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Strategies for Parallel
Data Mining

These explanations can be opaque—pro-
viding a means of classifying variation
without any explanation of why it works—
or transparent—describing what creates the
observed variation.

For two reasons, data mining could be
the killer application that parallel comput-
ing has been seeking. First, analyzing vari-
ation appears to be algorithmically complex
and hence might require levels of comput-
ing power that only parallel computers can
provide in a timely way. (See the sidebar,
“Why parallelize data mining?”) Second,
the data sets involved are large and rapidly
growing larger, and parallel computers are
organized to handle such large volumes
effectively, although some data-mining
problems are already taxing their limits. 

Data-mining algorithms can potentially
be parallelized in many different ways.
Because designing and implementing par-
allel programs is expensive, it is impractical
to test all of these by building implemen-
tations and comparing them. Fortunately,
practical complexity measures for parallel
programming are rapidly maturing. 

This article shows how to use such
measures to assess different paralleliza-
tion strategies for data-mining algo-
rithms. We also show how the structure

of some algorithms results in a double-
speedup phenomenon. A high-level cost
analysis greatly simplifies the search for
an effective algorithm. 

Strategies for
parallelization

A typical data-mining application starts
from a data set describing interactions be-
tween individual units and a central mul-
tifaceted unit. The individuals might be
customers and the central unit a sales
organization; the individuals might be fab-
ricated objects and the central unit a test
rig; or the individuals might be radiation
sources and the central unit a telescope.
The essential requirement is that the indi-
vidual units exhibit variation and the cen-
tral unit measures this variation. The data
miner wants to understand the deeper
processes that create this variation—to
better market products in the first case, to
increase production yield in the second,
and to discover something about the uni-
verse in the third. Often this means clus-
tering the individuals into groupings that
are more homogeneous than the entire
set, and sometimes this involves classifica-
tion based on the clustered structure. 

This article presents

a set of cost measures

that can be applied to

parallel algorithms to

predict their compu-

tation, data access, and

communication

performance. These

measures make it

possible to compare

different parallel

implementation

strategies for data-

mining techniques

without benchmarking

each one.

Data Mining

O
ne definition of data mining is the deep understanding of

variation in large data sets. At its simplest, data mining is

concerned with finding the variations in complex data. At its

most difficult, it is concerned with finding the most con-

vincing or most useful hypothetical explanations for observed variations.
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For example, a bank wants first to
cluster its customers into good and bad
credit risks and then to use knowledge of
what these clusters are like to decide
whether or not to approve loans to new
customers. For concreteness, let’s sup-
pose that a typical data set is a table with
n rows and m columns. Each of the n
rows describes an individual unit; each
of the m columns describes a facet of the
interactions with the central unit; and
each entry in the table describes the
result of an interaction between an indi-
vidual and the central unit. For a sales
organization, the rows might be cus-
tomer visits; the columns, products; and
the entries, the number of each product
sold to each customer.

The output of the data-mining algo-
rithm is information distilled from this
data in one of the following forms:

• A set of concepts (that is, predicates)
about the interactions (“80% of cus-
tomers buy apples and tuna on the
same visit”). We consider algorithms
that produce concepts transparent,
because the concepts are usually
intelligible in organizational terms.

• A set of model parameters. We typi-
cally use these to build classifiers that
do things such as distinguishing prof-
itable from unprofitable customers.
We consider algorithms of this kind
opaque, because it is not usually clear
why the classifier computes the
answers it does.

We will speak as if all the results of data
mining were concepts, but it makes little
difference to the conclusions we draw. 

The data sets used for data mining can
be very large. A data set might contain
information about n = 109 customer
interactions, each involving perhaps m =
1,000 attributes.

Parallel data mining requires dividing
up the work so that processors can make
useful progress toward a solution as fast
as possible. The essential question is how
to divide the labor. 

There are three components to the
work: computation, access to the data
set, and communication between the
processors. In modern parallel comput-

ers, access to the data set is likely to be
most costly, followed by communication,
with computation being relatively cheap.
The cost of computation is decreasing
much faster than the other two costs,
which increasingly dominate achievable
performance. These three components
are in mutual tension: dividing up the
computation to make it faster creates
more communication and often more
data set accesses as well. 

