”) across rows in a group for each column, and

2) the group value can be summarized as the first prin-

cipal component of the rows in each group (referred to

as the “ME” method since, for co-expression module

applications, this amounts to calculating the module

eigengene). Finally, collapseRows allows the user to

input their own user-defined aggregation function (by

setting method = “function” and passing the desired

function using methodFunction), which affords maxi-

mum flexibility.

Network methods for collapsing rows

Correlation network methods for collapsing variables are

only meaningful when dealing with at least 3 variables

(that have the same minimum number of missing

values)–for groups with exactly two rows one of the

above biostatistical methods is used for data aggregation

("MaxMean” by default). For groups of three or more

rows, the collapseRows function constructs a signed

weighted correlation network between the variables. A

network is specified by the connection strengths, or

adjacencies, defined for each pair of variables xi and xj
and denoted by aij. A mathematical constraint on aij is

that its values must lie between 0 and 1.

Weighted gene co-expression network analysis

(WGCNA) [5,14] defines the signed weighted correla-

tion network between xi and xj as:

aij =

(

cor(xi, xj) + 1

2

)β

where the power b is used as a soft threshold [14].

The advantage of using a signed network is that it pre-

serves the sign of the underlying correlation coefficient.

Note that a correlation of -1 leads to an adjacency of 0,

while a correlation of 1 leads to an adjacency of 1. Soft

thresholding (using the power b) preserves the continu-

ous nature of the correlation information; alternative

approaches based on hard thresholding the correlation

coefficient may lead to information loss. While any

power b could be used, the default power of the collap-

seRows function is b = 1 since in many applications

relatively few rows correspond to one group. In this

case, there is less of a need to threshold the correlation

measure.

The connectivity (k) of the i-th node is defined by:

ki =
∑

j�=i

aij.

In weighted networks, the connectivity equals the sum

of connection weights between node i and all other

nodes in the network. Variables with high connectivity

tend to be highly positively correlated with other vari-

ables. Connectivity based collapsing chooses the most

highly connected row (highest k) as representative, and

can be implemented with collapseRows by setting con-

nectivityBasedCollapsing = TRUE. In this case, if several

probes have the same maximum connectivity, the first

such row is chosen.

Collapsing methods used in the empirical studies

For each of our examples, we ran a subset of the follow-

ing six collapsing methods and studied how often each

method leads to the most reproducible results. First, we

choose the row with the highest mean expression (1.

max) by setting method = “MaxMean” and connectivity-

BasedCollapsing = FALSE. Second, we choose the row

with the highest between-column variability (2.var) by

setting method = “maxRowVariance” and connectivityBa-

sedCollapsing = FALSE. Third, we choose the row with

the highest connectivity in cases with three or more

rows per group or highest mean expression in cases

with two rows per group (3.kMax) by setting method =

“MaxMean” and connectivityBasedCollapsing = TRUE.

Fourth, we choose the row with the highest connectivity

in cases with three or more rows per group or maxi-

mum variability in cases with two rows per group (4.

kVar) by setting method = “maxRowVariance” and con-

nectivityBasedCollapsing = TRUE. Fifth, as a sort of con-

trol, we compare our results to a standard method of

centroid determination by measuring the module eigen-

gene (first principal component) for all rows in a given

group across all groups (5.ME) by setting method =

“ME”. Finally, in our assessment of blood cell type, we

also use the average of all marker genes (6.Avg) by set-

ting method = “average”.

Additional material

Additional file 1: the collapseRows function. This file contains the
current version of collapseRows at the date of publication. The most
current version of collapseRows is available as part of the WGCNA
package [5].

Additional file 2: R code to perform analysis. This file includes all of
the code required to reproduce Figures 2, 3, 4, 5 in this manuscript (and
Additional file 3 - Increase in reproducibility using collapseRows), along
with a limited amount of annotation. Data for use with this code is
available at the collapseRows website [6].

Additional file 3: Increase in reproducibility using collapseRows. We

calculated ranked expression (left column) and ranked connectivity (right
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column) correlation across 7 studies in human brain run on the

HGu133A platform (A) and 8 studies in mouse brain run on the
MGu430A platform (B). To assess change in reproducibility due to
collapseRows, we compared these correlations using our best collapsing
method (1.max) against uncollapsed data (0.None). We do not find any
changes in reproducibility based on expression correlation; however,
based on connectivity correlation we find a relatively substantial increase

in reproducibility in both species. Note that these correlations are
generally higher than the corresponding correlations from Figure 2
because we only show the correlations from data sets coming from the
same platform. Y-axes correspond to the average expression and
connectivity correlation between data sets. Error bars represent standard
error.
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