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Abstract

This review presents possible strategies to increase the operational frequency range of

vibration-based micro-generators. Most vibration-based micro-generators are

spring-mass-damper systems which generate maximum power when the resonant frequency of

the generator matches the frequency of the ambient vibration. Any difference between these

two frequencies can result in a significant decrease in generated power. This is a fundamental

limitation of resonant vibration generators which restricts their capability in real applications.

Possible solutions include the periodic tuning of the resonant frequency of the generator so

that it matches the frequency of the ambient vibration at all times or widening the bandwidth

of the generator. Periodic tuning can be achieved using mechanical or electrical methods.

Bandwidth widening can be achieved using a generator array, a mechanical stopper, nonlinear

(e.g. magnetic) springs or bi-stable structures. Tuning methods can be classified into

intermittent tuning (power is consumed periodically to tune the device) and continuous tuning

(the tuning mechanism is continuously powered). This review presents a comprehensive

review of the principles and operating strategies for increasing the operating frequency range

of vibration-based micro-generators presented in the literature to date. The advantages and

disadvantages of each strategy are evaluated and conclusions are drawn regarding the relevant

merits of each approach.
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1. Introduction

Energy harvesting is the conversion of ambient energy present

in the environment into electrical energy. The primary

interest in the technology derives from its capability to act

as an independent power supply for wireless self-powered

microsystems, as an alternative to, or to augment the use of

batteries. Vibration energy harvesting converts kinetic energy

present in the environment and is just one form of energy

harvesting [1]. Electrical energy can also be locally generated

using photovoltaic or thermoelectric effects provided there is

sufficient incident light or temperature gradient, respectively.

Vibration energy harvesting is particularly well suited to

industrial condition monitoring applications where sensors

may be embedded in machines or located in dark or dirty

environments. Other kinetic energy harvesting applications

include human-powered devices where a range of devices have

been developed to generate electrical power from foot-strikes,

knee bends and backpacks [2–4].

In practical machine-based applications, vibration levels

can be very low (<1 m s−2) at frequencies that often

correspond to the frequency of the mains electricity powering
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the plant (e.g. 50 or 60 Hz or harmonics). Such low levels

of vibration equate to amplitudes of vibration that are in the

order of a few microns and the only way to extract mechanical

energy in this case is to use an inertial generator that resonates

at a characteristic frequency. The limitation to this approach is

that the generator is, by definition, designed to work at a single

frequency. A high Q-resonance means very limited practical

bandwidths over which energy can be harvested. The purpose

of this review is to provide an overview of existing strategies

used to increase the frequency range of vibration energy

harvesters thus addressing the aforementioned limitation. To

date, there are, in general, two approaches to solving this

problem.

The first is to adjust, or tune, the resonant frequency of a

single generator so that it matches the frequency of the ambient

vibration at all times. This can be achieved by changing the

mechanical characteristics of the structure or electrical load

on the generator. Changing the mechanical characteristics

of a generator has previously been called passive or active

tuning depending on the approach [5]. Passive tuning is

defined as a tuning mechanism that operates periodically. This

approach only consumes power during the tuning operation

and uses negligible energy once the generator is matched to

the frequency of the ambient vibrations. Active tuning is

defined as a tuning mechanism that is continuously applied

even if the resonant frequency equals the ambient vibration

frequency. Since both of these approaches involve some form

of active process, we will use a more precise classification

scheme defining tuning mechanisms as either intermittent

(previously called passive) or continuous (previously called

active) throughout this review.

The second approach is to widen the bandwidth of the

generator. This can be achieved by, for example, employing

the following:

• an array of structures each with a different resonant

frequency,

• an amplitude limiter,

• coupled oscillators,

• nonlinear (e.g. magnetic) springs,

• bi-stable structures,

• a large inertial mass (large device size) with a high degree

of damping.

This review presents vibration-powered generators that

demonstrate these approaches as well as those reported

frequency tuning strategies for other resonant devices that

are potentially applicable for tuning vibration-based micro-

generators. The following section describes the theory

behind tuning strategies, compares the power consumption

for continuous and intermittent tuning mechanisms and

suggests criteria for evaluating tuning mechanisms. Section 3

introduces the potential mechanical parameters that can

be adjusted to achieve frequency tuning and reviews the

approaches presented in the literature to date. Section 4

discusses the theory of electrical tuning for piezoelectric

generators and presents example devices. Section 5 contains

examples of wide-bandwidth generators that demonstrate the

principles introduced above. Section 6 gives a tabulated

Figure 1. Generic model of a vibration-based micro-generator.

summary of devices presented to date categorized into

three approaches: continuous tuning, intermittent tuning and

generator arrays. Section 7 compares tuning strategies and

presents theoretical power output versus frequency graphs

for a large-size wide-bandwidth device, a generator array

and a single tunable generator. This analysis considers four

scenarios enabling a broad comparison between approaches.

2. Strategies to tune the resonant frequency

2.1. Basic model of a second-order spring mass system

Most vibration energy harvesters (also called vibration-based

micro-generators) are modelled as single degree-of-freedom

second-order spring-mass systems (see figure 1) as first

described by Williams and Yates [6]. The system consists

of an inertial frame that transmits the vibration to a suspended

inertial mass, m, via the spring, k, and the damper, b, to produce

a relative displacement or cause mechanical strain.

Transduction mechanisms such as electromagnetic [7],

piezoelectric [8] and electrostatic [9] can be employed

to generate electrical energy by exploiting the relative

displacement or strain.

For high efficiency, the generator has to be designed to

maximize the coupling between the mechanical energy source

and the transduction mechanism. Mathematical analysis [6]

gives the net power available within the generator as

P =
mζT Y 2

(

ω
ωr

)3
ω3

[

1 −
(

ω
ωr

)2]2
+

[

2ζT
ω
ωr

]2
(1)

where m is the inertial mass and ζ T is the total damping factor.

Y is the maximum amplitude of vibration and ω is the angular

frequency of vibration. ωr is the resonant frequency of the

generator.

Figure 2 shows the power spectrum of the generator

with various damping factors and Q-factors; the maximum

power is generated when the resonant frequency of the

generator matches the frequency of the ambient vibration.

As generators are usually designed to have a high Q-factor

to maximize harvested energy, the generated power drops

dramatically if these two frequencies do not match. Most

reported generators are designed to work only at one particular

frequency [1]. In applications such as moving vehicles, human

movement and wind-induced vibration where the frequency
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Figure 2. Power spectrum of a generator with various damping
factors and Q-factors.

of ambient vibration changes periodically, the efficiency of

generators with one fixed resonant frequency is significantly

reduced since the generator will not always be at resonance.

This limitation must be overcome if vibration-based micro-

generators are to be widely applicable in powering wireless

systems.

2.2. Intermittent versus continuous tuning

As described in the introduction, continuous tuning is applied

constantly to the generator and therefore consumes more

energy than intermittent tuning. It was concluded by Roundy

[5] that generators using a continuous tuning mechanism can

never produce a net increase in the power output as the power

required to tune the resonant frequency will always exceed the

increase in output power resulting from the frequency tuning.

However, the derivation presented was not correct as is shown

below in equations (12)–(16). For clarity the derivation in [5]

is reproduced here in equations (2)–(11).

The analysis covers resonant frequency tuning achieved

by providing an additional force proportional to the generator’s

displacement (i.e. altering stiffness) or acceleration (i.e.

altering mass) using a tuning actuator [5].

The power required by the tuning actuator, Pa(t), is

Pa (t) = kaz (t)
dz (t)

dt
= ma

dz (t)

dt
·

d2z (t)

dt2
(2)

where ka is the actuator stiffness, z(t) is the displacement of

the proof mass and ma is the mass of the actuator. The untuned

resonant frequency, ω1, and the new resonant frequency, ω2,

are given by

ω1 =
√

k

m
(3)

ω2 =
√

k + ka

m
. (4)

The actuator stiffness, ka , can be represented as

ka = mω2
2 − k = m

(

ω2
2 − ω2

1

)

. (5)

Hence, (2) can be written as

Pa(t) = 1
2
mω2

(

ω2
2 − ω2

1

)

Z2 sin (2ω2t) . (6)

Therefore, the average power of the actuation is

|Pa| =
1

T

∫ T

0

Pa(t) dt

=
1

T

∫ T

0

[

1

2
mω2

(

ω2
2 − ω2

1

)

Z2 sin (2ω2t)

]

dt = 0. (7)

In practice, actuation power can never be zero if the tuning

mechanism is activated. Roundy et al used the maximum

power rather than the average power of actuation in their

derivation and drew the conclusion that the active tuning can

never produce net increase of output power. In addition, only

the situation where the tuning force is proportional to the

generator’s displacement or acceleration was studied in [5].

For most cases, the tuning force is not linked to the generator’s

movement and methods of calculating actuation power may

vary according to the way in which the tuning force is applied.

Therefore, the analysis in [5] does not apply to all situations.

However, it is apparent that intermittent tuning has an

advantage over a continuous tuning mechanism because it is

switched off once the device is at resonance and therefore

consumes less energy than continuous mechanisms.