Finding the most effective parallel
algorithm requires carefully balancing
the three kinds of operations and their
costs. Parallel data-mining algorithms
often do this by having each processor
compute concepts that are valid locally,
and then using communication to decide
whether the concepts are valid globally.
The local computations are therefore

speculative. Allowing the amount of spec-
ulation to grow increases the ratio of
computation to communication. On the
other hand, some speculation will turn
out to be wrong and hence waste com-
putational resources. Speculation also
often requires extra data set accesses. A
good parallel technique is a balancing act
between local, speculative computa-
tion—which may turn out to be wasted—
and expensive, but reassuring, commu-
nication.

We distinguish three basic strategies
for parallelizing data-mining algorithms:

• Independent search. Each processor has
access to the whole data set, but each
heads off into a different part of the
search space, starting from a ran-
domly chosen initial position.

Data-mining applications fall into two groups based on their intent. In some
applications, the goal is to find explanations for the most variable elements of
the data set—that is, to find and explain the outliers. In other applications, the
goal is to understand the variations of the majority of the data set elements,
with little interest in the outliers. Scientific data mining seems to be mostly of
the first kind (“find the unexpected stellar object in this sky sweep”), whereas
commercial applications seem to be of the second kind (“understand the buy-
ing habits of most of our customers”). In applications of the first kind, parallel
computing seems to be essential. In applications of the second kind, the ques-
tion is still open because we do not know how effective sampling from a large
data set might be at answering broader questions. Parallel computing thus has
considerable potential as a tool for data mining, but it is not yet completely
clear whether it represents the future of data mining.

We can obtain some idea of how parallel computing is already being used
for data mining by examining the uses to which the world’s largest supercom-
puters are put. The number of “industrial” users in the TOP500 list of the world’s
most powerful installed computers (http://www.netlib.org/benchmark/top500.
html) increased from 153 in November 1997 to 207 in November 1998. A look
at a few of the names of the organizations on this list (see Table A) suggests
that some, at least, are using supercomputers for data mining. Data-mining suc-
cess stories tend not to be publicized. 

Table A. Some commercial applications in the TOP500 list.

COMPUTER RANKING LIST

(BY COMPUTATIONAL POWER) OWNER

64 State Farm
79 Charles Schwab
91 Oracle/IBM
117 Chase Manhattan
119 Sears

173–176 Commerzbank
178–179 Deutsche Morgan Grenfell

206 Prudential
211 Lexis Nexis
224 SMVG Bern

Why parallelize data mining?
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• Parallelized sequential data-mining algo-
rithm. Each processor restricts itself
to generating a particular subset of the
set of possible concepts. There are
two variants: In the first, each proces-
sor generates complete concepts, but
with restrictions on the variable val-
ues in some positions. Validating such
concepts means examining only a sub-
set of the rows of the data set. In the
second, each processor generates par-
tial concepts—concepts involving
some subset of the variables—but the
variables can take any values. Validat-
ing such concepts requires examining
a subset of the columns.

• Replicated sequential data-mining al-
gorithm. Each processor works on a
partition of the data set (by rows)
and executes what is more or less the
sequential algorithm. Because each
processor sees only partial informa-
tion, it builds entire concepts that
are locally, but possibly not globally,
correct. We call these approximate
concepts. Processors exchange ap-
proximate concepts, or facts about
them, to check their global correct-
ness. As they do so, each learns
about the parts of the data set it can-
not see.

There are, of course, many other possi-
bilities and combinations, but these are
the three main lines of attack.

Independent search is a good strategy
when the desired output is one optimal
solution, so it works well for minimiza-
tion problems.

Parallelized approaches try to reduce
both the amount of memory each pro-
cessor uses to hold concepts and the frac-
tion of the data set that each processor
must access. However, they tend to be
unsuccessful on both counts. Because the
number of potential concepts is huge,
large concepts are often best generated
from smaller ones known to be valid.
Generating new concepts, therefore, re-
quires processors to exchange informa-
tion on their existing valid concepts, a
bandwidth-intensive operation that re-
quires significant spare memory at each
processor, at least temporarily. When
the algorithm uses whole-concept parti-

tioning, it cannot always easily tell which
rows of the data set it needs to validate
each concept, so each processor typically
accesses the entire data set anyway.
When the algorithm uses partial con-
cepts, each processor needs to see only
certain columns. On the other hand, par-
tial concepts are harder to assemble into
globally valid whole concepts, so this
approach is inherently more speculative.
(Of course, if we knew which attributes
“belonged” together, we could assign
them to the same processor and get good
results—but this is exactly what we want
to discover.)

