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Abstract

Reverberation and noise are known to severely affect the automatic speech recognition (ASR) performance of speech

recorded by distant microphones. Therefore, we must deal with reverberation if we are to realize high-performance

hands-free speech recognition. In this paper, we review a recognition system that we developed at our laboratory to

deal with reverberant speech. The system consists of a speech enhancement (SE) front-end that employs long-term

linear prediction-based dereverberation followed by noise reduction. We combine our SE front-end with an ASR

back-end that uses neural networks for acoustic and language modeling. The proposed system achieved top scores

on the ASR task of the REVERB challenge. This paper describes the different technologies used in our system and

presents detailed experimental results that justify our implementation choices and may provide hints for designing

distant ASR systems.
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1 Introduction
Recently, automatic speech recognition (ASR) is being

increasingly used in everyday life. Voice search on smart

phones is a good example of a successful application that

has triggered great interest in ASR technologies. How-

ever, progress is still needed if we are to handle more

challenging situations such as distant ASR in the pres-

ence of noise and reverberation [1–3]. When using distant

microphones to capture speech, the microphone signals

are affected by noise and reverberation as follows [4],

y(t) = h(t) ∗ s(t) + n(t), (1)

where y(t) is an observed microphone signal, h(t) is the

room impulse response between the speaker and the

microphone, s(t) is a clean speech signal, n(t) represents

background noise, and ∗ is a convolution operator. As

seen in Eq. 1, reverberation is a convolutive distortion,

which produces non-stationary interference that cannot

be well suppressed with conventional noise reduction

approaches. The problem of reverberation has long been
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recognized to be critical for distant speech recognition

[2, 5–8]. The convolutive nature of reverberation induces

a long-term correlation between a current observation

and past observations of reverberant speech. This long-

term correlation has been exploited to mitigate the effect

of reverberation directly on the speech signal (i.e., speech

[9–12] or feature [13, 14] dereverberation) or on the

acoustic model used for recognition [15, 16].

The REVERB challenge [17] was organized to evalu-

ate recent progress in the field of reverberant speech

enhancement (SE) and recognition. The task of the

REVERB challenge involves reverberant speech with a

moderate amount of background noise for both single and

multi-microphone scenarios. The test data covers vari-

ous acoustic conditions obtained by simulations and real

recordings. The training data consist of simulated multi-

condition training data. Therefore, there are two main

technical challenges posed by the REVERB task, i.e., (1)

the recognition of noisy and reverberant speech and (2)

the mismatch between the training simulated reverberant

speech and testing conditions that include real recordings.

In this paper, we describe the system we proposed for the

REVERB challenge. Our system addresses the technical
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challenges of the REVERB task using the combination of

an SE front-end and an ASR back-end.

First, we employ an SE front-end to reduce the acous-

tic interferences. We chose to employ an SE front-end

rather than acoustic model-based approaches to han-

dle reverberation and noise because it has the advan-

tage of being independent of the ASR back-end that we

used, making it directly usable with, e.g., recent neural

network-based acoustic models. Our SE front-end deals

first with reverberation using a dereverberation approach

based on long-term linear prediction [12, 18, 19]. This

approach can greatly reduce reverberation both for sin-

gle and multi-microphone cases. In the latter case, it can

be effectively combined with multi-channel SE for noise

reduction. Therefore, we employ the combination of a

conventional minimum variance distortionless response

(MVDR) beamformer [20] and model-based SE [21, 22]

to reduce background noise after dereverberation. Both

dereverberation and the beamformer provide linear filter-

ing, which does not cause time-varying distortions to the

processed speech and is therefore empirically particularly

effective for ASR. Moreover, model-based SE achieves

noise reduction while preserving speech characteristics

close to that of clean speech by using a pre-trained model

of clean speech. Consequently, our SE front-end is well

suited for ASR.

Second, to achieve high recognition performance, we

use a recognizer that employs a deep neural network

(DNN)-based acoustic model and a recurrent neural

network-based language model (RNNLM). The acoustic

model is carefully designed to prevent overfitting to the

simulated reverberant speech that is used for training,

by using multi-condition training data that cover vari-

ous acoustic conditions. This is similar to existing data

augmentation techniques [23, 24] but is performed here

by varying the SNR of the training data. Moreover, we

undertake the unsupervised environmental adaptation of

the DNN acoustic model to compensate further for the

mismatch between training and testing conditions.

The system we discussed was designed for the REVERB

challenge [17, 25], where it achieved top performance in

the ASR evaluation. In particular, we achieved a WER of

9 % for the RealData subset of the challenge using our

8 channel SE front-end, which corresponds to a relative

improvement of more than 50 % over a strong DNN-

based ASR back-end without enhancement. These results

demonstrate that a well-designed SE front-end can greatly

improve the performance of distant speech ASR even

when using DNNs.

This work extends our previous papers about our system

[26, 27], by incorporating more details about interme-

diate experimental results. In particular, we investigate

the influence on recognition performance of such aspects

of the SE front-end configuration as the prediction filter

length, the processing scheme used to reduce reverber-

ation, and the processing order of dereverberation and

denoising. Moreover, we also analyze different factors

influencing the performance of the ASR back-end, such as

the acoustic model topology, the type of multi-condition

training data, and the scheme used for environmental

adaptation. These novel results make it easier to under-

stand the implementation choices we made during the

design of our system and may provide insights that will

assist the development of reverberant robust ASR sys-

tems.

This paper focuses on the ASR task, and results are

provided only in terms of ASR performance. Note that

the proposed SE front-end also performed well in the SE

evaluation of the REVERB challenge. Interested readers

can find more details about the system submitted to the

SE task and the results obtained for the SE evaluation in

[25, 26].

The organization of the paper is as follows. In Section 2,

we first briefly review the characteristics of the REVERB

challenge for readers unfamiliar with this task. Section 3

presents a general overview of our proposed system for

the recognition of reverberant speech and describes the

main components of the SE front-end and ASR back-end.

Section 4 provides details of the experimental settings,

discusses implementation issues for the SE front-end and

the ASR back-end, and presents the final results obtained

for the evaluation set. We conclude the paper in Section 5.