2.3. Evaluating tuning approaches

The suitability of different tuning approaches will depend

upon the application, but in general terms the key factors

for evaluating a tuning mechanism for adjusting the resonant

frequency of vibration-based micro-generators are as follows.

• The energy consumed by the tuning mechanism should

be as small as possible and must not exceed the energy

produced by the generator.

• The mechanism should achieve a sufficient operational

frequency range.

• The tuning mechanism should achieve a suitable degree

of frequency resolution.

• The generator should have as high as possible Q-factor

to achieve the maximum power output and the strategy

applied should not increase the damping, i.e. decrease

Q-factor, over the entire operational frequency range.

A generator’s resonant frequency can be tuned by both

mechanical and electrical methods. Mechanical tuning alters

the resonant frequency by changing mechanical properties of

the structure. Electrical tuning alters the resonant frequency by

adjusting the electrical load. The principles of both methods

as well as existing approaches to realize them are described in

the following sections.

3. Mechanical tuning methods

As most reported vibration energy-harvesting devices are

based on a cantilever [1], we will use this structure in the

following theoretical analyses of mechanical tuning. The

principles demonstrated are, however, generally applicable

to all mechanical resonator structures. This section covers

mechanisms that achieve tuning by

3
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Figure 3. Cantilever with a mass.

• changing dimensions,

• moving the centre of gravity of the proof mass,

• variable spring stiffness,

• straining the structure.

A comprehensive review of each mechanical tuning

mechanism reported in the literature to date is presented after

a brief analysis of the theory.

The resonant frequency of a spring-mass structure is given

by

fr =
1

2π

√

k

m
(8)

where k is the spring constant and m is the inertial mass. When

tuning the resonant frequency of the generator, one can change

either the spring constant or the mass.

The spring constant of a resonator depends on its materials

and dimensions. For a cantilever with a mass at the free end

(figure 3), the resonant frequency is given by [10]

fr =
1

2π

√

Ywh3

4l3 (m + 0.24mc)
(9)

where Y is Young’s modulus of the cantilever material; w,

h and l are the width, thickness and length of the cantilever,

respectively, and mc is the mass of the cantilever. The resonant

frequency can be tuned by adjusting all these parameters. Each

parameter in equation (9) is discussed in the following sections.

In addition, it is important to mention that if actuators are

involved in changing the mechanical properties of the resonant

structure, the tuning mechanisms can be operated by a control

system to automatically tune the generator.

3.1. Changing dimensions

In practice, it is difficult to change the width, w, and thickness,

h, of a cantilever while changing the length, l, is feasible.

Furthermore, modifying l is suitable for intermittent tuning.

The approach requires that the cantilever base clamp be

released and reclamped in a new location along the length

of the beam thereby changing the effective length (and

hence frequency). There is no power required to maintain

the new resonant frequency. Furthermore, as the resonant

frequency is inversely proportional to l3/2, thus modifying l

can significantly change fr .

Suppose l is the original length of the cantilever and l′

is the modified length of the cantilever, l′ = l + �, where �

is the difference between them. The mass of a cantilever is

then changed to mc
′ = whl′ρ, where ρ is the density of the

Figure 4. Normalized resonant frequency with a variation of
cantilever length.

cantilever material while the original mass of a cantilever is
mc = whlρ. Then the new resonant frequency becomes

f ′
r =

1

2π

√

Ywh3

4l′3(m + 0.24m′
c)

=
1

2π

√

Ywh3

4(l + �)3{m + 0.24[wh(l + �)]ρ}
. (10)

And the ratio of the tuned frequency to the original
frequency called the normalized resonant frequency is

f ′
r

fr

=

√

l3(m + 0.24mc)

l′3(m + 0.24m′
c)

=

√

l3(m + 0.24whlρ)

(l + �)3{m + 0.24[wh(l + �)]ρ}
. (11)

Figure 5 shows the normalized resonant frequency with
the variation of cantilever length where a negative �/l means
that the new cantilever beam is shorter than its original length
and thus has a higher resonant frequency. A positive �/l

means that the cantilever beam has been lengthened giving
a lower resonant frequency. Figure 4 shows that it is more
efficient to tune the resonant frequency by shortening the
cantilever beam.

An example of this approach is described in a patent by
Gieras et al [11]. Figure 5 shows the side view of the proposed
device. The electromagnetic generator consists of a cantilever
with a set of magnets fixed to its free end. The cantilever is
clamped to a base using screws. A coil is placed between the
magnets to pick up output power. A slider is connected to a
linear actuator which moves the slider back and forth to adjust
the effective length of the cantilever, L, and hence the resonant
frequency of the generator.

3.2. Moving centre of gravity of the proof mass

It is difficult to add or remove a mass after a generator has been
fabricated. However, the resonant frequency of a cantilever

4
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Figure 5. Side view of a proposed self-adjustable energy-harvesting system.

Figure 6. Side view of a cantilever structure.

structure can be adjusted by moving the centre of gravity of

the inertial mass. Figure 6 shows the side view of a cantilever

with a mass on the free end.

The length of the cantilever without the mass is l and the

proof mass on its free end is m. The centre of gravity of the

proof mass is located at c and the distance between c and the

end of the cantilever is x. The tuned resonant frequency of this

structure can be approximated as [12]

f ′
r =

1

2π

√

Ywh3

12ml3
·

r2 + 6r + 2

8r4 + 14r3 + 21
2
r2 + 4r + 2

3

(12)

where w and h are the width and thickness of the cantilever,

respectively, and r = x
l
.

Equation (9) for the resonant frequency of a cantilever-

based generator, considering that the mass of the cantilever

beam is negligible compared to the proof mass, can be

rewritten as

fr =
1

2π

√

Ywh3

4l3m
. (13)

Hence, the ratio of the tuned frequency to the original

frequency is

f ′
r

fr

=

√

1

3
·

r2 + 6r + 2

8r4 + 14r3 + 21
2
r2 + 4r + 2

3

. (14)

Figure 7 shows the normalized resonant frequency with

variation of the position of the centre of gravity of the proof

mass. The further the centre of gravity of the proof mass is

from the end of the cantilever, the lower the resonant frequency.

Wu et al [13] reported a piezoelectric generator using

this principle as shown in figure 8. The proof mass of this

device consisted of two parts: a fixed mass was attached to

the cantilever and the other part was a movable screw. The

position of the centre of gravity of the proof mass could be

adjusted by changing the position of the movable screw. A

fastening stud was used to fix the screw when tuning was

Figure 7. Normalized resonant frequency with a variation of centre
of gravity positions.

Figure 8. Picture of the piezoelectric cantilever prototype with a
movable mass [13].

finished. The size of the fixed mass is 10 mm × 12 mm × 38

mm and the movable mass is an M6 screw of length of 30 mm.

The resonant frequency of the device was tuned from 180 Hz

to 130 Hz by moving the screw from one end to the other

end (figure 9). The output voltage dropped with increasing

resonant frequency.

This approach is suitable for fine frequency tuning of the

generator before installation if the vibration frequency in the

working environment is not time varying.

5
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Figure 9. Experimental result of frequency adjustment [13].

Figure 10. Model of devices with softened spring stiffness.

3.3. Variable spring stiffness

One commonly used method is to soften the spring stiffness.

The principle is to apply a ‘negative’ spring in parallel to the

mechanical spring. Therefore, the effective spring constant of

such a device, keff , becomes

keff = km + ka (15)

where km is the mechanical spring constant and ka is an

additional ‘negative’ spring stiffness (figure 10). The modified

frequency becomes

fr =
1

2π

√

keff

m
=

1

2π

√

km + ka

m
. (16)

The negative spring ka can be applied electrostatically,

piezoelectrically, magnetically or thermally. Examples of

these approaches are described below. Most of these examples

are tunable resonators and not energy harvesters, but the

principles are identical. It is important to note, however, that

the additional inertial mass present in an energy harvester

(as opposed to the purely resonant structures) will reduce the

tuning effectiveness and increase the power required to tune

compared to the values quoted. It should also be noted that the

following variable spring stiffness devices are all continuously

operated expect the one on which the negative spring is applied

magnetically.

Figure 11. Resonance tuning by electrostatic softening [15].

Figure 12. Resonance tuning of the array [15].

3.3.1. Electrostatic methods. Scheibner [14, 15] reported

a vibration detector consisting of an array of eight comb

resonators each with a different base resonant frequency. A

single resonator is shown in figure 11. Each resonator comb is

tuned by electrostatically softening the structure by applying a

tuning voltage to the electrodes marked ‘VTun’. The device

was designed so that the resonator array had overlapping

tuning ranges which allowed continuous measurements in the

frequency range of the device from 1 kHz to 10 kHz. Figure 12

shows the tuning range of each resonator. The tuning voltage

varied from 0 V to 35 V. The total size of the sensor chip is

7 mm × 10 mm.

Adam [16] realized a tuning range from 7.7% to 146% of

the central frequency of 25 kHz of a resonator with a single

comb structure (figure 13). The driving voltage ranged from

0 V to 50 V (figure 14). The total size was not mentioned in

the paper but is estimated from the SEM scale to be no larger

than 500 μm × 500 μm.