The replicated approach is not par-
ticularly novel, but it is often the best
way to increase performance in a data-
mining application. It has two signifi-
cant advantages: First, it necessarily
partitions the data set and so spreads the
access cost across processors. Second,
the data that must be exchanged be-
tween phases, typically frequencies, is
often much smaller than the concepts
themselves, so communication is cheap.
This technique can, however, generate
local concepts that do not hold globally,
but because the concepts must be inter-
nally consistent, as well as consistent
with the local subset of the data set, this
does not happen often.

The results of a data-mining algorithm
can sometimes be larger than its input
data set (although surely the interesting
results are smaller). It follows that the
concept set can be extremely large at
intermediate stages of the algorithm.
When this happens, the replication ap-

proach does not perform so well, because
each processor tends to have to store the
whole current concept set.

So far, this analysis has been based on
intuitions about the inherent costliness
of communication and data access. Now
let’s make these intuitive ideas formal.
To do this, we must define a realistic but
tractable way of measuring the costs of
computation, communication, and data
access.

Parallel complexity
theory

Standard parallel complexity theory is
based on the Parallel Random-Access
Machine, an abstract architecture with a
single shared memory, accessible in con-
stant time. In the PRAM model, the
prgrammer must ensure that no two
processors access the same location
simultaneously. This theory does not
reflect real-world costs well. Real archi-
tectures, whether they have a physically
shared or distributed memory, pay some
penalty for accessing distant locations.
Also, the requirement that programmers
prevent interference is too strong. In
practice, architectures allow arbitrary
access patterns to appear in programs and
pay some overhead at runtime to check
for and prevent conflicting accesses. Costs
for both latency (accessing at a distance)
and conflict (preventing simultaneous ac-
cesses) cause large discrepancies between
the PRAM model’s theoretical costs and
those observed when programs run on
real machines.

Furthermore, the PRAM model can-
not even act as an approximation of or
foundation for a more accurate cost
model. We cannot, in general, tell when
the PRAM model will be in error,
because it depends on details of the
memory access pattern and target archi-
tecture’s network. Worse still, when
errors do occur, they can be polynomial
in the problem size (in contrast to the
constant factor errors of sequential com-
plexity theory).

What we need is a parallel complex-
ity measure that is correct to within a
constant factor. Such a measure must
account for three factors:

The replicated
approach is not
particularly novel,
but it is often the
best way to increase
performance in a
data-mining
application.
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• time for computation by each
processor,

• time for memory access by each
processor, and

• time for communication among the
processors.

The flaw in the PRAM model is that it
only accounts for the first of these costs.
The issue of memory access arises in
sequential cost modeling, but only for a
relatively small subclass of memory-bound
or out-of-memory algorithms whose exe-
cution time is not dominated by the num-
ber of instructions they execute. In a par-
allel setting, a much greater proportion of
programs use significant amounts of
memory, so getting this right becomes
more important. A simple way to take the
cost of memory access into account is to
multiply the number of words read from
memory during each program phase by a
transfer time per word, r. 

What makes costing communication
difficult is that it is highly nonlinear: the
cost of sending a message in an empty
network is very different from that of
sending it in a heavily loaded network.
The reason, of course, is congestion;
when a network is busy, a given message
has a much greater chance of being
blocked by other traffic during its trip.
Experimental studies show, however,
that congestion in parallel computers
almost always happens at the boundaries
of the network, rather than in the mid-
dle.1 In other words, the problem is get-
ting into and, even more, getting out of
the network. When multiple messages
arrive at a processor, it can only extract
one of them at a time; the others block
back in the network.

We can obtain accurate measures of
communication performance if we
assume that the network is always heavily
loaded. The worst nonlinearities occur at
intermediate loads, because then a mes-
sage might encounter other messages and
take a long time, but it might also be lucky
and travel straight through. When the
network is busy, all messages encounter
other messages, and the effects on indi-
vidual delivery times average out. If every
processor sends messages to random
destinations, we can determine expected

delivery times with small variance. This
forms the basis for a robust measure of
communication performance that will be
valid as long as communication always
takes place when the network is busy.
This, in turn, will be true if processors
interleave computation phases with com-
munication phases in rough synchrony.
Network performance under heavy load
can be captured by the network’s perme-
ability (called g).

