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In the 1990s, when it first became possible to map the
chromosomal locations of quantitative trait loci (QTLs)
in rodents, it looked as if QTL discovery would soon
lead to the identification of genes involved in any med-
ically important phenotype that could be modelled in
mice or rats1–4.

More than 10 years later, the field of QTL analysis is
heading towards a crisis. The National Center for
Biotechnology Information (NCBI) lists 700 QTLs that
are found in rats (see the Entrez Gene web site in the
Online links box), and the mouse genome database cur-
rently contains 2,050 mouse QTLs (see the Mouse
Genome Informatics web site in the Online links box).
Compare these figures with the number of candidate
genes that are proposed to underlie QTLs in rodents
(TABLES 1,2). If we uncritically accept all the claims as cor-
rect, only about 20 genes have been identified. Even if no
more QTLs are mapped, at the present rate of progress
(20 genes identified in 15 years) it will take 1,500 years to
find all the genes that underlie known QTLs.

Several recent developments have been published
that might make what is currently almost impossible
more tractable. These include new genomic resources
(for example, the availability of sequences and
sequence variants), animal resources (for example,
chromosome substitution strains and the proposed

Collaborative Cross), techniques (such as in silico
mapping and whole-genome expression studies) and
analytical tools (such as quantitative complementa-
tion tests and Yin–Yang crosses, see below for more
information).

In this review, we discuss the realized or potential
success of new approaches to identify genes that under-
lie QTLs.We focus on methods to identify genetic vari-
ants that have only a small effect on the phenotype (by
which we mean that the variants account for 10% or
less of the phenotypic variation of a quantitative
trait). In the past, robust and reliable detection of
small-effect QTLs has been a problem5; but, as should
be evident from the number of QTLs that have been
reported, difficulties in QTL detection are not imped-
ing research. The methods might not be the most effi-
cient, but there is no doubt that QTLs can be detected
at high levels of significance and that the findings can
be replicated, even for behavioural phenotypes6–9.
Although it is likely that only a small fraction of the
total number of QTLs that segregate in inbred strain
crosses are currently known to us (not to mention
those in outbred stocks), without the ability to deter-
mine the genes they represent, their detection is of
limited interest. We urgently need advances in gene,
not QTL, identification.
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probable effectiveness of the new approaches? To answer
this question, we need to define success, which is not so
straightforward. Two recent reviews that attempt this task
identify 21 genes in total, but agree about the identifica-
tion of only four genes in mice and five in rats11,12. As
many have pointed out, there is no single proof that con-
firms a gene at a QTL and, to a large extent, each case has
to be evaluated on its own strengths13,14. Replacing one
allele with another at a locus through targeted mutagene-
sis with subsequent functional analysis provides a strin-
gent test, as does complementation, but these procedures
might not be possible (or even necessary) in every case:
alternative evidence can provide sufficient proof that the
gene has been found.

There are also issues about what to include as a
QTL. Strictly speaking, a QTL is any locus that con-
tributes to a phenotype that is measured quantitatively.
However, some investigators use a quantitative mea-
sure for a phenotype that others assess qualitatively
(for example, susceptibility to cancer can be assessed as
affected or not affected, or by a quantitative measure,
such as the number of tumours). To be comprehen-
sive, we have summarized data on candidate genes in

Before proceeding, we should also be clear about
what we exclude from our discussion. In this paper,
we do not consider artificially induced mutations that
present as QTLs, such as those that are due to mutage-
nesis, although it has been suggested that mutagenesis
in the mouse can be used to determine the genetic
basis of quantitative traits instead of QTL mapping10.
Screening mice for the quantitative effects of induced
mutations is doubtless an efficient method for the
identification of genes that are involved in the expres-
sion of a phenotype, quantitative or otherwise.
However, our concern here is with the subset of poly-
morphic loci that give rise to phenotypic variation in
natural populations (although we admit that labora-
tory mouse populations are in many respects unnat-
ural). Mutagenesis does not distinguish between
these loci and the large number of loci that are func-
tionally invariant in nature, but in which mutations
can be induced.

Lessons from previous success stories
Are there any lessons from success stories in the field of
QTL mapping that might allow us to determine the

Table 1 | Cloned quantitative trait loci

Gene symbol Gene name Phenotype/function Variation (%) Gene identification method Reference* 

Alox15 Arachidonate Abnormal bone mass 4% Expression differences, analysis of 107
12/15 lipoxygenase knockout alleles, pharmacological inhibition

Rgs2 Regulator of Fear-related behaviour 5% Outbred mice, QTL–knockout interaction 31
G-protein signalling 2

Cyp11b1 Cytochrome P450, Abnormal blood pressure 5% Congenics, sequence variants 154
subfamily 11B,
polypeptide 1

Lipc Hepatic lipase Obesity 7% Multiple crosses, knockout interaction 155

C5 Complement Experimental allergic 8% Expression differences, loss-of-function 106
component 5 asthma mutation

Ace2 Angiotensin 1 Abnormal blood pressure 12% Knockout phenotype 156
converting enzyme 2
(peptidyl-dipeptidase A)

Apoa2 Apolipoprotein A2 HDL cholesterol 23% Multiple-strain haplotypes, coding 88
sequence variants

Mpdz Multiple PDZ domain Pentobarbital drug 25% Genotype-dependent differences in 16
protein withdrawal with seizures coding sequence and expression

Ncf1 Neutrophil cytosolic Severe arthritis 25% Functional sequence change, 157
factor 1 pharmacological treatment

Kcnj10 Potassium inwardly- Susceptibility to seizure 25% Coding sequence variants, multiple-strain 15
rectifying channel, haplotypes
subfamily J, member 10

Ptprj (Scc1) Protein Susceptibility to colon 29% Recombinant haplotypes, sequence 158
tyrosine phosphatase cancer differences, loss of heterozygosity
receptor type, J polypeptide in human cancer

Tas1r3 Taste receptor, type 1, Saccharin response 30% Multiple-strain haplotypes, coding 159
member 4 sequence variants

Nppa Natriuretic peptide Cardiac hypertrophy 44% Promoter variants increase gene 160
precursor A expression

Cd36 Fatty acid translocase Abnormal fatty acid 50% Expression differences, loss-of-function 161
metabolism mutation, transgene complementation

Pla2g2a Phospholipase A2, group IIA Modifier of tumours in 50% Frameshift loss of function and transgene 162
(platelets, synovial fluid) intestinal cancer complementation (cosmid)

Mtap1a Microtubule-associated Modifier of hearing loss 57% Coding sequence variants, transgene 163
protein 1a complementation (cosmid)

*The first publication of this material. HDL, high density lipoprotein. 
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candidacy of Mpdz, but had a much smaller interval,
with only three known and three predicted genes to val-
idate, and so were able to make a more convincing case
for gene identification16. Although TABLES 1,2 should not
be interpreted as definitive lists, they do allow us to draw
two conclusions of general importance.

Effect size. First, the QTLs that have yielded genes have
had exceptionally large EFFECT SIZES. To appreciate how
large, we ideally need an unbiased estimate of the typical
QTL effect size. Unfortunately this is difficult to obtain
because, in cases of low statistical power to detect
effect sizes, the contributions of detected QTLs are

TABLES 1,2. TABLE 1 lists candidate genes at loci where
the effects are expressed as the percentage of the total
phenotypic variance. TABLE 2 lists candidate genes at
susceptibility loci, the effects of which are expressed as
differences in penetrance.

The weight of evidence in favour of each gene
varies considerably. For example, Ferraro and col-
leagues have proposed Kcnj10 as a candidate gene that
is involved at a seizure-susceptibility locus on the basis
of finding sequence variants in coding regions and
gene expression in the relevant tissue, but had to con-
sider data for 120 genes within the region of study15.
Shirley and colleagues applied similar criteria for the

EFFECT SIZE 

The percentage of the total
phenotypic variation that is
attributable to a QTL.

