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Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus

Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4

million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths

as on June 11 2020) and economic loss (a 3.2% shrink in global economy in

2020) across 212 countries globally. The clinical manifestations of this disease are

pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS).

Currently, there is no vaccine or effective pharmacological agents available for the

prevention/treatment of SARS-CoV2 infections. Moreover, development of a suitable

vaccine is a challenging task due to antibody-dependent enhancement (ADE) and

Th-2 immunopathology, which aggravates infection with SARS-CoV-2. Furthermore, the

emerging SARS-CoV-2 strain exhibits several distinct genomic and structural patterns

compared to other coronavirus strains, making the development of a suitable vaccine

even more difficult. Therefore, the identification of novel small molecule inhibitors

(NSMIs) that can interfere with viral entry or viral propagation is of special interest

and is vital in managing already infected cases. SARS-CoV-2 infection is mediated

by the binding of viral Spike proteins (S-protein) to human cells through a 2-step

process, which involves Angiotensin Converting Enzyme-2 (ACE2) and Transmembrane

Serine Protease (TMPRSS)-2. Therefore, the development of novel inhibitors of

ACE2/TMPRSS2 is likely to be beneficial in combating SARS-CoV-2 infections.

However, the usage of ACE-2 inhibitors to block the SARS-CoV-2 viral entry requires

additional studies as there are conflicting findings and severe health complications

reported for these inhibitors in patients. Hence, the current interest is shifted

toward the development of NSMIs, which includes natural antiviral phytochemicals
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and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate

the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the

SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed

structural features of SARS-CoV-2 with special emphasis on key molecular targets and

their known modulators that can be considered for the development of NSMIs.

Keywords: SARS-CoV, SARS-CoV-2, COVID-19, natural Nrf-2 modulators, NSMIs

INTRODUCTION

Global Burden of COVID-19
COVID-19 is a devastating disease caused by a coronavirus
related to the one that caused outbreaks of Severe Acute
Respiratory Syndrome (SARS) in the year 2002 (1, 2). Middle
East Respiratory Syndrome (MERS)-related coronavirus is an
infamous member of this cohort. COVID-19, which is caused
by the SARS-CoV-2 infection, was detected in Wuhan, China
in December 2019. The World Health Organization (WHO)
declared this infection a pandemic on March 11 2020 due to its
severity and rapid spread across the globe. As of June 11 2020,
SARS-CoV-2 had infected 7.4 million individuals, and caused
4,17,956 deaths across 212 countries worldwide (Table 1).

Structural Features of SARS-CoV-2
Coronaviruses (CoV) belongs to a family of single-stranded RNA
viruses (+RNA) that can infect a variety of mammals such as
bats and humans (3). SARS-CoV-2 contains RNA of 29,891-
nucleotide length, which codes for 9,860 amino acids (4). The
RNA has a 5’ cap and 3’ poly-A tail and produces a poly-protein
1a/1ab (pp1a/pp1ab) in the host (4). SARS-CoV-2 belongs to
beta CoV category and appears in a crown shape with a size of
∼60–140 nm (Figure 1).

Gene sequencing data revealed that SARS-CoV-2 has 89 and
82% sequence similarity with bat SARS-like-CoV-ZXC21 and
human SARS-CoV, respectively (4, 5). The spike (S) protein-
coding gene mutation in the nsp2 and nsp3 regions results in
the replacement of glycine (G) with serine (S) at 723 position
(G723S), and an isoleucine (I) replaced with proline (P) at
1010 amino acid position (I1010P). Due to these mutations, the
invading potential of SARS-CoV-2 has increased significantly
toward host tissues. This virus can also be transmitted through
the respiratory droplets from coughs and sneezes of infected
individuals (4). This mode of aerosol transmission is possible,
especially, when protracted exposure occurs in closed areas
(4). The incubation time of the virus varies significantly from
individual to individual. In general it takes about 6 days from
the day of infection to the first appearance of symptoms.
However, in a few cases the symptoms may appear only after 2
weeks (6).

Abbreviations: RTIs, Respiratory tract infections; ORF, Open reading
frame; TMPRSS2, Transmembrane serine protease; ADAM17, Disintegrin
and metallopeptinase-containing domain 17; SARS-CoV, Severe respiratory
syndrome-coronavirus; SARS-CoV-2, Severe respiratory syndrome-Coronavirus-2
(COVID-19); GM-CSF: Granulocyte–macrophage colony-stimulating factor.

SARS-CoV2 Infection and Pulmonary
Pathogenesis
Members of Coronaviridae are known to induce respiratory
complications in humans (7, 8). At first, SARS-CoV, MERS-CoV,
and SARS-CoV-2 varieties were transmitted from animals
to humans which triggered severe respiratory diseases (9–
11). However, subsequent transmission occurred among
humans primarily due to physical contact. Hence, conventional
preventive measures such as physical isolation were implemented
to avoid propagation of early infection across the human
population (1, 12). Similar to the SARS-CoV, the pathological
manifestations of SARS-CoV-2 could induce lung malfunction
in humans as indicated by the severe acute respiratory syndrome
and pneumonia (12). Recent studies reported that SARS-CoV-2
infection can induce mild, moderate, and severe illness in
infected patients (4). Clinical manifestations of this infection
include chronic pneumonia, sepsis, septic shock, fever, and
dry cough (4). A progressive respiratory failure during this
infection may lead to sudden death (4). Mild illness resulting
from a SARS-CoV-2 infection is characterized by the presence
of malaise, headache, low fever and dyspnea. In the case
of moderate illness from SARS-CoV-2, the complication is
manifested by the presence of cough and mild pneumonia.
Severe illness from SARS-CoV-2 is associated with chronic
pneumonia, cough, SARS, hypoxia, and tachypnea (in children)
followed by respiratory, and cardiovascular system failure

TABLE 1 | Recent statistics of SARS-CoV2 infection—Top 10 countries.

Country Infected (in

Millions) (%)#
Recovered (in

Millions) (%)$
Deaths (in

Thousands) (%)*

United States

of America

2.064 (0.623) 0.800 (38.79) 115,115 (5.57)

Brazil 0.772 (0.363) 0.380 (49.23) 39,680 (5.13)

Russia 0.493 (0.338) 0.252 (51.20) 6,358 (1.28)

United Kingdom 0.290 (0.427) 0.135 (46.52) 41,128 (14.17)

Spain 0.289 (0.618) Not available 27,136 (9.37)

India 0.287 (0.020) 0.140 (49.09) 8,107 (2.82)

Italy 0.235 (0.389) 0.169 (72.08) 34,114 (14.46)

Peru 0.208 (0.633) 0.098 (46.94) 5,903 (2.82)

Germany 0.186 (0.22) 0.170 (91.34) 8,844 (4.73)

Iran 0.177 (0.212) 0.140 (79.01) 8,506 (4.78)

#Percentage of total population.
$Percentage of total infected cases.