The link between processor and net-
work is the actual bottleneck. Thus, if

all processors begin sending data, the
processor that sends or receives the
most data will take the longest to fin-
ish. If each processor i sends or receives
hi bytes, an accurate estimate of the cost
of a communication phase is the maxi-
mum among the hi g’s. 

Suppose we express the transfer time
from memory in units of instruction exe-
cution times per word transferred, and
the network permeability in units of
instruction execution times per word
moved. Then all three terms—computa-
tion time, memory access time, and com-
munication time—are in the same units.
We could simply compare algorithms
using each of these three values, but we
can conveniently join them in a single
cost expression. Slightly surprisingly, tak-
ing the sum of the three values provides
the best prediction of actual execution
cost. The cost expression becomes

.

Here, wi is the number of instructions

executed by processor i, and ai is the num-
ber of memory accesses it makes. The first
term captures the cost of the computation
and memory access, while the second cap-
tures the cost of the intervening commu-
nication. A sum is the best form for this
expression because many programs have
an explicit phased structure: a processor
reads a block of data from memory, per-
forms a complex calculation on that data,
and shares result with other processors.
This structure is especially common in
data-intensive applications. Variations in
the cost expression’s structure expression
to reflect, for example, overlapped fetch
and compute, result in a difference in cost
of at most a factor of three. More impor-
tantly, these variations tend not to affect
the relative cost of different algorithms,
our focus of interest.

This form of cost model has its ori-
gins in the Bulk Synchronous Parallelism
programming model,2 where researchers
have verified its fundamental accuracy
over a wide range of applications.1,3-5

The BSP cost model is not a theoretical
construct but a practical cost model
whose predictions on most programs
with phased structures (including most
data-mining algorithms) fall within a few
percent of actual observed costs.

The cost model we’ve presented is
likely to produce accurate estimates of
data-mining algorithms’ running times
on existing parallel computers. However,
for comparing different algorithms, its
absolute accuracy is not as important as
its relative accuracy. And here we can have
great confidence, because the model’s
basis is counting instructions executed,
memory locations accessed, and bytes
communicated: it is hard to see how a
model could do better. For most data-
mining applications, different paralleliza-
tion strategies execute approximately the
same number of instructions. What sep-
arates them is how much communication
and data access they do. Clearly an algo-
rithm that communicates more will be
more expensive regardless of the details
of how we cost that communication.

Of course, a detailed understanding
of system issues is sometimes important
to understanding a program’s behavior.
However, as we shall see, the distinctions

  
cost =  MAX MAX

processors processors
( )w a r h gi i i+ +

Experimental studies
show that congestion
in parallel computers
almost always hap-
pens at the bound-
aries of the network,
rather than in the
middle.
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between different parallelization strate-
gies are usually quite large; it would be a
pathological architecture indeed that
would alter these distinctions.

Because the cost model depends only
on algorithms’ high-level properties, we
can apply it to an algorithm in the
abstract. So, provided that the costs are
clearly different, we can compare differ-
ent parallelization strategies without
having to develop different implemen-

tations and benchmark them against
each other. In particular, we can cheaply
rule out strategies that are likely to be
unproductive.

Costing sequential data-
mining algorithms

The algorithms described in the “Data-
mining algorithms” sidebar all have the
property that their global structure is a

loop, building more accurate or more
complex concepts from those of previous
iterations. Suppose that this loop executes
ks times and generates σ concepts. We can
describe the sequential complexity of this
algorithm by the formula

costs = ks [STEP(nm, σ) 
+ ACCESS(nm)],

where STEP gives the cost of a single iter-

Data-mining algorithms

Researchers have investigated many data-mining tech-
niques; we’ll cover a sample of three here:

• association rules,1

• neural networks,2 and
• genetic algorithms,3

Other frequently used techniques are decision trees,4

inductive logic programming,5 and singular value decom-
position (especially for text, where it called latent semantic
indexing).6

ASSOCIATION RULES

Association rules were one of the earliest data-mining
algorithms. Given a data set, a support s, and a confidence c,
the algorithm’s first step is to find all the frequent sets, those
subsets of the attributes appearing in at least s of the rows
of the data set.

The algorithm computes rules of the form 

A, B, C ⇒ D

from frequent sets {A, B, C, D} provided that they have suf-
ficient confidence, that is 

.

