
Strategies for Software Reuse: A Principal
Component Analysis of Reuse Practices

Marcus A. Rothenberger, Kevin J. Dooley, Uday R. Kulkarni, Member, IEEE, and Nader Nada

Abstract—This research investigates the premise that the likelihood of success of software reuse efforts may vary with the reuse

strategy employed and, hence, potential reuse adopters must be able to understand reuse strategy alternatives and their implications.

We use survey data collected from 71 software development groups to empirically develop a set of six dimensions that describe the

practices employed in reuse programs. The study investigates the patterns in which these practices co-occur in the real world,

demonstrating that the dimensions cluster into five distinct reuse strategies, each with a different potential for reuse success. The

findings provide a means to classify reuse settings and assess their potential for success.

Index Terms—Reusability, systematic software reuse, software process improvement, quality, reuse success, reuse classification

scheme, best practices.

�

1 INTRODUCTION

SYSTEMATIC software reuse is a technique that is employed
to address the need for improvement of software

development efficiency and quality [49]. This involves the
use of artifacts from existing systems to build new ones in
order to improve quality and maintainability and to reduce
cost and development time [1]. This study explores
practices employed for code reuse. These reuse practices
vary by extent of organizational support, integration in the
overall development process, and techniques employed.
Depending on the reuse practice, reuse may happen in an
unplanned fashion when individual developers recognize
reuse opportunities informally or it may be planned for by
building and maintaining a software repository that
supports the predictable and timely retrieval of reusable
artifacts [22].

Writing reusable software requires additional develop-
ment effort compared to writing code in a nonreuse setting.
Reusable components need to be developed in a generic
fashion that allows their use in various contexts. Creating a
software repository and populating it with reusable
components is a substantial investment for an organization
that can only pay off in the long run when development
effort is saved through reuse in software projects [4]. Hence,
the adoption of a software reuse program involves risk and
the choice of a reuse strategy can be crucial to its success.
Although Morisio et al. [41] have argued that there may be
more than one successful approach to reuse, the adoption of

different practices that can facilitate reuse may provide
different results, thus organizations must make an informed
decision concerning whether or not to implement software
reuse and, if so, how.

The literature has discussed broad reuse classification
schemes [9], [33], [50] that distinguish between various
approaches to reuse. In their broad definitions of reuse,
these publications include the reuse of everything asso-
ciated with a software project, such as procedures, knowl-
edge, documentation, architectures, design, and code.
Prieto-Dı́az’s [50] classification scheme characterizes differ-
ent approaches to reuse along a variety of dimensions:
substance, scope, mode, technique, intention, and product.
His model considers reuse in the widest sense by including
facets ranging from automatic code generation to reuse of
ideas. As a consequence, its conceptualization of practices is
at a very abstract level. In order to engage the reuse
phenomenon at a level closer to the organizational reuse
setting, we are focusing on the systematic reuse of software
code components. The reuse of other artifacts, such as ideas,
analysis documents, test cases, designs, or the automatic
generation of code are beyond the scope of this research.

Existing code reuse literature has identified reuse
practices and success factors using case studies and
surveys. A major reuse effort reported in the literature is
the REBOOT (Reuse Based on Object-Oriented Techniques)
consortium [61]. This effort was one of the early reuse
programs that recognized the importance of not only the
technical, but also the organizational aspects of reuse. Kim
and Stohr [31] confirmed this by arguing that software
reuse could only succeed if also nontechnical issues are
considered. Edwards [16] reports on the results of a survey
of reuse experts which also indicates that additional work is
required with respect to the nontechnical reuse issues. Lee
and Litecky [35] have examined success drivers among
organizations that took an object-based approach to reuse
with the programming language Ada. The findings of this
study highlight the importance of factors such as manage-
ment support and domain knowledge. Several other studies

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003 825

. M.A. Rothenberger is with the School of Business Administration,
University of Wisconsin-Milwaukee, PO Box 742, Milwaukee, WI 53201.
E-mail: rothenb@uwm.edu.

. K.J. Dooley and U.R. Kulkarni are with the W.P. Carey School of Business,
Arizona State University, Tempe, AZ 85287.
E-mail: {kevin.dooley, uday.kulkarni}@asu.edu.

. N. Nada is with the Department of Computer Science, Sharjah College,
Sharjah, United Arab Emirates. E-mail: nader@shjcollege1.ac.ae.

Manuscript received 17 Apr. 2002; revised 17 June 2003; accepted 24 June
2003.
Recommended for acceptance by A. Mili.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 116367.

0098-5589/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

also stress the importance of management support [1], [23],
[29], [53]; others mention the integration of reuse into the
development process [12], [29]. Biggerstaff [8] introduces
infrastructure considerations; Frakes and Fox [21] stress the
importance of training for reuse, among other factors.
Frakes and Isoda [22] and Banker et al. [5] emphasize reuse
measurement. This brief review demonstrates that prior
research presents reuse success factors without formally
considering interactions between them. However, in the
real world, best practices as described by such success
factors are not independently implemented. Instead, they
occur in the form of archetypal sets of practices. As a
consequence, to truly help organizations to implement a
reuse program, we shall not focus on separate reuse success
factors, but we shall examine in what combinations
practices co-occur and how such archetypal sets of practices
affect reuse success. We have drawn from prior literature to
identify specific practices associated with systematic soft-
ware reuse, including reuse measurement, the degree of
commonality of the architecture, and the level of management
support [1], [22], [32], [35]. The present research uses these
literature-identified reuse practices to develop a classifica-
tion scheme for software reuse.

It is important to understand how these reuse practices

can be aggregated into constructs that describe the differ-

ences between systematic reuse strategies. Such insights can

help organizations considering a reuse program in deciding

how to go about systematically adopting software reuse.

Our study uses survey data from software development

groups working with software reuse to reduce the numer-

ous reuse success factors identified in prior studies to a

concise set of six reuse dimensions by grouping co-

occurring practices into single constructs. Thus, we are

able to describe reuse settings with a vector of only six

dimensions. Since reuse strategies do not occur in all

possible permutations of the vector values, we find that

they cluster into five distinct strategies with different levels

of reuse success. The contributions of this research are the

identification of the reuse dimensions and their theoretical

development, as well as the development of reuse strategy

clusters, as observed in the real world. The study also yields

a qualitative investigation on the effect of reuse strategies

on the success of a reuse program.
The paper is structured as follows: Section 2 presents the

systematic reuse practices from the literature that serve as a
basis for the survey questions. The section also briefly
describes the data collection and the statistical methods
used for data analysis. Section 3 presents the discussion of
software reuse dimensions “discovered” by our analysis.
Section 4 investigates the implementation clusters and their
linkage to reuse success. The conclusion summarizes the
results of this study pointing to future research directions.

