
Bianco et al. Light: Science & Applications  (2018) 7:48 Official journal of the CIOMP 2047-7538

DOI 10.1038/s41377-018-0050-9 www.nature.com/lsa

REV I EW ART ICLE Open Ac ce s s

Strategies for reducing speckle noise in
digital holography
Vittorio Bianco 1, Pasquale Memmolo 1, Marco Leo1, Silvio Montresor2, Cosimo Distante1, Melania Paturzo1,

Pascal Picart 2, Bahram Javidi3 and Pietro Ferraro 1

Abstract
Digital holography (DH) has emerged as one of the most effective coherent imaging technologies. The technological

developments of digital sensors and optical elements have made DH the primary approach in several research fields,

from quantitative phase imaging to optical metrology and 3D display technologies, to name a few. Like many other

digital imaging techniques, DH must cope with the issue of speckle artifacts, due to the coherent nature of the

required light sources. Despite the complexity of the recently proposed de-speckling methods, many have not yet

attained the required level of effectiveness. That is, a universal denoising strategy for completely suppressing

holographic noise has not yet been established. Thus the removal of speckle noise from holographic images

represents a bottleneck for the entire optics and photonics scientific community. This review article provides a broad

discussion about the noise issue in DH, with the aim of covering the best-performing noise reduction approaches that

have been proposed so far. Quantitative comparisons among these approaches will be presented.

Introduction
Image denoising is a highly investigated research field in

digital coherent imaging1,2. Improving image quality is

important for all digital systems that provide images that

have been degraded by several types of artifacts. Depending

on light sources, sensor resolution or imaged scene sharp-

ness, obtaining high-quality images can be very challenging.

One of the most fascinating technologies for three-

dimensional (3D) coherent imaging to emerge in the

past two decades is digital holography (DH)3–11. DH has

the unique property of retrieving the entire complex

wavefront of a recorded object, thereby allowing the mea-

surement and manipulation of both amplitude and

phase information11. The incredible technological devel-

opment of digital sensors and optical elements has made

DH the primary approach in several research fields, such as

quantitative phase 3D imaging of biological samples12–17,

microfluidics18,19, optofluidics20,21, 3D particle tracking22,23,

3D optical display24–26, homeland security27, optical secur-

ity and encryption28, cultural heritage29, and compressive

holographic imaging30,31.

However, holographic image quality is severely degra-

ded by undesired artifacts due to the coherent nature of

the light sources, thereby resulting in images that are

corrupted by a mixture of additive uncorrelated noise and

the so-called speckle2. Therefore, despite the benefits and

opportunities that DH imaging offers, the noisy nature of

holographic images limits the development of all afore-

mentioned applications. This has encouraged many

research groups to work on noise reduction in DH, and

many solutions, both numerical and optical, have been

proposed for overcoming this problem32–85.

Considering the large variety of methods that have been

introduced so far for tackling the problem of denoising in

coherent imaging systems, such solutions need to be

classified according to the attributes that they share. In

this sense, we divide the methods into two main classes:

(i) methods that rely on engineering the laser source and
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(ii) techniques that, by using a conventional high-

coherence source, aim at optimizing either data record-

ing or numerical reconstruction processes. In the second

category, we span both methods that adopt an optimized

acquisition scheme (e.g., set-ups that introduce noise

diversity among multiple recordings) and methods that

transfer complexity from the recording system to the

numerical reconstruction algorithms. In the second fra-

mework, we can distinguish between Bayesian approa-

ches, which rely on prior information on the noise

statistics, and non-Bayesian techniques. For all the above-

mentioned categories, a wider classification can be per-

formed among methods that are specifically suited for

denoising the amplitude reconstruction, the phase-

contrast map, or both by operating on the numerical

complex wavefront. Different from the general strategies

of image processing, the methods that we will overview

must satisfy one main constraint: they must operate while

preserving the coherence between amplitude and phase,

thereby preserving all the features of a digital hologram.

This requirement significantly differentiates the problem

of denoising coherent datasets from the issue of denoising

the sole amplitude image and makes it more complex

to handle. This also justifies the large number of efforts

in this field.

This review is divided into the following sections. First,

we will describe the noise formation process in DH and

consider causes, limitations, and possible solutions. In the

third section, we will introduce the denoising process by

considering various strategies. In particular, with the aim

of providing readers with a detailed and clear overview of

all the approaches that are followed by research groups

worldwide, the described methods will be classified

according to their main adopted strategies: optical or

numerical. Among the latter, Bayesian or non-Bayesian

approaches will be identified, focusing on non-Bayesian

spatial filtering. Finally, we will divide such methods

between those that are applied for amplitude or phase

enhancement. In some cases, the strategy includes one or

more of these attributes. Through this taxonomy, almost

all the reviewed techniques may be identified. It will be

shown how advantages and drawbacks of each technique

strictly depend on the classes to which it belongs and how

the hybrid approaches are emerging as the most effective

in tackling the denoising problem.

