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Abstract

Background: The advent of low cost next generation sequencing has made it possible to sequence a large

number of dairy and beef bulls which can be used as a reference for imputation of whole genome sequence data.

The aim of this study was to investigate the accuracy and speed of imputation from a high density SNP marker

panel to whole genome sequence level. Data contained 132 Holstein, 42 Jersey, 52 Nordic Red and 16 Brown Swiss

bulls with whole genome sequence data; 16 Holstein, 27 Jersey and 29 Nordic Reds had previously been typed

with the bovine high density SNP panel and were used for validation. We investigated the effect of enlarging the

reference population by combining data across breeds on the accuracy of imputation, and the accuracy and speed

of both IMPUTE2 and BEAGLE using either genotype probability reference data or pre-phased reference data. All

analyses were done on Bovine autosome 29 using 387,436 bi-allelic variants and 13,612 SNP markers from the

bovine HD panel.

Results: A combined breed reference population led to higher imputation accuracies than did a single breed

reference. The highest accuracy of imputation for all three test breeds was achieved when using BEAGLE with

un-phased reference data (mean genotype correlations of 0.90, 0.89 and 0.87 for Holstein, Jersey and Nordic Red

respectively) but IMPUTE2 with un-phased reference data gave similar accuracies for Holsteins and Nordic Red.

Pre-phasing the reference data only lead to a minor decrease in the imputation accuracy, but gave a large

improvement in computation time. Pre-phasing with BEAGLE was substantially faster than pre-phasing with

SHAPEIT2 (2.5 hours vs. 52 hours for 242 individuals), and imputation with pre-phased data was faster in IMPUTE2

than in BEAGLE (5 minutes vs. 50 minutes per individual).

Conclusion: Combining reference populations across breeds is a good option to increase the size of the reference

data and in turn the accuracy of imputation when only few animals are available. Pre-phasing the reference data

only slightly decreases the accuracy but gives substantial improvements in speed. Using BEAGLE for pre-phasing

and IMPUTE2 for imputation is a fast and accurate strategy.
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Background
Genotype imputation is a key step in the analysis of

genome-wide association studies (GWAS) and genomic

prediction [1]. Since obtaining whole genome sequences

until recently was very costly, genomic studies have mostly

relied on single nucleotide polymorphism (SNP) marker

arrays, where only a small fraction of polymorphisms are

preselected to be highly polymorphic and to cover the

whole genome [2]. Furthermore, it has been suggested that

many quantitative trait nucleotide (QTN) are rare variants

[3]. This means that the analyses have typically relied on

linkage disequilibrium (LD) between markers on the SNP

panel and the causal polymorphism, since QTN that affect

a certain trait are not expected to be among the com-

monly available SNPs from marker panels. Genotype im-

putation allows the analysis of variants not represented in

SNP arrays without the cost of genotyping millions of add-

itional SNPs. This increases the probability that causal
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variants are included in the panel tested for association.

Besides, with increased marker density as well as allele fre-

quency spectrum, the chance of having higher LD among

markers and QTL increases.

Recently the availability of next generation sequencing

(NGS) techniques has made it possible to obtain whole

genome sequences at a reasonable cost. The cost is how-

ever not so low that it is possible to just sequence all the

individuals of interest. Therefore most of these individuals

will be genotyped with SNP panels and a large part of the

genomic data will have to be inferred with genotype im-

putation methods. In human genetics an initiative known

as the 1000 Genomes project [4] has provided an open

database with reference sequence data which can be used

for imputing markers in a study sample. Recently an analo-

gous initiative known as the 1000 bull genomes project

was started for bovine genetics and genomics studies [5].

Currently a large part of the information in the database is

dominated by Holstein bulls, but genome sequences from

other dairy and beef breeds are also available.

Imputation of whole genome sequence markers offers

two major challenges. 1) The accuracy of imputation de-

pends on the size of the reference data (e.g. [6-10]), but

the reference population could be small for some breeds

due to the cost involved in sequencing. 2) The number of

variants obtained from whole genome sequence is huge

and could result in a massive computational burden.