2 RESEARCH APPROACH

The term “reuse dimension” is used to denote a construct
composed of multiple reuse-related practices that an
organization may employ. Consolidation of various reuse
practices into dimensions allows a high-level view of the
various reuse variables that may be participating in a reuse

strategy. Our motivation in this research is based on the
belief that such dimensions can be proactively used in
formulating a well-thought-out reuse strategy. Hence, the
objective of this research is to determine the dimensions
that constitute systematic software reuse and evaluate the
impact of these dimensions on actual reuse success.

2.1 Reuse Practices

As a first step, we synthesized existing software reuse
research literature in order to determine the dominant
themes apparent in discussions about reuse. From this, we
identified a number of reuse practice variables for inclusion
in our survey instrument.

While survey data is most often used for theory testing

with firm theoretical notions already in hand from prior

research, in our research, the survey data was used to

enhance the theoretical constructs by allowing the survey

data to suggest the final set of reuse dimensions [14]. The

items included in the survey instrument along with its

applicable literature reference are presented in Table 1.

Responses were collected as interval measures on a five-

point scale. Table 1 shows the survey items grouped by

reuse practice categories. The practice categories give a

sense of the survey items in aggregate. The aggregates are

derived by composing an affinity diagram [18], a technique

that collates textual data into clusters via an iterative,

manual process performed by domain experts (in this case,

the authors). The survey items clustered into the following

reuse practice categories: project similarity [22], [27], reuse

planning [22], measurement [48], process improvement [21],

formalized process [21], management support [1], educa-

tion [21], object technologies [43], and commonality of

architecture [22].

2.2 Data Collection

Comprehensive lists of organizations that develop software
are publicly available and easy to access, but there is no
national or international software engineering database or
census bureau representing a population of software
developers who practice software reuse. Software reuse is
still not widely adopted; only a small number of develop-
ment groups currently use the reuse paradigm.

We used the following approach to reach the sample:

First, potential survey respondents were identified from

conferences/symposia/workshops that extensively cover

the topic of software reuse. Further, subscribers of various

software reuse groups were identified. Next, the survey

instrument, augmented with demographic questions such

as title, group, and company size, was posted on a web site

for easy access by software developers. After that, the

subjects were sent e-mail messages with a request to

participate in the survey. The list of conferences and

subscription groups whose participants/subscribers were

contacted is given below:
Conferences:

. The International Conference on Software
Engineering,

. The Symposium on Software Reusability, and

. The European Reuse Workshop.

826 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

Subscription Groups:

. Software Reuse Factors (Sonnemann’s list, 109
subscribers),

. NASA Software Reuse Workshop (Patterson’s list,
200 subscribers),

. Reusable Software Components Resources (Levine’s
list, 50 subscribers),

. IEEE Software Reuse Group (90 subscribers), and

. Software Productivity Consortium members (200
subscribers).

Seventy-seven participating development groups be-
longing to 67 different organizations responded to the
survey. Among the survey participants, six respondents
omitted more than 15 percent of the questions on their
respective questionnaires. Leaving a large number of

survey items unanswered may indicate that there is a poor

reliability of the responses. For that reason, we excluded

these six respondents and used the remaining 71 responses

for the analysis. The respondents included project man-

agers, software engineers, developers, software develop-

ment consultants, and software engineering researchers in

profit and nonprofit organizations in a variety of industries,

including telecommunication, financial services, avionics,

government, and education. There were no duplicate

participants within a development group and almost

80 percent of the participants were working in organiza-

tions with more than 200 employees.
Finally, we dealt with missing values and the possibility

of nonresponse bias in a generally accepted manner as

follows: When missing values are under a threshold of

ROTHENBERGER ET AL.: STRATEGIES FOR SOFTWARE REUSE: A PRINCIPAL COMPONENT ANALYSIS OF REUSE PRACTICES 827

TABLE 1
Survey Items

15 percent of the total number of cases, one can substitute
them with the means of the responses [42]. In our case, the
percentage of omitted responses was well below the
threshold; hence, missing values were replaced with the
means. A well-accepted method of testing nonresponse bias
is to look for significant differences between early and late
responses [2], especially when the actual size of the
population is unknown. A t-test comparing the early and
the late quartile responses exhibited no significant differ-
ence. This result suggests that no effect must be attributed
to the potential difference between respondents and
nonrespondents.

2.3 Data Analysis

When practices cooccur in a systematic pattern of some sort,
one may interpret this at least as an association emergent
from management action. For example, if the two items
pertaining to requirements analysis tools and domain analysis
are (positively) correlated at a magnitude suggesting
statistical significance, it indicates that the co-occurrence of
these practices may be intentional or it may stem from a
larger program of practices being implemented systemically.

We used principal component analysis (PCA, also

known as factor analysis) to identify these patterns of co-

occurring practices throughout the entire data set. PCA

aggregates these correlations between reuse practices into a

correlation matrix. PCA then performs a rotation of this

matrix such that all eigenvectors are orthogonal to one

another. The eigenvectors represent the new “dimensions”

that explain the correlation structure in the data and the

“loadings” for each item within a given eigenvector indicate

the magnitude with which that item is weighed within the

identified dimension [14]. These dimensions are then

labeled according to the researchers’ examination of the

items contained within each dimension. In order to reduce

bias in this labeling, each of the three researchers came up

with independent labels and then met to obtain a consensus

decision. The reader can also examine the labels relative to

the items to determine the level of face validity that this

labeling has achieved.
The results of the PCA and the labeling and meaning of

the dimensions are presented in the following section. The
next analysis task is to establish the connections between
the dimensions of reuse and the success of reuse initiatives.
Established measures of reuse success such as those
discussed in the literature [7], [24], [36], [57] were used for
this part of the analysis. This part of the analysis is the basis
for establishing how reuse dimensions can be used to
formulate a good reuse strategy. The dimensions resulting
from the PCA and the development of propositions
describing the dimensions’ effects on reuse success are
presented in the following section.