Noise process in DH
Noise in digital holograms has several origins that are

related to the so-called “technical” noise and the coherent

noise. The technical noise is the standard noise that is

encountered in all photonic systems that detect light and

convert it into digital data. As a general rule, the noise

sources that contribute to the technical noise are the

photon noise, the electronic noise from the recording

sensor, and the quantization noise due to the analog-to-

digital conversion. Several authors have discussed these

noise sources in digital holographic images. In 2005, Mills

et al. evaluated the quality of reconstructed images for

various quantization levels77. They concluded that the

object phase distribution does not substantially influence

image appearance above the threshold of 4-bit quantiza-

tion and that at bit depths <4 bits, random phase

modulation introduces a speckle noise effect. More

recently, in 2011, Pandley and Hennelly studied the

influence of quantization error in recorded holograms

on the fidelity of both the intensity and phase of the

reconstructed image78. They showed that quantization

error is introduced as uniformly distributed additive noise

into the recording plane and this manifests itself as a

complex noise in the reconstruction plane with Gaussian-

distributed real and imaginary parts, Rayleigh-distributed

amplitude and uniformly distributed phase. In 2011,

Picart et al. described, from both theoretical and experi-

mental points of view, the noise that appears in holo-

graphic images when holograms include saturation, up

to 90%, due to the finite number of bits of the sensor46.

These previous works focused mainly on the quality of

the image amplitude that was reconstructed from the

digitally recorded hologram. However, the quantum nat-

ure of light interferes with the photon noise. Gross’s

group demonstrated that the ultimate noise in amplitude

reconstruction is dominated by the photon noise86–89.

Particularly, they studied the influence of the noise

sources in heterodyne holography. To reach the shot-

noise ultimate limit, they proposed a hybrid digital pro-

cessing approach that combines the phase shift method

and the spatial Fourier transform to reduce artifacts that

are due to parasitic orders and phase shift nonlinearity.

Coherent noise is a very particular noise that is only

encountered in coherent imaging when imaging with light

sources that have a large coherence length, such as single-

longitudinal-mode lasers. Such lasers may have coherence

lengths of several tens of meters. It follows that the nature

of the surface (or thickness) of the sample may generate a

speckle pattern when recording digital holograms. This

effect is easy to understand: each “point” at the surface of

the object emits a wavelet onto the sensor and this

wavelet has a random phase because of the surface

roughness. At the detector plane, all emitted wavelets are

coherently mixed and produce a phenomenon of multiple

random beam interferences. Thus the object wave at the

detector plane is a speckle wave. Moreover, the special

character of coherent noise, as partly signal-dependent

noise, requires different approaches for filtering, as in case

of simple additive noise90. The statistics of such speckle

pattern were described in the past and can be found in

several books2,8,89–93. They include first-order statistics

such as the probability density functions of the amplitude,

Bianco et al. Light: Science & Applications  (2018) 7:48 Page 2 of 16



intensity, and phase and the average value and standard

deviation of the intensity. The second-order statistics are

useful for describing the structure of the speckle field,

especially the correlation length in the three directions of

a set of reference coordinates that are attached to the

observation plane.

Basically, a digital hologram is obtained by the coherent

mixing of a so-called object wave (O), diffracted in the

recording plane by the object, which is located at distance

d0 from this plane, and a reference wave (R). This

interference pattern is recorded with a pixel matrix

sensor and can be mathematically expressed as the fol-

lowing Eq. (1)7–9,94–96:

H ¼ Rj j2þ Oj j2þR�Oþ RO� ð1Þ

As a general rule, the reference wave is smooth and has

a tilted plane wavefront (“off-axis” holography). If the

reference wavefront is not tilted, the configuration is said

to be “in-line”, and phase shifting techniques7 are required

to extract the so-called +1 order (term R*O in Eq. (1))

from the hologram. It follows that digital holograms of

naturally rough objects are constituted by a speckle pat-

tern that is modulated by micro-fringes, which originate

from the coherent interference between the speckle field

and the reference wave (which should be unspeckled).