*Percentage of total infected cases.

List of top 10 countries in the world affected with COVID-19.
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FIGURE 1 | The schematic representation of SARS-CoV-2 structure: SARS-CoV-2 has a size ranging from 60 to 140 nm, and is a spherical to elliptical shaped virus

with a crown-like appearance; it consists of a single-stranded RNA genome, a Spike protein (S), a Matrix protein (M), a nucleoprotein (N), and an Envelope-protein (E).

(4). The autopsy and biopsy reports of SARS-CoV-2 patients
revealed severe edema with pulmonary tissue exudates, focal
reactive hyperplasia, damage to pneumocytes as well as alveolar
macrophages, and patchy cellular infiltration (13).

Coronavirus-induced lung damage has been demonstrated
experimentally by several investigators in animal models (14).
For instance, the Sialodacryoadenitis virus and Parker’s RCoV
were shown to induce damage to alveolar type-I cells through
the expression of pro-inflammatory cytokines, and chemokines
such as CINC-2, CINC-3, LIX, MIP-3α, and fractalkines (15–21).
For example, fractalkine promotes the infiltration of cytotoxic
lymphocytes in the alveolar epithelium thereby inducing a severe
inflammatory response (15, 22). Similarly, MIP-3α confers the
chemotaxis of immune cells via IL-1β and TNF-α inflammatory
mediators (17, 22–25). Therefore, these animal models could be
used to develop effective pharmacological agents against SARS-
CoV-2 infections.

Molecular Mechanisms of SARS-CoV-2
Infection
Studies from several laboratories have demonstrated that the
entry of SARS-CoV-2 into human cells is facilitated by ACE-
2 (26). ACE-2 is a member of the Renin-angiotensin system
(RAS), which plays a vital role in cardiovascular and renal
homeostasis. ACE-2 and TMPRSS2 facilitates the entry of the
virus into host cells during SARS-CoV-2 infection (7). In
addition, there are other proteases such as aminopeptidase
N (APN) which plays a prominent role for the entry of
HCoV-NL63 and HCoV-229E into host cells (27–30). APN
is a membrane-bound glycoprotein that mediates the zinc-
dependent protease activity during the entry and or replication
of coronavirus strains into host cells (29, 31, 32). Hence, the
ACE-2 receptor’s down-modulation may prevent SARS-CoV-2
viral entry/replication (33). The S-protein of SARS-CoV and
other coronavirus strains are different in their structural and

functional domains (3). S-protein can bind to the N-terminus
of ACE-2 receptors on the outer surface of host cells including
respiratory epithelium of the lungs (34–36). Identifying the key
amino acid residues in S-protein of the SARS-CoV-2 strain
may benefit virologists and medical scientists to develop better
therapeutic agents. However, to date these details are not
known, hence, there is an immediate requirement to identify the
amino acids involved in binding S-proteins to ACE-2 receptors
on host cell surfaces. Furthermore, investigations should also
focus on establishing the structural similarities of S-protein
motifs that are interacting with the ACE-2 receptors of other
coronavirus strains (37–41). These investigations might help in
deciphering molecular strategies to target receptor binding sites
of ACE-2 proteins with SARS-CoV-2 using novel therapeutics
and vaccines to avoid membrane fusion process and viral
entry (7).

The TMPRSS2 protease can foster the entry of the SARS-
CoV-2 virus by activating the S-protein for virus-host cell
membrane fusion, consequently enhancing viral replication in
the host cells (7, 42–46). TMPRSS2 plays a vital role in generating
inflammatory cytokines and chemokines in lung epithelial cells
by cleaving S-protein during coronavirus infections including
SARS-CoV-2. Hence, TMPRSS2 is another potential therapeutic
target to consider for the novel drug development against SARS-
CoV-2 (46–48).

Novel Small Molecule Inhibitors (NSMIs) in
the Prevention and Treatment of
SARS-CoV-2 Infections
Prevention and treatment of SARS-CoV-2 infections are achieved
at different levels (49). The primary approach involves physical
isolation to prevent the spread of virus from individual to
individual; the second approach involves inhibiting the entry of
virus into human cells and the third method includes treating
the infected individuals to minimize inflammatory reactions and
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TABLE 2 | Structure and probable mechanism of action of NSMIs against SARS-CoV-2.

Small Molecule Inhibitors Predicted to

be effective against SARS-CoV-2

Mechanism of Action Structure References

SiRNA Targets Orf7a required for viral assembly

(or) Targets Orf7b (or) Targets Orf3a

required for viral budding and release

Note: SiRNA is yet to be examined against

SARS-CoV-2 infection

– (50)

GRL0617 Targets non-structural proteins nsp3

(Papain like proteinase) Note: Yet to be

examined against SARS-CoV-2 infection

(51)

Benzodioxolane derivatives Targets non-structural proteins nsp3

(Papain like proteinase) in coronavirus

Note: Yet to be examined against

SARS-CoV-2 infection

1-[(R)-1-(1-Naphthyl)ethyl]-4-[3,4-

(methylenedioxy) benzylamino]

carbonylpiperidine

1-[(S)-1-(1-naphthyl) ethyl]-4-[3,4-

(methylenedioxy)benzylamino]

carbonylpiperidine

(52)

5-chloropyridinyl indolecarboxylate Targets non-structural proteins nsp5

(3C-like main protease in SARS

coronavirus) required for

replicase synthesis Note: Yet to be

examined against SARS-CoV-2 infection

(53)

2978/10 humanized antibodies Mitigate SARS-CoV infection by targeting

virus-neutralizing epitopes

– (54)

Amiodarone Targets SARS-CoV by inhibiting

endosomal processing in host cells Note:

Clinical Trials are at Recruiting Stage to

test against

SARS-CoV-2 infection—NCT04351763

(Pubchem)

(55)

Arbidol Targets S-protein of SARS-CoV and

prevent viral fusion Note: Clinical Trials are

at Recruiting Stage to test against

SARS-CoV-2 infection -NCT04255017

(Pubchem)

(56)

TSL-1 Targets SARS-CoV replication Note: Yet to

be examined against

SARS-CoV-2 infection

(57)

(58)

(Continued)

Frontiers in Immunology | www.frontiersin.org 4 September 2020 | Volume 11 | Article 552925