Table 2 | Cloned susceptibility loci

Gene Gene Phenotype Penetrance Method of detection Reference*
symbol

Cblb Casitas B-lineage Type 1 diabetes High Nonsense mutation, transgene 164
lymphoma b complementation (cDNA)

Stk6 Serine–threonine Skin tumour Low Multiple-strain haplotypes, 74
kinase 6 susceptibility outbred mice, expression 

difference

Ctla4 Cytotoxic T-lymphocyte- Autoimmune Low Sequence variants, association 165
associated protein 4 disease studies in humans

Il2 Interleukin 2 Type 1 diabetes Low Coding sequence variants, 166
differences in electrophoretic 
patterns

Pctr1 Plasmacytoma resistance 1 Susceptibility to Low Coding sequence variants, 167
plasmacytoma protein variant less active

B2m β-2-Microglobulin Type 1 diabetes Low Coding sequence variant, 168
transgene complementation (plasmid)

*The first publication of this material.
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Figure 1 | The distribution of QTL effect sizes. Data are from 14 recent quantitative trait loci (QTL) mapping experiments
(including 244 significant QTLs). Behavioural QTL data are from REF. 116. Data for physiological QTLs are from REFS 140–153.
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FIGURE 1 shows that the distribution of effect sizes for
both behavioural and physiological phenotypes are
almost identical, as are the average effects of the uncloned
QTLs for these phenotypes, which are 5.8% and 5.3%,
respectively. The average effect size of a cloned QTL is
26% (TABLE 1). If we restrict our attention to the QTL
genes that have been most stringently confirmed (by
complementation), then the average effect size is 50%.
Clearly, it is easier to identify genes when the QTL effect
sizes are large.

In fact, the true effect sizes of most uncloned QTLs
are almost certainly much smaller than the 5–6% aver-
age mentioned above, and this is not just because of

over-estimated17,18. With this caveat in mind, FIG. 1

shows a comparison of effect sizes from a reasonably
complete survey of behavioural QTLs (94 significant
QTLs) and a compendium of physiological pheno-
types (such as growth, weight, blood pressure and gall
stones; note that we are using data from uncloned
QTLs). It is important to realize that effect sizes
depend on the mapping population in which they are
measured (see BOX 1 for a detailed discussion; see also
FIG. 2). Here, and in the rest of this review, we use effect
size to mean the percentage of the total phenotypic
variance that is explained by the QTL segregating in an
F2 intercross.

Box 1 | How QTL effect size depends on the mapping population

The effect size of a quantitative trait locus (QTL) depends on the population in which the QTL alleles segregate. Here, we
give a quantitative treatment and show that a genetic effect that produces a QTL with a 5% effect in a recombinant inbred
(RI) population will produce a QTL that explains ~2.6% of the phenotypic variance in an F2 generation and ~1.3% in a
backcross (BC). Consider a diallelic QTL at which a major allele has frequency p and physiological effect g, and a minor allele
has frequency q = (1 – p). Let G be the genetic effect of the QTL on the phenotype for a given animal. The genetic variance,
Var (G), in each population is 4g2pq for RI, 2g2pq for F2, and g2pq for BC (REF. 5) . This shows that the genetic variance coming
from the QTL — that is, the proportion of the phenotypic variance it explains — decreases in the ratio 4:2:1 for RI:F2:BC
(FIG. 2).What does this do to the effect size of the QTL in these populations? In the simplest case where there are no other
genetic components, the environmental variance Var(E) is constant and the effect size, θ , is shown in equation 1.

(1)

The top part of the table shows θ for each population and how the effect of a QTL in an RI becomes smaller in F2 and BC
populations132. (Note that ‘|’ in the table means ‘conditional on’.)

But what if there are k QTLs that affect the trait? We take the simple case of k — unlinked, diallelic, independent, additive
QTLs. The genetic variance coming from the ith QTL in, for example, an RI, will be 4g

i
2p

i
q

i
, and the total genetic variance

Var (G) in the RI will be

(2)

The bottom part of the table gives the effect size, θ
1
, of QTL 1, (which accounts for a fraction λ of the genetic variance) in

RI, F2 and BC populations, as well as conditional effect sizes. In the table, we make the substitution defined in equation 3
for brevity.

(3)

The drop in effect size moving from RI–F2–BC is shallower when other genetic components have a large role in the
phenotype. In the extreme case of no environmental variance (when other QTLs account for all the remaining
phenotypic variance), there is no drop at all. At the other extreme, when λ = 1, the formulae are the same as in the top
part of the table.

Measure RI F2 BC
Single QTL system

4g2pq 2g2pq g2pq
θ

4g2pq + Var (E ) 2g2pq + Var (E ) g2pq + Var (E )

θRI θRIθ |θRI θRI 2 – θRI 4 – 3θRI

θ |{θRI = 5%} 5% 2.56% 1.30%

Many QTLs system

4λΓ 2λΓ λΓ
θ1 4Γ + Var (E ) 2Γ + Var (E ) Γ + Var (E )

λθ1,RI λθRIθ 1|θ1, RI θ1, RI 2λ – θ1, RI 4λ – 3θRI 

 Var(G)
(Var(G)+Var(E))

=

Var(G) =  ∑Var(Gi)  = 4 ∑ gi
2pi qi

i i

k k

∑ gi
2pi qi  

i

k
Γ= 
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only does the sequence tell us which gene is the most
likely candidate, it also indicates what experiments are
needed to confirm the candidacy. For example, comple-
mentation will rescue the function of a null allele, or a
biochemical or pharmacological intervention will deter-
mine whether an aberrant protein is involved. Unfortun-
ately, possessing a recognizable molecular signature
might be the exception rather than the rule for QTLs
(although, admittedly, we have only a small sample of
cloned QTLs to assess).

Although SNPs that cause monogenic disease have a
strong tendency to occur at highly conserved amino
acids, this does not seem to be true of variants in com-
plex diseases. At least in human studies, the pattern of
disease-associated coding variants is so far indistin-
guishable from the distribution that is found in the
normal population36. Moreover, in many cases, no cod-
ing-sequence variant is found; instead many sequence
variants are detected in non-coding DNA in regions, the
function of which (if any) is unclear31,37. In these cases, we
do not yet have an easy method to prove the involvement
of a gene at a QTL.

It is important to emphasize that identifying a gene is
not the same as isolating a sequence variant (or quanti-
tative trait nucleotide; QTN). Discovering a QTN does
not guarantee gene identification because the position
of sequence variants does not necessarily coincide with
the position of the genes on which the QTNs have an
effect. For example, a QTN could lie within a regulatory
region that is megabases away from its cognate gene38.
Note also that it is a QTN, not a gene, that segregates in a
cross, so genetic strategies for QTL dissection focus on
sequence variants, not genes.

The measure of success. Before we look at new methods,
we should be clear about how well the old methods per-
form (BOX 2). The relevant points (taken from a theoreti-
cal literature that is almost as extensive as the reports on
QTL mapping) are as follows: 300 F2 animals can be used
to map a QTL with an effect size of 5% onto a 40-cM

statistical problems in their estimation. Perhaps the
most important finding to emerge from attempts to
clone genes that underlie rodent QTLs is that a single
genetic effect, as detected in an inbred strain cross, turns
out in most cases to be due to several physically linked
small effects. There are many examples of this phenom-
enon, including QTLs that influence seizures19, obesity20,
growth21, blood pressure22–26, diabetes27, antibody pro-
duction28 and infection29. Classical approaches to gene
identification (BOX 2) generally assume that a single QTL
is just that, a single genetic effect. By not allowing for the
fractionation of the QTL, gene identification becomes
much more frustrating.