The first problem might be overcome by pooling refer-

ence data across breeds. Previous studies on combining

reference populations for imputation from 50 k to High

Density (HD) marker panels in cattle have shown no gain

in accuracy [8,11], Brøndum et al. however concluded that

the imputation accuracy could be improved for animals

with a mixed genetic background without decreasing the

accuracy for the purebred animals when using a combined

breed reference population [6]. The limited success of

across breed imputation from 50 k to HD is most likely

caused by differences in LD phase and thus haplotype dis-

similarity across breeds on the 50 k panel [8,11], but the

greater marker density on the HD panel might alleviate

these differences for diverged breeds [12], meaning that

across breed imputation could be successful from HD to

whole genome sequence data [11].

The second problem could be solved by using a pre-

phasing strategy. Howie et al. showed that pre-phasing

the data is a time-efficient method for imputation which

only results in a minor loss in accuracy [13]. A number

of fast and accurate phasing approaches are available, for

example, SHAPEIT2 [14] and BEAGLE [15].

It has been shown that high accuracies of imputation

from 50 k to HD data in cattle can be obtained using

methods that rely mostly on population LD information

[16], such as BEAGLE [15] and IMPUTE2 [17]. Ma et al.

showed that IMPUTE2 outperformed BEAGLE for rare

variants, but at a cost of longer computation time, and

that slightly higher accuracies for rare variants was pos-

sible when using Fimpute [18], which also uses pedigree

information [16]; a full pedigree across countries and

breeds was however not available for the data in this

study. BEAGLE is not designed for an admixed reference

population, but it seems that the underlying graphical

model describing the patterns in LD is able to properly

account for substructure in the data. The model in IM-

PUTE2 has been designed to use local sequence similar-

ity to build a custom reference panel for each sample

haplotype from a mixed reference population [19].

The objective of this study was to investigate how well

whole genome sequence variants can be imputed from a

HD SNP marker panel in Nordic dairy bulls. We com-

pared the accuracy using both a single or multi-breed

reference population, and compared the accuracy and

computation time of BEAGLE and IMPUTE2 with or

without pre-phased reference data.

Methods
The whole genome sequence data used as a reference

for this study is compiled from two different sources.

At Aarhus University 135 bulls from the three major

Nordic dairy cattle breeds, i.e. Holstein, Jersey and

Nordic Reds, have been sequenced. A subset of them

has been shared in the 1000 Bulls Genomes collabor-

ation and in turn it was possible to increase the imput-

ation reference with an additional 107 dairy bulls from

run2 of the 1000 Bull Genomes reference data. Differ-

ent variant calling pipelines where used for the two

datasets; these are described below. In order to reduce

computation time without losing generality only markers

mapped to Bovine autosome 29 (BTA29) were investi-

gated. However, similar results are expected for other

autosomes.

Nordic sequence data (N = 135)

DNA was extracted from semen samples using stand-

ard procedures at Aarhus University, Foulum. Sequen-

cing was done using Illumina sequencers at Beijing

Genomics Institute, Shenzhen, China. Sequencing was

shotgun paired-end sequencing with a read length of 91

base pairs. Fastq data were converted from Illumina to

Sanger quality encoding using a patched version of

maq [20]. They were aligned to the UMD3.1 assembly

of the cattle genome [21] using bwa v0.6.2 [22]. They

were converted to BAM files using samtools [23]. Qual-

ity scores were re-calibrated using the Genome Ana-

lysis Toolkit v1.6 [24] following the Human 1000

Genome guidelines incorporating information from

dbSNP vers. 133 [25]. Sequence realignment around in-

sertion/deletions (INDEL) and variant calling was done

using the Genome Analysis Toolkit v1.6.
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1000 Bull genomes run2 (N = 234)

Variants were called using Samtools-0.0.18. Additional

custom made filters were used to remove false positive

variant calls, and filters were calibrated by the concord-

ance of sequence and Bovine High Density Chip geno-

types and the rate of opposing homozygotes for sire-son

paired genotypes. Detailed guidelines are available at

www.1000bullgenomes.com.