3 DIMENSIONS OF SYSTEMATIC SOFTWARE

REUSE STRATEGIES

Six different dimensions are identified (components that

have an eigenvalue greater than 1.0 are considered

significant [14]), and these six dimensions collectively

account for two-thirds of the overall variance, which is

considered quite good. Specific items (and, thus, practices)

are associated with the six dimensions by examining the

factor loadings. An item is considered part of a dimension

(factor) when its loading is above 0.40; this is the magnitude

that is used to determine whether the factor loading is

statistically significant [14]. This leads to a fairly unambig-

uous assignment of items to dimensions, with the exception

of items 10, 12, and 15, which had factor loadings of over

0.40 for two factors. These items were assigned to the

dimension in which their loading was highest, as is

customarily done. In the cases of questions 10 and 12, the

highest loading was into the Formalized Process factor, but

the loadings of these items into the Planning and Improve-

ment factor was only slightly lower. Our decision to include

the two items in the Formalized Process factor carries face

validity since both items (“following a detailed process”

and “logging reuse occurrences”) describe the presence of

defined best practices as captured by the Formalized Process

construct. Similarly, question 15’s highest loading was into

the Management Support factor, while it loaded almost as

high into Planning and Improvement. The decision to assign

the item (“availability of reuse education and training”) to

Management Support was carried by the argument that only

management who is supportive of reuse will make the

resources available that are required for reuse education

and training. The results are shown in Table 2.

Examining the reliability of the collection of items

constituting these dimensions enables assessment of their

integrity. A collection of items is considered reliable if they

have strong patterns of covariance, implying that they are

measuring the same phenomenon. Table 2 shows the most

common measure of the reliability of a set of items,

Cronbach’s alpha, for each of the six dimensions. The

measures range from 0.71 to 0.87. According to heuristics

frequently employed for the interpretation of Cronbach’s

alpha, a value of 0.7 is considered acceptable [42].

In the following sections, we describe each of the six

dimensions resulting from the factor analysis. We discuss

how the theory-based reuse practices were empirically

combined into six reuse dimensions. Each paragraph

concludes with a proposition that is based on the relation-

ship between the presence (or implementation) of these

reuse dimensions and the level of success the organization

realizes in its reuse effort. Success is defined broadly here

and constitutes both the effectiveness and timeliness of the

development project, as well as the quality and cost of the

final product.

3.1 Planning and Improvement

The empirical analysis indicates that the theory-based
practices of the categories reuse planning, measurement,
and process improvement are describing one underlying
reuse dimension, which we shall name planning and
improvement. This dimension relates to the quality of the
reuse process. The three theory-based categories, reuse
planning, measurement, and process improvement, are all
constructs indicating the extent of quality control exercised
over the reuse process. The items are shown below.

828 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

Theory-Based Category: Reuse Planning

. Question 4: Reuse Planning: Domain analysis.

. Question 5: Requirements linked to reusable soft-
ware components.

. Question 6: Process built around a core set of
reusable components.

Theory-Based Category: Measurement

. Question 7: Reuse performance measurement.

Theory-Based Category: Process Improvement

. Question 8: Refinement of “best practices” through
pilot projects.

. Question 9: Lessons learned documented to improve
reuse process.

Software reuse is best thought of as a process and, like

any organizational process, it can greatly benefit from

planning and improvement. Effective planning enables the

organization to identify what the requirements of the

product are and plan ahead of time where opportunities

for reuse can be realized. Requirements may also be

negotiated as a slight change in them may bring about

increased opportunity for reuse and, thus, reduced project

time and cost. These trade offs between commonality and

distinctiveness are best made up-front in the planning

process [55]. Empirical studies of new product development

in general show that a strong link between customer needs

and the development process is beneficial to product and

project outcomes [10]. A study by the General Accounting

Office [65] of commercial development practices found that

“disciplined paths” must exist in order to infuse the

ROTHENBERGER ET AL.: STRATEGIES FOR SOFTWARE REUSE: A PRINCIPAL COMPONENT ANALYSIS OF REUSE PRACTICES 829

TABLE 2
Factor Loading

technological capabilities of the firm (e.g., reusable software
modules) into the specifications of a new product.

Continuous improvement is also an essential part of a
quality approach to managing the reuse process. This
requires measuring reuse outcomes and providing feedback
to software developers and managers so that they can better
understand how to improve performance [30]. Only then
can problems be quickly identified and the reuse program
be modified accordingly. Effective reuse measures must
account for the various tasks involved in reuse, such as
production, retrieval, and integration of components [58].
The selection of performance measures depends on in-
dividual management goals [45], thus establishing priorities
for developers [13].

When process improvements are identified, it is often
suggested that they be tried on a small scale first, as a full-
scale implementation is costly and may not yield the results
intended. Eisenhardt and Tabrizi [17] suggest that devel-
opment processes be thought of as rapid prototyping
laboratories, where small-scale experiments facilitate rapid
and exploratory learning. Lessons learned are then docu-
mented so that future projects can benefit from the learning
that occurred within previous projects. From this, the
following proposition is developed.

P1: Higher levels of planning and improvement are associated
with higher levels of reuse program success.

3.2 Formalized Process

The empirical results validate the theory-based category of
a formalized process. The items are shown below.

Theory-Based Category: Formalized Process

. Question 10: Developers follow a detailed process.

. Question 11: Component certification process.

. Question 12: Logging reuse occurrences (each
project/component pair).

Having a formalized process increases the chance that the
project success can be repeated. A formal process facilitates
adherence to the established best practices, standardization
of practices across multiple projects (which enhances
learning), and helps less-expert developers to succeed via
reliance on a standard process. As projects follow a formal
process, responsibilities are made clear, and the reliance of
one function’s work on another—for example, between
coding and testing—is understood and points of review and
feedback are specified. Formal processes help workers focus
on the collective aspects of their work rather than their
functional responsibilities and help project personnel to
decide what to work on and when [64]. If projects follow a
formal process, variance between projects is likely to be
reduced and, thus, outcomes will become more predictable.
A formalized process embeds the mechanistic decisions that
a developer faces into a standardized routine so that
developers can spend more time on the creative aspects of
their work. Griffin [26], in a review of studies on new
product development, found that numerous studies sup-
ported the proposition that a formal, structured develop-
ment process benefited project outcomes, especially when
projects were complex. A formalized reuse process must
also ensure the repeatability of the reuse success by

enforcing component standards. A required certification
process can guarantee that every part of the repository
meets the desired performance standards. Poulin has
reported IBM’s positive experience with a reuse program
that uses such a certification process [47]. In the domain of
software development, a formalized, structured process is
the basic goal of the first three levels of the capability
maturity model (CMM) [44] and has been found to have a
positive benefit on software development project outcomes
[25], [28]. This leads to the following proposition.