Lee et al [17] presented a frequency tunable comb

resonator with curved comb fingers (figure 15). Fingers of the

tuning comb were designed to be of curved shape to generate

a constant electrostatic stiffness or linear electrostatic force

that is independent of the displacement of the resonator under

a control voltage. Experimentally, the resonant frequency

of a laterally driven comb resonator with 186 pairs of curved

6
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Figure 13. Schematic diagram of a single comb structure (after
[16]).

Figure 14. Resonance tuning of a single comb structure [16].

Figure 15. Schematic diagram of a comb resonator with curved
tuning fingers (after [17]).

contour fingers was reduced by 55% from the initial frequency

of 19 kHz under a bias voltage of 150 V (figure 16). The

corresponding effective stiffness was decreased by 80% from

the initial value of 2.64 N m−1. The total size of the resonator

is 460 μm × 840 μm. It was concluded that the closed-form

approach of the comb-finger profile can be applied to other

comb-shaped actuators for frequency control whilst achieving

linear electrostatic stiffness with respect to displacement.

Piazza et al [18] developed a micromachined,

piezoelectrically actuated and sensed, high-Q single-crystal

silicon (SCS) resonator with a voltage-tunable centre

frequency (figure 17). Piezoelectric transduction was

Figure 16. Resonance tuning of a comb resonator with curved
tuning fingers [17].

Figure 17. Voltage-tunable, piezoelectrically transduced SCS
resonators: Q-enhanced configuration (after [18]).

Figure 18. Electrostatic fine-tuning characteristic for a 719 kHz
piezo-resonator [18].

integrated with capacitive fine-tuning of the resonator centre

frequency to compensate for any process variations. The

resonant frequency could be tuned by 6 kHz based on an

untuned resonant frequency of 719 kHz by applying an

electrostatic force beneath the cantilever (figure 18). The

driving voltage varied from 0 to 20 V. The dimensions of

this resonator are 200 μm × 20 μm × 4.2 μm.

Yao et al [19] compared frequency tuning by applying

either an axial force (discussed further in section 3.4) or a

transverse force on the resonator electrostatically as shown in

7
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(a)

(b)

(c)

Figure 19. Schematic drawing of a simple resonator showing axial
loading (a), and transverse loading with the excitation and the
tuning electrode on the same side (b) and on the opposite side (c) of
the resonating rod [19].

figure 19. Frequency tuning by applying a transverse force

was tested experimentally. It was found that the resonant

frequency may increase or decrease with the applied tuning

voltage depending on where the tuning electrode is placed

with respect to the excitation electrode and the resonating

rod. When the tuning electrode was placed on the same

side of the excitation electrode as indicated in figure 19(b),

the resonant frequency decreased with the increase of applied

voltage. When the tuning electrode was placed on the opposite

side of the excitation electrode as indicated in figure 19(c),

the resonant frequency increased with the increase of applied

voltage.

A micromachined resonator having an out-of-plane

natural resonant frequency of 0.96 MHz and a Q-factor of

4370 had a linear tuning range (with respect to the transverse

tuning force) of 60 kHz with a maximum required dc tuning

voltage of 35 V (figure 20). Another resonator with an untuned

resonant frequency of 149.5 kHz was tuned to 139.5 kHz by

applying a dc tuning voltage of 30 V (figure 21). The actual

dimensions of these devices were not mentioned. The idea

was later patented by Thiesen and O’Brian in 2006 [20].

3.3.2. Piezoelectric methods. Peters et al [21] reported a

tunable resonator, shown in figure 22(a), potentially suitable

as a resonator structure for vibration energy harvesting.

The adjustment of the resonant frequency was provided by

mechanical stiffening of the structure using piezoelectric

actuators. A piezoelectric actuator was used because

Figure 20. Measured resonant frequency versus the tuning dc
voltage with an untuned resonant frequency of 0.96 MHz (tuning
mechanism as in figure 19(b)) [19].

Figure 21. Measured resonant frequency versus the tuning dc
voltage with an untuned resonant frequency of 1495.5 kHz (tuning
mechanism as in figure 19(b)) [19].

piezoelectric materials can generate large forces with low

power consumption. Two actuators, one clamped and one

free, are connected together. The free actuator can oscillate

around the axis of rotation if a suitable excitation is applied

to the clamp. The stiffness of the structure was increased

by applying an electrical potential to both actuators which

changes the shape of the structure as shown in figure 22(c).

Thus, the natural frequency of the rotational mass-spring

system increased. The tuning voltage was chosen to be ±5 V

leading to a measured resonance shift of ±15% around the

initial resonant frequency of 78 Hz, i.e. the tuning range was

from 66 Hz to 89 Hz (figure 23).

3.3.3. Magnetic methods. Challa et al [22] reported an

intermittently tuned piezoelectric micro-generator, 50 cm3 in

volume, with a frequency range of 22–32 Hz based on an

original resonant frequency of 26 Hz. The tuning was realized

by manually applying a magnetic force perpendicularly to

8
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(a)

(b) (c)

Figure 22. (a) Schematic of the resonator, (b) cross-section without
applied voltage and (c) with applied voltage [21].

Figure 23. Measured resonant frequency versus applied tuning
voltage [21].

the cantilever generator as shown in figure 24. By varying

the distance between the two sets of tuning magnets on the

beam and the stationary magnets, the resonant frequency of

the generator can be altered. The maximum tuning distance

was 3 cm. The proposed generator produced 240–280 μW

power at 0.8 m s−2 acceleration, but the tuning mechanism

had the unwanted side effect of varying damping over the

frequency range as shown in figure 25. The device was made

of discrete components. The dimensions of the piezoelectric

cantilever are 34 mm × 20 mm × 0.92 mm and the effective

mass is 45.8 g.

3.3.4. Thermal methods. Remtema and Lin [23] used a

resistive heater to generate a thermal stress on a straight-beam

spring (figure 26), which caused up to 6.5% frequency change

based on a resonant frequency of 31 kHz with a maximum

temperature at 255 ◦C. The power consumption during the

process was 25 mW. Figure 27 shows the percentage change

of a resonant frequency with variation of power consumed in

tuning. The size of the device is estimated to be less than

500 μm × 700 μm from the author’s description. The thermal

approach is unlikely to be practical for energy harvesting since

Figure 24. Schematic of the tunable piezoelectric generator [22].

it is inherently of high power and is a continuous tuning

mechanism.

Syms et al [24] reported frequency tuning by applying

constrained thermal expansion on a simple unfolded resonator

(figure 28). The tuning range was from −25% to +50% with

power consumption from 1.5 to 10 mW (figure 29). The tuning

sensitivity obtained with this tuning method was 33% per mW.

It is estimated from the annotation shown in figure 28 that the

device is no larger than 3000 μm × 3000 μm.

3.4. Straining the structure

The effective stiffness of the structure can be varied by

applying a stress and therefore placing it under strain. The

following theoretical analyses focus on straining a cantilever

and a clamped–clamped beam. The resonant frequency of a

cantilever structure can be tuned by applying an axial load.

In vibration energy harvesting, most devices are based on

cantilever structures especially the clamped-free (figure 30)

and clamped–clamped (figure 31) cantilevers. An axial

tensile load applied to a cantilever (figures 30(a) and 31(a))

increases the resonant frequency of the cantilever while an

axial compressive load applied to a cantilever (figures 30(b)

and 31(b)) decreases the resonant frequency of the cantilever.

An approximate formula for the resonant frequency of a

uniform cantilever in mode i with an axial load, fri’, is given

by [25]:

f ′
ri

= fri ·

√

1 +
F

Fb

·
λ2

1

λ2
i

(17)

where fr is the resonant frequency in mode i without load, F

is the axial load and Fb is the axial load required to buckle the

beam, i.e. to make the fundamental resonant frequency zero.

F is positive for a tensile load and negative in the compressive

case. Variable λi is a dimensionless load parameter which

is a function of the beam boundary conditions applied to the

cantilever for the ith mode of the beam. It is given by the

ith positive solution of equation (18) for a cantilever and of

equation (19) for a clamped–clamped beam [26]:

cos λ · cosh λ + 1 = 0 (18)

cos λ · cosh λ − 1 = 0. (19)
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(a) (b)

Figure 25. Output power (a) and damping (b) versus resonant frequency [22].

Figure 26. Schematic diagram of a comb-shape micro resonator
with a straight-beam for active frequency tuning via localized
stressing effects (after [23]).

Figure 27. Measured frequency change versus tuning power [23].

The majority of cantilever-based micro-generators operate

in the fundamental flexural mode (mode 1); the resonant

Figure 28. Layout and connection of laterally resonant comb-drive
actuator used for tuning experiments [24].

frequency of a uniform cantilever in mode 1 with an axial

load, fr 1
′, is given by

f ′
r1 = fr1 ·

√

1 +
F

Fb

. (20)

The ratio of the tuned frequency to the original frequency

is

f ′
r

fr

=

√

1 +
F

Fb

. (21)

The buckling load Fb of a cantilever and a clamped–

clamped beam is given by equations (22) and (23), respectively

[27]:

Fb =
π2 · E · w · h3

48 · l2
(22)

Fb =
π2 · E · w · h3

3 · l2
(23)

where E is Young’s modulus of the material of the cantilever

and w, h and l are the width, thickness and length of the

cantilever, respectively.