Combined sequence data

Data from both sources were available asVCF files, contain-

ing both genotype probabilities and unphased most likely al-

leles; for a full description of the data-format see [26]. Data

was combined using Picards MergeVCFs (http://picard.

sourceforge.net). From the available datasets only Holstein,

Jersey, Nordic Red and Brown-Swiss bulls were kept for fur-

ther analysis, leaving a total of 242 dairy bulls, with a mean

sequencing depth of 13.5x as a reference for imputation. As

the 1000 bull genomes project shares data after variant call-

ing, some markers were not called for all animals in the

combined dataset. To avoid large gaps of missing markers

in the dataset only markers that were called in both the

Nordic and the 1000 bull genomes project datasets were

kept. For positions containing both a SNP and an INDEL,

the INDEL was deleted as the imputation methods rely on

unambiguous sequences of variants. Positions with dis-

agreements between alleles for sequence and HD data were

also deleted. Reference genotype probability data was run

through BEAGLE and all markers with an R2 value (imput-

ation quality at imputed marker) below 0.9 were removed

from the original sequence data. This was done in order to

remove uncertain marker genotypes that might have ad-

verse effects on the imputation procedures, but might also

cause a positive bias in the estimated imputation accuracies.

These quality control steps left a total of 387,436 markers

on BTA29: 362,122 SNPs and 25,314 INDELs.

HD data

Seventy-two of the sequenced Nordic bulls had previously

been genotyped with the Illumina Bovine HD chip (Illu-

mina, Inc., San Diego, CA) and were chosen as a validation

set. For the HD data, markers that were monomorphic,

had a GenCall score of less than 0.60 or a call rate less

than 0.95 were removed. These quality control steps left

13,612 markers from BTA29. HD marker data for the

Nordic Holstein and Nordic Reds have previously been

used in a number of studies on both genomic prediction

and imputation, e.g. [6,27,28].

For more detail on the number of animals per breed

from each data source, see Table 1.

Imputation

Imputation accuracy from HD to sequence data was

tested in a number of different scenarios for comparison

on both imputation accuracy and speed. Pre-phasing of

the reference data was done using either BEAGLE v3.3.2

or SHAPEIT2 v2.644, both with default parameters and

using genotype probability data as input.

Imputation was done in BEAGLE or IMPUTE2 using ei-

ther pre-phased haplotypes or genotype probabilities. For

all scenarios a leave-one-out validation was done, where

each of the animals with both sequence and HD data in

turn was deleted from the reference data and included as

a target individual with only HD data. Accuracy was com-

puted as the correlation of the true genotypes from se-

quence calls and imputed dosages.

BEAGLE

For BEAGLE two different scenarios were tested. The first

was the effect of using a combined reference population

versus using a single breed reference population; the

second was using pre-phased reference data from either

BEAGLE or SHAPEIT2 versus using un-phased genotype

probability data. The first scenario was only tested using

pre-phased reference data. A previously designed pipeline

with BEAGLE where the data was divided in chunks

of ~20,000 markers with an overlap of 500 markers was

used for the imputations with phased reference data.

The number of HD markers in these chunks averaged

707 with a range from 402 to 928. Imputations with un-

phased data were done for the entire chromosome in

one run. All imputations were done using the default

parameters.

IMPUTE2

For IMPUTE2 we did not test the effect of single- versus

multi-breed references; only the effect of pre-phased most

likely genotypes versus genotype probability data was

investigated. Pre-phased data was obtained from either

BEAGLE or SHAPEIT2. The imputations were done in

chunks of 2.75 MB (giving the same number of chunks as

in BEAGLE). The number of sequence markers in these

chunks including buffer regions of 0.25 MB averaged

24,000 with a range from 10,000 to 35,000, and the num-

ber of HD markers averaged 800 with a range from 357 to

1039. The effective population size was set to 100 and all

other parameters were kept at their default values.