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Beeraka et al. Strategies for Targeting SARS-CoV-2: NSMIs

TABLE 2 | Continued

Small Molecule Inhibitors Predicted to

be effective against SARS-CoV-2

Mechanism of Action Structure References

TACE inhibitor (TAPI-2) Blocks SARS-CoV replication in lungs

Blocks ACE2 shedding Note: Yet to be

examined against SARS-CoV-2 infection

(59)

IFN—α B/D Blocks SARS-CoV replication in lungs (60)

IFN-β and-γ Blocks SARS-CoV replication in lungs

Note: Completed Clinical Trials for

Interferon Beta-1A and Interferon

Beta-1B -NCT04343768 Clinical Trials are

at Recruiting Stage to test against

SARS-CoV-2 infection-NCT04324463;

NCT04350281 (IFN-β)

(61)

(62)

(63)

Camostat TMPRSS2 serine protease Inhibitor in

SARS-CoV-2 infection Note: Clinical Trials

are at Recruiting stage to test against

SARS-CoV-2 infection—NCT04321096

(Pubchem)

(7)

Nafamostat TMPRSS2 serine protease Inhibitor in

SARS-CoV-2 virus Note: Yet to be

examined against SARS-CoV-2 infection in

clinical trials

(Pubchem)

https://www.eurekalert.org/

pub_releases/2020-03/

tiom-nie032420.php

Pegylated IFN-α Blocks SARS-CoV replication in lungs

Note: Yet to be examined against

SARS-CoV-2 infection

– (2)

Remdesivir Effective against SARS-CoV-2 infection

in vitro Note: Clinical Trials—Recruiting

stage to test against SARS-CoV-2

infection - NCT04365725

(Pubchem)

(64)

Lopinavir Predicted to block SARS-CoV-2 Mpro

(Molecular docking studies) Note: Clinical

Trials are at Recruiting stage to test against

SARS-CoV-2 infection-NCT04364022

(Pubchem)

(65)

(Continued)
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TABLE 2 | Continued

Small Molecule Inhibitors Predicted to

be effective against SARS-CoV-2

Mechanism of Action Structure References

Nelfinavir Predicted to block SARS-CoV-2 Mpro

(Molecular docking studies)

(Pubchem)

(66)

Tocilizumab Block SARS-CoV-2 viral induced cytokine

storm—IL-6 receptor-targeted monoclonal

antibody (mAb) (Ongoing clinical trials in

China and Italy)—ChiCTR2000029765;

NCT04377750; NCT04377659

– doi.org/10.1038/s41577-

020-0308-3

SSAA09E1

[[(Z)-1-thiophen-2-

ylethylideneamino]thiourea]

Blocks cathepsin L required for

SARS-CoV processing Note: Yet to be

examined against SARS-CoV-2 infection

(67)

SSAA09E2

N-[[4-(4-methylpiperazin-1-

yl)phenyl]methyl]-1,2-oxazole-5-

carboxamide

Blocks SARS-CoV interaction with ACE-2

Note: Yet to be examined against

SARS-CoV-2 infection

(67)

SSAA09E3

[N-(9,10-dioxo-9,10-dihydroanthracen-2-

yl)benzamide]

Blocks SARS-CoV fusion to host

cell membrane Note: Yet to be examined

against SARS-CoV-2 infection

(67)

NCT numbers were obtained from https://clinicaltrials.gov/.

pulmonary damage. Although physical isolation is the ideal way
of limiting the spread, in reality this approach is difficult to
execute, hence, many pharmacological companies are actively
involved in developing small molecule inhibitors to prevent the
entry of the virus into human hosts (7, 49). In this regard
several NSMIs have been investigated to treat SARS-CoV; but,
significant breakthroughs are yet to come for treating SARS-
CoV-2 (48) (Table 2).

Viral Entry Inhibitors vs. SARS-CoV-2
Adedeji et al. (49) reported the discovery and characterization
of novel inhibitors to block SARS-CoV replication via different

mechanisms. One mechanism uses screening of small molecule
inhibitors using “HIV-1 pseudotyped with SARS-CoV surface
glycoprotein S (SARS-S)” (49, 68). “SSAA09E2” is a novel small
molecule inhibitor, which blocks the interaction of CoV SARS-
S with ACE-2 receptors, thus blocking the viral entry (49).
Another NSMI is “SSAA09E1” reported to be involved in
blocking the cathepsin L, which is required for CoV-SARS-
S processing to mediate viral entry into the host cell (49).
SSAA09E3 is another NSMI, which can block the fusion of
viral membranes with host cell surfaces (49) (Figure 2). Since
the pathological aspects and genomic similarity of SARS-CoV-
2 virus with SARS-CoV, the above strategies of inhibition may
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FIGURE 2 | Molecular pathogenesis of SARS-CoV-2 in human lung cells. Binding of S-protein of SARS-CoV-2 to the ACE-2 receptors triggers the processing of

ACE-2 through ADAM-17/TNF-α-converting enzyme and induces the “ACE-2 shedding” into the extracellular space and facilitates uptake of SARS-CoV-2 followed by

the development of SARS. Alternatively, the entry of SARS-CoV-2 by membrane TMPRSS2 serine protease’/HAT (Human Airway Trypsin-like protease)-mediated

cleavage of ACE2 can facilitate SARS-CoV S-glycoprotein-mediated virus entry. Even though, several NSMIs targeting these processes were described and their

mode of action against coronavirus were delineated, their efficacy against SARS-CoV-2 is yet to be tested.

be considered for developing potent pharmacological agents to
prevent SARS-CoV-2 infections (49). However, the prospective
research should address the efficacy of these inhibitors against
SARS-CoV-2 infections.

Kinase Inhibitors vs. SARS-CoV-2
Cytokine storm was predominantly reported during SARS-
CoV-2 infection. Targeting cytokine-mediated inflammatory
responses induced by SARS-CoV-2 is another viable approach
for mitigating the complications of viral infection. In this
regard, Chang et al. (35), documented the inflammatory cascades
mediated through intracellular signaling pathways conferred by
the SARS-CoV in both lung epithelial cells and fibroblasts.