Figure 32 shows the change in the resonant frequency of

a cantilever with an axial load. It shows that a compressive

10
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(a) (b)

Figure 29. Variation of a resonant frequency with tuning power (a) at a different electrostatic drive voltage and (b) gas pressure [24].

(a)

(b)

Figure 30. Axial tensile (a) and compressive (b) load on a
clamped–free cantilever.

(a)

(b)

Figure 31. Axial tensile (a) and compressive (b) load on a
clamped–clamped beam.

load is more efficient in frequency tuning than a tensile load.

If the compressive force is larger than the buckling load, the

cantilever beam will buckle and no longer oscillate in mode 1.

If a very large tensile force is axially applied to the cantilever,

i.e. much greater than the buckling load, the resonant frequency

will approach that of a straight tensioned cable as the force

associated with the tension in the cantilever becomes much

greater than the beam stiffness.

The following sections give examples of a clamped–

clamped beam and cantilever beam structures.

3.4.1. Clamped–clamped beam structures. Cabuz et al [28]

realized resonant frequency tuning by applying an axial force

on a micromachined resonant beam electrostatically as shown

in figure 33. One end of the resonator was clamped on a

fixed support while the other end was connected to a movable

support. The moveable support could rotate around a torsion

bar as a voltage was applied across two tuning electrodes.

Figure 32. Normalized resonant frequency with variation of axial
loads.

The torsion bar converted the vertical tuning motion into an

axial force along the resonator. Upward rotation induces a

compressive stress in the resonator while downward rotation

induces a tensile stress. The tuning range was 16 Hz based on

a centre frequency of 518 Hz (figure 34) with driving voltage

from 0 to 16 V. The dimensions of the resonator are 1000 μm

× 200 μm × 3 μm and the dimensions of the movable support

are 12.5 mm2 × 0.3 mm. This is an example of continuous

tuning.

Leland and Wright [29] successfully tuned the resonant

frequency of a vibration-based piezoelectric generator by

manually applying an axial compressive preload directly on

the cantilever using a micrometer (figures 35 and 36). The

tuning range was from 200 to 250 Hz. This device generated

300–400 μW of power at an acceleration of 9.8 m s−2. It

was determined that a compressive axial preload could reduce

the resonance frequency of a vibration energy scavenger by

up to 24%, but it also increased the total damping (figure 37).

The piezoelectric bimorph has dimensions of 31.7 × mm ×
12.7 mm × 0.509 mm and the weight of the proof mass is

7.1 g. This is an example of intermittent tuning, but it is not

automated and has to be done manually.

11
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(a)

(b)

Figure 33. Structure for fine resonance frequency tuning at a device
level by an electrostatically induced axial force [28].

Figure 34. Resonant frequency change versus applied voltage [28].

Figure 35. Schematic of a simply supported piezoelectric bimorph
vibration energy scavenger [29].

3.4.2. Cantilever structures. Mukherjee [30] patented the

idea of applying an axial force to a vibrating cantilever beam-

sensing element using the electrostatic force. The resonator

consisted of two sets of comb-like structures (figure 38). The

set closer to the anchor was used for sensing while the other

set was used for frequency tuning. A voltage was applied

between the two fixed tuning electrodes and the structure at

the free end to apply an axial tensile or compressive end load

to the cantilever. The resonant frequency of the beam was

approximately 15.5 kHz. This is an example of continuous

tuning which achieved a tuning range of −0.6% to 3.3% of its

untuned resonant frequency, i.e. about 600 Hz. The cantilever

buckled when 50 Vdc was applied to provide a compressive

force. This is an example of continuous tuning.

Figure 36. Experimental apparatus [29].

Figure 37. Resonance frequency and damping versus preload [29].

Figure 38. Resonator with actuator at the free end.

Hu et al [31] theoretically investigated an axial preloading

technique to adjust the behaviour of a piezoelectric bimorph.

Computational results show that resonance occurred when

the natural frequency of the bimorph was adjusted to be

12
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Figure 39. A method to apply axial preload to a piezoelectric
bimorph [31].

Figure 40. Schematic diagram of the test device [32].

adjacent to the external driving frequency by preloading.

The mechanism for an axial preload to improve the bimorph

performance at varying-frequency vibrations was examined

in detail. A method for applying an axial preload to a

piezoelectric bimorph was suggested and is shown in figure 39.

It comprises a mechanical bolt running through the central

metal layer and fixed at the left-hand side edge wall. A capped

stiff metal plate was attached to the bolt at the free end of

the cantilever. A clockwise torsion of the bolt can produce

a compressive preload to the bimorph, and conversely, an

anticlockwise torsion of the bolt produces a force to pull the

capping plate to move towards the right-hand side, which can

generate a tensile preload to the bimorph. This is an example

of manual intermittent tuning.

This principle was demonstrated by Eichhorn et al [32].

Figure 40 shows a schematic diagram of the test device.

The piezoelectric generator consisted of a piezo-polymer-

composite cantilever beam with arms on both sides to enable

the application of an axial force to the free end of the beam.

The arms were connected to the base with two wings. These

wings were used to transmit the force to the arms, which in

turn apply the load to the free end of the beam. The tuning

force was applied by a screw and a steel spring. The axial

load depends linearly on the deflection of the spring, which

in turn was proportional to the number of revolutions of the

screw. The spring pushes the whole generator base against two

blocks of which the counter pressure generates the pre-stress

in the arms and the stabilizing wings. The screw, spring and

generator were all mounted on the same aluminium frame.

This is another example of manual intermittent tuning.

In tests only a compressive load was applied. Figure 41

shows the test results of this generator under vibration level of

63.7 m s−2. It was found that with the increase of a compressive

load, the resonant frequency, output voltage and the Q-factor

reduced. By cutting notches on the wings the tuning efficiency

Figure 41. Test results under vibration of 63.7 m s−2 [32].

Figure 42. Comparison of tuning efficiency of wings with and
without notches [32].

could be increased. With notches in the wings, a resonant

frequency shift of more than 20% was achieved with a total

force of 22.75 N (figure 42). The tuning range was from

290 Hz to 380 Hz with a compressive load up to 22.75 N. The

dimensions of the cantilever are 20 mm × 5 mm × 0.44 mm

and the overall width of the device including arms is 13 mm.

Another method of applying an axial load to a cantilever-

based micro-generator is reported by Zhu et al [33] who

presented a tunable electromagnetic vibration-based micro-

generator with closed loop frequency tuning. Frequency

tuning was realized by applying an axial tensile magnetic force

to the micro-generator (figure 43).

The tuning force was provided by the attractive force

between two tuning magnets with opposite poles facing each

other. One magnet was fixed at the free end of a cantilever

while the other was attached to an actuator and placed axially

in line with the cantilever. The distance between the two

tuning magnets was adjusted by the linear actuator. Thus, the

axial load on the cantilever, and hence the resonant frequency,

was changed. The areas where the two magnets face each

13
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Figure 43. Schematic diagram of the tuning mechanism [33].

Figure 44. Resonant frequency with variance of distances between
two tuning magnets [33].

other were curved to maintain a constant gap between them

over the amplitude range of the generator. Figure 44 shows

the test results of the resonant frequency variation of the

distance between the two tuning magnets. The tuning range of

the proposed micro-generator was from 67.6 to 98 Hz based

on the original resonant frequency of 45 Hz by changing the

distance between two tuning magnets from 5 to 1.2 mm.

Experimentally, the generator produced a power of 61.6–

156.6 μW over the tuning range when it was excited at

a constant vibration acceleration level of 0.588 m s−2.

Furthermore, the tuning mechanism does not affect the

damping of the micro-generator over most of the tuning range.

However, when the tuning force became larger than the inertial

force caused by vibration, total damping is increased and the

output power is less than expected from theory (figure 45).

This is the only example of automated intermittent tuning

presented in the literature to date.

4. Electrical tuning methods

All the frequency tuning methods mentioned above are based

on mechanical methods. The following sections describe

methods to tune the resonant frequency of a vibration-based

micro-generator electrically.

Figure 45. Power spectrum of the micro-generator (excited at
0.588 m s−2) [33].

Table 1. Coefficients of common piezoelectric materials [1, 34].

PZT-5 H PZT-5 A BaTiO3 PVDF

d31 (×10−12 C N−1) −274 −171 78 23
Young’s modulus (GPa) 50 50 67 2
Relative permittivity 3400 1700 1700 12

(ε/ε0)

4.1. Principle

The basic principle of electrical tuning is to change the

electrical damping by adjusting the load, which causes

the power spectrum of the generator to shift. As all

reported generators using electrical tuning are piezoelectric,

in this section, only the piezoelectric micro-generator will be

addressed. As resistive loads reduce the efficiency of power

transfer and load inductances are difficult to be varied, it is

most feasible to adjust capacitive loads to realize electrical

tuning.