2 REVERB challenge task
Before introducing our proposed recognition system, let

us briefly review the main characteristics of the REVERB

challenge task. More details about the task can be found

in [17, 25]. All the utterances employed for the task of the

REVERB challenge are text prompts extracted from the

Wall Street Journal (WSJ) corpus [28]. The speech data

are based on two corpora; i.e., WSJCAM0 [29], which is a

British English version of WSJ, and MC-WSJ [30], which

consists of read speech recorded in a meeting room with

a distant microphone array.

The challenge data include a training set (Train), a

development set (Dev), and an evaluation set (Eval).

• The training set (Train) has two different versions:

clean and multi-condition. The clean training set
consists of the clean training data set of WSJCAM0.

The multi-condition training set consists of
simulated reverberant speech with additional

background noise at an SNR of 20 dB. A script with

which to generate the multi-condition training data

from the clean training data was available to the

challenge participants as well as several room impulse

responses and noise signals measured in real

rooms [25]. We refer to that multi-condition training
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data set as the baseline multi-condition training data
set. Note that the challenge regulations also allowed

the use of additional training data.
• The development set (Dev) consists of two subsets,

simulated reverberant speech (SimData), and real

reverberant speech recordings (RealData). SimData

was generated by convolving clean speech signals

fromWSJCAM0 with room impulse responses

measured in three different rooms followed by the

addition of background noise measured in the same

rooms. The rooms used for the test sets differ from

those used for the training data. The reverberation

time (RT60) of the rooms ranged from 0.25 to 0.7 s,

and the SNR level was about 20 dB. RealData consist

of reverberant speech from the MC-WSJ corpus,

which consists of speech recorded in a meeting room

with a reverberation time of about 0.7 s.
• The evaluation set (Eval) also consists of SimData and

RealData. The evaluation set covers the same acoustic

environments as the Dev set, but with different

speakers and different speaker positions in the rooms.

For all data sets, 1 microphone (1ch), 2 microphone (2ch),

and 8 microphone (8ch) versions are available. All data

sets are available through LDC and the REVERB challenge

website [25].

There are two main technical challenges with the

REVERB task, i.e., the acoustic conditions that include

a large amount of reverberation in addition to a non-

negligible amount of background noise and the mismatch

between the training data obtained from simulation and

the RealData set. In the next section, we present the

systemwe proposed to address these technical challenges.

3 Overview of our proposed system
The system we submitted to the REVERB challenge com-

bines an SE front-end and an ASR back-end as shown

in Fig. 1. The SE front-end aims at removing acoustic

interferences (i.e., reverberation and background noise)

while the back-end undertakes the recognition task. The

main characteristics of the front-end and back-end are

summarized below.

3.1 SE front-end

Our SE front-end performs dereverberation, beamform-

ing, and model-based SE. The following three subsections

describe the ways in which these three functions are

realized in our front-end.

3.1.1 Dereverberation

Our SE front-end starts by dereverberating microphone

signals with a weighted prediction error (WPE) algo-

rithm [12, 18, 19]. WPE is based on long-term linear

prediction, which has been widely used for blind equal-

ization when the target signal is stationary Gaussian.

However, when used for speech dereverberation, linear

prediction cannot distinguish between the room impulse

response and the speech generative process, therefore

causing excessive whitening of the processed signal [31].

WPE is a modified version of linear prediction, which is

more suitable for speech signals because it models the tar-

get signal as a Gaussian with a time-varying variance and

also introduces a time delay in the linear prediction to

preserve the speech generative process.

The WPE algorithm performs long-term linear predic-

tion in a short time Fourier transform (STFT) space as

follows,

yn =

T⊤∑

τ=T⊥

GH
τ yn−τ + xn, (2)

where yn is a vector comprising the STFT coefficients

of the microphone signals, xn a prediction error vector,

Gτ is a complex-valued square matrix, called a predic-

tion matrix, n is the time frame index, T⊤ and T⊥ are

integers with T⊤ > T⊥ > 0, and superscript H is a con-

jugate transposition. Note that the frequency bin index is

omitted since this algorithm processes signals on a per fre-

quency bin basis. T⊥ represents the time delay in the lin-

ear prediction. Our submitted system used T⊥ = 3 for all

the array set-ups (i.e., irrespective of the number of micro-

phones used) while T⊤ was set at 40, 30, and 7 for the 1ch,

2ch, and 8ch set-ups, respectively. These settings provide

good performance as shown by the results in Section 4.2.1,

which examines the impact of these parameters on WER.

Fig. 1 Schematic diagram of the proposed system for the recognition of reverberant speech
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The prediction matrices,GT⊥
, · · · ,GT⊤

, are optimized for

each utterance by minimizing an iteratively re-weighted

prediction error criterion [19].

With the optimized predictionmatrices, dereverberated

signals can be obtained as prediction errors, that is, a

dereverberated STFT coefficient vector can be computed

as,

xn = yn −

T⊤∑

τ=T⊥

GH
τ yn−τ . (3)

In Eq. 3, the predictions (the second term on the right

hand side) are subtracted from the microphone signals.

Thus, the predictions may be regarded as estimates of the

reverberant interferences contained in the microphone

signals. This view leads us to an alternative derever-

beration scheme using spectral subtraction. Specifically,

instead of subtracting the reverberation estimates in the

STFT coefficient space, we subtract the power spectra

of the reverberation estimates from the observed power

spectra while leaving the phase spectra unchanged in

a similar way to [11]. The difference between the two

schemes is investigated in Section 4.2.2.

WPE has a number of characteristics that make it very

attractive for reverberant speech recognition. WPE is

based on a rigorous modeling of reverberation and can

thus substantially reduce reverberation. Moreover, WPE

is known to be relatively robust to the ambient noise that

is inevitably present in distant speech recordings, making

it suitable for realistic situations. Finally, the WPE algo-

rithm shortens the room impulse responses between a

speaker and microphones to achieve dereverberation [19].

This means that this algorithm allows multi-channel noise

reduction techniques based on beamforming to be effec-

tively performed after dereverberation.

3.1.2 Beamforming

The second component constituting our SE front-end is

anMVDR beamformer. This component is designed to fil-

ter out additive noise that remains in the dereverberated

signals. In this work, the MVDR beamformer was imple-

mented by using the scheme proposed in [20] by using

noise covariance matrices estimated from the initial and

final 10 frames of each utterance.