Unfortunately, we still do not have a precise picture
of the genetic architecture of QTLs in rodents, or indeed
in any organism30. Just how small are the effects likely to
be? At the rarely achieved level of mapping where
genetic effects can be resolved into intervals of a hun-
dred kilobases or less, QTLs might further disintegrate.
This has been found in studies of a behavioural QTLs in
mice31, and has been seen in similar work in other
species32,33. Further high-resolution information at
other QTLs might drive the estimate of average effect
size below 5%.

In short, QTLs are predominantly loci with small
effects, so the problem of identifying the genes that
underlie them is a problem of identifying the molecular
basis of small genetic effects. Whether we call the locus a
QTL or not is of little importance; at the moment, the
distinction that makes cloning tractable is between large
and small effect sizes. Unless we have methods that can
identify the genes at QTLs that contribute 1 or 2% to the
phenotypic variation, the backlog of uncloned QTLs
will remain.

Molecular signature. The second lesson from the success
stories in TABLE 2 is that finding a recognizable molecular
signature at a QTL, such as a sequence variant that
introduces a stop codon or that changes protein func-
tion, makes QTL cloning tractable34,35. In such cases, not

CONGENIC

A strain produced by a breeding
strategy that delineates a
genomic region containing a
trait locus. Recombinants
between two inbred strains are
backcrossed to produce a strain
that carries a single segment
from one strain on the genetic
background of the other.

Figure 2 | Effect size in F2 and BC relative to RI. a | Illustrates how a QTL’s effect size in F2 and BC populations relate to its effect
size for a monogenic trait in an RI population. b | Shows the effect sizes in F2 and BC populations of what, in RI populations, is a 5%
QTL for a single QTL that affects a multigenic trait (heritability is shown on the horizontal axis). Epistatic and gene–environment
interactions require a more sophisticated treatment than is presented here. BC, backcross; RI, recombinant inbred.

RI

F2

BC

0
0 20 40 60 80 100

20

40

60

80

100

%
 E

ffe
ct

 s
iz

e 
in

 X
, g

iv
en

 e
ffe

ct
 s

iz
e 

in
 R

I

% Effect size in RI

RI

F2

BC

0
0 5 20 40 60 80 100

1

2

3

4

5

%
 E

ffe
ct

 s
iz

e 
in

 X
 th

at
 is

 a
 5

%
 Q

TL
 in

 R
I

Combined % effect size of all QTLs in RI

a b

© 2005 Nature Publishing Group 

 



276 | APRIL 2005 | VOLUME 6 www.nature.com/reviews/genetics

R E V I E W S

INTROGRESSION 

Introduction of a chromosomal
segment from one strain into
another by interbreeding.

Box 2 | Existing strategies for QTL mapping based on inbred strain crosses 

F2 intercrosses and backcrosses
Two parental inbred strains are crossed to produce an F1, the starting point for the two most common mapping strategies.
Intercrossing the F1 generates an F2 and backcrossing to one or other of the parental strains produces a backcross. The
number of animals (n) needed to map an additive QTL in an F2 can be calculated using equation 1 (REFS 5,42).

(1)

Z
1 – α/2

is the cut-off point in a standard normal distribution for a probability of 1 – α/2 and α is the significance threshold. If
we use a genome-wide significance threshold of logP 4.3 (REF. 133) from normal tables, the cut-off point is 3.89. If we set the
power at 90% (in other words, 10% chance of missing a true association) then we need a Z

1 – β of 1.28 (from normal tables).
V

QTL
is the proportion of variance that is attributable to the QTL. For a purely additive QTL that explains 5% of the variance,

the calculation yields equation 2.

(2)

Recombinant inbred (RI) lines
A pair of inbred strains is intercrossed and their progeny is inbred to generate a panel of inbred animals,each with a different
combination of the progenitor genomes.Once a set of RI lines has been genotyped, the marker data are available for all
subsequent mapping experiments,which take place by determining the strains that are present at a marker and by correlating
this strain distribution pattern with phenotypic differences.Using the terminology given above for power in an F2 intercross,
the relationship between the number of animals (n) and the effect size of the QTL is given by equation 3 (REF. 134).

(3)

Congenics and interval-specific congenics
Congenics are still the mainstay of fine-mapping QTLs in rodents. By repeatedly backcrossing one strain onto another, it
is possible to create animals that have a particular genomic region from one strain and the remainder of their genome
from the other; subsequent intercrossing makes the genomic segment homozygous and the mouse fully inbred. However,
inadequate or incorrect assumptions about the distribution of chromosome segments, the population structure, the
marker spacing and the selection strategy might mean that the breeding does not go as predicted59. Flaherty and
colleagues point out that transgenic mice, which are routinely created on a 129 background and then backcrossed onto
another strain (usually C57BL/6), can be used as congenics for the interval around the engineered mutation135. An
interval-specific congenic is made by first identifying an animal with a recombinant chromosome in a region of interest
and then backcrossing it for several generations to remove other QTLs. Resultant animals are intercrossed, and
homozygotes for the recombinant haplotype are selected.

Recombinant congenics and genome-tagged mice
Recombinant congenics are a type of RI line made by backcrossing and randomly fixing parts of the genome by
inbreeding, so that each contains an average of 87.5% genes of a common background strain and 12.5% of a common
donor136. Genome-tagged mice are sets of overlapping congenics with sufficient material from one strain crossed onto the
other so that the whole genome is represented137. The 60 strains created by West and colleagues contain segments of
about 23 cM that are INTROGRESSED from either DBA/2 or CAST/Ei onto C57BL/6 (REF. 137).

Recombinant progeny testing
Animals that have a recombinant chromosome in a region of interest are backcrossed to a parental strain to determine
the location of the QTL relative to the recombination point.

Advanced intercross lines 
Two parental strains are crossed to produce an F1 that is intercrossed to produce an F2. Subsequent generations are
produced by intercrossing, so that animals in an advanced intercross line accumulate new recombinants. Animals are
maintained according to a pseudo-random breeding protocol to reduce loss of genetic variation in the population. An
appropriate advanced intercross line could take at least 5 years to make, but it can be used to map many loci.

Heterogeneous stocks
Genetically, heterogeneous stocks are derived from inbred strains through a series of progressive intercrosses.
Existing heterogeneous stocks are derived from eight strains, but any number can be used (an advanced intercross line is
a heterogeneous stock derived from two strains). By subsequently maintaining the stock for many generations, using a
pseudo-random breeding protocol, recombinants are introduced that allow high-resolution mapping. Traits are mapped
by associating allelic variants with a phenotype, so that genotyping must be carried out for each experiment. Two
heterogeneous stocks have been used for mouse mapping experiments: the older of the two (the Boulder heterogeneous
stock), has been breeding for more than 60 generations and is derived from the C57BL/6, BALB/c, RIII, AKR, DBA/2, I,
A/J and C3H strains138. The second heterogeneous stock (the Northport heterogeneous stock) has passed its fortieth
generation139, and is derived from the A/J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6J, CBA/J, DBA/2J and LP/J strains. Genetic
variation from many strains complicates analysis, but robust and powerful QTL detection is possible by estimating the
probability that an allele descends from each progenitor strain70 (BOX 3).

 + Z1 – β)(1 – VQTL)VQTL

Z1 – α /2 ((1 – VQTL)1/2

2

n =

 + 1.28)
2 

= 527(0.96)0.05 (3.89

     0.97

n – 2  =  (1 – VQTL)(Z1 – α/2 + Z1 – β)2

(VQTL)
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QTLs in the first mouse CSS experiment51. Notably, this
is not a substantial saving on the numbers used for an
F2 intercross (BOX 2).