Figure 46 shows a schematic diagram of a bimorph

piezoelectric generator with a mass, m, on the tip. lb and lm are

the effective length of the cantilever and mass, respectively.

w is the width of the cantilever. tp and ts are the thickness

of the piezoelectric layer and substrate layer, respectively, and

tg is the distance from the centre of the substrate layer to the

centre of the piezoelectric layer. Electrodes of the generator

have been omitted in figure 47. The resonant frequency of

such a generator can be tuned by varying the capacitive load.

Detailed theoretical analysis is shown in the appendix.

Figure 47 compares the resonant frequencies and power

output of electrically tunable piezoelectric generators of

different piezoelectric materials with variation of load

capacitances. These generators are identical except for the

piezoelectric material. The coefficients used in the simulation

are listed in table 1.

The resonant frequency as well as the output power

reduces with increasing load capacitance. It was found that

PZT-5 H is the best of these four piezoelectric materials

14
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Figure 46. Piezoelectric bimorph generator.

for an electrically tunable piezoelectric generator. Important

considerations relating to the tunability of the piezoelectric

generator are as follows.

• The material of the substrate layer and mass does not

affect the tunability.

• A piezoelectric material with higher Young’s modulus,

strain coefficient and smaller permittivity provides a larger

tuning range.

• The ratio of the thickness of the piezoelectric layer to the

thickness of the substrate layer should be small to increase

the tuning range.

• The capacitance of the piezoelectric layer should be

minimized to increase the tuning range.

• If both piezoelectric layers are used for tuning, connection

of these two layers in parallel gives a larger tuning range

than connection in series.

• The total damping should be kept low to increase the

tuning range.

4.2. Examples of electrically tunable micro-generators

Wu et al [35] used this method to tune the resonant frequency

of a generator composed of a piezoelectric bimorph cantilever.

The upper piezoelectric layer was used for frequency tuning

while the lower layer was used for energy harvesting. The

tunable bandwidth of this generator was 3 Hz between 91.5 Hz

and 94.5 Hz. The charging time of the generator was compared

with and without the tuning system. Experimentally, it

was found that, when the device was excited under random

frequencies from 80 Hz to 115 Hz, the average harvesting

output power of the generator with tuning was about 27.4%

higher than that without tuning and the charging time was

shortened by using the tuning system. These results showed a

significant improvement of the average harvested power output

by using an electrical tuning method.

Charnegie [36] presented another piezoelectric micro-

generator based on a bimorph structure and adjusted its load

capacitance. Again, one piezoelectric layer was designed for

energy harvesting while the other is used for frequency tuning

(figure 48).

The test results showed that if only one layer was used for

frequency tuning (figure 49(a)), the resonant frequency can be

tuned an average of 4 Hz with respect to the untuned frequency

of 350 Hz, i.e. 1.14% tuning by adjusting the load capacitance

from 0 to 10 mF (figure 50(a)). If both layers were used

for frequency tuning (figure 49(b)), the tuning range was an

average of 6.5 Hz, i.e. 1.86% of tuning by adjusting the same

amount of the load capacitance (figure 51(a)). It was found

that if one layer was used for tuning and the other for energy

harvesting (figure 49(a)), the output power did not reduce with

the increase of the load capacitance (figure 50(b)). However,

if both frequency tuning and energy harvesting were achieved

using the same layer (figure 49(b)), the output power decreased

when the load capacitance became larger (figure 51(b)).

5. Strategies to widen bandwidth

The other commonly used solution to increase the operational

frequency range of a vibration energy-harvesting generator

is to widen the bandwidth. To date, strategies to widen the

bandwidth include using a generator array consisting of small

generators with different resonant frequencies, introducing an

amplitude limiter to the device, using coupled oscillators,

employing nonlinear and bi-stable structures and designing

a large generator with a large inertial mass and high degree of

damping. In this section, details of generator array, amplitude

limiter and nonlinear and bi-stable structures will be covered.

The strategy of employing a single large generator will not be

detailed as it can be simply described using equation (1) while

it will be considered in the comparison of different strategies

later in this review.

5.1. Generator array

In this method, the bandwidth is widened by designing a

generator consisting of an array of small generators, each

of which has different dimensions and mass and hence

different resonant frequencies (figure 52). Thus, the assembled

generator has a wide operational frequency range whilst the Q-

factor does not decrease. Figure 53 shows the power spectrum

of a generator array which is a combination of the power

spectra of each small generator. The frequency band of the

generator is thus essentially increased. The drawback of

this approach is the added complexity of fabricating an array

of generators and the increased total volume of the device

depending upon the number of devices in the array.

Shahruz [37] developed a device which consisted of

a set of cantilever beams with proof masses at their tips.

The dimensions of each beam and mass were different and

were chosen appropriately to make the whole device work

as a band-pass filter. Each beam is an individual generator.

Since these beams had different resonant frequencies, the
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(a)

(b)

(c)

Figure 47. Performance of a piezoelectric generator with different
piezoelectric materials: (a) resonant frequency, (b) output power,
(c) output power versus resonant frequency.

filter could automatically ‘select’ one beam to resonate at

one particular frequency based on the driving vibration

frequency. A generator based on such a filter will work at

Figure 48. Piezoelectric bimorph used for electrical frequency
tuning.

various frequencies, i.e. effectively widening the operational

frequency range.

Xue et al [38] presented an approach for designing

broadband piezoelectric harvesters by integrating multiple

piezoelectric bimorphs with different aspect ratios into a

system, primarily with different thicknesses of piezoelectric

layers, h. Figure 54 shows a schematic diagram of the

array.

The effect of connecting piezoelectric bimorphs in series

and in parallel on improving energy-harvesting performance

was discussed. It was found that the bandwidth of a generator

can be widened by connecting multiple piezoelectric bimorphs

with different aspect ratios in series. In addition, the bandwidth

of the generator can be shifted to the dominant frequency

domain of the ambient vibrations by increasing or decreasing

the number of piezoelectric bimorphs in parallel. Numerical

results showed that the bandwidth of the piezoelectric energy-

harvesting devices can be tailored by the connection patterns

(i.e. in series and in parallel) among piezoelectric bimorphs

(figures 55 and 56).

Feng et al [39] presented a micromachined piezoelectric

generator with a wide vibration bandwidth. The device was

designed to achieve an optimal figure of merit (FOM) which

is defined as (bandwidth)2 × (the maximum displacement of

cantilever structures under a given acceleration under static

conditions). The dimensions of the generator are 3 mm ×
3 mm × 5 mm and it consisted of four cantilever structures

connected in parallel, which were fabricated to achieve a

flexible membrane with the minimum residual stress capable

of a large displacement. Each cantilever had a different mass

or centre of gravity and so a different resonant frequency

(figure 57). The designed generator was targeted at producing

microwatts to milliwatts in a wide mechanical vibration range

from 300 to 800 Hz (figure 58) but no test results were reported

to date.

A multifrequency piezoelectric generator intended for

powering autonomous sensors from background vibrations

was presented by Ferrari et al [40]. The generator consisted of

multiple bimorph cantilevers with different natural frequencies

of which the rectified outputs were fed to a single storage

capacitor. A generator with three commercially available

piezoelectric bimorph cantilevers was examined. Each

cantilever has the same dimensions of 15 mm × 1.5 mm ×
0.6 mm and different masses, 1.4 g, 0.7 g and 0.6 g,

respectively. The generator was used to power a battery-

less sensor module that intermittently read the signal from a

passive sensor and sent the measurement information via RF
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(a) (b)

Figure 49. Frequency tuning and energy harvesting using (a) the same layer and (b) different layers.

(a) (b)

Figure 50. Resonant frequency (a) and output power (b) versus load capacitance while tuning and energy harvesting in different layers [36].

(a) (b)

Figure 51. Resonant frequency (a) and output power (b) versus load capacitance while tuning and energy harvesting in the same layers [36].

transmission, forming an autonomous sensor system. It was

found that the sensor module could be sufficiently powered,

thereby triggering the transmission, even for an excitation

frequency that was off resonance for all of the cantilevers.

At resonance none of the cantilevers used alone was able

to provide enough energy to operate the sensor module.

Experimentally, it showed that a generator array operating

with wideband frequency vibrations provides improved overall

energy conversion over a single generator at the expense of

larger volume.

Sari et al [41] reported a micromachined electromagnetic

generator with a wide bandwidth. The generator consists of a

series of cantilevers with various lengths and hence resonant

frequencies (figure 59). These cantilevers are distributed in

a 12.5 mm × 14 mm area. The length of the cantilevers

increased gradually so that the cantilevers have overlapping

frequency spectra with the peak powers at similar but different

frequencies. This resulted in a widened bandwidth as well as

an increase in the overall output power.

The generator used an electromagnetic transducer to

transduce power. A large magnet was fixed in the middle

of the cantilever array and coils were fabricated by sputtering

and patterning metal on top of the cantilevers. The coils

moved with ambient vibration relatively to the static magnet
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Figure 52. A mechanical band-pass filter with a set of cantilever
beams.