The main drawback is that the speckle, which is very

useful for encoding the complex object field, becomes

a strong enemy in the reconstructed image for both

amplitude and phase recovery because it affects the

quality of the reconstructed field and appears as parasitic

noise. Practically, the reconstructed amplitude image

from objects that have a rough surface is not uniform and

exhibits dark and bright grains due to the speckle phe-

nomenon (even if the initial object surface exhibits uni-

form brightness). The most important feature in the

reconstructed image plane is the average size of the

speckle grains, which is related to the transverse corre-

lation length of the speckle field. As a general rule, the size

of the speckle grain is linked to the physical parameters of

the optical set-up7–10,26 according to Eq. (2):

Δx ¼ λd0

Npx
ð2Þ

in which λ is the wavelength of light, d0 is the physical

distance between the object and the sensor, px is the

pixel pitch of the sensor, and N is the number of pixels

along the x-direction. A similar relation holds for the

y-direction.

Statistics of the speckle in the hologram plane can be

determined by considering that the speckle field that is

generated by the object surface is a random Gaussian

process with zero mean. In the off-axis configuration, the

speckle grain covers several pixels in the recording plane.

Typically, 1 grain covers 3–4 pixels (or maybe more), so

that the speckles can be considered “resolved speckles”. In

the on-axis configuration, 1 grain is approximately 1 pixel;

therefore, one deals with “unresolved speckles”. In the

case of a resolved speckle, the statistics of the +1 order in

the hologram plane follow a negative exponential for the

intensity (I= |R*O|2) and the Rayleigh law for the

amplitude (a0= |R*O|). The digitally reconstructed image

follows the same statistics of the speckle pattern in the

hologram plane.

Figure 1a shows the probability density of the intensity

versus values of the speckle contrast, which is expressed

as C= σ / 〈 I 〉, where σ is the standard deviation and 〈⋯〉

is the average operator. When C= 1, the probability

density of intensity follows the negative exponential.

When C decreases, which means that the speckles are

averaged, then the probability density moves progressively

from the negative exponential to a Gaussian-type curve

(case C= 0.1). This means that when averaging the

speckles in an image, the residual noise tends to a

Gaussian noise, whereas this is not the case for the raw

speckles.
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Fig. 1 Statistical analysis of noise in DH. a Probability density of I

versus values of the speckle contrast. b Curves of Eq. (3) for various

values of the coherence factor. Adapted with permission from ref.47

[OSA The Optical Society]
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When using DH for quantitative measurements, a

“reference” phase is subtracted from the object phase.

Since the phase difference is estimated modulo 2π, phase

unwrapping is often required97,98. It follows that a speckle

phase decorrelation occurs between the two states of the

object and induces a noise in the phase variation between

them, which is referred to as speckle phase decorrelation

noise and denoted as ε2,91,92. Its probability density

function is related to the modulus of the complex

coherence factor, which is denoted as μ, between the two

speckle fields and represents their correlation extent.

With β ¼ μj jcos εð Þ, the second-order probability density

of the phase noise ε can be expressed as follows2,91,92:

p εð Þ ¼ 1� μj j2
2π

1� β2
� ��3=2

β sin�1 βþ πβ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
q

� � ð3Þ

Figure 1b shows curves of Eq. (3) that are obtained

using various values of μ. If μj j ¼ 0, the two fields are not

correlated, and their phase difference is uniformly dis-

tributed over the interval [−π,π]. This is the worst-case

condition for the phase noise. In contrast, if μj j ¼ 1, the

fields are fully correlated and the phase difference is

close to 0. Noise is weak, and the probability density is

narrower, although not completely Gaussian47,48,99,100.

This decorrelation noise may have several ori-

gins7,9,10,46,48,94–97,99–101. These are briefly reviewed in

ref.47. Several authors proposed a large variety of techni-

ques for reducing speckle noise, which can be classified

into two main categories: optical methods32,33,35,49–58 and

image processing methods31,36,39,41,59–63. Usually, to

preserve the 2π phase jump in the wrapped phase

map, reduction of decorrelation noise is processed on

the sine and cosine images that are calculated from the

raw phase102,103.

Optical solutions for noise reduction
Noise reduction in DH has stimulated the work of

several research groups worldwide. Among the huge

variety of proposed strategies, one can identify two main

categories of denoising approaches: optical and numerical

methods. Optical techniques for noise reduction in DH

mainly involve the reduction of the light coherence,

engineering the light sources in the recording stage,

or recording multiple holograms of the same object

(i.e., the looks), which are captured under various reali-

zations of the noise process. One can refer to the first

case as partially coherent illumination (PCI)104–108.

Moreover, synthetic aperture imaging can be viewed as

an alternative way to mitigate the noise effect by mod-

ulating speckles from intervening optical elements or

scattering layers109,110.

The feasibility of DH for PCI was first demonstrated by

Poon in ref.104, where optical scanning holography (OSH)

is proposed. The incoherent mode of OSH makes it

possible to record a complex hologram without speckle

noise105. Figure 2a reports the OSH set-up that is used

to record a complex hologram of a diffusely reflecting

object (in ref.104, the authors used a dice), while Fig. 2b, c

show the numerical reconstructions of the recorded

complex hologram (free of speckle noise) and the charge-

coupled device imaging of a coherently illuminated

dice, respectively.