A comparison between parental and CSS strains
will only map a QTL to a chromosome. For higher-
resolution mapping, CSS strains allow the rapid creation
of a congenic strain, either by using interval-specific con-
genic strains or by recombinant progeny testing42 (BOX 2).
Because of the relative increase in effect size, congenic
construction and recombinant progeny testing will
require 3–4 generations to reduce the interval to 1 cM,
rather than the 9–10 generations that are required when
starting from an F2 intercross52.

QTL mapping in a CSS delivers researchers to the
same point faster than classical strategies have led them,
but no farther. The main drawback of the method is
that it makes no allowances for the fractionation of a
large QTL effect into many loci with smaller effects. This
is the problem that has for so long beset the use of con-
genics for QTL dissection and gene identification. CSS
mapping is a powerful method for the identification of
small-effect QTLs, but it does not offer advantages over
other methods for the identification of genes.

Collaborative Cross: a proposal
Would the difficulties of QTL cloning be overcome if we
had 1,000 recombinant inbred (RI) lines, as suggested
by the Complex Trait Consortium53? Although the
Collaborative Cross — a panel of 1,000 RIs derived
from 8 parental strains — is only a proposal, not an
existing resource, we discuss it here because it might
provide a tool for gene identification (although this is
not the sole reason for its creation53).

The use of RI lines for QTL mapping in rodents has
so far been limited by the relatively small size of each set.
The BXD RI set (which is derived from C57BL/6 and
DBA/2 strains) consisting (until recently) of 26 lines
has 90% power to detect a QTL that explains half the
phenotypic variance in a trait54. The comparable effect of
a QTL segregating in an F2 generation is half this value
(because the F2 animals are not inbred), or 25% of the
phenotypic variance (BOX 1).What happens to power and
mapping resolution if we have 100 lines?

We have investigated this question using a simula-
tion55. Fine mapping of a QTL with a 5% effect is effi-
cient: 100 RI lines provide 80% power for QTL detection
at a 5% significance level. Mapping resolution is also
good: the 95% confidence interval is 7 cM. Fortunately,
RI panels approaching this size are now available: the
LXS panel consists of 77 lines56 and the expanded BXD
set consists of 90 lines57. Therefore, the new RI sets can
deliver high resolution, although this is still insufficiently
high to identify genes at small-effect QTLs.

The proposed Collaborative Cross differs in two
ways from standard RI lines. It is created from eight
progenitors, not two as is the case with RI lines, so that
the set would contain more genetic diversity than a stan-
dard RI. Second, the proposal is to create 1,000 lines,
ten times more than the largest available set. What
would be the advantage, for gene identification, in hav-
ing such an RI set? Mapping resolution improves to

interval with 50% power, using markers that are spaced
every 20 cM across the genome39. Increasing the marker
density does not appreciably increase mapping resolu-
tion for small-effect QTLs40. Increasing the number of
animals increases the likelihood of QTL detection (so
that with 800 animals there is a greater than 99% chance
of detecting a QTL with an effect size of 5%; BOX 2), but
does not increase resolution sufficiently to identify
genes — even 1,000 animals will only map a 5% QTL
onto an interval of about 10 cM (REF. 41). In summary, a
standard inbred-strain mapping experiment will need
about 400 animals and will use 100 markers.

Starting from a cross between two inbred animals, it
could take less than 6 months to map a QTL to a 40-cM
region. It will take a few more years to isolate a QTL by
creating CONGENICS42 (BOX 2). Alternatively, by continuing
to intercross beyond the F2 generation, fine mapping
can be carried out in an advanced intercross line or a
heterogeneous stock43 (BOX 2). After 6 years, we can rea-
sonably expect traditional strategies to have resolved a
5% QTL into a region of about 1 cM, which in the
mouse corresponds to 2 Mb on average. The average
gene density in the mouse is about 10 genes per
megabase, so a 1 cM QTL interval will contain about 
20 genes (note that gene density varies significantly
across the genome). Keeping this in mind, we now turn
to the new strategies to see how they fare in comparison.

Chromosome substitution strains
Chromosome substitution strains (CSSs) consist of a set
of animals in which one chromosome is derived from
one strain and all the rest are derived from another. For
mice, a panel of 22 CSS strains is required (for 19 auto-
somes, 2 sex chromosomes and mitochondria), or 44 if a
reciprocal set (with both parents as progenitor donors) is
used. QTL mapping is carried out through the relatively
simple process of comparing the phenotypes of each
strain with the parental background strain. CSS strains
were first used to map QTLs in mice in 1999 (REF. 44);
theoretical aspects of the mapping process were subse-
quently described for mice45 and rats46,47. The method
has a long history in plant48 and Drosophila genetics49.
The first complete CSS set, created from A/J and
C57BL/6 strains, was produced in 2004 and was used to
detect QTLs across the mouse genome50,51.

The ease of QTL detection using CSS strains results
from two features: first, the background genetic variance
is reduced so that each QTL explains a greater propor-
tion of the total phenotypic variation (BOX 1). Second, a
lower significance level is needed for QTL detection
because, compared with the ~100 markers tested in an
F2 generation, only 21 comparisons need to be made.
Singer and colleagues point out that the F2 intercross
requires at least 35% more animals for QTL detection51.
Nevertheless, Belknap estimates that to detect a QTL
with an effect size of 6% and with 50% power will
require 20 CSS strains and 20 parental animals for each
comparison, or between 3 and 400 animals (depending
on how many background animals are used) for a
genome scan52. Belknap’s estimate of 3 to 400 animals
agrees with the actual figure of 435 animals used to map

© 2005 Nature Publishing Group 

 



278 | APRIL 2005 | VOLUME 6 www.nature.com/reviews/genetics

R E V I E W S

understand the principle, we first explain RISTs,
which are a particular example of YYCs42.

Assume that a QTL has been mapped in an inbred-
strain cross. RI strains that have recombinants within
the QTL interval are crossed with both parental
inbred strains to produce two segregating popula-
tions. In one cross, the RI and the parental line share
the QTL allele, so no QTL segregates; in the other
cross, the RI and the parental line have a different
allele at the QTL, and the QTL segregates (hence the
name segregation test). Consequently, the QTL will be
mapped to a position either above or below the recom-
bination point in the RI that is used for the two crosses.
The overall results from a selected set of RIs will locate
the QTL to a small interval.

Resolution is determined solely by the number of
recombinations in the interval. For example, with 100 RI
lines, each having approximately 3.3 recombinations per
100 cM (REF. 56), the total number of recombinations is
3.3 multiplied by the number of centimorgans in the
genome (~1,400) to give 4,620 recombinations; so,
the expected resolution is 1,400/4,620 = 0.30 cM. This
corresponds to an interval of 0.6 Mb. With 1,000 RI, the
expected accuracy is 0.03cM (potentially a few hundred
kilobases). However, recombinations are not distributed
evenly in the genome, making the above calculation an
approximation only59.

RIST, as with congenic construction and other
strategies that seek to treat QTLs as Mendelian genetic
factors, will have problems with multiple linked QTLs;

about 4 cM when the number of lines increases to 1,000
and further lines make it possible to map effects that are
smaller than 5%. As we have seen, QTLs have a habit of
disintegrating when they are dissected and we need the
ability to find the pieces.

If the Collaborative Cross were to be created, it
would enable us to map many of the 2,000 uncloned
QTLs into small genetic intervals. This is an attractive
proposition but it must be balanced against two
important disadvantages. First, maintaining and dis-
tributing an RI set of 1,000 lines poses significant
problems. Even a laboratory devoted to providing
animals to the research community, such as the Jackson
Laboratory, is able to maintain only a few hundred
strains as live stock. Second, the resolution of the
Collaborative Cross is not sufficient to identify genes:
a 4-cM interval is roughly equivalent to 8 Mb of
DNA, which will contain approximately 80 genes.
Unfortunately, the Collaborative Cross would give us no
help with the final goal of gene discovery. However, one
solution might lie in the application of recombination
inbred segregation tests (RISTs) and its generalization,
Yin-Yang crosses (YYCs).