3.1.3 Model-based SE

Finally, we further reduce background noise using a

model-based SE approach. We employ the dominance-

based locational and power-spectral characteristics

integration (DOLPHIN) approach [22], which combines

spectral feature-based SE [32] with a source location

feature-based approach [33, 34] into a single optimization

framework. This is performed by introducing a domi-

nant source index (DSI), which indicates whether noise

or speech is dominant at each time/frequency bin. The

DSI is estimated using the EM algorithm by exploiting

a source location feature and spectral feature models of

speech and noise.

The parameters of the source location feature models

for speech and noise are estimated on a per-utterance

basis from the multi-channel output of the WPE. The

spectral feature models, composed of Gaussian mixture

models (GMMs), are trained on the clean speech train-

ing data and then adapted to the test conditions in an

unsupervised manner using the output of the MVDR.

The adaptation is performed using all the utterances of

a given acoustic condition (full batch mode)1 following

the procedure described in [22]. The noise spectral model

parameters are estimated on a per utterance basis. Noise

reduction is finally performed on the MVDR output.

In contrast to the other components of the SE front-end,

DOLPHIN is based on non-linear processing, i.e., it pro-

cesses speech based on frame-wise spectral modification

possibly introducing time-varying distortions that may be

difficult for the ASR back-end to cope with. However, the

use of pre-trained spectral models of speech ensures that

the characteristics of the processed speech remain close

to that of clean speech.2

3.2 ASR back-end

Our ASR back-end relies on neural network techniques

for acoustic and language modeling to achieve high recog-

nition performance. Moreover, we also employ unsuper-

vised environmental adaptation to mitigate the mismatch

between training and testing acoustic conditions.

3.2.1 Acoustic model

We employ a conventional context-dependent DNN hid-

den Markov model (CD-DNN-HMM)-based acoustic

model. The input features consist of log mel filter-

bank features that were processed with global mean

and variance normalization. The DNN was initialized

using layer-wise restricted Boltzmann machine (RBM)

pre-training [35]. The DNN was then fine-tuned using

stochastic gradient descent (SGD) to optimize the cross

entropy criterion. We used the backpropagation algo-

rithm with labels obtained by performing an HMM state

alignment of the clean speech training data using a GMM-

based recognizer trained with the maximum likelihood

criterion.

We trained the DNN using multi-condition training

data. The REVERB challenge provided a baseline multi-

condition training data set that consists of simulated

reverberant speech with additional noise. The reverberant

speech of the baseline multi-condition training data set is

thus relatively close to that of the SimData test sets. How-

ever, the acoustic conditions of the multi-condition train-

ing data differ greatly from that of RealData. Therefore, to

increase recognition performance especially for the more
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challenging RealData sets, we extended the training data

by increasing the acoustic conditions seen during training.

This was simply performed by creating different versions

of the multi-condition training data at different SNRs

and also adding clean speech and speech recorded by a

desktop microphone. Consequently, the extended train-

ing set consists of the same utterances, and any variation

originates solely from different acoustic conditions.

Note that we did not use enhanced speech to train

the DNN but instead used the unprocessed distant noisy

and reverberant speech. This was shown to provide more

robust acoustic models as we discuss using the exper-

iments described in Section 4.3.2. This approach also

enabled us to use the same acoustic model for different

configurations of the SE front-end, which allows a rapid

experimental turnaround.

3.2.2 Unsupervised adaptation

There are two main causes for the mismatch between

training and testing conditions, which affect recognition

performance. First, as mentioned in the previous section,

we use distant unprocessed speech for training the model

but enhanced speech for recognition. Consequently, small

artifacts or distortions caused by the SE front-end may

affect recognition performance. Another cause of the mis-

match is the different acoustic conditions seen during

training and testing, which is particularly noticeable with

the RealData set.

We employed environmental adaptation to mitigate the

mismatch between the training and testing conditions.

Here, we had to perform an unsupervised adaptation as

we do not possess adaptation data with transcriptions.

The adaptation of DNNs to speakers or environments has

recently attracted much interest [36–41]. Here, we inves-

tigate four simple but effective ways to adapt the DNN

by retraining its parameters or some of them using labels

obtained from a first recognition pass, i.e., a linear input

network (LIN) [36]3, retraining the first layers, the last

layer, or the whole DNN [37]. The experiments described

in Section 4.3.4 reveal that retraining the first two layers

can already greatly reduce the mismatch caused by the

acoustic conditions.

3.2.3 Languagemodel

As mentioned previously, the different acoustic condi-

tions between training and testing induce a mismatch that

affects recognition performance. However, we can con-

sider that the linguistic characteristics do not vary with

the acoustic conditions. Consequently, improving lan-

guage modeling is expected to improve performance, as

long as the use of the system remains the same.

Recently, RNNLMs have been used to improve language

modeling as they can model the long-term dependency

between words that cannot be captured by conventional

n-gram models [42]. However, RNNLMs make decoding

prohibitively expensive because the word probability dis-

tribution represented by RNNLM is dependent on the

entire word history, making the search space grow expo-

nentially with the length of the recognition hypotheses.

Therefore, RNNLM can usually be used only for N-best

lattice rescoring, which then requires two-pass decoding.

Here, we use a recently proposed approach to incorporate

RNNLM into a weighted finite-state transducer (WFST)-

based decoder by using an on-the-fly rescoring strategy

[43]. This approach enables one-pass decoding without

greatly increasing the computational cost. The algorithm

is detailed in [43].

The RNNLM was trained using sentences extracted

from the WSJ text corpora [28] distributed by the Lin-

guistic Data Consortium (LDC), while ensuring that the

sentences in the evaluation and development sets were not

employed. The training data set for RNNLM consists of

716,951 sentences.

It is common practice when using RNNLM to compute

the word probabilities by interpolating the probabilities

from the RNNLM and a conventional trigram language

model to enhance the word prediction performance. We

also used this approach here and determined the interpo-

lation coefficient using the development set.

4 Experiments
Before presenting the experimental results, we summa-

rize the settings of our proposed SE front-end and ASR

back-end. We then discuss the results of preliminary

experiments on the development set that justify the imple-

mentation choices we made. Final results obtained with

the evaluation set are provided in Section 4.4.

4.1 Experimental settings

Table 1 summarizes the main settings for the different

components of the SE front-end. We discuss the impact

that the choice of these parameters may have on the

recognition performance in Section 4.2.