Most association-rule algorithms employ the insight that
a set can only be frequent if all of its subsets are frequent. The
algorithm can therefore compute frequent sets by repeat-
edly generating candidate sets of a certain size, checking
which of the candidates was in fact frequent by a pass
through the data set, then using the surviving candidates to
generate candidates one size greater. Thus, the algorithm
goes in phases, each computing a candidate set of size i, and
then pruning it using a pass through the data set.

The output of an association-rule algorithm is a set of rules
capturing information about how likely it is that certain pat-
terns of attributes occur with other attributes in customer
transactions. This is an example of a transparent algorithm.

NEURAL NETWORKS

In contrast, neural-network data-mining algorithms are
opaque. The result of training a neural network is a black
box capable of answering interesting questions (“Is this per-

son a good candidate for a mortgage?”) but not of explain-
ing why it gives the answers it does.

A neural net consists of layers of units that sum their inputs
and transmit an output if the weighted sum exceeds a thresh-
old. There are many different possible arrangements, but we
will assume the most general: that the output of a node in
one layer is connected to the inputs of all nodes in the fol-
lowing layer and that each edge has an associated weight.

We train a neural network by presenting each row of the
data set to the inputs, comparing the resulting net output
to the desired output and using the difference as an error
that propagates back through the network, altering the
internal weights. Again, there are many variants.

We usually feed the data set to the network many times;
each time is called an epoch.

GENETIC ALGORITHMS

Genetic algorithms find concepts using a computational
analogy to Darwinian evolution. The algorithm randomly
generates an initial population of concepts. Then, it rates the
fitness of each concept by how well it describes the data set.
Concepts that “survive” (that is, those that are sufficiently fit)
remain in the concept set, where they replicate according to
their fitness, mutate randomly, and cross over by exchanging
parts of their substructures. The algorithm then evaluates the
new concept set for fitness, and the process repeats.

The strength of genetic algorithms is that they do not
depend on the problem structure; their weakness is that it is
hard to know when to stop the process. In practice, most
genetic algorithms seem to stop when there is little change
in the concept set or after some fixed number of iterations.
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ation of the loop, and ACCESS is the cost of
accessing the data set once (say, nm × r, the
data transfer rate given earlier). We must
make the dependence of STEP on σ
explicit, because it is possible for the set of
derived concepts to be larger than the input.

Parallel complexity

We can construct similar cost expres-
sions for each of the parallelization strat-
egies discussed earlier.

COMPLEXITY OF INDEPENDENT
SEARCH

The independent-search strategy is
straightforward: Do not partition the
data; instead, execute the same algorithm
p times, using some randomization tech-
nique to direct each processor to a differ-
ent part of the search space of concepts.

For genetic algorithms, an indepen-
dent-search approach requires running
multiple copies of the sequential algo-
rithm from different random starting
chromosomes. The algorithm selects the
best description at the end. This is the
computational equivalent of evolution to
fill equivalent niches.

The cost of an independent-search
strategy algorithm has the form

costi = ki[STEP(nm, σ) 
+ ACCESS(nm)]+ σpg +σ.

Here, ki is the number of iterations of the
whole program, STEP and ACCESS are
the costs of the algorithm and its data
accesses as before, σpg is the cost of shar-
ing the answers among the processors at
the end, and σ is the cost of computing
the best solution. Clearly, this approach
only makes sense if we have reason to
expect that ki ≤ ks/p, which is character-
istic of searching for a single optimum.

COMPLEXITY OF PARALLELIZED
ALGORITHMS

The basic structure of these algo-
rithms is first to partition the initial con-
cepts into p subsets and then to repeat the
following steps:

• Execute a special variant of a data-
mining algorithm on the entire data

set, or perhaps a segment of it, and
the current partial set of concepts to
derive a new partial set of concepts.

• Exchange the partial concepts with
other processors, deleting concepts
that are not globally correct.

For genetic algorithms, a partial-
concept parallelization approach divides
the chromosomes into pieces and assesses
the fitness of each piece against the rele-
vant features (columns) of the data set. A
chromosome’s total fitness depends on
the fitness of its pieces.

For association rules, the partial-
concept parallelization approach is
called the Data Distribution technique.
This technique partitions the possible
frequent sets across the processors, and
each processor examines the entire data
set. (For practical reasons, the algo-
rithm usually divides the data set into
p pieces that circulate by each processor
in turn.) A partitioned-concept paral-
lelization approach called Candidate
Distribution has also been investigated.