Authors of this study have reported that S-protein of SARS-
CoV efficiently mediate the IL-8 release in the infected lung
cells by activating MAPKinases, and activator protein-1 (AP-
1) without intervention of NF-kB cascade (35). This study
suggested a promising lead for novel rational drug design
through the identification of a “specific sequence motif of S-
protein functional domain,” which is responsible for inducing
IL-8-mediated inflammatory response in lungs (35). Baricitinib is
a pharmacological agent, which was reported to block the SARS-
CoV-2 viral entry and inflammation through the inhibition of
AP2-associated protein kinase 1 (AAK1), cyclin g-associated
kinase, and janus kinase-1 and 2 (69). Chloroquine (CQ) and
hydroxychloroquine (HCQ) were reported to be effective in
mitigating the coronaviral load (70, 71). CQ and HCQ not only
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inhibit the entry of SARS-CoV-2 but also change the pH of
acidic intracellular organelles such as endosomes and lysosomes
thereby preventing membrane fusion reactions. However, many
contradictions and queries prevail pertaining to the use of HCQ
for the treatment of COVID-19. At the time of the submission of
this review, results of many clinical trials are yet to be announced,
hence, the efficacy of HCQ for inhibiting SARS-CoV-2 infection
is still a possibility.

Prospective studies should focus on testing the FDA approved
inhibitors of “ABL-1 kinases,” “PI3K/Akt/mTOR” signaling,
and “MAPKinase” pathways against SARS CoV-2. Since these
pathways are involved in cell survival, inflammatory cytokines
production, and proliferation of cells, targeted downregulation
of these pathways is likely to mitigate the exacerbations induced
by coronavirus. In this direction, many of these inhibitors
are currently being tested against SARS-CoV-2 (Table 3) (72–
74). For instance, sorafenib, which inhibits RAF, is being
experimented in preclinical models and early clinical trials (72).
Likewise, the efficacy of IL-1 receptor antagonists and TNF-α
receptor antagonists for blocking the rat coronavirus-mediated
chemokine production was already proven effective in animal
models (15, 75, 76). Further studies testing the safety and efficacy
are warranted before considering these inhibitory agents for
treating individuals infected with SARS-CoV-2 (76).

TABLE 3 | Ongoing clinical trials against SARS-CoV2 using MAPKinase Inhibitors.

MAPK Inhibitor Mechanism of Action References Current Status

of Clinical

Trials against

SARS CoV-2

Trametinib

Selumetinib

Inhibits MAPK/ERK—kinase

family proteins viz.

MEK1/2 inhibitor—Inhibits

MAPK/ERK—kinase family

Investigational (Phase III)

MEK1/ERK1/2 inhibitor

(72)

(72)

Ongoing

Ongoing

Everolimus

Miltefosine

Teriflunamide

Leflunomide

Inhibits PI3K/Akt/mTOR

Kinases—Akt/mTOR

Inhibits viral block of cell

stress response

and apoptosis

(73) Ongoing

Dasatinib

Imatinib

Nilotinib

Inhibition of actin motility

Blocks ABL1 kinase.

(73)

(74)

Ongoing

PD98059

SB308520

SP600125

MEK inhibitor

p38 inhibitor

JNK inhibitor

*MOA: Inhibits SARS-CoV S

protein-induced IL-8

Promoter activity using

above MAPK

cascade inhibitors

(35) –

Chloroquine

(NCT04351724)

Hydroxychlorquine

(NCT04352933)

Inhibits p38 MAPK

activation and blocks viral

replication

(70, 71) Ongoing

*Mechanism of action.

However, the concept of “One Drug to Treat All” should
be followed to combat several devastating viral infections
(77, 78). For instance, the Ebola, Marburg, and SARS-
CoV-2 are undoubtedly devastating viral pathogens, which
can induce high mortality as they transmit rapidly via air
and body fluids (78). Outbreaks of these viruses occur
sporadically and currently there are no clinically approved
NSMIs available to combat these viruses. A recent report by
Taylor et al. (79) demonstrated the efficacy of a synthetic
adenosine analog, BCX4430 in blocking a broad spectrum
of viral species viz., “coronaviruses, paramyxoviruses, and
bunyaviruses” as these viruses could induce SARS, measles,
and mumps. BCX4430 could efficiently block both Ebola and
Marburg viral titers in non-human primate models by targeting
viral RNA polymerase (78, 79). Hence, this molecule should
be tested for further studies against SARS-CoV2 infections
in humans.

Membrane Protease Inhibitors vs. SARS-CoV-2
Targeting the membrane protease involved in viral S-protein
processing and the viral entry into host cells is another
approach in mitigating SARS-CoV-2. The host cellular
proteases viz., “trypsin,”, “miniplasmin,” “human airway
trypsin like protease,” “tryptase Clara,” and “TMPRSS2” could
cleave the HA glycoprotein located in influenza A virus
and thereby promote viral entry into lung cells (80). The
usage of serine protease inhibitors such as Camostat and
Aprotinin significantly blocked the replication of influenza
virus in epithelial cells of lungs and bronchioles (81). In
addition, these NSMIs could block the release of inflammatory
mediators such as cytokines, IL-6 and TNF-α, during this
infection (81).

TMPRSS2 is a key protein involved in the pathogenesis
of several seasonal viral infections including influenza, H1N1,
H3N2, and H7N9 (82–85). TMPRSS2 cleaves the S-protein of
coronavirus to produce unlocked, fusion-catalyzing viral forms
and binds to the host cell surface thereby enhancing rapid viral
entry (43, 44, 86–90). Both SARS-CoV and MERS-CoV could
rapidly enter into the host cells as TMPRSS2 can facilitate viral
binding to the cell surface (42, 43, 45, 87, 91, 92). TMPRSS2
also plays a vital role in the immuno-pathology of coronavirus
infections including SARS-CoV-2 across lungs by inducing lung
fibrosis (46). Hence, the emerging research should promote
the development of NSMIs to target these proteases thereby
hindering the entry of SARS-CoV-2 into host cells.

A proof-of-concept study by Iwata-Yoshikawa et al. (46)
reported that SARS-CoV failed to replicate in the bronchioles
and lungs of TMPRSS2 knockout mice. Authors of this study
reported elevated expression of TLR3-mRNA expression in the
lungs of “SARS-CoV-inoculated TMPRSS2-deficient mice” and
showed enhanced TLR-3 mediated localization of dsRNA into
endosomes (46). In this study, TMPRSS2 knockout has resulted
in downregulation of inflammatory cytokines and chemokine
expression, which are involved in the bronchiolitis obliterans
organizing pneumonia (BOOP), SARS, and pulmonary fibrosis
in SARS-CoV infection (46, 93, 94).
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Interferon Therapy vs. SARS-CoV-2
The intricate SARS-CoV-2 pathogenesis is similar to that of
SARS-CoV. Studies have reported the efficacy of IFNs to block
SARS-CoV in cell line models but not against SARS-CoV-2.
Among IFN- α/ -β/ and -γ, the IFN-βwas reported to be the most
potent blocker of SARS-CoV growth (3, 95–98). Furthermore,
IFN-β and-γ have a synergistic effect in blocking SARS-CoV
viral replication (62, 63). However, the effect of this combination
against SARS-CoV-2 is not yet reported. Therefore, future studies
should focus on determining the efficacy of IFN- α/ -β/ and –γ
against SARS-CoV-2 infections.