Table 2 details the experimental settings of the ASR

back-end. To train the DNN we used an HMM state

alignment obtained using the clean training data with an

GMM-HMM based ASR system trained with the maxi-

mum likelihood (ML) criterion. Note that this can be per-

formed because the training data was generated with sim-

ulation and therefore we have access to clean/reverberant

stereo data. We may expect some decrease in perfor-

mance if we would use reverberant speech to perform the

alignment [44]. During SGD fine tuning, we used a vali-

dation set to decide when to reduce the learning rate and

stop training. The validation set was created by randomly

extracting 5 % of the training utterances.

We used two multi-condition training sets, namely the

baseline training data set and the extended training data
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Table 1 Settings for the SE Front-end

WPE

T⊥ = 3, T⊤ = 40, 30, 7 for 1ch, 2ch and 8ch, respectively

Window length: 32 ms, frame shift : 8 ms

Number of FFT points: 512 (number of frequency bands: 257)

MVDR

Window length: 32 ms, frame shift : 8 ms

DOLPHIN see [22] Section V. A. 2) and Section V. B. 2) for details

Window length: 100 ms, frame shift : 25 ms

Spectral feature model:

GMM with 256 components, features: MFCC (13 dimensions)

Source location model:

Watson mixture model (4 components), features: normalized complex

spectrum

set described in Subsection 3.2.1. Unless otherwise spec-

ified, all preliminary experiments were performed using

the baseline training data set. For decoding we used two

types of language model, a conventional trigram, which is

provided with the WSJ corpus, and the RNNLM that was

trained using the WSJ corpus. All the preliminary results

were obtained with the trigram language model.

For unsupervised batch adaptation, we performed a

few backpropagation iterations assuming that the labels

obtained from a first recognition pass were true refer-

ences.

Table 2 Settings for the ASR back-end

Input features

40 log mel filterbank coefficients + � + �� (120 coef.)

Global mean and variance normalization + utterance level CMN

5 left and 5 right context (11 frames)

Acoustic model

DNN-HMM

7 hidden layers, 2048 hidden units,

1320 visible units, 3129 output units (HMM states)

Training data

(1) Baseline multi-condition training data (17h)

(2) Extended multi-condition training data (85h)

Languagemodel

TRI : Trigram language model available with the WSJ corpus [28]

RNNLM : RNN-based language model (interpolation coef. 0.5)

Decoding parameters

Language model weight:11

Beam: 400

4.2 Preliminary experiments on SE front-end

We first investigate the influence on ASR performance

of characteristics of the SE configurations, such as the

prediction filter length, the scheme for reverberation

reduction (linear filtering or spectral subtraction) and the

processing order of WPE and MVDR. All parameters

were tuned using the development set.

4.2.1 Influence of prediction filter length

Figure 2 plots the WER as a function of the total number

of prediction coefficients of WPE for 1ch, 2ch and 8ch.

The total number of prediction coefficients is the predic-

tion filter order multiplied by the number of channels.

Note that here 1 tap corresponds to 8 ms.

Fig. 2 Influence of prediction filter length. The figure plots the WER as

a function of the total number of prediction coefficients of WPE for

1ch, 2ch, and 8ch for a SimData and b RealData, for the development

set. The total number of prediction coefficients is the prediction filter

order multiplied by the number of channels
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For SimData, we observe that performance continues to

improve up to a total of about 40 coefficients for 1ch and

2ch cases and longer for 8ch. These results suggest that

for acoustic environments covered by the REVERB chal-

lenge, i.e., an RT60 up to about 700 ms, filter length of

about 300 ms may be sufficient in practice. Longer filters

do not significantly improve the average results, however,

we observed that for sentences with a longer reverberation

time, longer filters tend to provide better performance.

For RealData the performance peaks at 40 and degrades

for longer filters, especially for the 8ch case. This may be

due to the higher level of noise present in the RealData,

which affects the accuracy of the prediction filters. In such

a case, long prediction filters may amplify the background

noise, resulting in degradation of the ASR performance.

We investigated the prediction filter length in detail

after submitting our results to the REVERB challenge. The

values that we used for the challenge correspond to filter

lengths of 40, 30, and 7 taps for 1ch, 2ch, and 8 ch, respec-

tively (this corresponds to total numbers of coefficients of

40, 60, and 56). Note that according to Fig. 2, these settings

are not optimal for RealData, but for consistency with

the system that we submitted to the REVERB challenge,

we also used these settings for the other experiments

described in this paper.

4.2.2 Linear filtering vs spectral subtraction

It is possible to reduce late reverberation components

estimated by WPE using linear filtering or spectral sub-

traction as discussed in Section 3.1.1. Table 3 shows the

WER as a function of the processing strategy used to

reduce late reverberation for 1chWPE. The results clearly

show that linear filtering greatly outperforms spectral sub-

traction. Note that we also tested spectral subtraction in

the amplitude domain and several parameters for spectral

subtraction such as the over-subtraction factor but found

consistently that spectral subtraction performed worse

than linear filtering.

These results show that linear filtering, which causes

less distortion than spectral subtraction, can lead to better

recognition performance, confirming our intuition.

4.2.3 Processing order

When considering the physical model for reverberant

speech as shown in Eq. 1, it would appear natural to

Table 3 WER for different strategies to remove late

reverberations, i.e., linear filtering and power domain spectral

subtraction (SS). The results are given for the development set

Processing SimData RealData

Distant 8.3 % 24.1 %

WPE(1ch) - linear filtering 7.5 % 22.8 %

WPE(1ch) - SS 7.8 % 23.9 %

perform denoising prior to dereverberation. Nevertheless,

our proposed system performs dereverberation before

denoising. There are two main reasons for choosing this

processing order. First, model-based SE employs non-

linear processing that would destroy the linear filtering

model of reverberation that WPE relies on. Second, WPE

can process multi-channel signals while preserving source

location information and outputs multi-channel signals.

In contrast, the output of an MVDR beamformer is a

single channel signal. Therefore, when applying MVDR

beforeWPE,WPE cannot exploit spatial information pro-

vided by the multi-channel inputs, and performances are

thus not optimal.

We confirmed the above intuitions experimentally.