Figure 53. Power spectrum of a generator array.

Figure 54. Schematic illustration of a piezoelectric bimorphs
harvesting system [38].

and they were connected in series. Experimentally, the device

generated 0.5 μW continuous power at 20 mV voltage between

3.3 and 3.6 kHz of ambient vibration. Figure 60 shows the

power spectrum of this generator.

5.2. Amplitude limiter

Another method of increasing the bandwidth of a vibration-

based micro-generator was reported by Soliman et al [42]. The

bandwidth of the device was increased by using a mechanical

stopper (amplitude limiter) to limit the amplitude of the

resonator (figures 61 and 62). The theory behind this method

is complex and details can be found in [42]. It was found

that this method increases the bandwidth of the generator

during an up-sweep, i.e. when the excitation frequency was

gradually increased. The bandwidth remained the same in a

down-sweep, i.e. when the excitation frequency was gradually

Figure 55. Comparison of a power spectrum for a single
piezoelectric bimorph and ten piezoelectric bimorphs in series with
various thicknesses of piezoelectric layer, h [38].

Figure 56. Effect of piezoelectric bimorphs in parallel on harvester
performance [38].

reduced. Experimental measurements showed that the up-

sweep bandwidth was 240% wider than that of the architecture

without a stopper at the half-power level, but the maximum

output voltage was 30% less (figure 63). The dimensions of

the cantilever are 45.3 mm × 10 mm × 1.02 mm and the mass

is extrapolated to be 2.92 g.

5.3. Coupled oscillators

The method of widening the operational bandwidth of the

MEMS generator was reported by Petropoulos et al [43]. The

proposed generator employs a pair of coupled oscillators that

consist of two springs, two masses and two dampers. The first

spring connects the inertial frame and the first mass while the

second spring connects the two masses while each mass has

a damper to the frame as shown in figure 64. The analytic

model shows that this type of generators has flat response for

power generation over a wider frequency range. However,
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Figure 57. Conceptual diagram of the piezoelectric wide-bandwidth
micro-generator [39].

Figure 58. Estimated power generation with the power range of
μW to mW in a wide bandwidth [39].

the maximum output power of the generator is significantly

decreased than the generator with one mass (figure 65).

5.4. Nonlinear generators

The theory of vibration energy harvesting using nonlinear

generators was investigated by Ramlan et al [44]. Instead

Figure 59. Photograph of a wide-band electromagnetic generator
[41].

Figure 60. Power spectrum of Sari’s generator [41].

Figure 61. Top and side views of the device [42].

Figure 62. Increase the bandwidth using a stopper [42].

of using a conventional second-order model as (1), nonlinear

generators were modelled using Duffing’s equation as follows:

m
d2z(t)

dt2
+ b

dz(t)

dt
+ kz(t) + kn [z(t)]3 = −m

d2y(t)

dt2
(24)
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Figure 63. Voltage on load versus excitation frequency [42].

Figure 64. Schematic model of a coupled oscillator [43].

Figure 65. Power spectrum for an optimized two-mass system and
for an equivalent one-mass system with various ζ values [43].

(a)

(b)

(c)

Figure 66. Power spectrum of nonlinear generators: (a) various
damping ratios, (b) various nonlinearities, (c) various input
accelerations.

where the spring force is the combination of the linear force,

kz(t), and the nonlinear force, kn[z(t)]3. Solving (24) gives the

frequency–amplitude relationship as
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Figure 67. Half-section of the device [45].

Figure 68. Measured output power [45].
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where α is proportional to the nonlinear spring factor, kn, Z is

the amplitude of the proof mass, ζ is the damping factor and

a is the normalized excitation acceleration.

Such devices have a hardening spring which has the

effect of shifting the resonant frequency. Numerical and

analytical studies showed that a device with a hardening spring

has a larger bandwidth over which power can be harvested

due to the shift in the resonance frequency. Their analysis

also showed that the bandwidth of the hardening system

depends on the damping ratio, the nonlinearity and the input

acceleration (figure 66). Ideally, the maximum amount of

power harvested by a system with a hardening stiffness is the

same as the maximum power harvested by a linear system,

irrespective of the nonlinearity, although this possibly occurs

at a different frequency depending on the nonlinearity. It

Figure 69. Schematic diagram of a magnetically levitated generator
[46].

should be pointed out that the output power and bandwidth of

the nonlinear generators depend on the direction of approach

of the vibration frequency to the resonant frequency. For a hard

nonlinearity, this approach will only produce an improvement

when approaching the device resonant frequency from a

lower frequency. For a soft nonlinearity, this approach will

only produce an improvement when approaching the device

resonant frequency from a higher frequency. It is unlikely that

these conditions can be guaranteed in real application.

Nonlinear generators can be conveniently realized by

using a magnetic spring instead of a conventional spring.

Spreemann et al [45] reported a tunable electromagnetic

vibration energy harvester with a magnetic spring, which

combined a tuning mechanism with the nonlinear structure.

Instead of using a linear suspension, this device was

implemented using a rotary suspension (figure 67). The use

of magnetic spring magnets resulted in a nonlinear restoring

force. The nonlinear restoring force provides low resonance

frequencies within a small generator volume and small changes

in the spring magnet’s position cause a significant change

in the spring characteristic. As shown experimentally in

figure 68, the resonant frequency shifted by about 30 Hz for a

displacement of 1.5 mm of each spring magnet. The maximum

output decreased with the increase of the magnet spacing, i.e.

as the resonant frequency decreased. Also the bandwidth of

the device increased as the space between magnets became

smaller, i.e. nonlinearity increased. This agrees with the

analysis result shown in figure 66. The generator has a volume

of approximately 2.5 cm3.

In addition, the design and analysis of an energy-

harvesting device with magnetic restoring forces to levitate

an oscillating centre magnet was presented by Mann et al

[46]. Figure 69 shows the schematic diagram of the device.
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Figure 70. Change in the linear resonances as a function of the magnet spacing [46].

(a)

(b)

Figure 71. Experimental velocity response amplitudes from forward (dots) and reverse frequency sweeps (circles) are compared with
theory. Theoretical predictions are separated into stable solutions (solid line) and unstable solutions (dashed line):
(a) excitation level of 2.1 m s−2 and (b) excitation level of 8.4 m s−2 [46].

The device used two outer magnets that were mechanically

attached to a threaded support. A centre magnet was placed

between the two outer magnets and the magnetic poles were

oriented to repel the centre magnet, thus suspending the centre

magnet with a nonlinear restoring force. The nonlinearity

allows the linear resonance to be tuned by simply changing

the spacing between outer and centre magnets (figure 70).

The mathematical model for the energy-harvesting device

was derived and examined for the case of harmonic base

excitation. It was found theoretically and experimentally

that the response for both linear and nonlinear systems scales

almost linearly within some regimes of excitation amplitudes

(figure 71(a)). However, once the nonlinearities have been

sufficiently engaged, as shown in figure 71(b), the peak

response of the nonlinear system no longer scales linearly

and is relocated away from linear resonance. Thus, the ability

to tune the restoring forces is an essential consideration for

applications with a fixed frequency harmonic excitation so

that the best performance can be obtained. Additionally, in the

frequency response for the nonlinear system, relatively large

amplitudes persist over a much larger range of frequencies,

which could prove beneficial for applications with either fixed

or varying excitation inputs. Furthermore, the maximum

output power of such devices is delivered to the electrical

load at a frequency away from linear resonance.

Burrow et al [47, 48] reported another nonlinear generator.

It consisted of a linear spring with the nonlinearity caused by

the addition of magnetic reluctance forces. Figure 72 shows

the schematic diagram of the nonlinear generator. The flux

concentrator guides the magnetic flux through the coil. The

vibration of the magnets causes a change in direction of the

magnetic flux, which induces a voltage across the coil. The

reluctance force between the magnets and the flux concentrator

resulted in the nonlinearity. Theoretically, it was found that,

for a given displacement and mass, there is more energy stored

in a nonlinear system than in a linear system as the force on the

spring at a given peak displacement will be higher than in the

linear case and the mass velocity will be higher when it passes
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Table 2. Summary of continuous tuning methods.

Untuned resonant Tuning Tuning Sensitivity
Reference frequency (Hz) range (Hz) Size voltage (V) (Hz V−1)

Scheibner [15] Multiple 1–10 k 7 × 10 mm2 0–35 257
Adams [16] 25 k 1.9–36.5 k 500 × 10 μm2 0–50 692
Lee [17] 19 k 5.55–19 k 460 × 840 μm2 0–150 89.67
Piazza [18] 719 k 713–716 k 200 × 20 × 4.2 μm3 0–20 300
Yao [19] 960 k 900–960 k N/A 0–35 1714
Yao [19] 149.5 k 139.5–149.5 k N/A 0–30 333
Peters [21] 78 66–89 N/A −5–+5 2.3
Remtema [23] 31 k 31–33 k 500 × 700 μm2 0–25 mW 80 Hz mW−1

Syms [24] N/A −25%–50% 3000 × 5000 μm2 1.5–10 mW 8.8% mW−1

Cabuz [28] 518 518–534 1000 × 200× 3 μm3 0–16 1
Mukherjee [30] 15.5 k 15.4–16 N/A 0–50 12

Table 3. Summary of intermittent tuning methods used in vibration energy harvesting.