More recently, Kim proposed a full-color holographic

recording of outdoor scenes under natural daylight illu-

mination, which was dubbed full-color self-interference

incoherent DH106, i.e., neither lasers nor other special

illuminations are used for recording or reconstruction.

Using a simple optical set-up with a color camera and

straightforward algorithms, holographic images are

recorded and reconstructed under natural-light illumi-

nation and with full-color rendering, thereby removing

the speckles from both the recorded and reconstructed

images66,67,106. The PCI principle is also widely used for

quantitative phase imaging by DH107,108,111. In particular,

Popescu et al. demonstrated white-light diffraction

tomography111 for imaging microscopic transparent

objects, such as live cells. This approach extends diffrac-

tion tomography to white-light illumination and imaging

rather than scattering plane measurements and was

applied to reconstruct the 3D structures of live, unlabeled

red blood cells and achieved comparable results to con-

focal and scanning electron microscopic images.

Concerning the engineering of a light source to reduce

the speckle noise in DH, a very interesting work was

published in 2011 by Cao et al. in ref.112, in which the

authors demonstrated how random lasers can be adopted

to provide low spatial coherence. By exploiting the low

spatial coherence of specifically designed random lasers,

speckle-free full-field imaging in the setting of intense

optical scattering can be achieved51. Choi and co-workers,

who developed an off-axis quantitative phase microscopic

system that relies on a light source with extremely short

spatial coherence length, achieved impressive results as

well. The system was able to reduce the diffraction noise

while enhancing the spatial resolution113.

Their strategy was to employ a diffraction grating in the

reference beam path that generates fine interference

fringes with high contrast across the entire field of view

using a light source of very low spatial coherence. A

striking comparison between holographic reconstructions

obtained by using the classical off-axis DH configuration

with coherent illumination and with dynamic speckle

illumination is reported in Fig. 3.

The last category of optical methods for noise reduction

is named multi-look DH (MLDH) and refers to all the
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DH imaging methods that exploit multiple recordings of

the object (i.e., the looks) that are captured under various

realizations of the noise process32,33,35,43,52–58,69,73. In

particular, the recording set-up is adjusted to provide

noise diversity while keeping the signal highly correlated.

Hence, multiple DH reconstructions can be suitably

combined to obtain a significant noise contrast reduction.

This can be quantified by means of the previously intro-

duced speckle contrast C. This performance metric is

expected to reduce as a denoising result, and it is bounded

by the ideal curve 1=
ffiffiffi

L
p

, where L is the number of looks35.

In such a case, the ideal trend would be obtained in the

case of fully uncorrelated noise among the realizations

of each pixel, which is not feasible in practice. All the

methods that have been proposed so far approximate the

performance of the ideal curve and reach saturation

values that depend on the extent of the noise decorrela-

tion among multiple DH recordings. In all these cases,

any pixel is combined with the homologous pixels in

the acquisition stack, so that resolution is preserved at the

cost of set-up complexity and dilated recording times.

Noise diversity can be obtained by exploiting the dec-

orrelation that exists among channels or introducing

additional optical elements into the set-up to achieve time

variability of the speckle spot intensities and positions.

Using a moving diffuser is perhaps the most intuitive

way to introduce time variability into the path that is

experienced by the object or the reference beam. Creating

variable phase delays changes the resultant of the

coherent sum at each sensor element. In turn, multiple
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realizations of the same pixel can be achieved and the

MLDH algorithm can benefit from the introduced

redundancy.

Rotating or shifting rough diffusers has been widely

adopted within this scope35,43,69. Similarly, noise diversity

can be provided by slightly changing the illumination

angle (gain in C of up to 41.7%)55,70 or shifting the

recording device (gain in C of up to 76.9%)57. Alternative

strategies include employing piezoelectric actuators or

spatial light modulators to introduce time-variable phase

delays into one of the two interfering wavefronts (gain in

C of up to 81.1%)71. An efficient way to provide speckle

diversity is to tune the illumination source to exploit the

diversity among multiple channels. Multiple wavelengths

were exploited in ref.42. An effective multi-channel

method for providing noise diversity in the optical set-

up is to record holograms by changing the linear polar-

ization of the object beam while using a circularly polar-

ized reference wavefront72,73. Another approach consists

of moving apertures with areas that are characterized by

different transmission factors (in amplitude and/or phase)

that can be employed to obtain noise diversity during the

exposure time of the recording device74,75. However,

constraints that are related to the moving aperture

implementation limit the number and variety of trans-

mission masks and, in turn, the maximum achievable

gain.