Figure 3 plots the WER for different processing orders

of WPE and MVDR. For SimData, WPE alone signifi-

cantly outperforms MVDR and performing dereverber-

ation before MVDR works better for both 2ch and 8ch

cases. For RealData, we also observe that performing dere-

verberation prior to denoising works significantly better,

although MVDR alone outperformsWPE alone. This may

be due to the lower SNR of the RealData set, which makes

denoising more relevant in this case.

Note that it is possible to use dereverberation before

denoising because prediction filters estimated with WPE

are not too sensitive to noise at the levels observed in the

REVERB challenge.

4.3 Preliminary results on ASR back-end

Let us now analyze different factors influencing the ASR

back-end such as the number of hidden layers and the size

of the input context, the influence of training data, and the

choice of adaptation strategy.

4.3.1 Influence of number of hidden layers and input

context size

The results presented so far were obtained for DNNwith 7

hidden layers and a context window of 11 frames. Here, we

investigate the influence of the number of hidden layers

and input context size on recognition performance.

Figure 4 plots WER as a function of the number of

hidden layers for two input context settings (11 and 15

frames) for speech recorded by a distant microphone

without an SE front-end.We clearly observe that the DNN

with 7 hidden layers provides the best results, therefore

we used that configuration for all other experiments.

Note that when considering reverberant speech recog-

nition, we may consider using a longer context to handle

reverberation [3]. We also tested increasing the acoustic

context to 15 frames for numbers of hidden layers between

5 and 8, but we observed no performance improvement

for SimData, and for RealData, in fact the performance

even degraded. This indicates over-fitting to the training

conditions that consist of simulated reverberant speech.



Delcroix et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:60 Page 8 of 15

Fig. 3 Influence of processing order. The figure plots the WER for

MVDR beamformer and WPE dereverberation and different

combinations of both approaches for 2ch and 8ch for a SimData and

b RealData, for the development set

4.3.2 Training with distant speech vs enhanced speech

Table 4 shows the WER obtained with acoustic models

trained with and without processing the multi-condition

training data with the SE front-end. The first case consists

of using a matched SE front-end for the training and test-

ing conditions. In that case, the RBM pre-training and fine

tuning were both performed using enhanced speech data.

The results in Table 4 clearly reveal that using enhanced

training data improves the performance for SimData

but greatly degrades the performance for RealData. This

demonstrates again that the performance on SimData set

is less sensitive to overfitting to the training data because

the acoustic conditions are close to those of the multi-

condition training data. The model trained with enhanced

speech appears less robust and therefore performs poorly

on RealData. Others have already reported that training

Fig. 4 Influence of the number of hidden layers and input context

size. The figure plots the WER as a function of the number of hidden

layers for context windows of 11 and 15 frames for a SimData and b

RealData, for the development set

Table 4 WER when using acoustic models trained with (‘�’) and

without (‘-’) processing the training data with the SE front-end

used during testing. The results are averaged over the acoustic

conditions of SimData and RealData, for the development set

Processing Train w/ SimData RealData

SE front-end

Distant - 8.3 % 24.1 %

WPE(1ch) - 7.5 % 22.8 %

� 7.0 % 24.4 %

WPE(8ch) + MVDR - 6.2 % 16.1 %

� 5.0 % 20.5 %
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on enhanced speech may reduce the acoustic variations

seen during training and therefore may negatively affect

the generalization of the DNN [44–46]. Note that the

results may differ if we use the extended multi-condition

training data set that covers more acoustic variations as

used in the next subsection. However, processing a large

amount of training data with the SE front-end and train-

ing different acoustic models for each SE front-end is

expensive. All subsequent results were obtained without

processing the training data with the SE front-end.

4.3.3 Influence of training data

A simple approach for mitigating the mismatch between

training and RealData and therefore alleviating the overfit-

ting issue is to increase the number of acoustic conditions

seen during training. Figure 5 plots the WER for differ-

ent training data sets. We gradually increased the amount

of training data by adding data with different acoustic

variations to the multi-condition training data set. Each

addition consists of exactly the same spoken utterances

Fig. 5 Influence of extended training data. The figure plots the WER

as a function of the training data used for a SimData and b RealData,

for the development set. The results are given for different SE

front-ends, i.e., no SE front-end (‘Distant’), 1ch WPE (‘WPE (1ch)’) and

the combination of 8ch WPE with MVDR and DOLPHIN (‘WPE (8ch) +

MVDR + DOL’). The left bars (‘Baseline 20 dB’) show the results for the

baseline multi-condition training data set. The other bars show the

results when the amount of training data is gradually increased by

adding distant speech at SNRs of 10 and 15 dB (‘+10 dB, 15 dB’), the

clean training data (‘+ clean’), and the training data recorded with a

desktop microphone (‘desktop’)

and the only differences relate to the acoustic conditions

(reverberation, noise, or recording microphone). All the

data in the extended training data set are part of WSJ-

CAM0 [29] or can be generated using the tools provided

by the REVERB challenge to generate multi-condition

training data [25]. Note that this approach is related to

previous work on data augmentation for DNN training

such as vocal tract length perturbation (VTLP) [23, 24].

Indeed, we also artificially created modified versions of

the training data while preserving the labels. The differ-

ence is that we modified the data by changing the SNR

instead of modifying the vocal tract characteristics.

The results in Fig. 5 clearly reveal that increasing

the amount of training data improves the performance,

especially for the RealData set. Adding clean data is

particularly effective when using enhanced speech for

recognition, especially when the SE front-end can greatly

reduce reverberation and noise such as in the 8ch case.

Moreover, although adding data recorded by the desktop

microphone of WSJCAM0 does not improve the perfor-

mance significantly for SimData, it contributes to a large

improvement in the RealData case. This may be attributed

to the benefit of using speech recorded with microphones

with different characteristics. In addition, the use of real

recordings obtained with a somewhat distant microphone

in the training set may cover factors that are difficult to

model with a simulation such as head movements. We

used the last training set (‘20 dB + 10 dB + 15 dB + clean

+ desktop’) to obtain the optimal performance shown in

the final results in Section 4.4.2. That extended training

data set consists of approximately 5 times the amount of

training data compared with the baseline multi-condition

training data set of the REVERB challenge, i.e., about 85 h.