P2: Higher levels of formalized process are associated with
higher levels of reuse program success.

3.3 Management Support

The results of the factor analysis suggest that both theory-
based notions of management support and education
describe one reuse dimension that we shall name manage-
ment support. The discussion below will show that avail-
ability of reuse education and training can be an indicator of
management’s support for reuse. The items are shown
below.

Theory-Based Category: Management Support

. Question 13: Senior management support.

. Question 14: Reuse champion in management.

Theory-Based Category: Education

. Reuse education and training provided for staff.

Management support is often considered one of the most
basic prerequisites for effective organizational practice, as it
embodies leadership [66], decision making [40], and
organizing resources [15]. First, management support
consists of allocating resources (funds, manpower) for reuse
over an extended period of time. Resources may be based on
physical capital (facilities, infrastructure), human capital
(people and skills), or organizational capital (rules, routines,
rewards) [6]. By selecting which resources to provide, senior
management enacts a strategic-level decision about which
resources are valuable and important relative to competitive
advantage [46]. Resources provide the energy for organiza-
tional attention and action; stifling resources in a particular
area not only creates an obvious shortfall of attention, but
also sends a signal to employees that the area is not
significant or important. In this manner, resources tend to
beget more resources and further potential emerges from
within. Tangible resources tend to be more important when
the market environment is relatively stable and intangible
resources (such as championing and training) tend to be
more important when the market environment is relatively
instable [39]. Management support can facilitate the specific
allocation of resources towards education and training.
Thus, the availability of reuse education and training is an
indicator for the degree of management support that reuse
enjoys in an organization.

Second, management support may come in the form of a
champion. Champions are vocal advocates of a particular
issue (i.e., reuse) and ensure that the issue is considered
systematically in organizational decisions. A champion
ensures that top management not only considers the issue
rationally, but also politically. Champions can also take on

830 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

the role of a change agent, attempting to allocate resources

and change policy and procedure so that new practices can

become embedded in organizational routines [56]. From the

above, the following proposition is developed:

P3: High levels of management support are associated with

high levels of reuse program success.

3.4 Project Similarity

The empirical results validate the theory-based category of

project similarity. This dimension assesses how alike projects

within one development group are with respect to require-

ments, design, and implementation. The items are shown

below:

Theory-Based Category: Project Similarity

. Question 1: Commonality of requirements across
projects.

. Question 2: Commonality of design across projects.

. Question 3: Commonality of code across projects.

Projects can be similar by design or by accident. Projects

may be similar if an organization develops products for a

limited range of customers or constrains the types of

projects it works on. The linkage between project similarity

and the opportunity for reuse is obvious—in the extreme, if

a new project is identical, then full reuse can be achieved (as

is the case in reselling off-the-shelf products to multiple

customers). Having projects that are too similar though may

indicate a too narrow organizational focus and may

decrease the adaptive capacity of the firm.

Specific to the domain of software reuse, concentrating

on the development of closely related domain-specific

applications allows putting together a core set of highly

useful reusable components within the domain [27]. For

example, business process and supply-chain systems for a

particular industry are more likely to incur reuse opportu-

nities than the same systems across different industries.

Developers who work within a well-defined domain can

leverage their experience across the reuse projects with

regards to reuse opportunities and knowledge of the

repository [32]. The proposition reflects the above.

P4: Higher levels of project similarity are associated with

higher levels of success of the reuse program.

3.5 Object Technologies

The factor analysis supports the theory-based category of

object technologies. This dimension captures the extent of

object technology used on reuse projects. This factor

includes the use of object-oriented programming languages,

the use of distributed object computing techniques, and the

use of object-oriented domain modeling languages. The

items are shown below.

Theory-Based Category: Object Technologies

. Question 16: Use of object-oriented programming
languages.

. Question 17: Use of Distributed object computing.

. Question 18: Use of OMT/UML Domain Modeling
Languages.

. Question 19: Use of either Ada, C++, Java, Eiffel or
Smalltalk.

Object-orientation is an increasingly popular approach to

facilitate reuse. Methodologies cover all development

phases, from domain analysis to programming. Hence,

many researchers see the object-oriented paradigm as the

technique of the future for reuse [36], [50]. Object-orienta-

tion provides a set of techniques that are conducive of the

multiple uses of software artifacts across projects. Encapsu-

lation forces the developers to clearly define the interfaces

of each class to the outside world. The practice of defining

data structures and code in the same class is keeping the

elements that need to be reused as a unit within one

framework. Object-oriented analysis and design forces the

developers to think of the problem in terms of the

businesses process that can provide opportunities for reuse.

As a consequence, the following proposition is developed.

P5: Higher levels of object technologies are associated with

higher levels of reuse program success.

3.6 Common Architecture

The factor analysis has shown that the question based on

the theory notion of common architecture did not load with

any other concept. Thus, this item will form its own

dimension.

Theory-Based Category: Common Architecture

. Question 20: Common architecture across product
line.

Specific to software reuse, common architecture can be

viewed as a form of reuse itself, as well as a means to

facilitate the reuse of particular software modules. A

common architecture enables the formation of product

platforms—sets of similar products that are developed

rapidly from a common starting point [37], [63]. A common

architecture may provide a solution to growing product

complexity [3] and may also aid mass-customization and

postponement [19].
Organizations that develop a common architecture

analyze application domains to identify generic designs

that can be used as templates for integrating reusable parts

[50]. The reuse of an architecture forces the definition of

reuse standards [11]. Standards such as common interfaces,

component size, ways of specifying input/output, and

documentation are among the key factors to reuse success

[52]. Often, such standards are operationalized as design

templates that can support the identification of suitable

reusable components, thus reducing time spent on retrieval

[59]. A common architecture defines the rules for developing

components by defining interfaces and data formats. These

standards reduce the effort spent on customizing compo-

nent-based software [22]. Based on this, the following

proposition is developed.

P6: Higher levels of common architecture are associated with

higher levels of reuse program success.

ROTHENBERGER ET AL.: STRATEGIES FOR SOFTWARE REUSE: A PRINCIPAL COMPONENT ANALYSIS OF REUSE PRACTICES 831

4 ASSOCIATIONS BETWEEN REUSE DIMENSIONS

AND SUCCESS

In this section, we present five archetypal software reuse
settings as they occur in the real world. We will discuss to
what extend these strategies are indicative of reuse success
as it is measured using three variables derived from the
reuse literature.