Results and discussion
The quality of the sequence data was assessed by compar-

ing best calls from the sequence data with variants from

the HD chip for the 72 test animals. Results showed a

mean concordance of 99.32%, with a range from 97.43% to

99.93%. The mismatches between HD and sequence data

suggests that the best calls based solely on individual se-

quence information, does not necessarily represent the ac-

tual variants, which might cause a negative bias in the

assessment of imputation accuracy. It was found that the
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concordance between HD and sequence variants increased

to an average of 99.86% with a range from 99.16% to

99.96% when the comparison was done based on best calls

from BEAGLE posterior genotype probabilities instead

of using the genotype probabilities obtained from the

variant calling software, which strengthens this hypoth-

esis. All calculations of accuracy below are however

done based on raw genotype calls to avoid a bias in

favor of either BEAGLE or IMPUTE2.

Mean imputation accuracies for the three breeds are

shown in Table 2. By comparing the first and second

row of the table it is seen that all populations gain from

using the combined reference population, with the lar-

gest gain for Nordic Reds. These results are in line with

previous results by Brøndum et al. [6], where it was

found that the imputation accuracy for Danish Reds was

improved when including Holsteins in the reference. All

of the Nordic Red animals included as test animals are

from Danish Red which historically has used sires from

both Holstein and Brown-Swiss. Furthermore, the accur-

acy of imputation has been shown to depend on the re-

lationship between reference and validation animals [7].

An investigation of the available pedigree data showed

that the for the RDC validation animals there were 1

sire, 1 maternal grandsire and 7 paternal grandsires in

either the Holstein or Brown-Swiss reference data. These

facts combined could explain the large gains in accuracy

for the RDC test animals. Holstein animals gain very lit-

tle from inclusion of other breeds, which could be due

to their relatively large single breed reference population.

For the Jerseys an investigation of the available pedigree

data showed no relationships between test animals and

the added animals in the combined reference population.

Furthermore, a principal component analysis of the

Nordic dairy breeds, shows that the Jersey population

and the other populations analyzed in this study are

quite distinct with no evidence of recent admixture [29].

The small gain in imputation accuracy for the Jersey

population when using the combined reference popu-

lation thus suggests that the persistence of LD phase

between the HD markers across populations is strong

enough to utilize information from one population in

the other for imputation from HD to full sequence data,

even with distant relations.

Results for the comparison between BEAGLE and IM-

PUTE2 with combined reference populations are also

shown in Table 2. Overall the accuracies from different

scenarios are quite similar within the respective breeds,

but across the three breeds the highest imputation ac-

curacies are found when using BEAGLE with un-phased

reference data. Similar accuracies are found when using

IMPUTE2 for the Holstein and RDC animals, but for

the Jersey animals BEAGLE with un-phased reference

data has the best results. For BEAGLE, there seems to

be some loss of accuracy when using pre-phased refer-

ence data, but IMPUTE2 is less affected. The larger dif-

ference for BEAGLE, could be caused not only by the

differences in input data, but also by dividing the data in

smaller chunks in the phased setup, although an overlap

between chunks was used to avoid increases in error rate

at either end. IMPUTE2 also uses a strategy to improve

speed by dividing the data in smaller chunks, but the

number of overlapping markers was larger. When com-

paring accuracies obtained using pre-phased data, a slight

advantage is seen for pre-phased data from BEAGLE in

both BEAGLE and IMPUTE2, although SHAPEIT2 is the

Table 1 Number of animals with whole-genome sequence and high density genotype information used in the study

Holstein Jersey RDC Brown-Swiss Total

Nordic sequence 40 27 52 16 135

1000 bull genomes sequence 92 15 0 0 107

High density SNP data 16 27 29 0 72

Table 2 Mean and standard deviation (SD) of correlation between true and imputed genotype dosage for Holstein

(HOL), Jersey (JER) and Nordic Red (RDC)

METHOD HOL JER RDC

Mean SD Mean SD Mean SD

BEAGLE/BEAGLE pre-phasing (Single breed) 0.87 0.32 0.82 0.38 0.76 0.39

BEAGLE/BEAGLE pre-phasing 0.88 0.32 0.87 0.32 0.86 0.30

BEAGLE/SHAPEIT2 pre-phasing 0.88 0.30 0.86 0.32 0.85 0.30

BEAGLE/Genotype probabilities 0.90 0.27 0.89 0.28 0.87 0.27

IMPUTE2/BEAGLE pre-phasing 0.90 0.20 0.85 0.23 0.86 0.20

IMPUTE2/SHAPEIT2 pre-phasing 0.90 0.20 0.84 0.23 0.86 0.21

IMPUTE2/Genotype probabilities 0.90 0.20 0.84 0.22 0.87 0.18
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recommended software for pre-phasing for IMPUTE2.