4.3.4 Unsupervised environmental adaptation

We have also investigated several strategies for adapting

the DNN to the acoustic conditions. Figure 6 plots the

WER as a function of the number of epochs for differ-

ent adaptation strategies with the RealData. The results

are given for the development set using an acoustic model

trained with the baseline multi-condition training data.

We compared four adaptation approaches namely, (1)

retraining the weights and bias parameters associated

with the last hidden layer of the DNN, (2) retraining

only the first layer, (3) retraining the first two layers, (4)

retraining all the parameters, and (5) training a global fea-

ture transformation, i.e., LIN [36]. LIN is implemented by

inserting an additional hidden layer with linear activation

between the input layer and the first hidden layer. The

weights of the linear feature transformation are initialized

as a unit matrix and are trained using adaptation data.

Note that since LIN simply introduces a hidden layer with

linear activation, the network adapted with LIN is struc-

turally equivalent to the original network with re-trained
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Fig. 6 Comparison of different adaptation strategies. The figure plots

the WER as a function of the number of epochs for different

adaptation strategies, i.e., (1) retraining the weights and bias

parameters associated with the last hidden layer of the DNN (‘last’), (2)

retraining only the first layer (‘1st’), (3) retraining the first two layers

(‘1st + 2nd’), (4) retraining all parameters (‘all’), and (5) training a global

feature transformation (‘LIN’). The results are given for the RealData

set of the development set, for (a) distant speech and for (b) speech

processed with 1ch WPE

input weights. However, thematrix size of the linear trans-

form is smaller, and the number of adaptation coefficients

LIN requires is only about 65 % the number of coefficients

of the first layer.

We tested different values for the learning rate and

found that the best performance was obtained with a

learning rate of 0.0001 for LIN and 0.0005 for the other

adaption strategies. For all the experiments, we used a

fixed momentum value, which was set at the same value

as used for the DNN fine-tuning, i.e., 0.9.

In this experiment, we performed environmental adap-

tation by adapting the DNN using all the test data cor-

responding to a given acoustic condition after front-end

processing. That corresponds to ‘full batch mode’ accord-

ing to the instructions of the REVERB challenge [25].

Since several speakers are included in the test set of each

acoustic condition, this process mostly performs envi-

ronmental adaptation and only partly performs speaker

adaptation. The adaptation data amounts to about 9 min

for the results in Fig. 6.4

The results in Fig. 6 reveal that there is no large per-

formance difference between retraining the first layer,

retraining the first two layers, retraining the whole DNN,

or using LIN. This shows that most of the gains fromDNN

retraining come from adaptation of the first hidden layers.

Moreover, the performance is relatively stable after about

15 epochs except when retraining only the first layer. For

all subsequent experiments, we performed adaptation by

retraining the first and second hidden layers for about 15

epochs.

4.4 Final results for evaluation set

4.4.1 Results using baselinemulti-condition training data

set

Table 5 shows the WER for the evaluation set using an

acoustic model trained with the baseline training data set.

These results are provided to allow fair comparison with

the other systems submitted to the REVERB challenge that

employed the same training data set [47–50]. The results

are detailed for all components of the SE front-end, for

trigram (TRI) language model, and RNNLM and with and

without adaptation.

Looking at the results of Table 5, we confirmed that

unsupervised environmental adaptation and the use of

RNNLM provide consistent improvement. As regards the

SE front-end, dereverberation withWPE is responsible for

most of the performance gains, with the relative improve-

ment ranging from 15 to 29 %. The improvement is partic-

ularly large for the multi-channel cases. When combining

dereverberation with noise reduction for the 8ch scenario

(system VII-d), we obtained a relative improvement of up

to 50 % compared with our system without any SE front-

end (system 0-d). This demonstrates the potential of a

well-designed multi-channel SE front-end to improve the

performance of DNN-based ASR back-ends.

4.4.2 Results using extendedmulti-condition training data

set

Table 6 shows the WER for the evaluation set when

using the extended training data set. Note that the results

in Table 6 differ slightly from those submitted to the

REVERB challenge [26] because of minor differences in

the configuration of the ASR back-end.
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Table 5 Results for the evaluation set using an acoustic model trained with the baseline multi-condition training data set

Proc. LM Adap.

SimData RealData

Room1 Room2 Room3 Ave. Room1 Ave.