4.1 Measures for Reuse Success

Promises and potential benefits of systematic software reuse

that have been discussed in the literature were grouped into

three conceptual issues that measure the success of a

software reuse program. These conceptual issues are three

dependent variables, each measuring a different aspect of

reuse success in the context of the subsequent analysis.

Reuse benefit focuses on the operational benefit of reuse,

measuring to what extent the organization obtains the

benefit that was desired from reuse; strategic impact goes a

step further by measuring the ability of management to

translate operational reuse benefits into organizational

benefits; software quality measures the improvement to the

error rate that is a consequence of reuse achieved, whether

it is systematic or accidental reuse; thus, it may indicate

success even if the other two measures do not. It has been

confirmed that the multiple items in Strategic Impact are

significantly correlated and load together in one factor

(Cronbach’s Alpha = 0.75). Because of the single item nature

of the other two success measures, no Cronbach’s Alpha

could be calculated. The items are shown in Table 3.

Reuse Benefit. When organizations invest in making

reuse part of their software development process, they

expect to obtain a number of benefits. Potential benefits

include a reduction in development effort and cost [7], faster

time-tomarket [24], and decreased maintenance effort [57]. Reuse

benefit measures to what extent expected benefits have

materialized after the adoption of software reuse.

Strategic Impact. An important goal of a major change

such as the adoption of a reuse methodology is the

realization of new business opportunities. Strategic impact

is concerned with the question of whether the organization

is able to capitalize on the benefits obtained from reuse by

reaching new markets. To achieve a high strategic impact, the

company must not only be able to achieve reuse benefits,

but also sell them successfully to potential clients.
Software Quality. A frequent claim is that reuse reduces

the number of errors in the final product. Previously used

components have already been tested. So, if an application

is built from such components, the likelihood of failure is

lower than in the case of building software from new

untested components [24], [36]. The linkage of the strategy

characteristics to software quality is investigated. Since a

reduction of the error rate is a consequence of reuse, even if

obtained without a systematic reuse program, software

quality is the only one of the three items that measures the

extend of reuse that is otherwise not tied to the organiza-

tional development program.

4.2 Patterns of Reuse Dimensions

Given the nature of the dimensions there is reason to

believe that interactions exist. For example, one might only

obtain the full benefit of architecture if one also has high

project similarity. There are two ways in which such

interactions can be estimated. One can introduce interaction

terms in a regression model and then estimate them in a

straightforward manner. This assumes, though, that the

interactions follow a linear pattern. A more flexible

approach is to group companies (respondents) together by

their co-occurring patterns of reuse dimensions. Just as

clustering the practices helped identify higher-level dimen-

sions of practice, clustering the dimensions into metadi-

mensions will help identify patterns of implementation and,

perhaps, intent.

This is made operational in the following manner: The

dimensional scores noted above are uniquely associated

with each organization; each organization can be character-

ized by a six-dimensional vector representing their scores

on planning and improvement, formalized process, management

support, project similarity, object technologies, and common

architecture. These vectors can then be analyzed using

clustering methods [60] and such an analysis identifies

832 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

TABLE 3
Dependent Variables

clusters of companies that have similar patterns of reuse

implementation. In particular, Ward’s Method was used to

identify clusters of relatively similar factor values.

Clusters A through E have respective sizes of 10, 7, 14,

14, and 24. The next step is to determine why organizations

clustered together as they did. Table 4 shows the mean

value of each of the six reuse dimensions for each of the five

clusters, as well as the reuse program success by cluster.

4.3 Analysis of Reuse Success

Qualitative analysis can be done to try to understand the

underlying patterns. Data in Table 4 was examined and,

where significant differences were suspected, t-tests were

used. This was done in an iterative fashion until we arrived

at the following explanation. The object technologies dimen-

sion was determined to be insignificant in explaining any of

the patterns. Although this result may be surprising at first,

it is consistent with object technology practice and research

[20], [43]. Both indicate that object-oriented methods do not

always lead to high reuse. Further, an organization can

succeed at reuse even without employing object-orientated

methods. We shall stress that this finding does not contra-

dict the notion of reuse benefiting from object-oriented

methods. It merely shows that it takes more than just object-

orientation to succeed in it. Thus, the success of a reuse

attempt depends on the other characteristics presented in

this research.

Cluster E describes organizations that handle reuse in

the best possible way. Here, reuse receives management

support, is embedded in a formalized and repeatable

process, and is planned as well as continuously improved.

These organizations leverage the benefits of a common

architecture by focusing on a domain of similar projects.

Thus, it is not surprising that this cluster is characterized by

high values in all three success measures. Performing well

in all five (remaining) dimensions leads to success in all of

the performance areas—this is a fairly strong message in

support of a holistic approach to reuse implementation and

management.

Cluster A describes development settings in which

there is potential for reuse, but not sufficient organiza-

tional support. These organizations develop projects with

a high similarity and are using a common architecture,

suggesting a high reuse potential. Nevertheless, reuse is

not formally integrated in the development process and

management support is low. Some reuse is accomplished

by the developers in an “ad hoc” fashion without any

formal support. Thus, cluster A has moderate reuse

benefit, relatively poor strategic impact, but strong soft-

ware quality. This indicates that most reuse benefits

cannot be achieved without planning, a formalized

process, and management support. But, even with those

essential reuse drivers missing, software quality can be

achieved based on project similarity and common archi-

tecture. In a narrow domain with a common architecture,

an organization will invest more effort into the quality of

individual components because the number of times

individual components are reused is higher than in wider

domains. Further, accumulated experience of developers

in a narrow domain also may contribute to a better

reliability of the components.

Clusters B, C, and D, are fairly similar to one another.