As mentioned above, MLDH techniques also require

numerical processing to combine the multiple recon-

structions to achieve noise reduction. Typically, this is

performed by a straightforward average sum (AS):

A ¼ 1=L
X

i
Ai ð4Þ

where Ai, for i = 1,…,L, are the amplitude reconstruc-

tions of the L recorded holograms of the same object.

Therefore, MLDH allows a denoised visualization only in

numerical reconstruction (either of the amplitude or

phase), but it does not give the opportunity to directly

synthesize a new denoised digital hologram. In ref.35,

Memmolo et al. demonstrated a novel encoding method

for directly combining multiple digital holograms. The

aim was to achieve image improvement in numerical as

well as optical reconstruction. The proposed encoding

formula was related to the geometric sum of amplitude

reconstructions, as reported below.

A � 1

L
L!

Y

L

i¼1

Ai

 !1
L

ð5Þ

By the factorization in Eq. (5), it becomes possible to

apply the convolution property of the Fourier transform,

so that the AS of the reconstructions in the propagation

plane reduces to a convolution between holograms in the

acquisition plane35. The equivalence in Eq. (5) represents

a comparison of two encoding approaches. In other

words, it is possible to compare them by evaluating the

difference in visual quality improvement that is obtainable

using the left-hand and right-hand sides of Eq. (5). The

analysis that is carried out in ref.35 indicates an agreement

between the two encoding formulas of >98%. In Fig. 4, we

report the comparison between the two encoding for-

mulas and single reconstructions of an astronaut puppet

in the cases of two experimental noise levels, which are

referred to as “thin” (Fig. 4b) and “large” (Fig. 4e) speckle

grains, respectively. In particular, Fig. 4c, f report the

result that is achievable by using the AS, while the

synthesis that is performed using Eq. (5) is shown in

Fig. 4d, g. It is apparent that both methods achieve an ML

gain with respect to the SL reconstructions. Moreover, no

significant differences are found between the AS and the

encoding that is described by Eq. (5), with the latter

having the above-mentioned advantage.

Numerical approaches to noise reduction
Spatial filtering is the most commonly applied

numerical method in digital holographic image proces-

sing102,103. Among the proposed techniques, two main

categories can be identified: Bayesian and non-Bayesian

strategies. Statistical approaches try to improve the

quality of holograms by exploiting knowledge about the

noise statistics. For Gaussian and Poisson random pro-

cesses, if the statistics are at least of the second order,

the denoising approaches can be considered Bayesian.

This knowledge can be assumed or obtained from data.

Existing studies try to model the noise in DH as having

Gaussian64 or independent Poisson65 distributions and

use other enforcing priors (e.g., sparsity constraints).

However, these often lead to inaccurate estimates,

thereby resulting in the creation of severe artifacts or

removal of image fine structures. Optimization of

acquisition set-up in the sense of imaging resolution

can partially overcome these drawbacks, thereby yield-

ing approximations that are closer to the actual

conditions66,67.

By considering approaches that infer the noise statistics

from data, a dichotomy can arise. Formally, how the sta-

tistics are inferred should not be a discriminating factor.

However, in practice, only the approaches that infer sta-

tistics from multi-images are referred to as Bayesian,

whereas those that use a single shot are not. Although this

common taxonomy could be questioned, it is worthwhile

to use it to be consistent with the prominent literature

of the field. Chen and Li reported in ref.68 an interesting

example of a Bayesian approach. A digital image denois-

ing technique is applied to multiframe superposed images

in terahertz DH. The noise-suppression problem is trea-

ted as a Bayesian least-squares estimation and it is solved

using Markov chain Monte Carlo sampling. In this
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algorithm, a weighted mean filter with a Gaussian kernel

is first applied to the noisy image. Then the contrast of the

image is restored to the former level by nonlinear contrast

transform. A more general method is proposed by Leo

et al. in ref.37 that takes into account not only spatial

information but also temporal statistics that are associated

with the pixels. A mixture of Gaussian distribution

models is used to characterize the observed noise in each

pixel. When no complete second-order characterization

is available, non-Bayesian strategies must be adopted.

Among them are some of the MLDH approaches that are

described above in which multiple looks are not optically

recorded but hybrid techniques are used. These are

used to generate multiple reconstructions with almost-

uncorrelated noise, starting from a single-shot DH

recording32,39. To achieve this important goal, the

numerical reconstruction step must be properly modified

or additional filters must be introduced that obtain

multiple realizations of the noisy reconstruction by tuning

their inner parameters. This paradigm has been success-

fully exploited, thereby showing that digital filters can

simulate the action of moving diffusers. Recently, quasi-

static colloidal solutions114, flowing biological sam-

ples115,116, and even live microorganisms117 have been

demonstrated to provide remarkable noise decorrelation.