Near Far Near Far Near Far - Near Far -

0 - a Distant TRI - 6.1 6.7 7.4 11.2 7.8 12.2 8.6 29.2 27.8 28.5

b � 5.6 6.5 7.2 10.2 7.5 11.3 8.0 23.9 23.3 23.6

c RNN - 5.2 6.0 5.8 9.9 6.4 9.9 7.2 26.4 26.4 26.4

d � 4.7 5.8 6.0 9.5 6.7 10.1 7.1 21.6 22.3 22.0

I - a WPE (1ch) TRI - 6.2 6.4 6.9 9.9 7.0 9.5 7.7 25.4 25.0 25.2

b � 5.4 5.8 6.2 9.1 6.4 8.6 6.9 20.1 20.2 20.1

c RNN - 5.1 5.5 5.2* 8.1 5.7 7.9 6.3 23.7 23.1 23.4

d � 4.7* 5.2* 5.4 8.0* 5.7* 7.7* 6.1* 18.6* 18.9* 18.7*

II - a WPE (2ch) TRI - 6.3 6.3 6.7 8.5 6.7 8.4 7.1 23.5 22.9 23.2

b � 5.5 6.1 6.4 8.0 6.2 7.7 6.6 18.3 18.3 18.3

c RNN - 5.1 5.4 5.4 7.0 5.7 6.8 5.9 21.4 21.6 21.5

d � 4.7* 5.1 5.4 7.0 5.9 7.3 5.9 17.7 16.9 17.3

III - a II + MVDR TRI - 6.3 6.6 6.5 7.3 6.1 7.4 6.7 21.1 20.5 20.8

b � 5.5 5.8 5.9 7.2 5.8 7.2 6.2 16.8 15.9 16.4

c RNN - 5.8 5.6 5.1 6.2 5.0 5.8 5.6 18.9 19.0 19.0

d � 4.8 5.0* 5.0* 6.3 5.3 6.3 5.4* 16.3 15.2 15.7

IV - a III + DOL TRI - 6.6 6.8 6.4 7.1 5.8 7.0 6.6 20.3 18.7 19.5

b � 5.6 6.0 5.9 7.0 5.7 6.9 6.2 16.7 14.7* 15.7

c RNN - 5.7 5.5 5.0* 6.1* 4.8* 5.7* 5.5 17.9 18.2 18.1

d � 5.0 5.0* 5.0* 6.2 5.1 6.2 5.4* 15.3* 15.7 15.5*

V - a WPE (8ch) TRI - 6.3 6.3 6.9 7.9 6.6 8.2 7.0 22.8 22.1 22.5

b � 5.6 5.9 6.4 7.3 6.0 7.6 6.5 17.4 17.1 17.2

c RNN - 5.3 5.5 5.1 6.1 5.4 6.9 5.7 21.9 20.5 21.2

d � 4.6* 4.9* 5.2 6.2 5.7 6.9 5.6 15.8 15.7 15.7

VI - a V + MVDR TRI - 7.2 7.3 6.1 6.0 6.4 7.1 6.7 15.6 15.6 15.6

b � 5.5 6.1 5.6 5.5 5.9 6.5 5.8 12.5 12.7 12.6

c RNN - 6.2 6.3 4.8 5.3* 5.2* 5.7* 5.6 14.2 14.5 14.3

d � 5.1 5.1 4.6* 5.3* 5.3 5.8 5.2* 11.1 11.1* 11.1*

VII - a VI + DOL TRI - 7.7 7.6 6.7 6.7 7.1 7.2 7.2 14.5 15.7 15.1

b � 5.9 6.3 5.8 5.8 6.0 6.6 6.0 12.2 13.9 13.0

c RNN - 6.7 6.1 5.6 5.6 5.9 6.4 6.1 12.2 13.9 13.0

d � 5.1 5.2 4.7 5.3* 5.4 5.8 5.3 9.8* 12.4 11.1*

*Best performance for 1ch, 2ch, and 8ch

The results are presented for the different components of the SE front-end and for different configurations of the ASR back-end, such as the languagemodel (LM) used (trigram (tri) or RNNLM (RNN)) or with (�) or without (-) adaptation
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Table 6 Results for the evaluation set using an acoustic model trained with extended training data

Proc. LM Adap.

SimData RealData

Room1 Room2 Room3 Ave. Room1 Ave.

Near Far Near Far Near Far - Near Far -

Clean/Headset mic RNN � - - - - - - 3.5 - - 6.1

Lapel mic RNN � - - - - - - - - - 7.3

0 - a Distant TRI - 5.0 5.7 6.3 11.1 7.2 11.2 7.8 25.8 26.5 26.1

b � 4.5 5.4 6.1 9.9 7.0 10.2 7.2 19.7 22.1 20.9

c RNN - 4.2 5.0 5.3 9.2 5.7 9.7 6.5 23.0 24.4 23.7

d � 3.8 4.9 4.9 8.1 5.6 8.6 6.0 18.5 19.9 19.2

I - a WPE (1ch) TRI - 4.8 5.4 6.2 8.8 6.1 8.6 6.6 20.3 20.3 20.3

b � 4.7 5.0 5.9 8.2 5.9 8.1 6.3 16.8 17.3 17.0

c RNN - 3.8 4.3 4.7 7.6 5.3 7.4 5.5 19.2 18.7 19.0

d � 3.6* 3.9* 4.4* 6.6* 4.8* 6.8* 5.0* 15.2* 16.7* 15.9*

II - a WPE (2ch) TRI - 4.9 5.1 6.0 7.2 6.0 7.3 6.1 18.0 18.1 18.1

b � 4.6 4.9 5.8 6.8 5.8 6.7 5.8 14.5 16.0 15.2

c RNN - 4.0 4.3 4.9 6.1 5.0 5.8 5.0 16.5 16.5 16.5

d � 3.7* 4.0* 4.4 5.7 4.7 5.4 4.6 13.4 13.1 13.2

III - a II + MVDR TRI - 4.9 5.1 5.8 6.8 5.7 6.7 5.8 15.6 15.9 15.8

b � 4.6 4.9 5.4 6.2 5.6 6.6 5.5 12.9 14.2 13.5

c RNN - 4.2 4.4 4.2 5.5 4.9 5.4 4.8 14.3 14.8 14.6

d � 3.9 4.2 4.1* 5.0* 4.5 5.0* 4.4* 11.6 12.8 12.2

IV - a III + DOL TRI - 4.8 5.1 5.6 6.5 5.8 6.4 5.7 15.8 15.9 15.8

b � 4.7 5.0 5.4 6.1 5.6 6.2 5.5 12.8 14.0 13.4

c RNN - 4.1 4.7 4.2 5.2 4.9 5.4 4.7 14.4 14.6 14.5

d � 3.7 4.1 4.3 5.0* 4.4* 5.2 4.4* 11.1* 12.7* 11.9*

V - a WPE (8ch) TRI - 4.6 5.1 5.8 6.5 5.8 6.8 5.8 16.7 17.0 16.9

b � 4.42 4.9 5.8 6.2 5.5 6.5 5.5 13.5 13.9 13.7

c RNN - 3.8 4.2 4.6 5.5 4.8 5.4 4.7 16.0 15.7 15.8

d � 3.5* 3.9* 4.1 5.0 4.3 5.3 4.3 12.7 13.1 12.9

VI - a V + MVDR TRI - 4.8 5.2 5.2 5.5 5.5 5.9 5.3 11.9 12.4 12.2

b � 4.6 4.9 5.0 5.2 5.5 5.8 5.2 10.0 10.2 10.1

c RNN - 4.0 4.2 3.8 4.3 4.4 4.8 4.2 10.4 11.9 11.1

d � 3.7 3.9* 3.5* 4.2* 4.2* 4.9 4.1* 9.0 9.6 9.3

VII - a VI + DOL TRI - 5.0 5.3 5.2 5.5 5.7 5.8 5.4 11.1 12.3 11.7

b � 4.8 4.8 5.0 5.3 5.6 5.6 5.2 9.7 9.9 9.8

c RNN - 4.1 4.2 3.9 4.3 4.3 4.8 4.3 10.0 11.4 10.7

d � 3.9 4.0 3.7 4.2* 4.3 4.6* 4.1* 8.9* 9.3* 9.1*

*Best performance for 1ch, 2ch and 8ch

The results are presented for the different components of the SE front-end and for different configurations of the ASR back-end, such as the languagemodel (LM) used (trigram (tri) or RNNLM (RNN)) or with (�) or without (-) adaptation
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We observe the same tendency as in Table 5 but with an

average performance that is about 1 point better for Sim-

Data and 2–5 points better for RealData. Here, we also

observe large gains with our SE front-end, i.e., our best

SE front-end achieved a relative performance improve-

ment of 50 % over a strong DNN-based ASR back-end.