Yin–Yang crosses
RISTs and YYCs, applied to a large number of RIs, will
increase mapping resolution to the point where indi-
vidual genes can be identified. YYCs take advantage of
the abundance of recombination events in RI or
inbred strains to improve mapping resolution58. To

HIDDEN MARKOV MODEL 

A probabilistic description of a
system in which the observed
data depends on the hidden
internal state of the system. The
objective is usually to infer the
likelihood that the system is in a
particular hidden state, given the
observed data.

DYNAMIC PROGRAMMING

ALGORITHM 

An algorithm that finds the
optimum solution to a problem
involving N objects in terms of
the solutions to a series of
smaller problems that involve
subsets of the objects.

Box 3 | Probabilistic ancestral haplotype reconstruction 

Single-marker association mapping is an inefficient
method when the allele frequencies of the variant and
the quantitative trait locus (QTL) do not coincide 
and when contrasting QTL alleles are in linkage
disequilibrium (LD) with the same marker allele, as
illustrated in the figure. In this example, the
population from which all chromosomes descended
consisted of four inbred strains. Inbred strains A and
C contain a QTL allele that increases the phenotype,
and strains B and D contain an allele that decreases
the phenotype. A polymorphic marker, m, that is in
complete LD with the QTL possessing four distinct
alleles (labelled 1,2,3,4 in the figure) will show
evidence of association. Consider what happens with
a diallelic marker, n, that, in the ancestral population, has one allele ‘1’ that is physically linked to strains A, B and C and
the other allele ‘0’ linked to strain D. Evidence of association will now be reduced because the marker fails to partition
the genotypes into two equally contrasting groups. Things are even worse at markers p and q where both alleles 0 and 1
are linked to both increaser and decreaser QTL alleles; there is no detectable association at all. But the haplotypes that are
defined by the markers p and q distinguish all four strains and so are surrogates for the efficient marker m. Therefore,
multi-point haplotype-based mapping is generally more powerful than single-point mapping.

Heterogeneous stocks are mosaics of eight inbred founder strains, and QTL mapping in these stocks is best
approached by reconstructing the ancestral haplotype mosaic. However, the strain distribution patterns of
neighbouring markers rarely distinguish between all founder strains, so instead we compute the probability that an
animal is descended from a given pair of strains at a particular locus. A useful statistical model of the genome mosaic of a
diploid heterogeneous stock animal is a pair of HIDDEN MARKOV MODELS, in which the hidden states of the model are the
ancestral strains, and the observed data are the marker genotypes. A DYNAMIC PROGRAMMING ALGORITHM is then used to
compute the probabilities of descent using all the available information. The marker alleles must be known in the
founder strains for the method to work. Recently, we have shown that other outbred mice of unknown ancestry can be
modelled and analysed as mosaics of standard inbred strains in the same way31.
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many thousands are required77. However, QTL analysis in
outbred mouse populations is likely to be easier than its
human equivalent. In fact, it would be as simple and pow-
erful as mapping in inbreds if each allele at every locus
could be traced back to a unique progenitor strain, so
that ANALYSIS OF VARIANCE (ANOVA) at a marker extracted
maximal information for QTL detection (BOX 3).

In contrast to human populations, in which progeni-
tor alleles are unknown (although there are a few excep-
tions, such as ADMIXTURE MAPPING78), one type of outbred
mouse (heterogeneous stock) is derived from known
ancestral inbred strains. This makes it possible, with the
help of some mathematics, to derive the origin of each
allele and map QTLs at sub-centimorgan resolution
(BOX 3). Unfortunately, mapping a QTL to a megabase
interval is still insufficient to identify a single gene.
Other outbred stocks might offer better resolution, but
they lack the advantages of progenitor information
from the heterogeneous stock.

Several methods have been developed that deal
with this problem in its various incarnations79–84. So
far, there has been only one application of this method
in mouse genetics. We have shown that sufficient
recombinants have accumulated in a commercially
available outbred stock (known as MF1) to map
genetic effects onto regions of only a few hundred kilo-
bases or less31. Sequence analysis showed that variants
in the MF1 strain were identical to those found in
inbred strains, and haplotype reconstruction revealed
that more than 95% of the haplotypes could be
derived from known inbred strains. Therefore, we were
able to map the MF1 strain by probabilistic ancestral
haplotype reconstruction (BOX 3). It is important to
realize that our approach neither required us to recover
the correct haplotypes, nor to identify the progenitor
strains correctly. We found that a QTL for anxiety-like
behaviour, previously mapped to an interval of less
than 1 cM, resolved into three smaller independent
QTLs, each about 100–200 kb wide. It would also be
possible to combine pedigree and LINKAGE DISEQUILIBRIUM

(LD) data for fine mapping in the MF1 strain and,
indeed, in other outbred mice79,81,85.

Potentially, outbred animals could deliver a resolu-
tion that would be sufficient to guarantee candidature of
a single gene. The disadvantages of the method lie in the
complexities of the analysis and the need for large num-
bers of animals and high-density genotyping. For exam-
ple, genome-wide mapping in heterogeneous stocks
(BOX 2) requires at least 6,000 SNP markers. To reduce
false-positive results to acceptable levels with this
number of markers means imposing stringent signifi-
cance thresholds: by permutation, we estimate that the
5% and 1% significance levels correspond to P-values,
expressed as negative logarithms, of 4.4 and 5.1 
(REF. 86), and will require about 1,000 animals to pro-
vide 80% power to detect a 5% QTL87. More markers,
and more animals, will be needed for whole-genome
analysis of more complex outbred stocks. These fea-
tures militate against whole-genome analyses using
outbreds, but developments in high-throughput geno-
typing will make it feasible.

but unlike the construction of a congenic line, a RIST
analysis is quick to carry out, so if multiple QTLs are
suspected, it will be possible to test that hypothesis with
further RISTs (assuming appropriate recombinant lines
are available). Indeed, with 1,000 RI lines, it would be
possible to resolve most QTLs onto an interval that
contains a few genes in just two generations; an efficient
and relatively economical strategy. In some instances,
the resolution will be good enough to identify a gene
underlying a QTL.

The YYC approach is a generalization of the RIST
method that treats inbred strains as if they were RI lines,
on the grounds that inbred strains descend from a rela-
tively small number of founders. In this respect, YYCs
make the same assumption as in silico mapping, which
is discussed below. The large number of recombination
events that have accumulated in a set of inbred strains
since their origin can be used to map the QTL to a small
region58. Similar to RISTs, YYCs are used as a fine map-
ping tool that is applied after the initial mapping of the
QTL. The allelic state of the QTL in multiple strains is
revealed by crossing the two strains that were used ini-
tially to map the QTL and any new strain. YYCs estab-
lish the strain distribution pattern of the QTL, which is
used to identify the list of variants in the region that
follows this distribution.

The YYC method is based on the assumption of a
single biallelic variant or haplotype that affects the trait
in the different strains. Therefore, as for the RIST
approach, the main limitation of YYC analysis with
inbred strains is that it is not suitable for multiple QTLs
in a region. Furthermore, QTLs that primarily have
epistatic effects will not be suitable for this kind of
analysis. They will result in inconclusive results of the
Yin–Yang analysis, but this is unlikely to produce false
negative results.