SiRNAs vs. SARS-CoV-2
Unlike small molecule inhibitors, siRNAs are specific and can be
designed to mitigate SARS-CoV associated structural proteins
by targeting ORF4 (99, 100), ORF5 (101, 102), ORF9a (50, 103,
104), and ORF7a (50, 105–107). For example, siRNAs siSC2
and siSC5 have shown success in cultured cells as well as
in preclinical mouse models in inhibiting the SARS infection
without causing toxicity (108). Several other reports have also
recently demonstrated the efficacy of SiRNAs to inhibit the
expression of SARS-CoV genes coding for 3CL protease in cell
line models (108–114). The activity of SARS-CoV 3CL protease
is essential for viral replication as this protein is involved in
the processing of viral proteins (114). Selective optimization
and screening of hexa-chlorophene analogs can be “active 3CL
protease inhibitors” during a SARS-CoV infection (114). Hence,
the pharmacological agents/SiRNAs targeting these pathways
may likely produce effective clinical outcomes in SARS-CoV-2
infections. However, clinical studies should test the utility of these
agents/siRNA in reducing the burden of infections caused by
SARS-CoV-2 (111).

Monoclonal Antibodies (MABs) and Other NSMIs vs.

SARS-CoV-2
The genome of coronaviruses is reported to be significantly
involved in coding both structural proteins, and non-structural
proteins (nsp’s) for the effective viral replication (115). The nsp’s
(nsp8C and nsp7) are required for novice CoV viral particle
formation through viral ORF 1ab polyprotein processing (115).
Several NSMIs were reported to target these non-structural
proteins in coronavirus infections to treat SARS (115). For
instance, GRL0617, a bendioxolane derivative, could target
papain-like proteinases like nsp3 (51, 52, 116, 117), whereas 5-
choloropyridinyl indolecarboxylate targets nsp5 (53, 118–120)
and a “combination of zinc derivatives with pyrithione” targets
nsp12 (121, 122); ranitidine bismuth citrate targets nsp13 (123–
127). Monoclonal antibodies; CR3014 (128), mAb-201 (129),
mDEF-201 (130), ampligen (131), polyICLC (61, 132), stinging
nettle lectin (131), and TAPI-2 (a TACE-inhibitor) (59) are anti-
coronaviral agents tested in vivo models of SARS. For instance,
a study showed that Amiodarone (a known anti-arrhythmic
agent) effectively targets coronaviral spreading in in vitro
models (55). Working in a similar fashion, 2878/10 humanized
antibodies can neutralize coronaviruses thereby reduce the
complications caused by viral infections (54). However, the above
NSMIs should be tested against SARS-CoV-2 viral associated

proteins and against the activity of nsp’s to derive an effective
therapeutic intervention. Prospective research must focus on
the development of novel “helicase inhibitors, viral attachment
inhibitors, and activity of Rhesus θ-defensin” that block SARS-
CoV-2 infection using in vitro, in vivo, and clinical studies (115).
Hence, the development of NSMIs to target the synthesis of
nsp’s in SARS-CoV-2 may deliver cellular antiviral responses by
blocking their replication in host cells (115, 133, 134).

Drug Repurposing Strategies (DRS) vs. SARS-CoV-2
Repurposing existing drugs is another strategy widely under
consideration to target key proteins involved in the SARS-CoV-2
infection. In this regard, the existing NSMIs viz., antivirals
(umefenovir, remdesivir, Nitazoxanide, favipiravir, ritonavir,
lopinavir, IFNs), anticytokines, antimalaria drugs (chloroquine,
hydroxychloroquine), and passive antibody therapies are
currently being evaluated to improve clinical outcomes in SARS-
CoV-2 infected patients (3, 47, 64, 135, 136). However, these
agents require additional experimental and clinical validations
before being tested in SARS-CoV-2 infections. For example,
hydroxychloroquine (anti-malarial drug) and the tocilizumab
(immunosuppressive drug) are preferred currently to mitigate
viral entry and cytokine production in the SARS-CoV-2
infection. These drugs are being tested in ongoing trails in China
and Italy (135, 137).

Priming the Spike (S)-protein of coronavirus by host cells
using membrane proteases is a necessary process for viral entry
and replication, which further determines zoonotic potential
of coronaviruses (138). A recent report by Markus Hoffmann
et al. (7) investigated the protease dependence of SARS-CoV-
2 for its entry into cells. For example, SARS-CoV-2 uses the
TMPRSS2 protease for its priming (7). Inhibition of TMPRSS2
using Camostat mesylate retarded the viral entry into Caco-
2 cells (7). Camostat mesylate could be recommended as an
NSMI for human clinical trials to combat the SARS-CoV-
2 virus (7). This report delineated the ability of neutralizing
antibody responses against S-protein to block the SARS-CoV-
2 entry into host cells (139). The serum antibody responses
raised to combat the “SARS-S protein/ACE-2 interface” during
the SARS-CoV-2 infection indicates that the vaccination strategy
may be an effective therapeutic modality against the COVID-19
infection (7).

Conflicting Reports About the ACE-2
Inhibitors Usage for Treating SARS-CoV-2
Infections
ACE-2 catalytic efficacy is significantly higher than ACE for
Angiotensin-II (140). Several compounds, such as MLN-4760,
were screened according to structure-based/substrate-based
studies through virtual screening for inhibiting ACE-2 activity
(140–143). ACE-2 is predominantly expressed in lungs, brain,
heart, blood vessels, and renal organs (144, 145). ACE-2 is
essential for cardiovascular homeostasis, and CNS homeostasis as
ACE-2 confer redox homeostasis by mitigating Ang-II-induced
oxidative stress (146). However, in COVID-19, ACE-2 acts as
receptor on human respiratory epithelial cells for SARS-CoV-
2 binding (7). A recent report by Markus Hoffmann et al. (7)
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provided evidence that the SARS-CoV-2 strain use its spike
(S)-protein to bind to ACE-2. Authors of this paper have also
demonstrated the efficiency of TMPRSS2 in SARS-CoV-2 viral
strain priming in host cells (7). Therefore, targeting ACE-2 could
be a viable strategy to prevent the entry of SARS-CoV-2 into the
human system. However, a recent report by Guan et al. (147)
cautioned that the administration of ACE inhibitors significantly
induced adverse clinical outcomes in COVID-19 patients due to
severe hypertension, coronary artery disease, and chronic renal
failure; hence, further use of ACE inhibitors to treat COVID-
19 infections was halted (147–149). In another report Diaz (149)
hypothesized that COVID-19 patients receiving I.V. infusions of
ACEIs and ARBs (AT1- Receptor Blockers) are at a higher risk
of attaining severe disease pathogenesis. Hence, they supported
the development of NSMIs such as “TMPRSS2 inhibitors to treat
SARS-CoV-2 infections (7)”.