This performance improvement should be compared to

the improvement provided by the use of DNN instead

of GMM for the acoustic models. Comparing the results

of Table 5 for unprocessed speech with those reported

in [48], we observe that our DNN-based system achieves

about 10 % relative improvement over a state-of-the-art

GMM-based recognizer (using Kaldi with fMMLR, BMMI

training, MBR decoding, etc).

Table 6 also shows the WER for Clean/Headset micro-

phone speech and for speech recorded with a label micro-

phone. For SimData, the performance tends to saturate for

all rooms to a level close to the WER of clean speech. For

RealData, there still remains a large gap between our best

performance and the performance obtained with a head-

set. Nevertheless, with 8ch, we achieve a WER close to

that obtained using a lapel microphone.

Note that the performance difference between clean

speech and headset microphone, which is close to clean

speech, indicates that the performance gap between Sim-

Data and RealData does not solely originate from the

different acoustic conditions but may also be due to other

factors related to the spoken utterances such as speaking

style. The fact that speaker adaptation techniques were

shown to be very effective for the REVERB task [49, 51]

is another indication that part of the mismatch may be

due to speaker-related factors. These observations suggest

that incorporating speaker adaptation techniques such as

adding i vectors to the input features of our ASR back-end

could provide additional gains [39, 49]. This will form part

of our future investigations.

4.5 Discussions

4.5.1 Computational complexity and latency

When designing our system, our implementation choices

were guided mainly by the objective of improving the

recognition performance. In practice, the computational

complexity and latency would also be important factors

to consider when deploying such a recognition system.

Currently, the front-end represents most of the computa-

tional cost. The real-time factors (RTFs) of WPE is about

0.2, 0.5, and 2.8 for 1ch, 2ch, and 8ch, respectively. The

RTF of the MVDR beamformer is negligible (about 0.03)

and that of DOLPHIN is about 6.1 and 10.5 for 2ch and

8ch, respectively. As for the latency, WPE and the MVDR

beamformer operate in utterance-batch mode, therefore

the latency corresponds to the length of a utterance, i.e.,

several seconds. DOLPHIN and environmental adapta-

tion operate in full-batchmode,meaning that they process

all data corresponding to an acoustic condition in a batch

manner. Extension of WPE for online processing as well

as reduction of the computational cost and latency of

the components of our front-end is part of our future

work.

4.5.2 Comparisonwith other approaches

Table 5 allows us to compare our results with those

of other participants who used the same training data.

Our 1ch system without adaptation (system I-c) performs

slightly better than the second best system [47] on the

RealData set. However, if we allow full-batch processing,

with adaptation, we obtained 5 points of WER reduction

(system I-d). For 8ch case, our system greatly outper-

forms the second best system by more than 4 points for

utterance-based batch processing (systemVI-c) and by 7.5

points for full-batch processing (system VI-d and VII-d).

This confirms that even without using the extended train-

ing data set, our recognition system could achieve good

performance.

There are many differences between the system used

in [47] and our system that may explain the performance

differences. However, both systems use similar SE front-

ends, i.e., they both use beamforming and dereverbera-

tion. A major difference between the SE front-end in [47]

and ours is that [47] starts with beamforming followed

by single channel dereverberation. We used a different

dereverberation approach that can exploit multi-channel

signals and a MVDR beamformer after dereverberation.

The results of Fig. 3 suggest that the fact that our dere-

verberation approach can exploit multi-channels may be

one reason for our superior performances especially for

the RealData 2ch and 8ch cases.

5 Conclusion
We have discussed strategies for designing a distant ASR

system robust to reverberation. The system we present

was developed for the REVERB challenge. It consists of

an SE front-end, which uses long-term linear prediction-

based dereverberation, an MVDR beamformer, and a

model-based SE. We then employ an ASR back-end that

uses neural networks for acoustic and language model-

ing and unsupervised environmental adaptation. We have

analyzed the influence of the implementation parameters

of our SE front-end, which revealed that using derever-

beration prior to denoising and linear filtering to reduce

reverberationwere keys to achieving high recognition per-

formance. Moreover, we have discussed ways to improve

the recognition performance of the ASR back-end by

using extended training data and adaptation. Our system

achieved high performance in the REVERB challenge. In

particular, using 8 microphones, we achieved recognition

performance close to that obtained when using a lapel

microphone.
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Although our system was developed for the REVERB

challenge, the strategies discussed in this paper could be

effectively adopted in other distant speech recognition

tasks. For example, [52] provides a detailed investiga-

tion of the various front-end techniques for DNN-HMM

acoustic models in the AMI meeting transcription task.

Moreover, it would also be possible to extend our strate-

gies to deal with overlapping speech that is frequently

observed in real meetings, by integrating other SE com-

ponents such as blind source separation [53]. Future work

directions may include the investigation of such complex

acoustic scenes as well as further research to improve

performance especially in the most challenging single

microphone case.

Endnotes
1An acoustic condition is defined as the combination of

a given room and a given microphone-speaker distance.

The REVERB task consists of reverberant speech in 4

rooms over 2 speaker-microphone distances (near and

far), i.e., 8 acoustic conditions in total. According to the

REVERB challenge terminology [25], ‘full-batch mode’

means that all data for a given acoustic condition are

processed in batch mode.
2 Note that for the SE evaluation of the REVERB

challenge, we also submitted an SE front-end that used

an extension of vector Taylor series (VTS) based SE [21]

instead of DOLPHIN. That approach performed

particularly well in terms of subjective evaluation [27, 54].
3Note that LIN is a variant of the more recently

reported feature discriminative linear regression (fDLR)

[55, 56]. LIN simply performs a linear transformation of

context expended input features.
4Note that the amount of adaptation data varies for the

different test sets, i.e., it consists of 30 and 48 min for the

development and evaluation sets of SimData and 9 and

18 minutes for the development and evaluation sets of

RealData [17].
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