Cluster B has the poorest overall reuse success and is

characterized by moderate levels of planning and improve-

ment, formalized process, and management support, and low

levels of project similarity and common architecture; in a sense,

it is the opposite of Cluster A. These organizations attempt

reuse halfheartedly in an environment that has a low

potential for reuse. Process factors are somewhat in place,

but the projects and domains are not suitable for reuse. It is

ROTHENBERGER ET AL.: STRATEGIES FOR SOFTWARE REUSE: A PRINCIPAL COMPONENT ANALYSIS OF REUSE PRACTICES 833

TABLE 4
Cluster Means of Reuse Dimensions

not surprising that there is little reuse success in such a

setting. Cluster C describes settings that are also attempting

reuse halfheartedly. It is similar to B, except that the

potential for reuse is much higher, as indicated by the use of

a common architecture. As a consequence, it does slightly

better than Cluster B along all of the success measures. This

lets us conclude that a common architecture positively

affects a reuse effort. A common architecture in an

otherwise only moderately supportive reuse environment

is not sufficient to obtain overall reuse benefits. Cluster D is

similar to C except that it has higher levels of formalized

process and project similarity, and lower levels of management

support. Thus, it describes settings that have integrating

reuse in the development process and are operating in an

environment that is suitable to reuse. However, they lack

strong management support. The results are similar to

Cluster C, except for a much higher reuse benefit. This cluster

represents a moderately successful reuse attempt. All

characteristics have reasonably high values, and the benefit

measures reflect this. The reason for Cluster D’s perfor-

mance being below that of Cluster E is a lower planning and

improvement, as well as a lower management support

score. In summary:

. Performing well in all reuse dimensions leads to all
of the reuse benefits.

. Software quality can be realized by a focus on project
similarity and common architecture.

. Performing only moderately well, or poorly, across
all of the dimensions only leads to moderate or poor
reuse success.

. Focusing on formalized process and project similar-
ity can have good overall performance, but not the
best without the other dimensions.

5 CONCLUSION

We have consolidated an array of existing software reuse
success factors into six dimensions based on co-occurrences
of reuse practices in an empirical data set. The dimensions
describe the characteristics of software reuse settings. To
find out which distinct archetypes of reuse strategies exist
in the real world, we clustered the dimensions into
metadimensions identifying implementation patterns. We
found five distinct reuse settings that describe different
attempts to implement systematic software reuse with
varying success. Table 5 presents the five clusters that form
these reuse archetypes. The table classifies the settings
using the dimensions established by the study.

Although Object Technologies was initially a candidate for
a reuse dimension, it has not been used in the final
classification scheme. As it was determined to be insignif-
icant in explaining reuse success, we concluded that an
organization’s reuse success is not dependent on the use of
object-oriented techniques. Nevertheless, object technolo-
gies may be conducive to reuse, yet the other dimensions
that make up the model ultimately determine reuse success.
The qualitative analysis of the clusters’ reuse success
yielded additional insights: While an improvement of
software quality can be achieved without an emphasis on
the reuse process, an organization will only obtain the full
benefit of reuse if a formal reuse program is employed and
subject to quality control through formal planning and
continuous improvement.

The classification scheme can serve as a framework for
future research to differentiate between different reuse
strategies, enabling researchers to test more focused
theories on reuse strategies employed in practice. While
potential reuse adopters can learn which aspects are most
crucial to the success of their reuse efforts, particularly to
their expectations regarding the benefits of their reuse
program, there is a need for further analysis with additional
data sets. Specifically, by posing the right questions about

834 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

TABLE 5
Reuse Archetypes

different aspects of the now identified reuse dimensions, it

may be possible to better measure the actual effort that

organizations invest in reuse. Our future research is aimed

in these directions.

APPENDIX

FACTOR HISTOGRAMS

The factor histograms are illustrated in Fig. 1.

ROTHENBERGER ET AL.: STRATEGIES FOR SOFTWARE REUSE: A PRINCIPAL COMPONENT ANALYSIS OF REUSE PRACTICES 835

Fig. 1. (a) Planning and improvement. (b) Project similarity. (c) Object technologies. (d) Management support. (e) Formalized process. (f) Common
architecture.

REFERENCES

[1] U. Apte, C.S. Sankar, M. Thakur, and J.E. Turner, “Reusability-
Based Strategy for Development of Information Systems: Im-
plementation Experience of a Bank,” MIS Quarterly, vol. 14, no. 4,
pp. 420-433, 1990.

[2] J.S. Armstrong and T.S. Overton, “Estimating Non-Response Bias
in Mail Surveys,” J. Marketing Research, vol. 14, no. 3, pp. 396-402,
1977.

[3] C. Baldwin and K. Clark, “Managing in the Age of Modularity,”
Harvard Business Rev., pp. 84-93, Sept.-Oct. 1997.

[4] R.D. Banker and R.J. Kauffman, “Reuse and Productivity in
Integrated Computer-Aided Software Engineering: An Empirical
Study,“ MIS Quarterly, vol. 15, no. 3, pp. 375-401, 1991.

[5] R.D. Banker, R.J. Kauffmann, C. Wright, and D. Zweig, “Auto-
mating Output Size and Reuse Metrics in a Repository-Based
Computer-Aided Software Engineering (CASE) Environment,”
IEEE Trans. Software Eng., vol. 20, no. 3, pp. 169-187, Mar. 1994.

[6] J. Barney, “Firm Resources and Sustained Competitive Advan-
tage,“ J. Management, vol. 17, no. 1, pp. 99-120, 1991.

[7] V.R. Basili, L.C. Briand, and W.L. Melo, “How Reuse Influences
Productivity in Object-Oriented Systems,” Comm. ACM, vol. 39,
no. 10, pp. 104-116, 1996.

[8] T.J. Biggerstaff, “An Assessment and Analysis of Software Reuse,”
Advances in Computers, M.C. Yovitis, ed., vol. 34, pp. 1-57, 1992.

[9] T.J. Biggerstaff and C. Richter, “Reusability Framework, Assess-
ment and Directions,” IEEE Software, vol. 4, no. 2, pp. 41-49, 1987.

[10] S. Brown and K. Eisenhardt, “Product Development: Past
Research, Present Findings, and Future Directions,” Academy of
Management Rev., vol. 20, no. 2, pp. 343-378, 1995.

[11] F.A. Cioch, J.M. Brabbs, and L. Sieh, “The Impact of Software
Architecture Reuse on Development Processes and Standards,”
J. Systems and Software, vol. 50, no. 3, pp. 221-236, 2000.

[12] T. Davis, “Adopting a Policy of Reuse,” IEEE Spectrum, pp. 44-48,
June 1994.

[13] W.E. Deming, Out of the Crisis. MIT Press, 1986.
[14] R. DeVellis, Scale Development. Newbury Park: Sage, 1991.
[15] P. Drucker, The Frontiers of Management. Harper & Row, 1987.
[16] S.H. Edwards, “The State of Reuse: Perceptions of the Reuse

Community,” Software Eng. Notes, vol. 24, no. 3, pp. 32-36, 1999.
[17] K.M. Eisenhardt and B.N. Tabrizi, “Accelerating Adaptive

Processes: Product Innovation in the Global Computer Industry,”
Administrative Science Quarterly, vol. 40, no. 1, pp. 84-110, 1995.