When the concept set is partitioned,
the cost of a parallelized algorithm has
the form

costp = kp [SPECIAL(n, m, σ/p) 
+ ACCESS(n, m)
+ EXCH(n, m, σ, p)g
+ RES(n, m, σ, p)],

where σ is the size of the concept set. 
When the concepts themselves are

partitioned, the cost of a parallelized
algorithm has the form

costp = kp [SPECIAL(n, m/p, σ) 
+ ACCESS(n, m/p) 
+ EXCH(n, m, σ, p)g
+ RES(n, m, σ, p)].

In these expressions, SPECIAL is the
complexity of a single step of the special
algorithm, EXCH is the cost of exchang-
ing the partial concepts, and RES is the
cost of resolving the partial concepts or
partial concept set into a consistent set.

COMPLEXITY OF REPLICATED
ALGORITHMS

The basic structure of these algo-

rithms is first to partition data into p sub-
sets, one per processor, and then to
repeat the following steps:

• Execute (some variant of ) the se-
quential algorithm on each subset.

• Exchange information about what
each processor learned with the 
others.

For the frequent-set part of association-
rule computation, this means that the
algorithm partitions the data set among
the processors; computes candidate sets
locally and measures their support in the
local partition; exchanges these support
values and computes the total support for
each candidate; and repeats. Each proces-
sor keeps the same candidate sets and
replicates the computation of new candi-
date sets from old; but the volume of data
exchanged is very small—integers.

A genetic-algorithm replicated imple-
mentation has a similar structure. Each
processor has a subset of the data set and
a full set of the current concepts. Each
measures the local fitness of the concepts
against its partition and exchanges this
data with all the other processors to
compute the global fitness. The algo-
rithm computes the next generation of
concepts based on this universally known
fitness, perhaps requiring some small
data exchanges if it permits crossover
across processors.

The cost of a replicated algorithm has
the form

costr = kr [STEP(nm/p, r) 
+ ACCESS(nm/p) + rpg
+ RES(rp)],

where kr is the number of iterations
required by the parallel algorithm, r is the
size of the data about approximate con-
cepts generated by each processor, rpg is
the cost of a total exchange between the
processors of these approximate con-
cepts, and RES(rp) is the computation
cost of using these approximations to
compute better approximations for the
next iteration.

It is reasonable to assume that

STEP(nm/p, r) = STEP(nm, r)/p
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and

ACCESS(nm/p) = ACCESS(nm)/p,

since it is usually easy to divide the com-
putational work and data access evenly
across processors. So we get

costr ≈ costs /p + kr (rpg + RES(rp)).

In other words, we get a p-fold speedup,
except for an overhead term, provided ks
and kr are of comparable size.

Exchanging results often improves the
rate at which an algorithm derives con-
cepts, so for some algorithms, kr is much
less than ks. This gives a “double” speedup,

.

We will discuss this phenomenon later
on.

COMPARISONS
The relative costs of these different

performance improvement strategies
depend on

• the number of iterations of the basic
loop structure (the relative size of the
ks),

• the amount of data the processors
must access during each iteration, and

• the amount of communication that
must take place among the processors.

It is hard to be dogmatic about the
number of iterations required in gen-
eral. For some algorithms, kr ≈ kp. That
is, the replicated and parallelized ver-
sions require roughly the same number
of iterations of the basic loop. Thus,
there may not be much reason to choose
between and replicated and parallelized
algorithms on this basis. The relative
performance of independent search is
sensitive to the problem structure. For
minimization problems ki may be much
smaller than any of the other ks; for
other problems it may be about the same
as ks, the number of iterations required
by a sequential algorithm. 

For data access, independent search

suffers from the drawback that each
processor must access the entire data set.
Parallelized algorithms have the poten-
tial to require access to all n rows, but
only m/p columns of each, the same nm/p
access that replicated algorithms require.
However, all the parallelized algorithms
known to me require much more data
than this, usually all nm values. This
makes parallelized algorithms much
more expensive.

For communication, independent
search is a clear winner because it re-

quires only a single global communica-
tion at the end to determine the best
solution. Both parallelized and replicated
algorithms communicate at the end of
every phase. However, parallelized algo-
rithms tend to have to transmit (parts of)
concepts, while replicated algorithms
tend to have to transmit only facts about
concepts, which are much smaller. For
the same reason, the resolution between
concepts that replicated algorithms
require is typically less work than for par-
allelized algorithms.