This has been exploited either to improve the perfor-

mance of optical systems116,118 or to allow one to see

through turbidity in DH transmission microscopic con-

figurations114–117. Milk colloids that experience Brownian

motion, flowing red blood cells, and self-propelling bac-

teria are good examples in this sense and pave the way for

the exploitation of biological material as a useful optical

element119. Moving-aperture-based methods, which are

described in section “Optical solutions for noise reduc-

tion,” can also be numerically simulated with high accu-

racy and without introducing complexity into the

LASER

C

BS

M

CCD

M

Reference beam

G

O

a

b c d

gfe

Fig. 4 Encoding holograms for speckle-noise reduction. a Set-up for hologram recording; G is the rotating ground glass that is used for multiple

recordings with noise diversity. b–g Amplitude reconstructions in the cases of thin (b) and large (e) speckle grains; c, f are the results of the AS

method, while d, g are the results that are obtained by using the encoding method. Adapted with permission from ref. 35 [OSA The Optical Society]
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recording scheme. A good example in this sense is

the work that is reported in ref.41, in which a Fourier

filtering mask was applied to the hologram spectrum and

the mask shape and size were varied to obtain multiple

realizations of a noisy object after propagation. Despite its

simplicity, this method was shown to be very effective in

denoising Fourier holograms, as demonstrated in Fig. 5.

To date, several techniques that are based on spatial

filters and inherited from the research field of image

processing have been successfully employed for the

denoising of holographic images. In Table 1, we list the

most frequently used ones. Their mathematical descrip-

tions are omitted for brevity; readers can refer to Supple-

mentary Information file for a more detailed description,

as well as the highlighted original papers in which they

were proposed37,59,120–146.

The current general trend is to design novel and effi-

cient spatial filters to be applied on a single recorded

hologram. In subsections “Amplitude reconstruction

denoising” and “Phase reconstruction denoising,” we

evaluate the performance of the methods that are repor-

ted in Table 1, when these are applied on amplitude and

phase holographic reconstructions, respectively.

Amplitude reconstruction denoising

The methods that are listed in the previous paragraph

were proposed in DH for amplitude reconstruction

improvement. Uzan et al. in ref.60 reported a very inter-

esting work in which the application of NL means filtering

to holographic amplitude reconstructions was proposed

and compared with the filters that are commonly used for

speckle reduction: the median filter, Lee filter, Frost filter,

bilateral filter, and wavelet thresholding. Figure 6 reports

this comparison60.

Three metrics, namely, Equivalent Number of Looks

(ELN), Speckle Suppression Index (SSI), and Speckle Sup-

pression and Mean Preservation Index (SMPI)147, are used

to evaluate the performance of these methods. The NL

means filter performed the best in terms of ELN and SSI,

while wavelet thresholding achieved the best performance

in terms of SMPI. The key to achieve such remarkable

performance is related to the concept of grouping. Group-

ing means that mutually similar, non-neighboring two-

dimensional image blocks are selected and stacked together

to form 3D arrays. Then each 3D stack is processed as a

whole. The same grouping paradigm is implemented for the

BM3D filter, which is recognized as the state of the art in

image denoising. BM3D applies shrinkage operators to each

stack in a proper 3D transform domain to return filtered

versions of the groups137.

Recently, the relation between the initial signal-to-noise

ratio (SNR) of the noisy holographic amplitude recon-

struction and the performance of both NL means and

BM3D filters have been investigated32, revealing that, in

the absence of prior information on the noise statistics

(non-Bayesian approaches), a low SNR can lead to

incorrect grouping and severely affect the reconstruction

quality. In such cases, a preliminary filtering would be

desirable137. This aspect has been investigated by Bianco

a b

Fig. 5 Discrete Fourier filtering. a Original noisy reconstruction. b Denoised reconstruction after applying the discrete Fourier filtering technique.

Reprinted with permission from ref.41 [OSA The Optical Society]

Table 1 Most frequently used digital filtering methods

and the corresponding references

Filters Refs.

Median 120

Wiener 120

Lee 37,121

Frost (adaptive Gaussian) 59

Wavelet 122–131

Non-local (NL) means 132–135

Block matching 3D (BM3D) 136–138

2D windowed Fourier transform (WFT2D) 139–144

Anisotropic diffusion 145,146

See Supplementary Information file for details about the listed methods
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et al. in ref.32, in which it was demonstrated that, by

combining the concepts of multi-look, grouping, and

collaborative filtering, it is possible to achieve quasi noise-

free DH reconstructions. The proposed approach is

referred to as MLDH-BM3D and surpasses the limits of

both MLDH and BM3D. Indeed, the enhanced grouping

algorithm is demonstrated to impose better initial con-

ditions for the subsequent collaborative filtering steps.