[18] J. Evans and W. Lindsay, The Management and Control of Quality.
Cincinnati, Oh.: South-Western College Publishing, 1999.

[19] E. Feitzinger and H. Lee, “Mass-Customization at Hewlett-
Packard: The Power of Postponement,” Harvard Business Rev.,
pp. 116-121, Jan.-Feb. 1997.

[20] R. Fichman and C. Kemerer, “Object Technology and Reuse:
Lessons from Early Adopers,” Computer, vol. 30, no. 10, pp. 47-59,
Oct. 1997.

[21] W.B. Frakes and C.J. Fox, “Sixteen Questions about Software
Reuse,” Comm. ACM, vol. 38, no. 6, pp. 75-91, 1995.

[22] W.B. Frakes and S. Isoda, “Success Factors of Systematic Reuse,”
IEEE Software, vol. 11, pp. 15-19, Sept. 1994.

[23] W.B. Frakes and C. Terry, “Software Reuse: Metrics and Models,”
ACM Computing Surveys, vol. 28, no. 2, pp. 415-435, 1996.

[24] J.E. Gaffney and T.A. Durek, “Software Reuse–Key to Enhanced
Productivity: Some Quantitative Models,” Information and Software
Technology, vol. 31, no. 5, pp. 258-267, 1989.

[25] D. Goldenson and H. Herbsleb, “After the Appraisal: A
Systematic Survey of Process Improvement, Its Benefits, and
Factor for Success,” Technical Report SEI/CMM-95-TR-009, Soft-
ware Eng. Inst., Carnegie-Mellon Univ., 1995.

[26] A. Griffin, “The Effect of Project and Process Characteristics on
Product Development Cycle Time,” J. Marketing Research, vol. 34,
no. 1, pp. 24-35, 1997.

[27] M. Griss and K. Wentzel, “Hybrid Domain Specific Kits for a
Flexible Software Factory,” Proc. Ann. ACM Symp. Applied
Computing, pp. 47-52, 1994.

[28] W. Hayes and D. Zubrow, “Moving On Up: Data and Experience
Doing CMM-Based Software Process Improvement,” Technical
Report CMU/SEI-95-TR-008, Software Eng. Inst., Carnegie Mellon
Univ., 1995.

[29] A.J. Incorvaia and A.M. Davis, “Case Studies in Software Reuse,”
Proc. 14th Ann. Int’l Computer Software & Applications Conf., 1990.

[30] S. Isoda, “Experience Report of Software Reuse Projects: Its
Structure, Activities, and Statistical Results,” Proc. 14th Int’l Conf.
Software Eng., pp. 320-326, 1992.

[31] Y. Kim and E.A. Stohr, “Software Reuse: Survey and Research
Directions,” J. Management Information Systems, vol. 14, no. 4,
pp. 113-147, 1998.

[32] A. Kleiner and G. Roth, “How to Make Experience Your
Company’s Best Teacher,” Harvard Business Rev., Sept.-Oct. 1997.

[33] C.W. Krueger, “Software Reuse,” ACM Computing Surveys, vol. 24,
no. 2, pp. 131-183, 1992.

[34] L. Latour, E. Johnson, and E. Seer, “A Graphical Retrieval System
for Reusable Ada Software Modules,” Proc. Third Int’l Conf. Ada
Applications and Environment, pp. 105-113, 1988.

[35] N.-Y. Lee and C.R. Litecky, “An Empirical Study of Software
Reuse with Special Attention to Ada,” IEEE Trans. Software Eng.,
vol. 23, no. 9, pp. 537-549, Sept. 1997.

[36] W.C. Lim, “Effects of Reuse on Quality, Productivity, and
Economics,” IEEE Software, vol. 11, no. 5, pp. 23-30, 1994.

[37] M.H. Meyer and A.P. Lehnerd, The Power of Product Platforms:
Building Value and Cost Leadership. New York: Free Press, 1997.

[38] H. Mili, F. Mili, and A. Mili, “Reusing Software: Issues and
Research Directions,” IEEE Trans. Software Eng., vol. 21, no. 6,
pp. 528-562, June 1995.

[39] D. Miller and J. Shamsie, “The Resource-Based View of the Firm in
Two Environments: The Hollywood Film Studios from 1936 to
1965,” Academy of Management J., vol. 39, no. 3, pp. 519-543, 1996.

[40] H. Mintzberg, The Nature of Managerial Work. Prentice Hall, 1980.
[41] M. Morisio, C. Tully, and M. Ezran, “Diversity in Reuse

Processes,” IEEE Software, vol. 26, no. 4, pp. 56-63, July/Aug. 2000.
[42] J.C. Nunnally and I.H. Bernstein, Psychometric Theory, third ed.

McGraw Hill, 1994.
[43] C.M. Pancake, “The Promise and the Cost of Object Technology: A

Five-Year Forecast,” Comm. ACM, vol. 38, no. 10, pp. 33-49, 1995.
[44] M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber, “Capability

Maturity Model for Software, Version 1.1.,” Technical Report No.
CMU/SEI-93-TR-24, Software Eng. Inst., 1993.

[45] S.L. Pfleeger, “Measuring Reuse: A Cautionary Tale,” IEEE
Software, vol. 22, no. 4, pp. 118-127, July 1996.

[46] M. Porter, Competitive Advantage. New York: Free Press, 1985.
[47] J.S. Poulin, “Populating Software Repositories: Incentives and

Domain-Specific Software,” J. Systems Software, vol. 30, no. 3,
pp. 187-199, 1995.

[48] J.S. Poulin, Measuring Software Reuse: Principles, Practices, and
Economic Models. Addison-Wesley, 1997.

[49] J.S. Poulin, J.M. Caruso, and D.R. Hancock, “The Business Case for
Software Reuse,” IBM Systems J., vol. 32, no. 4, pp. 567-594, 1993.

[50] R. Prieto-Dı́az, “Status Report: Software Reusability,” IEEE Soft-
ware, vol. 10, no. 3, pp. 61-66, May 1993.

[51] A. Pyster and B. Barnes, “The Software Productivity Consortium
Reuse Program,” Proc. IEEE Int’l Conf.: Technologies for the
Information Superhighway, 1988.

[52] M. Ramesh and H.R. Rao, “Software Reuse: Issues and an
Example,” Decision Support Systems, vol. 12, no. 1, pp. 57-77, 1994.