Researchers have implemented several
of these strategies for computing associ-
ation rules. The replicated approach is
called Count Distribution.6 Provided the
system can keep the candidate sets in
memory, Count Distribution outper-
forms two parallelized techniques: Data
Distribution, which partitions the candi-
date set and circulates the data set among
the processors; and Candidate Distribu-
tion, which partitions both the candidate
set and the data set. The reasons are
exactly those that the cost expressions
make plain: the two poorer techniques

require much greater data access and
communication than Count Distribution.

However, frequent set calculation is
one of those situations where the inter-
mediate results can be larger than the
data set (because the frequent sets are
elements of the powerset of the attrib-
utes). Scalability, therefore, becomes an
issue. Count Distribution’s drawback is
that it requires every processor to store
all the candidates.

Thus, although it is not possible to
say that one strategy is the best overall,
there is a strong tendency for repli-
cated strategies to be better than par-
allelized strategies. We can easily
instantiate each strategy’s high-level
cost expressions for particular data-
mining techniques to give a more
refined basis for decision.

Detailed example: neural
networks

To make our conclusions more con-
crete, we turn now to neural networks,
for which we will compare more detailed
cost expressions. It becomes very clear
that replicated approaches are much
more effective than the others for this
kind of data-mining algorithm.7

Consider a neural network with l lay-
ers, m neurons per layer, and full con-
nections from each layer to the next and
preceding layers. The number of weights
(one per connection) is W = lm2. The
number of examples in the data set is n.

A replicated approach to learning is
exemplar parallelism—each processor
trains an identical initial network on 1/p
of the examples. At the end of each
epoch—that is, when some processor has
processed each row of the data set—
processors exchange their error vectors
and combine them. We call this deter-
ministic learning. This continues for suf-
ficient epochs to ensure convergence.

The cost for a single training epoch is

CEP =  n(AW)/p + W(p – 1)g.

Here, A is a constant that depends on
the particular training algorithm. The
first term is the cost of computation: a
constant number of weight adjustments
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Although it is not
possible to say that
one strategy is the
best overall, there is
a strong tendency for
replicated strategies
to be better than
parallelized strategies.
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for each row of the data set (a term of
size nW), divided equally among the
processors. The second term is the cost
of communication: the total exchange of
sets of errors (one per weight) among
the processors.

Parallelized approaches make each
processor responsible for some subset of
the neurons. A natural starting place is
to assume that each processor takes
responsibility for some rectangular block
of neurons. Even very simple analysis of
this possibility makes it clear that blocks
that are the full width or depth of the
neural network save communication.
When we divide the network into layers
(layer parallelism), the cost for a single
epoch is

.

When we divide a network into columns
(column parallelism), the cost is

.

Layer parallelism is a form of concept set
partitioning, while column parallelism is
direct concept partitioning, since each
processor is responsible for a subset of
the inputs.

For both of these approaches, the com-
putation term is about the same magni-
tude as it is for exemplar parallelism,
except for an added term that arises from
the initial filling and emptying of the
pipeline when there are layers. However,
the communication term now contains a
factor of size n, by far the biggest term
present in data-mining applications. As a
result, these techniques perform poorly
even for quite small data sets.

An alternative approach is to allocate
neurons randomly to processors (neuron
parallelism). Not surprisingly, this ap-
proach is worse than either layer or col-
umn parallelism. Its cost is

.

The argument about required com-
munication is an information-theoretic

one, and so is not sensitive to variations
in the precise neural-net training tech-
nique or to architectural variations. The
only exceptions are architectures for
which the assumptions about communi-
cation costs do not hold. For example,
Vipin Kumar, Shashi Shekhar, and
Minesh Amin8 define a neural net paral-
lelization that exploits carefully sched-
uled, point-to-point communication in
a mesh and is faster than our layer paral-
lelism expression would suggest. How-
ever, such techniques require special-

purpose hardware rather than the
off-the-shelf hardware that is the norm
today.

Many proposals for neural net paral-
lelization use even finer partitioning,
some even partitioning the edge set across
processors. However, our formulae make
it clear that this can only increase the cost
of communication.

Double speedup

Several data-mining techniques ex-
hibit a double-speedup phenomenon.
We might expect a parallel implementa-
tion using p processors to take time ts /p
if it could be arranged without over-
heads—with perfect speedup, in other
words. But some parallel data-mining
implementations execute even faster.
This does not happen because of some
idiosyncratic architectural effect, but
because of fundamental properties of the
algorithms.