Possibly better results could be obtained by increasing

the number of conditioning states in the SHAPEIT2 al-

gorithm, but this would also result in increased compu-

tation time, and it has previously been shown that the

gain is limited when exceeding the default value of 100

states [14].

Figure 1 shows the imputation accuracy across BTA29

for the two most accurate scenarios, i.e. BEAGLE and

IMPUTE2 with genotype probability data and a com-

bined reference population. There is a large variation

with accuracies ranging from −1 to +1, i.e. from opposite

imputation to completely true. Spikes of low imputation

accuracy are consistent across the three breeds in BEA-

GLE which might result from problems in sequencing

these regions or from errors in the assembly since the

imputation procedures rely on correct sequences of

markers. Comparing the results from BEAGLE to results

from IMPUTE2 there seems to be some overlap in

spikes of low accuracy; they are, however, less pro-

nounced for IMPUTE2.

One of the powers in sequence data lies in the ability to

use rare variants for analysis, and these have to be im-

puted accurately in order to use them efficiently. In other

words it is important that the imputation procedure per-

forms well for the full allele frequency spectrum. Figure 2

shows that the distribution of loci across the minor allele

frequency (MAF) spectrum is skewed to the left which

means that poor imputation for rare variants would

heavily influence the overall imputation accuracies. On

Figure 3, average imputation accuracies are shown plotted

against the MAF; averages where calculated in bins of 1%.

This was done for each of the seven scenarios listed in

Table 2. Results show that IMPUTE2 performs better than

BEAGLE when imputing rare variants, which confirms

previous results [16], but on the contrary BEAGLE per-

forms better for the more common variants . This larger

variation in accuracy across the allele frequency spectrum

when using BEAGLE is also evident from the larger stand-

ard deviations for BEAGLE in Table 2. In addition, for

BEAGLE the pre-phased setups seem to have the largest

impact on the imputation error for loci with low MAF,

whereas this pattern is less noticeable for IMPUTE2. For

the Jerseys and Nordic Reds imputation accuracies drop

fast for MAF less than 0.3 in the single breed reference

scenarios. This might be caused by the fact that many rare

variants would be poorly represented in the single breed

imputation references for the smaller breeds. Looking at
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Figure 1 Imputation accuracy along BTA29 for Holstein (HOL), Jersey (JER) and Nordic Red (RDC). Imputed data was obtained using

BEAGLE or IMPUTE2 with genotype probability data in the reference.
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the overall picture it seems that with the current size of

the imputation reference, there is not enough information

for accurate imputation of rare alleles, but the reference is

growing, and the accuracy is expected to follow. However,

it might also be possible to increase the accuracy for rare

variants with the current size of reference data by using

methods such as Fimpute that utilize pedigree data along

with the LD information as shown in the results by Ma

et al. [16].

The accuracies of imputation from HD to whole gen-

ome sequence data obtained in this study are larger than

previous results from the 1000 bull genomes project

where an average accuracy of imputation (correlation of

true and imputed allele dosage) of 0.80 was reported when

using BEAGLE within the Holstein breed only [5]. These

results where however obtained using a validation proced-

ure that removed more animals from the reference. Accur-

acies of imputation to whole genome sequence are much

lower than those reported for imputation from 50 k to HD

data in cattle with BEAGLE and IMPUTE2. Genotype cor-

relations of 0.97 have been reported for imputation of HD

markers from 50 k in Nordic Holstein and Red [6,16], and

Berry et al. reports genotype correlations of 0.98 and
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Figure 2 Distribution of minor allele frequency for sequence

markers on BTA29. Minor allele frequencies are calculated based

on the 242 sequenced animals.
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Figure 3 Imputation accuracy versus minor allele frequency (MAF). Imputation accuracies are averaged in bins of 1% of MAF.
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above for imputation from 50 k to HD data in 7 different

dairy and beef breeds [11]. The higher accuracies obtained

in these studies are most likely caused by larger within

breed references and fewer markers with very low minor

allele frequencies.