Reference

Untuned
resonant
frequency
(Hz)

Tuning
range
(Hz)

Mass
(g) Size (mm3)

Tuning
force
(N)

Excitation
level
(m s−2)

Output
power
(μW) Sensitivity

Affect
on
damping

Wu [13] N/A 130–180 N/A 10 × 12 × 38a N/Ab 1.96 5–11 Voc 1.67 Hz mm−1 N/A
Challa [22] 26 22–32 45.8 34 × 20 × 0.92 N/Ac 0.8 240–280 0.33 Hz mm−1 ↑e

Leland [29] 250 200–250 7.1 31.7 × 12.7 ×
0.509

0–60 9.8 300–400 0.83 Hz N−1 ↑e

Eichhorn
[32]

380 290–380 N/A 20 × 5 × 0.44 0–22.75 63.7 3–4.5 Voc 3.96 Hz N−1 ↑e

Zhu [33] 45 67.6–98 N/A N/A N/Ad 0.588 61.6–156.6 8 Hz mm−1 –f

a Size of the mass.
b Change in position of centre of gravity: 30 mm.
c Tuning distance: 30 mm.
d Tuning distance: 3.8 mm.
e Damping increased with tuning mechanism.
f Damping stayed constant for most of the tuning range and increased when the tuning force became large.

Figure 72. Schematic diagram of a nonlinear generator (after [48]).

zero displacement. In addition, the generator experimentally

showed a wider bandwidth during an up-sweep, i.e. when

the excitation frequency was gradually increased while the

bandwidth was much narrower during a down-sweep, i.e. when

the excitation frequency was gradually decreased.

5.5. Bi-stable structures for vibration energy harvesting

Ramlan et al [44] studied a bi-stable structure for energy

harvesting (also termed the snap-through mechanism). These

structures employ a negative stiffness which has the effect

of steepening the displacement response of the resonator as

a function of time resulting in a higher velocity for a given

input excitation. Analysis revealed that the amount of power

harvested by a nonlinear device is 4/π greater than that by the

Table 4. Summary of generator arrays.

Tuning Number of Power level
Reference range (Hz) cantilever (μW)

Xue [39] 92–110 10 >30a

Feng [40] 300–800 4 >2a

Sari [42] 3300–3600 40 >0.5

a Simulation results.

tuned linear device provided the device produces a square wave

output for a given sinusoidal input. Numerical results also

showed that more power is harvested by the mechanism if the

excitation frequency is much less than the generator’s resonant

frequency. Although the bi-stable mechanism cannot produce

a square wave-like response under all operating conditions, it

offers better performance than the linear mechanism at lower

frequencies than the resonant frequency of the linear device.

Bi-stable devices also have the potential to cope with the

mismatch between the resonant frequency and the vibration

frequency.

Dogheche et al [49] have reported a piezoelectric micro-

machined ultrasonic transducer (pMUT) used as a mechanical

to electrical energy scavenger. The resonator was a silicon

membrane of which the thickness varied from 1 to 5 μm

and of four different diameters, 132, 200, 400 and 600 μm.
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Table 5. List of specifications in figure 73.

Figure

Operational
frequency
range

Q-factor
of G1

Q-factor
of G2

Number of
individual
generator in
G2, n

Resonant
frequencies of
individual
generators in G2

Q-factor
of G3

Mass
ratio
(G1:G2:G3)

73(a) 94–106% 10 100 9 91.5% + n × 1.8% 200 30:15:1
73(b) 94–106% 10 200 12 92.5% + n × 1.2% 200 30:10:1
73(c) 55–183% 1 10 31 47% + n × 5% 200 200:100:1
73(d) 55–183% 1 100 45 47% + n × 3% 200 200:90:1

Table 6. Comparisons of different strategies.

Strategies Advantages Disadvantages

Mechanical tuning • High efficiency • Extra system and energy are required
• Responds to only one frequency at a time
• Slow response to a change in a vibration
frequency

• Change dimension • Does not affect damping • Difficult to implement
• Not suitable for tuning in situa

• Change centre of gravity • Does not affect damping • Not suitable for tuning in situ

• Change spring stiffness
continuously

• Suitable for in situ tuning • Consumes energy when generators work
at resonance

• Apply axial load (change spring • Easy to implement • Increased damping when the
stiffness intermittently) • Suitable for in situ tuning compressive load is applied

• No energy is required when generators work at
resonance
• Damping is not affected when the tensile load is
applied

Electrical tuning • Easy to implement • Low tuning efficiency
• No energy is required when generators work at
resonance
• Suitable for in situ tuning

Widen bandwidth • No tuning mechanism required • Complexity in design
• Respond to different frequencies at the same
time
• Immediate response to a change in vibration
frequency

• Generator array • Damping is not affected • Complexity in design
• Low volume efficiency

• Use mechanical stopper • Easy to implement • Fatigue problem
• Decrease in the maximum output power

• Coupled oscillators • Easy to implement • Decrease in the maximum output power

• Nonlinear generators • Better performance at excitation frequencies • Complexity in design
higher than resonant frequency • Hysteresis

• Bi-stable structure • Better performance at excitation frequencies
much lower than resonant frequency

• Complexity in design

a Tuning while the generator is mounted on the vibration source and working.

Different pMUT devices have been tested using a hand shaking

excitation ranging from 4.9 to 19.6 m s−2. The experimental

results showed that the pMUT device can generate power

in both linear (elastic) and nonlinear (bi-stable) mechanical

behaviours.

6. Summary

Tables 2 and 3 summarize continuous and intermittent tuning

methods. The continuous tuning devices relate to resonator

devices and have not yet been applied to vibration energy

harvesting. The intermittent tuning summary table contains

information from actual vibration energy harvesters. Table 4

summarizes generator arrays.

7. Comparisons of different strategies

It has been proven theoretically and experimentally that

both tuning resonant frequency and widening the bandwidth
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(a)

(b)

(c) (d )

Figure 73. Comparison of a single generator with a wide bandwidth, a generator array and a single tunable generator with constant damping.
(a) Curves 1 and 3 are both single generators. Curve 2 consists of a generator array of nine generators of a Q-factor of 100. (b) Curves 1 and
3 are identical to (a). Curve 2 now consists of a generator array of 12 generators of a Q-factor of 200. (c) For curve 1, the Q-factor has been
reduced to 1. Curve 2 shows a generator array of 31 generators of a Q-factor of 10. Curve 3 has the same Q-factor as in (a) and (b) but with
higher mass. (d) Curves 1 and 3 are identical to (c). Curve 2 now consists of a generator array of 45 generators of a Q-factor of 100.

of vibration-based micro-generators can increase their

operational frequency range.

To compare the performance of a single generator with

a wide bandwidth, a generator array and a single tunable

generator with constant damping, typical specifications of

these three types of generators have been chosen. G1, G2 and

G3, listed in table 5, represent a single generator with a wide

bandwidth, a generator array and a single tunable generator

with constant damping, respectively. Figure 73 shows the

comparison of power spectra of these three types of generator.

When the Q-factor of a single generator decreases, its

bandwidth increases. To generate the same amount of output
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power as the original bandwidth, a single generator has to be

larger as the bandwidth increases.

If a generator array is used to widen the operational

frequency range, one can design a few larger individual

generators with low Q-factor with a large resonant frequency

gap between generators or many smaller individual generators

with high Q-factor but a small resonant frequency gap between

generators. By contrast, it is much easier to design small

tunable generators with constant damping to cover the same

amount of operational frequency range at the cost of extra

energy to power the frequency tuning mechanisms.

Table 6 compares the advantages and disadvantage of

different strategies to increase the operational frequency range

of vibration-based micro-generators.

8. Conclusions

As most practical applications for vibration-based micro-

generators exhibit frequency variations over time, it is not

possible to guarantee that fixed frequency generators will

always work at resonance and produce the maximum output

power. Mechanisms have to be employed to increase

the operational frequency range of vibration-based micro-

generators. There are two possible solutions, i.e. tuning

the resonant frequency of a single generator and widening

the bandwidth of the generator. Practical realizations of

each solution and their characteristics are summarized in this

section.

8.1. Tuning the resonant frequency of a single generator

The first solution, i.e. tuning the resonant frequency of a single

generator, requires a certain mechanism to periodically adjust

the resonant frequency so that it matches the frequency of

ambient vibration at all times; maximum power can then be

generated at various frequencies without reducing the Q-factor

and with high efficiency per unit volume. Intermittent tuning

has advantages over continuous tuning as it is more efficient

because the tuning mechanism is turned off when the generator

is at the right frequency thereby consuming negligible energy,

which makes producing a net output power more probable.