Outbred stocks
Outbred stocks accumulate recombinants over time,
so that they offer high mapping resolution; potentially
high enough to identify candidate genes. The effects of
individual genes can be mapped by association, as has
been successfully shown in human populations60–67. In
a few cases, QTLs have been mapped in mouse popula-
tions: small-effect QTLs have been mapped to sub-
centimorgan resolution using heterogeneous stock
mice68–71 (BOX 2); crosses using outbred Mus spretus
have been used first to map72,73 and then to identify
serine–threonine kinase 6 (Stk6) as a candidate skin-
tumour susceptibility gene74; outbred CD1 mice have
been used to map a susceptibility locus for pulmonary
adenoma75; and outbred MF1 strains were used to
identify regulator of G-protein signalling 2 (Rgs2) as a
gene that influences anxiety in mice31.

Mapping in outbreds is not as straightforward as
mapping in inbred crosses: it requires higher density
genotyping and larger numbers of animals.At first sight,
the method seems to have not only the advantages, but
also to suffer from the same drawbacks, as human
genetic association studies, where robust, replicable
results have been hard to obtain76 and sample sizes of

ANALYSIS OF VARIANCE

A statistical method to test the
null hypothesis that the mean
values of two or more groups are
equal. The variance around the
mean in groups is compared
with the variance of the group
mean. In genetic applications,
the variance between families is
compared with the variance
within families. A significant 
F-ratio implies that variance
between families is larger than
within families.

ADMIXTURE MAPPING 

Genetic mapping using
individuals whose genomes 
are mosaics of fragments 
that are descended from
genetically distinct populations.
This method exploits differences
in allele frequencies in the
founders to determine ancestry
at a locus in order to map traits,
in a way that is broadly similar to
an advanced intercross.

LINKAGE DISEQUILIBRIUM 

The tendency for markers to
have correlated genotypes when
they are physically close together.
Over several generations,
recombination will break down
linkage between markers and a
QTL, so that linkage
disequilibrium will only occur
between markers that are close
to a QTL. This explains why
outbred animals can provide
high-mapping resolution.
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mosaic structure, which is consistent with their deriva-
tion from a relatively small number of Asian and
European stocks95–97.

There is little doubt that in silico mapping is effective
for monogenic, highly penetrant mutations95,98,99. The
crucial issue is whether in silico mapping performs well
in detecting small-effect loci. Wiltshire and colleagues
have gone the furthest towards this goal. They used a
dense map (of 10,990 SNPs) that was typed in 48 strains
and applied a permutation method to determine the sig-
nificance of their results99. They demonstrated the effec-
tiveness of the method for localizing large effects (on
coat colour and taste preference) and then showed that
for two multigenic complex traits (high-density
lipoprotein cholesterol levels and gallstone forma-
tion) they could find loci that corresponded to some
previously identified QTLs. These results are encour-
aging, although further work is required to distinguish
between true- and false-positive findings.

At present, two difficulties confront in silico map-
ping: low power and the complex structure of the
genomes of laboratory strains. At first sight, the problem
of power seems to be insuperable: how can the genetic
basis of complex traits be dissected with just a few dozen
animals, or even a few 100, when we know that success-
ful association studies in humans requires thousands of
individuals77? The truth of this analogy depends on the
extent to which the inbred strains are related by descent.
If the inbred strains are completely unrelated, the anal-
ogy is correct and thousands of animals will be needed
for genetic mapping. This is partly because there will be
less LD between loci in unrelated individuals, so that
more markers are needed to detect the QTL77. More
unlinked markers will require an increase in the strin-
gency of the significance threshold to avoid false-positive
results, which in turn requires an increase in the number
of animals to maintain power for QTL detection.
However, more animals are also needed because, in fully
outbred populations, more loci are likely to contribute to
the genetic variance. Therefore, the relative contribution
to the phenotypic variance that is attributable to a single
locus will be less than for the same locus in a population

Haplotype analysis and in silico mapping
Many have pointed out that a QTL must be contained in
a region where sequence divergence corresponds to
genetic action. So, when QTLs have been mapped in dif-
ferent combinations of inbred-strain crosses, the strain
distribution pattern can be combined with mapping data
to refine the region that contains the functional vari-
ant68,88–90. For example, a QTL identified in a cross
between strain A and strain B that does not segregate in
a cross between strains A and C will be located where
sequences from strains A and C are the same, but those
from strains A and B are different. This approach has
been used to carry out mapping at an extremely high
resolution and to identify candidate genes68,88–90.

A development of this idea is in silico mapping (BOX 4).
It relies on known phenotypic differences between inbred
strains (such as those being collected as part of the Mouse
Phenome Project91; see the Mouse Phenome Database in
the Online links box) and uses a high density of markers
to derive a strain distribution pattern that can be used for
mapping92. The proponents of this method argue that it
reduces the time required for analysis of genetic models of
complex disease “from many months to milliseconds”92.

In principle, in silico mapping is similar to mapping
using RI lines — by establishing phylogenetic relation-
ships between inbred strains from sequence informa-
tion it should be possible to identify regions that are
identical by descent. The problem is that in contrast to a
set of RI strains (or indeed all mapping experiments
that are derived from crosses between inbreds), in which
genotyping unambiguously defines descent so that
genetic identities can be associated with phenotypic
similarities, finding sequence variants that are shared by
a set of inbreds does not guarantee their descent from a
common ancestor.

Nevertheless, several observations support the treat-
ment of inbred strains as if they were derived from a set
of founder strains. For example, the genealogies of
many inbred strains can be traced back to a relatively
small number of animals93,94. Moreover, the pattern of
sequence variation between inbred strains initially indi-
cated that the distribution of polymorphisms has a

HAPLOTYPE SHARING 

Sets of closely linked genetic
variants in different individuals
that are identical by descent
around a locus.

Box 4 | QTL mapping using recombinant inbred lines versus in silico mapping

Because recombinant inbred (RI) panels are descended from (usually) two inbred strains, their genomes are random
mosaics of these founder haplotypes. Once established, an RI panel need only be genotyped once, using markers that
distinguish between the founder strains. At a given marker, the pattern of genotypes across the panel is called a strain
distribution pattern. For example, in a panel of eight RI strains, the SDP 0100111 means that the first, third and fourth
strains carry the allele ‘0’ and the remainder the allele ‘1’ at the marker in question. To map a quantitative trait locus, RI
animals across the panel are phenotyped (if possible, in replicate, to reduce non-genetic variance), and the values are
correlated with the strain distribution patterns at each marker (see the Gene Network web site in the Online links box) to
identify markers with statistically significant associations. Mapping resolution depends on the size of the panel, but is
roughly equivalent to that of an intercross.

Superficially, in silico mapping looks similar. A set of inbred strains (that have an unclear ancestry) replaces the panel
of RI strains of known ancestry. An important difference is that regions of HAPLOTYPE SHARING between the inbred strains
must first be predicted from runs of contiguous markers with shared genotypes. The inbred strains are phenotyped and
correlated with the predicted haplotype distribution patterns as before. Because the blocks of haplotype sharing
between inbreds are smaller than in RI lines, theoretically in silico mapping resolution should be greater for the same
number of strains. The key difference is that mapping using RI lines is by descent, but is by inferred state for in silico
mapping. RI mapping is uncontroversial; by contrast, the merits of in silico mapping are hotly debated.
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The power of in silico mapping will vary along the
genome depending on the complexity of the pattern of
sequence variation. There will be effects on both power
and resolution, depending on the number of progenitor
genomes that are assumed to give rise to the inbred
strains and on the size of the blocks of sequence identity.
Although initial surveys of polymorphisms have
revealed an apparently simple pattern of relatively large
blocks of sequence similarity and difference, detailed
analyses of multiple strains show that contiguous strain
distribution patterns are different, but consistent with
the same phylogenetic tree.