Reasons for the Failure of Current
Therapeutic Modalities Against
SARS-CoV-2
The failure of disease management and lack of selective therapies
could be due to the intricate COVID-19 pathogenesis induced
by the SARS-CoV-2 infection. Hence, the early recognition of
disease is essential for effective management of COVID-19 (48).

Although, several reports delineated the efficacy of certain
NSMIs viz., ribavirin, promazine, and IMP dehydrogenase
inhibitors to inhibit in vivo models of SARS- CoV replication,
later, they were proven ineffective (60, 150–152). A report by
Reghunathan et al. (153) showed that the immune response
produced against SARS-CoV may be different from other
viral infections as indicated by the lack of upregulation
in MHC-I genes, cytokines, and IFNs or complement-
mediated cytolysis in peripheral blood mononuclear cells
(PBMCs). The failure in the development of a vaccine
is due to antibody-dependent enhancement and Th-2
immunopathology (154–156).

Pegylated IFN-α inhibits viral replication of SARS-CoV and
offers protection against type I pneumocytes in lungs (2). A
significant reason for the failure or lack of selective therapies
against SARS-CoV-2-induced SARS is the intricate immune
system mediated pathophysiology (4). Other reports by Law et
al., also detailed similar mechanisms (157, 158). SARS-CoV can
evade host IFN-mediated viral growth inhibition by activating
IFN-regulatory factor 3 (157). Furthermore, SARS-CoV could
induce apoptosis in lymphocytes in vitro using “ORF 7a, ORF 3a,
and ORF 3b, E protein, and N protein” (159–162). For instance,
the SARS-CoV can evade immunity as indicated by the decline
in CD4 and CD8T cells (163). Therefore, it is necessary to
uncover the complement-based cytolysis in human patients in
response to the SARS-CoV-2 strain as this virus executes unusual
mechanisms to evade the human immune system consequently
inducing pathogenesis and mortality. The prospective research
should focus on this viral-mediated immune signaling with
respect to SARS-CoV for developing effective NSMIs.

Intravenous (IV) hyperimmune globulin therapy is one of the
immunotherapies known to downmodulate pro-inflammatory

cytokines and mitigate the severity of infection in COVID-19
patients. IV infusion of immunoglobulins composed of a high
dose of antibodies, which can bind to a number of inhibitory
receptors viz., Fc gamma receptor IIB (FcγRIIB) (164, 165)
and FcγRIIC (166) and confer anti-inflammatory responses
against SARS-CoV-2 (Completed Clinical Trials: hyperimmune
plasma NCT04321421).

Nrf-2 Modulators vs. SARS-CoV-2 Induced
Oxidative Stress
Oxidative stress is significantly induced by several viral infections
inside the lungs through the downregulation of redox regulator
nuclear factor-erythroid 2 related factor 2 (Nrf-2) (167). Nrf-
2 is a leucine-zipper transcription factor (167) expressed
predominantly in nasal epithelium, epithelial cells of lungs, and
alveolar macrophages (168, 169). Disruption of Nrf-2 and Keap1
interaction triggers the activation of the anti-oxidant defense
mechanism (169). For instance, Nrf-2 activation offers protection
against inflammation and lung injury induced by influenza viral
infections and respiratory syncytial virus (RSV) through the
anti-oxidant defense pathway (170). Several viral proteins in the
host cells can foster optimum levels of ROS-mediated oxidative
stress to facilitate viral metabolism and the viral replication
cycle without killing host cells (168, 171–174). Recent seminal
studies described the active role of viruses in inhibiting the Nrf-
2 pathway (175–177). For instance, the positive regulation of
Nrf-2 in modulating the thiol redox system and oxidative stress
for the survival of infected astrocytes was observed in Moloney
murine leukemia virus and HIV virus (178). The HCV virus could
induce the downregulation of Nrf-2 dependent NQO1, GCLC,
and GPx and modulate oxidative stress (179, 180). An RSV
infection mediates proteasomal degradation, deacetylation, and
SUMOylation of Nrf-2 consequently causing the downregulation
of NQO1, CAT, and SOD1 gene expression (181). Hence, Nrf-
2 activators are potential anti-viral agents, which can be tested
against the SARS-CoV-2 infection (167). Future research is highly
imperative in unraveling the underlying activity of Nrf-2 for
emerging SARS-CoV-2 survival by analyzing Nrf2 target genes
NQO1, GCLC, and GPx. In addition, the SARS-CoV-2 mediated
expression of serine and cysteine proteases in different cell lines
should be investigated in relation to Nrf-2 activation, which is
a beneficial strategy to combating SARS-CoV-2 pathogenesis.
However, in the case of certain viral infections, it is imperative
to develop Nrf-2 inhibitors to protect the host cells (182).
For instance, the Marburg virus (a causative agent for lethal
hemorrhagic fever) can modulate oxidative stress by activating
Nrf-2 dependent signaling through the blockade of “VP-24 viral
protein” binding to KEAP1 (183). Therefore, VP-24 dependent
Nrf2 activation can mediate the upregulation of genes HO
(heme oxygenase)-1, NQO1, and GCLM (183). In the case of
Dengue virus, the viral particles could induce ER stress and
activate Nrf-2 signaling, which then lead to TNF-α secretion
(184). In this scenario, it is crucial to uncover any underlying
mechanisms of emerging SARS-CoV-2 survival through the
modulation of oxidative stress via Nrf-2 signaling in different
cells of different organs including lungs (183). The prospective
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TABLE 4 | Structure and mechanism of action of naturally occurring Nrf2 modulators.

Nrf-2 modulators

effective against

viruses

Mechanism of Action Source and structure References

EGCG Inhibits viral replication of influenza

A/Bangkok/1/79 infection in lung cells

Inhibits Tat-induced HIV-1 infection

A polyphenol-Dried leaves of green tea (167)

(185)

(202)

SFN Inhibits viral replication by enhancing

expression of Nrf-2 expression, and

antiviral mediators viz., RIG-1, IFN-β, and

MxA.