Among mechanical methods of frequency tuning,

changing the dimensions of the structure and the position of

the centre of gravity is potentially suitable for intermittent

tuning. However, it is less suitable for continuous tuning since

it is problematic to change and maintain the new dimensions

of the structure or the centre of gravity of the proof mass

during operation. The most suitable approach to changing

the dimensions of the structure is to change its length. This

requires the structure clamp is removed, the length adjusted

and then the structure re-clamped. It is important that in each

tuning procedure the structure is clamped properly; otherwise

the performance of the generator will be severely affected by

introducing damping effects through the supports. Therefore,

these two methods are not suitable for in situ tuning (tuning

while the generator is mounted on the vibration source and

working) or tuning with automatic control.

Alternatively the frequency can be tuned by changing

the spring stiffness intermittently or continuously. They are

both suitable for in situ tuning, but intermittently changing

the spring stiffness is always preferred for efficiency reasons.

However, extra systems and energy are required to realize

tuning using mechanical methods.

It is important to mention that the efficiency of mechanical

tuning methods also depends on the size of the structure. The

smaller the resonator, the higher the efficiency of the tuning

mechanism.

Resonant frequency tuning by adjusting the electrical

load has been practically shown to be feasible. This method

consumes little energy as it does not involve any change in

mechanical properties. The only energy consumed is in the

electronic switches and control unit, which is typically far less

than that consumed in mechanical tuning methods. In addition,

it is much easier to implement than mechanical methods.

However, the tuning efficiency to date is quite low and this

method cannot achieve a large tuning range. An extra closed

loop system also has to be introduced to control the tuning

process.

8.2. Widening the bandwidth of the generator

For the second solution, i.e. to widen the bandwidth, an

obvious problem is that there is a trade-off between the

system bandwidth and the Q-factor. A wider bandwidth

means, for a single resonator, a lower Q-factor, which reduces

the maximum output power. A bandwidth can also be

effectively widened by designing a generator consisting of

an array of small generators, each of which works at a

different frequency. Thus, the assembled generator has a

wide operational frequency range whilst the Q-factor does

not decrease. However, this assembled generator must be

carefully designed so that each individual generator does not

affect the others. This makes it more complex to design and

fabricate. Additionally, at a particular source frequency, only

a single or a few individual generators contribute to the power

output so the approach is volume inefficient.

Another method used to increase the bandwidth is to use

an amplitude limiter to limit the amplitude of the resonator.

The drawbacks are that this method causes the maximum

output power to drop by limiting the vibration amplitude and

the repeating mechanical contact between the cantilever and

the mechanical stopper may result in earlier fatigue-induced

failure in the cantilever beam.

Using coupled oscillators can also increase the operational

bandwidth of the generator. It can achieve flat response over a

wide frequency range. However, the maximum output power

of a coupled oscillator generator is significantly lower than

that of a generator with a single mass.

Furthermore, nonlinear generators and generators with

bi-stable structures are two further potential solutions to

increase the operational frequency range of vibration-based

micro-generators. They can improve the performance of the

generator at higher and lower frequency bands relative to its

resonant frequency, respectively. However, the mathematical

modelling of these generators is more complicated than that

of linear generators, which increases the complexity in design

and implementation. Besides, there is hysteresis in nonlinear
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Figure A1. Equivalent circuit of a piezoelectric generator with capacitive and resistive loads.

generators. Performance during a down-sweep (or an up-

sweep) can be worse than that during an up-sweep (or a down-

sweep) or worse than the linear region depending on the sweep

direction as explained in section 5.3.

In conclusion, for vibration energy harvesting, possible

strategies to increase the operation frequency range include

the following:

• changing spring stiffness intermittently (preferred) or

continuously,

• straining the structure intermittently (preferred) or

continuously,

• adjusting capacitive load,

• using generator array,

• employing nonlinear and bi-stable structures.

To realize these strategies properly, the following issues

have to be considered. For intermittent mechanical tuning,

the tuning system has to be designed to consume as little

energy as possible and not to affect the damping so as to

make the generator harvest the maximum power. In addition,

currently commercially available linear actuators are still large

in size compared to mm-scale micro-generator. To keep

tunable generators of reasonable size, it is important to use

miniature actuators. Generators using electrical tuning must be

well designed in order to achieve sufficient coupling between

the mechanical and electrical domains to enable larger tuning

ranges. Moreover, nonlinear generators and generators with

bi-stable structures have not been sufficiently developed and

further attention should be paid to practically implement them.

The last decade has seen great improvement of vibration-

based micro-generators in powering wireless sensor networks

by continuous effort of research groups and companies all

around the world. The development of strategies to increase

the operational frequency range of vibration-based micro-

generators will bring these energy sources to much wider

application.

Appendix

The bimorph piezoelectric generators as shown in figure 46

can be represented using an equivalent circuit as shown in

figure A1. Lm, Rm and Cm represent the mass, damping

and spring in the mechanical part, respectively. Cp is the

capacitance of the piezoelectric layer, and CL and RL are

the capacitive and resistive load, respectively. V is the RMS

voltage across the resistive load.

The transformer relates the mechanical domain to the

electrical domain according to the model of the piezoelectric

effect. Specifically, it relates the stress (σ ) to the electric field

(E) at zero strain, or the electrical displacement (D) to the strain

(δ) at zero electric field. The equations for the piezoelectric

effect are

δ =
σ

Yp

+ dE (A.1)

D = εE + dσ (A.2)

where d is the piezoelectric strain coefficient, which is d31

for a piezoelectric bimorph as it works in 31 mode, ε is

the dielectric constant of the piezoelectric material and Yp

is Young’s modulus of the piezoelectric material. Rewriting

(A.1) and (A.2) leads to the equations for the transformer as

D = −d31Ypδ. (A.3)

Hence, the transform ratio N is given by

N = −d31Y. (A.4)

Equation (A.5) can be derived to present the mechanical

dynamics of the system with electrical coupling. Detailed

derivation of this model can be found in [50]:

�
(

s2 + 2ζωns + ω2
n

)

=
ω2

nd31a

2tc
V + b∗Ain (A.5)

where � is the Laplace transform of strain, δ, Ain is the

vibration acceleration, ζ is the damping factor, ωn is the

untuned resonant frequency, a = 1 if the two piezoelectric

layers are connected in series and a = 2 if they are connected

in parallel and s is the Laplace variable. b∗ is given by

b∗ =
3tg

l2
b

·
(2lb + lm − le)
(

2lb + 3
2
lm

) (A.6)

where le is the length of the electrodes.

Furthermore, analysis in the electrical domain gives the

following equation:

� =
(

s +
1

RLCpL

)

·
V · CpL

s · 

(A.7)

where CpL = Cp + CL and 
 = – a · d31 · Yc · le · w. le is the

length of the electrodes.

Combining equations (A.5) and (A.7) gives the transfer

function of the system as

V
Ain

= s·
·b∗

s3+( 1
RLCpL

+2ζωn)s2+(ω2
n+ 2ζωn

RLCpL
− a
ω2

nd31
2tc

)s+
ω2
n

RLCpL

(A.8)
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which leads to the expression of the voltage across the resistive

load given by

V (ω) = jω·
·b∗·Ain
[

ω2
n

RL
−
(

1
RL

+2ζωnCpL

)

ω2

]

+jω
((

ω2
n−ω2

)

CpL+ 2ζωn
RL

− a
·ω2
nd31

2tc

) .

(A.9)

The power in the resistive load is given by

P(ω) = V (ω)2

RL

= 1
RL

· (ω·
·b∗·Ain)
2

[

ω2
n

RL
−

(

1
RL

+2ζωnCpL

)

ω2

]2

+ω2

(

(ω2
n−ω2)CpL+ 2ζωn

RL
− a
·ω2

nd31
2tc

)2 .

(A.10)

It is known that f (x, y) = x2 + y2 � 2xy and that f (x, y)

becomes a minimum only if x = y (i.e. 1
f (x,y)

is maximum only

if x = y). Therefore, (A.10) reaches the maximum when

ω2
n

RL

−
(

1

RL

+ 2ζωnCpL

)

ω2

= ω

(

(

ω2
n − ω2

)

CpL +
2ζωn

RL

−
a
 · ω2

nd31

2tc

)

. (A.11)

Rearranging (A.11) leads to a cubic function of the form

ω3 + Xω2 + Yω + Z = 0 (A.12)

where

X = −
(

1

RLCpL

+ 2ζωn

)

Y = −
(

ω2
n +

2ζωn

RLCpL

−
a
 · ω2

nd31

2tcCpL

)

Z =
ω2

n

RLCpL

.

The real solution of (A.12) gives the function of a resonant

frequency with respect to the load capacitance as

ω (CL) =
3
√

	 + 12
√

�

6
−

2
(

Y − X2

3

)

3
√

	 + 12
√

�
−

X

3
(A.13)

where

	 = 36XY − 108Z − 8X3

� = 12Y 3 − 3X2Y 2 − 54XYZ + 81Z2 + 12X3Z.

Equations (A.10) and (A.13) indicate that output power

and the resonant frequency of a bimorph piezoelectric

generator vary with variations of the load capacitance.
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