FIGURE 3 shows a representative example of the com-
plexities that have been discovered in a single 2-Mb
region on mouse chromosome 1 (REF. 38). In the right
half of the figure, the structure is relatively simple;
without too much loss of information, the distribu-
tion of sequence variants can be modelled as if the
genomes were descended from just two progenitor
strains, with one strain distribution pattern accounting
for 93% of the variants. In this case, in silico mapping
could detect QTLs (assuming that an adequate num-
ber of strains has been analysed). However, the
method cannot resolve QTLs into an interval that is
smaller than the block (which in this case is about 
1 Mb). By contrast, the left half of the figure shows a
much more complex structure, with several strain dis-
tribution patterns that alternate in an unpredictable
fashion, but are still consistent with the same phylo-
genetic tree. Much higher mapping resolution will be
obtained in this area, but with some loss in the power
to detect QTLs.

The analysis of sequence variation described above
was carried out using just eight strains, but we expect that
the results can be extrapolated to accommodate more
strains. Importantly, the full complexity of the structure
was only revealed when near-complete sequence infor-
mation became available. If the structure is mis-specified,
as is likely with a low density of markers (which in this
particular region would be more than about 10 kb apart),
differences between strains will not be identified and so
the power to detect QTLs will be reduced.

In silico mapping is an intriguing and attractive
method, but it does require the ability to infer identi-
cal sequences unequivocally when neighbouring
genotypes are the same. The recent announcement
that 15 inbred mouse strains are to be resequenced

of individuals who have common ancestors (BOX 1).
However, as we have seen, inbred strains do share
ancestors, so their degree of genetic relatedness is not
equivalent to that in outbred humans.

To obtain a lower limit on the number of animals
needed to detect a genetic effect by in silico mapping,
assume that all inbreds are derived from just two prog-
enitors; in other words, assume the inbreds are a set of
RI lines. Using a standard equation to calculate the
number of RI lines required to map a QTL, Darvasi
argued that between 40 and 150 inbred strains would
provide 50% power to detect a QTL that explains
5–20% of phenotypic variation in an F2 cross42. So, the
smallest number needed to obtain sufficient power will
be about 50 animals. However, it will almost certainly be
more than that, because inbreds are not as closely
related to each other as a set of RI lines.

Nevertheless, Peltz and colleagues claimed that they
could detect QTLs using data from just eight inbred
strains. They make the point that by phenotyping more
animals it is possible to increase the heritability by
reducing measurement error100. The drawback to this
argument is that, even if all environmental noise could
be removed in this way, the individual effect of each
QTL will still be limited by the number of other QTLs
that contribute to phenotypic variation. Good estimates
of the average number of QTLs and their relative contri-
butions to a typical complex trait are hard to come by,
but assuming an exponential distribution of effect sizes,
our own data on behavioural measures yield a mean of
7 QTLs (with an upper limit of 14 using a 95% confi-
dence interval (REF. 101)). So, given the known distribu-
tion and effect sizes of QTLs, it is extremely unlikely that
a single effect accounting for more than 20% of the phe-
notypic variance will occur in a comparison of inbred
strains. Therefore, we can be reasonably certain that
to tackle genetically complex phenotypes successfully,
in silico mapping will require much larger numbers of
strains than have so far been analysed.

The second difficulty for in silico mapping concerns
the structure of the genomes of inbred strains. Is the
degree of mosaicism sufficient to satisfy the assump-
tions of the mapping method? The idea that large seg-
ments of the genomes of inbred mice maintained their
sequence identity over many megabases has recently
been modified by several publications that describe a
much more complex picture37,102,103.

Figure 3 | Haplotype complexity in inbred strains of mice. 700 variants with a strain distribution pattern frequency >1%
between eight inbred strains across a 2-Mb region of mouse chromosome 1 are shown. The region is represented along the
horizontal axis and scaled so that the nth coordinate from the left edge corresponds to the nth variant. The alternating grey and
white tracks show the spatial arrangement of the 13 most common strain distribution patterns. Each track represents one strain
distribution pattern, a bar on the track shows where the corresponding variant has that strain distribution pattern. The strains are
A/J, AKR, BALB/cJ, C3H, C57BL/6J, DBA/2J, I and RIII. The data presented are from REF. 37.
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guarantee that the physical coincidence of gene expres-
sion and QTL mapping data mean the two are causally
related. This is a problem for Peltz and colleagues, who
claim to have identified an allele-specific functional
genomic element that regulates the expression of the
histocompatibility 2, class II antigen E-α gene (H2-Ea)98.
In silico mapping was used to map H2-Ea expression
variation to a 1-kb block that lies within the first intron
of the gene, followed by in vitro assays to identify a
putative 45-bp regulatory element. But differential
expression of H2-Ea is caused by several mechanisms,
including a loss-of-function deletion of 600 bp in the
promoter and first exon of the H2-Ea gene111,112.

Quantitative complementation
Quantitative complementation, or QTL–knockout
interaction, which was designed originally for QTL
work in Drosophila by Trudy MacKay113, is a method for
testing the candidacy of a gene at a QTL. It is oblivious
to the nature and position of the responsible sequence
variant, a feature that is both its strength and weakness,
because whereas one interpretation of a positive result is
allelism to the QTL, another is epistasis. Strictly speaking,
the test is not complementation in its classical form
because it is testing for an interaction between the null
allele and the QTL, rather than for a main effect of either.
For this reason, the name QTL–knockout interaction test
is preferable, as suggested by Darvasi114.

The experimental design is simple — it requires off-
spring from four crosses. An inbred animal bearing one
QTL allele (for example ‘high’) is mated to an inbred
animal with a null allele of the gene of interest (‘m’) and
also to the co-isogenic wild-type animal (‘wt’). A similar
pair of crosses is established, but this time using an
inbred strain with the alternative QTL allele (‘low’). If
the difference in mean phenotype between the high/m
and low/m genotypes is greater than that between the
high/wt and low/wt genotypes then we have evidence of
quantitative failure of the mutation to complement the
QTL alleles. This is detected as a statistical ‘cross’ (m or
wt) by ‘line’ (high or low) interaction in a two-way
analysis of variance. One biological interpretation of a
significant interaction is that the expression of the wild-
type (that is, functional) gene is modulated by a QTL
allele on the homologous chromosome. The test does
not implicate any particular QTL, which could be any-
where on the genome where the high and low strains
differ.

QTL–knockout interaction tests require co-isogenic
wild types, which can be difficult to obtain in mice.
Knockouts created in a 129 strain are usually back-
crossed onto a different strain (typically C57BL/6) so
that often, no pure co-isogenic wild type is available.
However, when the experimenter has only the hybrid
to work with, the problem of mixed background can
sometimes be overcome by taking advantage of the
mosaic nature of the mouse genome: some regions of
the 129 strain will be identical to the strain onto
which it has been backcrossed. Where the targeted
gene occurs in such a region (or in a region that is
known from genetic crosses not to carry QTLs that

means that questions about appropriate marker den-
sity will soon be addressed (see the US National
Institute of Environmental Health Sciences Press
Releases web site), but the potential of in silico map-
ping will only materialize when we have the complete
sequences of more than 50 inbred strains.

Gene-expression profiling
Few strategies even attempt to turn a QTL from a locus
into a molecular variant, which highlights the difficulty
in confirming the role of a gene in a complex pheno-
type. Gene-expression profiling is not a method for
QTL detection by itself, but when combined with
genetic mapping data it can help to identify candidates,
even for behavioural phenotypes104.