To exhibit double speedup, a data-
mining algorithm must be able to use
the information it obtains from one

phase to reduce the work required by
subsequent phases. Suppose that the
first phase of an algorithm requires
work (computation) w, but that the
work in subsequent phases can be
reduced by a multiplicative factor α .
Then a sequential algorithm has a com-
putation cost of the form

(1 + α + α2 + α3 + α4 +…)w.

A parallel algorithm using, say, four
processors that exchanges information
after each (parallel) phase, takes less time
overall. The first parallel phase takes
time w, but the second phase takes only
time α4w, and so on, provided that the
reduction is independently additive. This
reduction is a function of w, which in
turn is a function of the size of the data
set. Such a reduction can be large even
when p is quite small.

Data-mining algorithms that satisfy
these conditions include those with the
goal of constructing a set of concepts that
“covers” the whole data set. In other
words, every element of the data set is
explained by one concept. Once the
algorithm has found an explanation for
part of the data set, it does not need to
examine that part again, so there is less
work for the next phase. Yu Wang, in an
unpublished work, has verified this phe-
nomenon for inductive logic data min-
ing in the Progol style.

Another type of data-mining algo-
rithm where double speedup occurs is
the training of neural networks using
exemplar parallelism. Each processor
learns, in a condensed way, what every
other processor has learned from its
data because the processors encode this
information in the error vectors they
exchange. The overall effect is that kr
is much smaller than ks would have
been, and this in turn leads to a double
speedup.

So far, we have described exemplar
parallelism as if it used deterministic
learning, generating an error vector only
after the entire data set has been seen by
some processor. Using an alternative
technique, batch learning, the algorithm
computes and exchanges error vectors
after processing some subset, called a
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batch, of the entire data set. Each proces-
sor sees only 1/p of each batch.

If each batch is sufficiently large, the
error vectors that each processor com-
putes are good approximations of the
deterministic error vector but have taken
much less processing to discover. As a
result, each processor makes progress
based on the work of all processors dur-
ing the processing of a batch.

The number of epochs required to
achieve a given level of convergence as a
function of batch size has the shape shown
in Figure 1. As batch sizes get smaller, the
total number of epochs required for con-
vergence gets smaller as each processor
gets error information more frequently.
When the batch size reaches some size
bound, however, the error information
becomes less accurate and hence less help-
ful, and the effect disappears. Owen
Rogers has verified this general behavior
experimentally for several data sets.9

Let B be the batch size and b = n/B be
the number of batches in each epoch.
The total cost of exemplar parallelism
training for E epochs is

.

In the range where convergence depends
linearly on B, we can write E = c/b for
some constant c and get

.

Minimizing the overall cost requires
minimizing the computation term by
making b as large as possible—that is, b
= n/B′. The value of this b on the denom-
inator is often about 20, so speedups are
significant even when p is small.

It does not follow that, because an
application exhibits double speedup, it
will necessarily be solvable by sampling.
The information that, shared among
processors, improves overall completion
might not be accurate; it need only be
helpful. It will often have the character
of a hint rather than an answer. But hints,
as we know, can often shorten searches
dramatically. 

THE BEST WAY TO REAP the benefits
of the performance of parallel computers
for data-mining problems is not obvious.
Implementing many different parallel
variants of each data-mining algorithm
and benchmarking them is an expensive
and unattractive way to find the best
approach. Cost measures based on count-
ing computations, data accesses, and
communication, however, let us compare
algorithms and predict their perfor-
mance. Although we cannot expect these
cost measures to be completely accurate,
they are expressive enough to rule out
techniques that are not worth exploring.

Our cost expressions for three general
implementation strategies suggest that
replication is both the simplest and the
one likely to perform the best. In our
neural-networks example, the replicated
implementation outperforms other par-
allelized techniques. Further, replicated
implementations often have a work-
reducing property that enables double
speedup. One speedup factor is propor-
tional to the number of processors used,
but the other depends on how quickly the
algorithm exploits collective knowledge.
The net effect is that modestly parallel
implementations can achieve significant
performance gains. 
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Figure 1. Training of neural networks
using exemplar parallelism and batch
learning. The algorithm computes
and exchanges error vectors after
processing a batch of the data set.
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