Isothiocyanate—cruciferous vegetables (185)

(203)

α-luminol (monosodium

α-luminol)

Inhibits MoMuL virus Chemical synthesis (191)

Tanshinone IIA Inhibits Tat-induced HIV-1 via Nrf-2

upregulation

Salvia miltiorrhiza Bunge (204)

(204)

Lucidone Inhibits Dengue virus HCV (Hepatitis C

Virus) growth

Lindera erythrocarpa Makino (195)

Celastrol (quinone

methide triterpene)

Inhibits Tat-induced HIV-1 infection Tripterygium wilfordii (197)

(205)

Bakuchiol (phenolic

isoprenoid)

Inhibits influenza A H1N1 lung virus

infection

Psoralea corylifolia L. (199)

(206)

Rupestonic acid

(sesquiterpene)

Inhibits influenza A (H1N1) lung virus

infection

Artemisia rupestris L. (207)

(Continued)
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TABLE 4 | Continued

Nrf-2 modulators

effective against

viruses

Mechanism of Action Source and structure References

Curcumin Inhibits influenza A (H1N1) lung virus

infection

Turmeric (208)

(201)

research studies should focus on the development of Nrf-2
modulators against SARS-CoV-2.

Natural Nrf-2 Modulators vs. Viral Infections
Natural products were proven to offer protection against virus-
induced oxidative stress by modulating anti-oxidant defense
pathways (185, 186). For instance, the administration of EGCG
has mitigated viral replication of “influenza A/Bangkok/1/79
infection” by activating Nrf-2 to attenuate virus-induced
oxidative stress, inflammation, and apoptosis in lung cells (186).
Similarly, the cytoprotective and antioxidant efficacy of Nrf-2
was reported against PR8 influenza-A viral infection in AT-I and
AT-II cells (186). Prospective research should focus on testing
the efficacy of several natural products to block SARS-CoV-
2 viral replication by ascertaining Nrf-2 mediated antioxidant
responses. Studies have also shown the activation of host cellular
transmembrane proteases (for example, serine proteases, cysteine
proteases), which can further foster a prompt viral entry and
viral replication in host cells by reducing Nrf-2 expression (4).
Decline in proteolysis of the above proteases can actuate the
propagation of several human viruses viz., Influenza, HIV, NIpah,
Ebola, and Coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-
2) (42, 90, 187–189). In this scenario, similar to influenza-A
virus (190), it is highly important to unravel the influence of
Nrf-2 expression on TMPRSS2, and human airway trypsin-like
protease during SARS-CoV-2-mediated inflammatory conditions
and oxidative stress in lungs. The downregulation of the Nrf-
2 gene is correlated to serine protease activity and consequent
influenza viral entry (185). Recent studies have demonstrated
the efficacy of natural Nrf-2 activators viz., EGCG and
sulforaphane (SFN) for blocking viral entry/viral replication
as well as promoting antiviral mediators RIG-I, IFN-β, and
MxA (185). In this context, it is essential to demonstrate
the effects of nutritional interventions like SFN and EGCG
against SARS-CoV-2 induced oxidative stress by modulating
Nrf-2 signaling.

Evidence has demonstrated the use of naturally occurring
Nrf2 activators for mitigating viral infections/post-viral infection
induced complications. For example, α-luminol is a natural Nrf-
2 activator, which confers the protection of astrocytes against
the MoMuL virus (191). EGCG enhances nuclear Nrf-2 levels
during Tat-induced HIV-1 infection and offers protection against
virus induced oxidative stress (192). Tanshinone II A can
induce upregulation of Nrf-2 expression and mitigates ROS
production during Tat-induced HIV-1 infection via modulating
AMPK/Nampt/SIRT1 signaling in host cells (193). SFN enhances

the phagocytic function of “HIV-infected alveolar macrophages
in lungs” by activating Nrf-2 signaling, which further induces
downstream antioxidant cascades (194). Lucidone is effective
for the Nrf-2 mediated blockade of Dengue virus by inducing
heme oxygenase-1 (195); rographolide could induce Nrf-2
induced antioxidant defenses against influenza A in lung
cells (196); celastrol can mediate Nrf-2 induced antioxidant
defenses against HIV-1 Tat-induced inflammation (197). Broccoli
sprouts containing SFN acts as a Nrf-2 activator to reduce
influenza-induced infection in lung cells (198). Bakuchiol
and Rupestonic acid are phytoconstituents that confer Nrf-2
activation thereby promoting NQO1 gene expression and HO-
1-mediated interferon activity to enhance antioxidant response
against influenza virus in lung cells (199, 200). Curcumin is
another significant compound that can modulate Nrf-2 signaling
and enhance the generation of IFN-β to offer protection
against the influenza virus (201). Curcumin can mitigate
this viral infection by modulating TLR2/4, p38/JNK MAPK,
and NF-κB pathways (201). However, studies are required to
decipher the activity of these phytochemicals against SARS-
CoV-2 (Table 4). A recent report by Drăgoi (209) hypothesized
that the potent natural Nrf-2 activators viz., resveratrol, SFN,
curcumin, and Asea redox should be evaluated in different
combinations with conventional drugs against SARS-CoV-2
infection in both in vitro and in vivo models and to further
deduce a correlation between Nrf-2 activity and SARS-CoV-2
viral entry/replication.

Naturally Occurring Small Molecule Inhibitors vs.

SARS-CoV-2
SARS-CoV-2 is progressively inducing a high mortality rate
across the globe due to the lack of selective therapeutic
interventions or vaccination. Recent reports by Lu et al. (210)
and Xu et al. (148) delineated that the S-protein of SARS-
CoV-2 and SARS Co-V exhibit similar 3-D pharmacophore
in the receptor binding domain (RBD) of ACE-2 of human
cells. COVID-19 patients are characterized by the severe viral
pathogenesis due to extensive cytokine storm viz., TNF-α, IL-1β,
IL-10, IFNγ, and MCP-1 in infected lung tissues (48). A report
by Chen and Du (211) hypothesized that the phyto-constituents
such as “baicalin, scutellarin, hesperetin, nicotianamine, and
glycyrrhizin” may deliver anti-SARS-CoV-2 effects. Hesperetin
glycoside abundant in citrus fruits, which can inhibit the SARS-
CoV 3CLpro (212). The activity of this molecule must be
examined against serine/cysteine proteases, which support SARS-
CoV-2 viral entry/replication. Traditional citrus flavonoids were
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TABLE 5 | Structure and mechanism of action of NSMIs identified against SARS-CoV2 using molecular docking studies.