In most examples, researchers have compared the
gene-expression profiles of inbreds and congenics, to
reduce the number of background strain differences
and to leave just a small number of genes for further
consideration. The good news is that relatively few
differences are found, even when a large chromosome
segment is derived from two genetically distant
strains105. Gene-expression profiling identified the
fatty-acid translocase gene CD36 as a QTL that affects
insulin fatty-acid metabolism, an example that other
researchers have attempted to emulate, with varying
degrees of success: complement factor 5 has been sug-
gested as a gene at a QTL that influences susceptibility
in a model of asthma106, lipoxygenase (Alox15) has
been proposed as a candidate gene for bone mass107,
an interferon-inducible gene for susceptibility to an
autoimmune condition (systemic lupus)108 and glu-
tathione S-transferase M2 has been identified as a
gene that might be involved in hypertension109.

Although this method has strengths, there are also
several caveats. First, differential gene expression is not
always a marker of a QTL. Variants that alter protein
structure might not alter expression levels, or there
could be compensatory mechanisms that obscure the
effect of a QTL on expression. Todd and colleagues
used microarray analysis to study a model of type I dia-
betes and reported that disease protection that is con-
ferred by each of three known loci was not reflected in
global effects on the non-induced immune system, and
that gene-regulatory systems seemed to be remarkably
robust to genetic variation105.

Second, expression differences might be restricted to
certain tissues or developmental stages. For example,
expression of 5HT1a receptors (Htr1a) in the forebrain is
required to modulate anxiety during embryonic and fetal
life, but it is not required for the same task in adult ani-
mals110. Therefore, expression differences for genes that
encode the serotonin receptor that are relevant to anxiety
would not be detected in the adult brain, although the
phenotype is assessed in the adult animal. Gene-expres-
sion analyses will have to be carried out across a large
number of tissues at different developmental times to
determine whether the gene is differentially expressed.

Third, finding a gene-expression difference within a
relevant tissue in a relevant biochemical pathway does
not prove the gene’s candidacy at the QTL. There is no
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genetic architecture, rather than considering whether
there is a strategy that can reduce the genetic basis of
any phenotype to a monogenic condition.

High-resolution mapping of small-effect loci will
undoubtedly benefit from some of the new resources
we have reviewed. Although some, such as the use of
CSS, do little more than accelerate QTL discovery, and
others, such as in silico mapping, make claims that
have yet to be realized, there are grounds for opti-
mism. The use of high-resolution mapping in outbred
mice and the construction of a large set of RI strains
(the Collaborative Cross), combined with RISTs, will
make high-resolution mapping routine; and once the
sequences of many inbred strains are available, in silico
mapping could become a powerful tool. Nevertheless,
even the ability to map down to under a kilobase will
not always deliver genes into the hands of researchers.
The availability of whole-genome analyses, at the level
of both sequence variation and gene expression, can
induce a hubris which blinds us to the fact that com-
plex phenotypes continue to frustrate genetic analysis.

This is one reason why we have stressed gene iden-
tification as a goal for QTL mapping — we lack
methods that deliver genes. Almost all the methods
we discuss are genetic mapping strategies that chase
the segregating sequence variants that are responsible
for a QTL; they do not directly find genes. It is not our
intention to diminish the importance of characteriz-
ing sequence variants, as there are cases where we will
need to know the causal SNP (or whatever other form
the molecular pathology takes). Instead, we wish to
make it clear that the two goals are not necessarily the
same. Stated simply, finding the QTN does not neces-
sarily give us the quantitative trait gene. One explana-
tion for the subtle effects of QTLs is that they lie in
regulatory regions (the sequence features of which are
poorly understood) that can lie at a considerable dis-
tance from cognate transcriptional units. For exam-
ple, in the polydactylous mouse mutant Sasquatch,
sonic hedgehog (Shh) is expressed at an ectopic site.
Characterization of the mutant led to the identification of
an Shh enhancer element that lies within intron 5 of a
novel gene, and is also involved in limb development
(limb region 1 (Lmbr1)128), that is situated 1 Mb from
Shh129,130. Consider what could happen if a QTL had been
found at this regulatory region: the obvious, but erro-
neous, conclusion would be that the Lmbr1 gene was the
quantitative trait gene.

The transition from locus to gene remains a formi-
dable task. None of the strategies we have reviewed
here provide a comprehensive solution to gene identi-
fication after QTL mapping. Simple approaches, such
as investigating the phenotype of the knockout, will
add weight to the candidature of the gene, but will not
prove it. Definitive studies, such as the targeted inter-
change of nucleotides between two strains, will prove
that a sequence variant operates as a QTL, but will not
unambiguously identify a gene. For that, we still need
functional assays that make few assumptions about
the biology of candidate genes (for example, where
and when they are expressed, and at what levels).

influence the trait of interest), and the rest of the 
129 strain has been removed by repeated backcrossing,
then it should be possible to find an appropriate co-iso-
genic wild type. For example, by extensive resequencing
of the 129, C57BL/6J and DBA/2J strains, we showed that
inbred C57BL/6 could be combined with a targeted
mutation of the Rgs2 gene in a quantitative complemen-
tation test31. This arduous task can be avoided in the
future once the relevant strains have been fully rese-
quenced. Alternatively, knockouts could be made and
maintained on a single background or obtained by
screening the DNA of mutagenized inbred mice115.

Conclusion
Throughout this review we have emphasized two
points: the importance of being able to resolve QTLs
that contribute to less than 5% of the phenotypic
variance into small regions and the need for methods
that identify genes, not sequence variants, at the QTL.

We stress the first point because success stories in
QTL cloning have identified genetic loci with atypi-
cally large effects that have obviously functional
sequence changes. Therefore, an expectation has
arisen that loci with smaller effects can be character-
ized using extensions of the same strategies: more
mice, more congenics and more expression arrays.
However, methods that work for large-effect QTLs are
not well suited to finding genes that underlie most
QTLs. Not only do most QTLs typically have small
effects116, but the type of sequence variant responsible,
even when it occurs in a coding region, is also hard to
recognize36, and the expression differences, if present,
are subtle105.

Given its importance for determining the success
of QTL cloning, it is perhaps surprising that so little
attention has been paid to emerging clues that reveal
considerable variation in the genetic architecture of
phenotypes. It seems that the number of loci, their
relative effects, and how they interact with each other
and the environment, might vary considerably
between phenotypes, indicating that some pheno-
types might be more tractable to QTL cloning than
others. For example, it is striking that susceptibility to
infectious disease in inbred strains has frequently
turned out to be due to large genetic effects, and,
where characterized, to null alleles or coding-sequence
mutations117–122. Why this should be the case, when
other apparently equally complex phenotypes (such
as hypertension, drug responses and obesity) have
much more complex genetic architecture, is unclear,
but it might be a consequence of the nature and
extent of the selective pressure that is exerted by infec-
tious agents. There are also differences in the extent to
which gene-by-gene interactions (epistasis) shape a
phenotype. Pervasive epistatic effects have been docu-
mented in some autoimmune conditions123, morphol-
ogy124 and in susceptibility to some cancers125,126, but
despite intensive searches, the genetic architecture
underlying fear-related phenotypes consists almost
entirely of additive effects127. QTL cloning strategies
need to accommodate all these possible types of
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in RNAi technology might aid functional investiga-
tion of those cases in which QTLs operate by altering
expression. It might soon be possible to reproduce
naturally occurring variation, to abrogate the exp-
ression of either parental mRNA, or to generate 
null alleles on the appropriate background for
gene–knockout interaction testing. The challenge 
for the coming years is to develop new technologies
that will accelerate gene identification after detection
of a QTL.

Among the approaches described here, only the
gene–knockout interaction test comes close to meeting
the necessary requirements. Where a null allele of the
relevant gene can be found, and an appropriate co-iso-
genic strain is available, the test provides a simple test
of candidacy and interpretation of a positive result,
allelism or epistasis provides important information.
The current drawback is the lack of appropriate
mutants, but this might change with plans to knock
out all mouse genes131. Furthermore, developments
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