Computation times for the different procedures are

shown in Table 3. It is seen that with un-phased reference

data computational demands for IMPUTE2 are much

higher than what is required for BEAGLE with un-phased

reference data (42 hours vs. 3 hours per individual). When

using pre-phased reference data IMPUTE2 is however,

much faster than BEAGLE (5 minutes vs. 50 minutes per

individual).

For the phasing procedures BEAGLE was faster, than

SHAPEIT2 which required around 52 hours to phase

BTA29 for the 242 available animals, whereas BEAGLE

performed the same job in less than 3 hours. SHAPEIT2

supports parallel computing, and this implementation

has been shown to be competitive with BEAGLE and in

fact faster for sample sizes of 3,000 individuals or more

using a SNP density similar to the bovine HD panel [14].

In the data at hand we were not able to reproduce this

result, which suggests that for smaller sample sizes

BEAGLE is much more effective; there might however

also be an effect of the SNP density, but a more in depth

investigation is needed to confirm this. Furthermore

BEAGLE 4 [30] which was recently released also sup-

ports parallel computation, which presumable makes

the advantage larger.

All estimates of imputation runtimes were done using

only one test individual. To validate that the ranking of

methods also holds for larger samples sizes we reran a sin-

gle chunk of 20,000 markers using pre-phased reference

data with the 242 sequenced animals in the reference and

2,000 animals with HD data. We found that BEAGLE was

able to impute all these animals in 8 hours, whereas IM-

PUTE2 required only 4 hours. If the HD data was also

pre-phased, BEAGLE was able to complete the task in

1 hour, whereas IMPUTE2 used only 10 minutes. Using

the pre-phased HD data did not decrease the imputation

accuracies (results not shown), but further studies are re-

quired to confirm these results as they include information

from many more HD animals in the pre-phasing which

could improve the phasing quality, thus making them not

directly comparable. A previous study by Howie et al.,

however shows that pre-phasing the study data only re-

sults in a minor loss of imputation accuracy [13].

Conclusion
When imputing whole genome sequence variants with a

limited number of reference individuals, combining the

references across breeds is a good strategy to improve the

imputation accuracy. Furthermore, IMPUTE2 is more ac-

curate than BEAGLE for rare variants. Using IMPUTE2

with pre-phased data from BEAGLE is computationally ef-

ficient, and only results in a minor loss in accuracy. Overall

accuracies are lower than previous reports on imputation

of HD markers, especially for rare alleles. There is also a

large variation in the accuracy across loci, so the added

benefit of sequence data for genomic prediction at the mo-

ment might be limited. Imputation accuracy is, however,

expected to improve as the size of the reference population

increases. Taking both computation time and accuracy into

account, using BEAGLE for pre-phasing and IMPUTE2

for imputation would be a good strategy for large scale im-

putation of whole genome sequence markers.

Availability of supporting data

All DNA sequences used were taken from a publicly avail-

able assembly. The assembly is available for download at

ftp://ftp.ensembl.org/pub/release-73/fasta/bos_taurus/dna.

All variations identified have been submitted by the

1000 Bull Genomes project for inclusion in dbSNP

(http://www.ncbi.nlm.nih.gov/SNP). Whole genome se-

quence data for the 234 individuals included in run2 of

the 1000 bull genomes project are available at NCBI

using SRA no. SRP039339 (http://www.ncbi.nlm.nih.

gov/bioproject/PRJNA238491).
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Table 3 Computation times for phasing and imputation

procedures

Procedure Approximate CPU time (hour:min)

Phasing reference (N = 242)

BEAGLE 02:30

SHAPEIT2 (4 cores) 52:00

Imputing one individual (ref: N = 241, validation: N = 1)

BEAGLE with phased reference 00:50

BEAGLE with un-phased reference 02:50

IMPUTE2 with phased reference 00:05

IMPUTE2 with un-phased reference 41:40

Computations were done on a Unix computer cluster with Intel XEON

X5670/X5677 processors.
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