The BM3D performance is improved as the probability of

incorrect grouping is drastically reduced. In addition,

MLDH-BM3D is demonstrated to outperform the sole

MLDH, with the MLDH theoretical improvement

bound39,57,73 being overcome for the first time due to the

sparsity enhancement filtering. In terms of the taxonomy

that is adopted in this review paper, MLDH-BM3D can

be classified as a hybrid denoising method because it is

a mix of smart optical recording techniques and numer-

ical processing, which are necessary for each other to

achieve nearly noise-free DH reconstructions. Experi-

mental validation of MLDH-BM3D was provided in the

case of visible wavelength recording32 (both single and

multiple wavelengths) and infrared DH (IRDH)33 in very-

low-SNR conditions. In Fig. 7, we summarize the main

results that are achieved in ref.32 for the cases of a single-

wavelength recording of an astronaut puppet that is

severely corrupted by speckle noise (Fig. 7a) and dual-

wavelength recording (i.e., red and green lasers) of a

Matryoshka doll, where MLDH-BM3D is applied on both

color components (Fig. 7c). Experimental validation of

MLDH-BM3D was provided in the case of visible wave-

length recording32 (both single and multiple wavelengths),

and the reconstructions of a single recorded hologram

have been labeled as single-look DH images (SLDH), in

contrast to the multiple recording that is used for the

MLDH step. By evaluating the performance of MLDH-

BM3D filtering that is reported in Fig. 7b, d in terms of

the percentage of noise suppression32, an improvement of

up to 98% is achieved, i.e., the quality of the DH recon-

structions was comparable to those of low-coherence

techniques for the first time.

The case of IRDH is very challenging in the framework

of noise reduction because the coherent noise level in

a long-IR hologram is far larger than that of a visible-

wavelength recording, thereby resulting in very poor

quality of both numerical and optical reconstructions33.

Bianco and co-workers demonstrated that MLDH-BM3D

is still the best-performing denoising method and achieves

noteworthy results. Figure 8 reports the comparison

between the SLDH and MLDH-BM3D reconstructions

of a famous work of art, namely, the “Bronzo di Riace.”

Remarkably, a percentage of total noise suppression of

80% was obtained33.

a

b c

d e

f g

Fig. 6 Comparison of speckle reduction filters, which are applied

on a dice image that was reconstructed from its digital

holographic recording. a Back-propagation from the original

hologram, b denoised with the median filter, c denoised with the

Frost filter, d denoised with the Lee filter, e denoised with the bilateral

filter, f denoised with the wavelet thresholding filter, and g denoised

with the NL means filter. Reprinted with permission from ref.60 [OSA

The Optical Society]
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Phase reconstruction denoising

All the methods that are described above have been

recently evaluated in the context of digital holographic

interferometry on a benchmark47,148. The database for the

benchmark consists of simulated fringe images with

controlled fringe pattern type and noise level. Five fringe

patterns were simulated to introduce a “fringe diversity”

and calculate statistics on the obtained results. With the

same motivation, five values for the SNR were introduced.

Thus 25 noisy phase maps with cosine SNR that varied

from approximately 3 to 12 dB were obtained, which well-

matched real experimental conditions. The relevant

metric for this evaluation is the phase error, which

represents the standard deviation of the wrapped phase

difference between the denoised and noisy phase maps.

Figure 9 summarizes the results that were obtained for

the phase error metric. The height of each yellow color

bar in Fig. 9c represents the average of values over the

entire database. We also represent, within each index

bar, a second bar of a different color that corresponds to

the standard deviation that is associated with the values

that are displayed for the entire database. Since the first

published ranking47, parameters of selected methods have

been optimized to increase the filtering performance. This

is the case for WFT2F, stationary discrete wavelets (Sym8,

Sym6, Sym4, Daub8, Daub6, Daub4), Contourlets, and

the Wiener filter. The WFT2F method, which is denoted

as Wtfr2 in Fig. 9c, performs the best, with an average

value of 0.025 rad, followed by curvelets with 0.07 rad.

The BM3D method (known as the state of the art for

amplitude imaging) yields equivalent results to curvelets

but with a larger variance. Moreover, the ranking indi-

cates the good performance of median filters 9 × 9 and

11 × 11 at 0.09 rad; between 0.08 and 0.09 rad, all sta-

tionary wavelet methods exhibit similar variance values.

Finally, many performance evaluation metrics can be

implemented to compare denoising algorithms47,60. They

are omitted for brevity, but readers can refer to Supple-

mentary Information file for a description of the most

commonly used metrics in DH.