NSMIs Identified using

Molecular Docking

Mechanism of Action Source and Structure References

Baicalin (a flavonoid) Predicted to exhibit a capacity for binding to

ACE-2 for inducing anti-SARS-CoV-2 effects

Scutellaria baicalensis (211, 217)

Scutellarin (a flavone

glycoside)

Predicted to exhibit a capacity for binding to

ACE-2 to induce anti-SARS-CoV-2 effects

Erigeron breviscapus (211, 218)

Nicotianamine Predicted to exhibit a capacity for binding to

ACE-2 to induce anti-SARS-CoV-2 effects

Leaves of L. chinense

Fagus sylvatica, Avena sativa

Oryza sativa, Soybean

(211, 219, 220)

Glycyrrhizin Predicted to exhibit a capacity for binding to

ACE-2 to induce anti-SARS-CoV-2 effects

Note: Yet to be examined against

SARS-CoV-2 infection

Liquorice root (Glycyrrhiza radix), (211)

Hesperetin glycoside Potent inhibitor of SARS-CoV 3CLpro Note: Yet

to be examined against SARS-CoV-2 infection

Citrus aurantium

Citri Reticulatae Pericarpium

(211, 212)

Naringenin Binds to ACE-2, a receptor for SARS-CoV-2 Citrus wilsonii Tanaka (211, 213)

(Continued)
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TABLE 5 | Continued

NSMIs Identified using

Molecular Docking

Mechanism of Action Source and Structure References

Betulinic acid Competitively inhibits SARS-CoV 3CL protease Outer bark of the birches (Betula) (214, 221)

Griffithsin Binds to the SARS-CoV spike (S) -protein and

inhibit viral entry

Red algae (Griffithsia species) (215, 222)

Savinin Competitively inhibits SARS-CoV 3CL protease A Lignan from Pterocarpus santalinus (214)

Quercetin Predicted to inhibit SARS-CoV-2 6LU7 Main

protease (Mpro)

Red grapes, citrus fruit

(Pubchem)

(65)

Kaempferol Predicted to inhibit SARS-CoV-2 6LU7 Main

protease (Mpro)

Delphinium

(Pubchem)

(65)

Allicin Predicted to inhibit SARS-CoV-2 6LU7 Main

protease (Mpro)

Garlic (Allium sativum)

(Pubchem)

(65)

(Continued)
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TABLE 5 | Continued

NSMIs Identified using

Molecular Docking

Mechanism of Action Source and Structure References

Gingerol Predicted to inhibit SARS-CoV-2 6LU7 Main

protease (Mpro)

Ginger (Pubchem) (65)

Catechin Predicted to inhibit SARS-CoV-2 6LU7 Main

protease (Mpro)

Green tea

(Pubchem)

(65)

Epicatechingallate Predicted to inhibit SARS-CoV-2 6LU7 Main

protease (Mpro)

Rhubarb, Parapiptadenia rigida

(Pubchem)

(65)

Curcumin Predicted to inhibit SARS-CoV-2 6LU7 Main

protease (Mpro)

Curcumin longa

(Pubchem)

(65)

Apigenin-7- glucoside Predicted to inhibit SARS-CoV-2 6LU7 Main

protease (Mpro)

Parsley

(Pubchem)

(65)

Luteolin-7- glucoside Predicted to inhibit SARS-CoV-2 6LU7 Main

protease (Mpro)

Leaves of Capsicum annuum

(Pubchem)

(65)

Frontiers in Immunology | www.frontiersin.org 15 September 2020 | Volume 11 | Article 552925

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Beeraka et al. Strategies for Targeting SARS-CoV-2: NSMIs

reported to have a potential to act against SARS-CoV-2 as studied
by molecular docking studies. Molecular docking simulations,
LC-MS studies described the efficacy of citrus flavonoids (ex.
naringenin) in binding to ACE-2, and mitigating inflammation-
induced lung injury by the SARS-CoV-2 virus (213). Further
studies should evaluate these compounds in preclinical models
to determine the safety and efficacy against the SARS-CoV-
2 infection.

Natural products such as di/tri-terpenoids, lignoids were
proven to inhibit the viral replication of coronaviruses in vitro
(214); griffithsin could block coronaviral entry by binding
to the SARS-CoV spike glycoprotein (215). TSL-1 can block
coronaviral entry/replication; Leaf extracts of Toona sinesis Roem
effectively blocked SARS-CoV replication (57). Betulinic acid,
savinin can act as competitive inhibitors against SARS-CoV
3CL protease to block viral entry (214). The research gap
must be filled to develop nutritional therapeutic interventions
by investigating the efficacy of these phytochemicals against
SARS-CoV-2 viral entry. Seeds of Psorelia corylifolia exhibit
inhibitory effects against the SARS-CoV papain-like protease
required for coronavirus entry/replication. The efficacy of
these molecules should be examined against SARS-CoV-2
(216) (Table 5). The active site pockets of main proteases
such as 6LU7 and 2 GTB in SARS-CoV-2 are reported to
be involved in conferring viral entry/fusion; hence, these
sites should be considered as the potential drug targets
against SARS-CoV-2 (66). A molecular docking study by
Khaerunnisa et al. (65) reported the predicted efficacy of bioactive
compounds against above SARS-CoV-2 main protease (Mpro)
sites viz., “nelfinavir, lopinavir, kaempferol, quercetin, luteolin-7-
glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside,

oleuropein, curcumin, catechin, epicatechin-gallate, zingerol,
gingerol, and allicin” (Table 5).

CONCLUSIONS

The life-threatening consequences of the COVID-19 pandemic
remain high due to lack of selective targeted therapies and
vaccination strategies. This is primarily due to extreme genomic
variability of RNA viruses as well as variations in the host-cell
invading mechanisms. Hence, this review benefits virologists,
medical scientists, and cell biologists to ascertain and develop
NSMIs, Nrf-2 modulators, and clinically viable vaccines to
combat this devastating SARS-CoV-2 strain. However, many
more preclinical and clinical studies are required to uncover
the therapeutic efficacy of potential phytochemicals, natural
Nrf2 modulators, and several NSMIs against the SARS-
CoV-2 infection. Furthermore, studies are also warranted to
overcome ADE responses, and Th-2 immunopathology for the
development of safe and efficacious vaccines against SARS-CoV-
2. In summary, this review provides an overview on the existing
knowledge and shows directions to various areas that require
immediate attention.
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