[53] T. Ravichandran, “Software Reusability as Synchronous Innova-
tion: A Test of Four Theoretical Models,” European J. Information
Systems, vol. 8, no. 3, pp. 183-199, 1999.

[54] D.C. Rine and R.M. Sonnemann, “Investments in Reusable
Software. A Study of Software Reuse Investment Success Factors,”
J. Systems and Software, vol. 41, no. 1, pp. 17-32, 1998.

[55] D. Robertson and K. Ulrich, “Planning for Product Platforms,”
Sloan Management Rev., pp. 19-31, Summer 1998.

[56] E. Rogers, The Diffusion of Innovations. New York: Free Press, 1995.
[57] H.D. Rombach, “Software Reuse: A Key to the Maintenance

Problem,” Information and Software Technology, vol. 33, no. 1, pp. 86-
92, 1991.

[58] M.A. Rothenberger and K.J. Dooley, “A Performance Measure for
Software Reuse Projects,” Decision Sciences, vol. 30, no. 4, pp. 1131-
1153, 1999.

[59] M.A. Rothenberger and J.C. Hershauer, “A Software Reuse
Measure: Monitoring an Enterprise-Level Model Driven Devel-
opment Process,” Information &Management, vol. 35, no. 5, pp. 283-
293, 1999.

[60] S. Sharma, Applied Multivariate Techniques. John Wiley & Sons,
1995.

[61] G. Sindre, R. Conradi, and E.-A. Karlsson, “The REBOOT
Approach to Software Reuse,” J. Systems Software, vol. 30, no. 3,
pp. 201-212, 1995.

836 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 29, NO. 9, SEPTEMBER 2003

[62] A. Sutcliffe, “Domain Analysis for Software Reuse,” J. Systems and
Software, vol. 50, no. 3, pp. 175-199, 2000.

[63] B. Tabrizi and R. Walleigh, “Defining Next-Generation Products:
An Inside Look,” Harvard Business Rev., pp. 116-124, Nov.-Dec.
1997.

[64] M. Titikonda and S. Rosenthal, “Successful Execution of Product
Development Projects: The Effects of Project Management
Formality, Autonomy and Resource Flexibility,” Academy of
Management Conf. Best Papers Proc., 1999.

[65] U.S. GAO, “Best Commercial Practices Can Improve Program
Outcomes,” Technical Report GAO/T-NSIAD-99-116, 1999.

[66] M. Weber, The Theory of Social and Economic Organization. New
York: Free Press, 1961.

Marcus A. Rothenberger holds an undergrad-
uate degree in computer science and business
from the Darmstadt University of Technology,
Germany, and also received the PhD degree in
information systems and the MBA degree, both
from Arizona State University. He is an assistant
professor of management information systems
at the University of Wisconsin-Milwaukee. Prior
to his graduate studies, he was employed by
Deutsche Bank AG in the Information Engineer-

ing area. His current research interests include software reusability,
performance measurement, ERP adoption, and electronic markets. Dr.
Rothenberger has been regularly chairing the minitrack on “Component-
Based Software Development and Web Services” at the annual
Americas Conference on Information Systems since August 2000. He
has published his work in major journals and conferences, such as the
Decision Sciences Journal, Communications of the ACM, the Journal of
Systems and Software, Information and Management, and the Interna-
tional Conference on Information Systems.

Kevin J. Dooley is a professor in the Depart-
ment of Supply Chain Management in the W.P.
Carey School of Business at Arizona State
University (ASU). He also has affiliate appoint-
ments in the Department of Industrial Engineer-
ing at the School of Health Administration and
Public Policy and the Hugh Downs School of
Human Communication. He teaches courses in
the areas of management of technology, quality,
project management, and research methods in

the undergraduate business, MBA, and PhD programs. His research
and teaching interests are in the areas of modeling complex systems,
quality management, innovation and new product development,
information technology, and organizational change. He is the codirector
of the ASU Software Factory, a research and service organization
dedicated to providing software development support to ASU research
projects. He is also a cofounder and COO of the ASU technology spin-
off, Crawdad Technologies, a knowledge management software firm.

Uday R. Kulkarni received the Bachelor’s
degree in electrical engineering from the Indian
Institute of Technology, Bombay, the MBA
degree from the Indian Institute of Management,
Calcutta, and the PhD degree in management
information systems from the University of
Wisconsin-Milwaukee. He is an associate pro-
fessor of information systems at the W.P. Carey
School of Business of Arizona State University.
Prior to his doctoral studies, he was employed for

five years in corporate planning and control areas. His current research
interests include the use of relational views for decision-support and
application of artificial intelligence techniques to manufacturing pro-
blems. He has published articles in the IEEE Transactions on Knowledge
and Data Engineering, Decision Sciences Journal, Journal of Manage-
ment Information Systems, Decision Support Systems, and the
European Journal of Operations Research. He is a member of the IEEE.

Nader Nada received the MS degree in compu-
ter science from Moorhead State University in
1993 and the PhD degree in information
technology from George Mason University in
1998. In 1991, he received the Computer
Science Achievement Award from the American
Achievement Academy. From 1995-1997, he
was a NASA Fellow at George Mason Univer-
sity. From 1998-2000, he joined the Department
of Computer Science at George Mason Uni-

versity as an assistant professor. In 1999, he joined the Department of
Software Engineering at the Naval Postgraduate School as a visiting
professor. In 2001, he joined the College of Information Systems at
Zayed University. In 2003, Dr. Nada joined Sharjah College as an
associate professor. His research areas include: improving software
development practices, reusable software architectures, digital firm
solutions, wireless internet, and mobile applications. He has authored
three books, several journal papers, and more than 50 conference
publications. In 1999, he was the coprinciple investigator in the research
and development of a validated reference model for the software reuse
process, funded by a grant from the US National Science Foundation.
He has close ties with the software industry on both the international and
regional levels and some government organizations including NASA
headquarters in the Washington D.C. area through several research
activities. He is the founder and chair of the International Symposium on
Reusable Architectures and Components for Developing Distributed
Information Systems (RACDS) and a member of the IEEE 1517
standard committee on Software Reuse. He chaired the UAE National
Committee on Information Technology Education, nominated as a
member of the National Committee on the Development of the UAE
Primary and Secondary Education and a member of the National
Committee on Abu Dhabi Environmental Database.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

ROTHENBERGER ET AL.: STRATEGIES FOR SOFTWARE REUSE: A PRINCIPAL COMPONENT ANALYSIS OF REUSE PRACTICES 837