SLDH MLDH–BM3D

a b

dc

Fig. 7 Quasi noise-free DH. Comparison between SLDH reconstructions for single- (a) and multi-wavelength (c) holograms and the MLDH-BM3D

filtered images (b, d). These images are inspired by the results in ref.32

Bianco et al. Light: Science & Applications  (2018) 7:48 Page 11 of 16



Conclusions and future key challenges
In this review, we have discussed and classified strategies

for speckle noise reduction in DH. Two main classes have

been considered: optical and numerical approaches. It is

inferred that the main trend within this scope involves the

reduction of the source coherence, although the use of

multiple recordings of the same target while varying the

noise realizations has been widely investigated in the past

decade. In addition, several research groups proposed

novel numerical approaches that are based on increasingly

sophisticated spatial filters. At the end of our tour of the

best-performing denoising methods, we tried to identify

the gold standard in this deeply investigated research field.

The best optical solution for noise reduction in DH is

white-light recording, where holograms and the corre-

sponding reconstructions are intrinsically free from

speckle. Hence, this strategy can be considered an a priori

solution of the speckle noise problem. Poon et al.104,105

and Kim106 demonstrated the feasibility of this approach

and achieved impressive results in terms of SNR. However,

two main drawbacks can be identified: (i) optical

arrangements need to be much more robust than the

classical coherent holographic imaging systems and

(ii) when the SNR in the object reconstruction was com-

pared to theoretical predictions, a decrease in the SNR as

the inverse of the number of resolved object pixels was

observed, and some discrepancies can be revealed and

explained by imperfections in the optics. These two issues

were investigated 30 years ago by Ribak et al.149 and are

still relevant today. The same limitations can be recog-

nized for MLDH methods, where the theoretical bound on

noise decorrelation between the multiple looks inherently

restricts the achievable improvement in terms of SNR39.

In contrast, novel or modified versions of existing

numerical approaches for noise reduction in DH are

continuously published, thereby demonstrating an

ever-growing interest in this research field worldwide.

Our review has tried to consider almost all the main

120°

MLDH–BM3D SLDH MLDH–BM3D

SLDH MLDH–BM3D

200°

MLDH–BM3D SLDH MLDH–BM3D

SLDH MLDH–BM3D

260°

MLDH-BM3D SLDH MLDH–BM3D

SLDH MLDH–BM3D

80°

MLDH–BM3D SLDH MLDH–BM3D

SLDH MLDH-BM3D

a b

c d

Fig. 8 MLDH-BM3D in the case of IRDH images. IR reconstructions of the “Bronzo di Riace” without and with MLDH-BM3D processing with the aim

of comparing the noisy and denoised images at multiple vewing angles: a 80°, b 120°, c 200°, and d 260°. Reprinted with permission from ref.33 [OSA

The Optical Society]
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contributions of the past decades by focusing on critical

papers that also provide comparisons between the existing

and high-performing denoising strategies. We recognized

that BM3D, which was proposed by Dabov et al.136,137, is

the best spatial filter for holographic amplitude recon-

structions with suitable starting SNR and additive Gaus-

sian noise. However, for a strong initial noise level and

multiplicative noise, Bianco et al. demonstrated that the

hybrid method that is obtained by the joint action of

MLDH and BM3D32,33 can reach up to 98% noise sup-

pression. Strategies for phase reconstruction denoising

have been evaluated in the context of digital holographic

interferometry on a benchmark by Montresor and co-

workers47,148. Among the 20 selected denoising algo-

rithms that were compared in terms of mean standard

deviation of the phase error, the best was the WFT2F

method, which was proposed by Kemao139, for the case of

simulated fringe patterns. In the case of more-structured

objects (i.e., with more complex features to be preserved)

or larger image size, the power of learning/stacking

methods (e.g., BM3D) is expressed in full. Hence, these

are expected to perform slightly better. Moreover, the

relative ranking among the various wavelet bases is

expected to change depending on the content of the

object frequencies. Although this research field may seem

to be saturated, a unified framework for noise suppression

in DH that is capable of working efficiently for both

amplitude and phase reconstructions has not been deeply

investigated. Very few denoising strategies have been

proposed that are specifically suited to denoise
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reconstructed images from digital holograms. Among

them, the sparsity denoising of digital holograms method

is designed to reduce the noise in DH operating on the

reconstructed complex field. Thus it works on both

amplitude38 and phase40 reconstructions. Very recently,

an extension of the BM3D framework to complex

observables was introduced150,151, and it is shown that

complex domain BM3D outperforms the separate

denoising of amplitude and phase by means of a BM3D

algorithm, as well as the separate denoising of the real and

imaginary parts of complex-valued data.
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